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A DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD
FOR TIME DEPENDENT PARTIAL DIFFERENTIAL
EQUATIONS WITH HIGHER ORDER DERIVATIVES

YINGDA CHENG AND CHI-WANG SHU

Abstract. In this paper, we develop a new discontinuous Galerkin (DG) fi-
nite element method for solving time dependent partial differential equations
(PDEs) with higher order spatial derivatives. Unlike the traditional local dis-

continuous Galerkin (LDG) method, the method in this paper can be applied
without introducing any auxiliary variables or rewriting the original equation
into a larger system. Stability is ensured by a careful choice of interface nu-
merical fluxes. The method can be designed for quite general nonlinear PDEs
and we prove stability and give error estimates for a few representative classes
of PDEs up to fifth order. Numerical examples show that our scheme attains
the optimal (k + 1)-th order of accuracy when using piecewise k-th degree
polynomials, under the condition that k + 1 is greater than or equal to the
order of the equation.

1. Introduction

In this paper, we develop a new discontinuous Galerkin (DG) method to solve
time dependent partial differential equations with higher order spatial derivatives.
We describe the designing principle of our new DG scheme through a few represen-
tative examples of such equations including the generalized KdV equation

(1.1) ut + f(u)x + σuxxx = 0,

the convection diffusion equation

(1.2) ut + f(u)x − (a(u)ux)x = 0

with a(u) ≥ 0, a type of time dependent biharmonic equation

(1.3) ut + f(u)x + σuxxxx = 0

with σ > 0, a type of nonlinear equation with fifth order derivative

(1.4) ut + f(u)x + σuxxxxx = 0,

and the fully nonlinear fifth order K(n, n, n) equation

(1.5) ut + (un)x + (un)xxx + (un)xxxxx = 0.
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We concentrate our attention in one dimension for this paper, however, the method
as well as its stability analysis can be easily generalized to multi-dimensional cases.

The type of DG method that we will discuss here is a class of finite element
methods originally devised to solve hyperbolic conservation laws containing only
first order spatial derivatives, e.g. [11, 10, 9, 8, 12]. Using completely discontinu-
ous polynomial space for both the test and trial functions in the spatial variables
and coupled with explicit and nonlinearly stable high order Runge-Kutta time dis-
cretization, the method has the advantage of flexibility for arbitrarily unstructured
meshes, with a compact stencil, and with the ability to easily accommodate arbi-
trary h-p adaptivity.

The DG method was later generalized to the local DG (LDG) method by Cock-
burn and Shu to solve the convection diffusion equation [13]. Their work was moti-
vated by the successful numerical experiments of Bassi and Rebay [5] for the com-
pressible Navier-Stokes equations. Later, Yan and Shu developed a LDG method
for a general KdV type equation containing third order derivatives in [27], and
they generalized the LDG method to PDEs with fourth and fifth spatial derivatives
in [28]. Levy, Shu and Yan [17] developed LDG methods for nonlinear dispersive
equations that have compactly supported traveling wave solutions, the so-called
“compactons”. More recently, Xu and Shu further generalized the LDG method to
solve a series of nonlinear wave equations [22, 23, 24, 25].

The idea of the LDG method is to introduce new auxiliary variables and rewrite
the original equation into several first order equations. By carefully choosing the
numerical fluxes, the LDG scheme is proven to be stable and high order accurate.
The LDG method can also retain the flexibility of the DG method since the aux-
iliary variables can be locally eliminated, hence the word local in LDG. However,
practitioners are sometimes unhappy with these auxiliary variables, since they may
increase the complexity and computational cost of the method, and expand the
effective stencil of the method after the elimination of the auxiliary variables. An
alternative method for solving second order convection diffusion equations is the
DG method of Baumann and Oden [6]; see also [19]. This method does not need
the introduction of auxiliary variables, relying instead on penalty terms at cell
boundaries to achieve stability. However, the method does not achieve the optimal
(k+1)-th order of accuracy when piecewise polynomials of an even degree k is used.
Also, it does not seem straightforward to generalize the method to nonlinear PDEs
containing higher spatial derivatives. Another class of related methods, mostly for
elliptic problems with even-order leading derivatives and without time, is the class
of interior penalty (IP) methods, first discussed by Baker in [4]; see also [2, 3].
The IP methods rely on penalty terms, typically proportional to the jumps of the
solution, added at all interior cell interfaces to stabilize the methods. Our method
in this paper, when suitably rewritten, can be cast into the unified framework [3]
to which the IP methods also belong. Advantages of our approach, through the de-
sign of numerical fluxes, include its automatic local conservation, and its ability to
design stable DG methods for wave type PDEs with odd-order leading derivatives
such as the KdV equations. More recently, van Leer and Nomura [21] and Gassner
et al. [15] proposed new DG formulations for the diffusion equations. They use twice
the integration by parts for the diffusion term, and either an L2 projection of the
discontinuous piecewise polynomial over two neighboring cells into a continuous,
single polynomial, or a suitable Riemann solver for the diffusion equation, that is,
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exact solutions for the diffusion equation with a step function Riemann initial data,
to provide interface values of the solution derivative resulting from the integration
by parts. The DG schemes in [21] and [15] do not need to use the auxiliary variables
as in LDG method, however, the L2 projection procedure might be cumbersome for
arbitrary triangulations in multi-dimensions, especially for non-conforming meshes
with hanging nodes, while the Riemann solver based approach might be difficult
to be generalized to equations containing higher order spatial derivatives. Stability
and convergence of the schemes are not proven in [21] and [15]. In [1], Adjerid and
Temimi introduced a DG method for solving high order ordinary differential equa-
tions (ODEs). Their method relies on a repeated integration by parts and taking
the numerical traces (fluxes) always from the left (the side with the smaller time).
The objective of our study is to develop a framework of designing DG schemes that
will work for general time dependent PDEs with higher order spatial derivatives,
by carefully choosing the numerical fluxes resulting from integration by parts to
ensure provable stability. Similar to [21, 15, 1], we also rely on repeated integration
by parts; and similar to [1], we also rely on the choice of numerical fluxes at the
cell interfaces. However, since we are dealing with PDEs, with possibly nonlinear
higher order derivative terms, the simple choice of taking the numerical fluxes al-
ways from the left does not work and we have to carefully design the numerical
fluxes for different PDEs to ensure stability. The DG schemes discussed in this
paper are more compact than LDG schemes and are simpler in formulation and
coding.

The organization of the paper is as follows. In Section 2, we introduce notations
and some auxiliary results that will be used later in the paper. In Section 3, the
scheme for the generalized KdV equations is discussed. Stability, error estimates
and numerical examples will be given. In Section 4, we follow the lines of Section
3 and consider the convection diffusion equation. In Section 5, we generalize our
scheme to higher order equations. Concluding remarks and comments for future
work are provided in Section 6. Finally, in the Appendix we provide proofs for
some of the more technical results of the error estimates.

2. Notations and auxiliary results

In this section, we introduce notations and some auxiliary results that will be
used later.

2.1. Basic notations. In this paper, we will follow the usual notation of the DG
method. For a given interval I = [a, b], we divide it into N cells as follows:

(2.1) a = x 1
2

< x 3
2

< . . . < xN+ 1
2

= b.

We denote

(2.2) Ij = (xj− 1
2
, xj+ 1

2
), xj =

1
2
(xj− 1

2
+ xj+ 1

2
)

and

(2.3) hj = xj+ 1
2
− xj− 1

2
, h = max

j
hj .

We also assume the mesh is regular, i.e., the ratio between the maximum and
minimum mesh sizes shall stay bounded during mesh refinements. We define the
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approximation space as

(2.4) V k
h = {vh : (vh)|Ij

∈ P k(Ij), j = 1, . . . , N}.

Here P k(Ij) denotes the set of all polynomials of degree at most k on Ij . For a
function vh ∈ V k

h , we use (vh)−
j+ 1

2
and (vh)+

j+ 1
2

to refer to the value of vh at xj+ 1
2

from the left cell Ij and the right cell Ij+1, respectively. [vh] is used to denote
v+

h −v−h , i.e. the jump of vh at cell interfaces. v̄h = 1
2 (v−h +v+

h ) denotes the average
of the left and right boundary values.

2.2. Notations for different constants. For notations of different constants we
will follow [29] and [26]. By C, we refer to a positive constant that is independent of
the mesh size h, but it may depend on other parameters of the problem. Especially,
to emphasize the nonlinearity of the flux f(u), we use C� to denote a non-negative
constant depending on the maximum of |f ′′| and |f ′′′|. C� = 0 for linear fluxes
f(u) = au with a constant a.

2.3. Numerical flux. In this paper, we will be using monotone numerical fluxes
f̂(w−, w+). It satisfies the following conditions:

(1) It is locally Lipschitz continuous.
(2) It is consistent with the flux f(w), i.e., f̂(w, w) = f(w).
(3) It is a nondecreasing function of its first argument, and a nonincreasing

function of its second argument.

2.4. Projection properties. For the error estimates, we will be using various
kinds of projection Ph into V k

h . For example, we can choose Ph such that for any
u, Phu satisfies ∫

Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V k−3
h and

Phu+ = u+, (Phu)+x = u+
x , (Phu)−xx = u−

xx

at all xj+1/2. We will use different projection Ph according to the need in each
proof. For all these projections, the following inequality holds [7]:

(2.5) ||we|| + h||we||∞ + h
1
2 ||we||Γh

≤ Chk+1

where we = Phw−w, Γh denotes the set of boundary points of all elements Ij , and
the constant C depends on k and the standard Sobolev k + 1 semi-norm |u|k+1 of
the smooth function w. Here and below, an unmarked norm || · || denotes the L2

norm.

2.5. Inverse properties. For any function wh ∈ V k
h , the following inequalities

hold [7]:

(2.6)

(i) ||(wh)x|| ≤ Ch−1||wh||,

(ii) ||wh||Γh
≤ Ch− 1

2 ||wh||,

(iii) ||wh||∞ ≤ Ch− 1
2 ||wh||.
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2.6. Time discretizations. In this paper, we will be using two types of time
discretizations. One of them is the total variation diminishing (TVD) high-order
Runge-Kutta method [20]. For the method of lines ODE

(2.7) (uh)t = L(uh),

the third order TVD Runge-Kutta method that we use in this paper is given by

u
(1)
h = un

h + �tL(un
h),

u
(2)
h =

3
4
un

h +
1
4
u

(1)
h +

1
4
�tL(u(1)

h ),(2.8)

un+1
h =

1
3
un

h +
2
3
u

(2)
h +

2
3
�tL(u(2)

h ).

We will also use the backward Euler scheme as

(2.9) un+1
h = un

h + �tL(un+1
h ).

For PDEs containing high order spatial derivatives, explicit time discretization such
as (2.8) is subject to severe time step restriction for stability. More efficient time
stepping techniques such as the exponential time differencing (ETD) method [14]
or preconditioned implicit methods should be used. We do not pursue this issue
since the focus of this paper is on the DG spatial discretization.

3. The KdV equation

We first consider the one dimensional generalized KdV equation given by

(3.1) ut + f(u)x + σuxxx = 0

where σ is a given constant, to demonstrate the basic ideas of our DG scheme.
We propose our scheme as follows: find uh ∈ V k

h , such that∫
Ij

(uh)tvhdx −
∫

Ij

f(uh)(vh)xdx − σ

∫
Ij

uh(vh)xxxdx

+(f̂(u−
h , u+

h )v−h )j+ 1
2
− (f̂(u−

h , u+
h )v+

h )j− 1
2

+ σ(ûh(vh)−xx)j+ 1
2

(3.2)

−σ(ûh(vh)+xx)j− 1
2
− σ( ˜(uh)x(vh)−x )j+ 1

2
+ σ( ˜(uh)x(vh)+x )j− 1

2

+σ( ˇ(uh)xxv−h )j+ 1
2
− σ( ˇ(uh)xxv+

h )j− 1
2

= 0

holds for any vh ∈ V k
h and j = 1, . . . , N . Here f̂(u−

h , u+
h ), ûh, ˜(uh)x and ˇ(uh)xx are

numerical fluxes. The terms involving these fluxes appear from repeated integration
by parts, and a suitable choice for these numerical fluxes is the key ingredient for
the stability of the DG scheme. The flux f̂(u−

h , u+
h ) is a monotone flux as described

in Section 2.3. If σ is positive, then we can take either of the following two choices
for the other three fluxes

(3.3) ûh = u−
h , ˜(uh)x = (uh)+x , ˇ(uh)xx = (uh)+xx

or

(3.4) ûh = u+
h , ˜(uh)x = (uh)+x , ˇ(uh)xx = (uh)−xx.

It is crucial that we take ˜(uh)x = (uh)+x and ûh, ˇ(uh)xx from the opposite directions.
If σ is negative, we can take

(3.5) ûh = u+
h , ˜(uh)x = (uh)−x , ˇ(uh)xx = (uh)−xx



704 YINGDA CHENG AND CHI-WANG SHU

or

(3.6) ûh = u−
h , ˜(uh)x = (uh)−x , ˇ(uh)xx = (uh)+xx.

The above choice of the numerical fluxes are for the periodic boundary condition,
which is the only type of boundary conditions considered in this paper. For general
boundary conditions, the choice of the numerical fluxes should be adjusted at the
boundary; see for example [18]. For simplicity of discussion, we will only consider
the case of σ being positive from now on. We note that the choice of numerical
fluxes follows the same principle as those for the LDG method in [27].

3.1. Stability analysis. In this subsection, we will examine the stability property
of the scheme we just proposed. As mentioned before, for simplicity we will only
consider periodic boundary conditions.

Theorem 3.1. Our numerical scheme (3.2) with the flux choice (3.3) or (3.4) is
L2 stable, i.e.

||uh(t)|| ≤ ||uh(0)||.

Proof. Let F (u) =
∫

f(u)du. In (3.2), we let vh = uh and sum over j to obtain

(3.7)
d

dt

1
2

∫
I

u2
hdx +

N∑
j=1

Θj− 1
2

= 0

where Θj− 1
2

= ([F (uh)] − f̂(u−
h , u+

h )[uh] + σ
2 [(uh)x]2)j− 1

2
. Equation (3.7) is true

for both of our flux choices (3.3) and (3.4). It is now easy to show that Θj− 1
2
≥ 0

following the proof of the cell entropy inequality in [16], using the fact that f̂ is a
monotone flux. We discuss the following two possible cases.

(1) u+
h ≥ u−

h , then [F (uh)] = f(ξ)[uh], with ξ ∈ (u−
h , u+

h ). From the prop-
erty of a monotone flux, f(ξ) = f̂(ξ, ξ) ≥ f̂(u−

h , u+
h ), thus [F (uh)] −

f̂(u−
h , u+

h )[uh] ≥ 0.
(2) u+

h < u−
h , then [F (uh)] = f(ξ)[uh], with ξ ∈ (u+

h , u−
h ). From the prop-

erty of a monotone flux, f(ξ) = f̂(ξ, ξ) ≤ f̂(u−
h , u+

h ), thus [F (uh)] −
f̂(u−

h , u+
h )[uh] ≥ 0.

In both cases, we have [F (uh)]− f̂(u−
h , u+

h )[uh] ≥ 0, hence Θj− 1
2
≥ 0, which finishes

the proof. �

3.2. Error estimates. In this subsection, we state the error estimates of our
scheme. The proof of these results is rather technical and is therefore left to the
Appendix.

Theorem 3.2. Let u be the exact solution of the equation (3.1), which is sufficiently
smooth with bounded derivatives, and assume f ∈ C3. Let uh be the numerical
solution of (3.2) with either (3.3) or (3.4) as the numerical fluxes. If we impose
a periodic boundary condition, and use V k

h space with k ≥ 3, then we have the
following error estimate:

(3.8) ||uh(t) − u(t)|| ≤ Chk

where the constant C depends on k, t, ||u||k+1 and the bounds on the derivatives
|f (m)|, m = 1, 2, 3, but not on h. Here ||u||k+1 is the maximum over time in [0, t]
of the standard Sobolev k + 1 norm in space.
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Proof. The proof of this theorem is provided in the Appendix; see Section A.2.

Remark. Notice that the error estimate (3.8) is sub-optimal. If f(u) = 0, then the
result of Theorem 3.2 can be improved to the optimal O(hk+1) error estimate.

Theorem 3.2 only deals with the case of k ≥ 3. If k = 2, the following theorem
gives a more sub-optimal error estimate.

Theorem 3.3. Under the same condition as that of Theorem 3.2, if k = 2, then
we have the following error estimate:

(3.9) ||uh(t) − u(t)|| ≤ Ch
3
2

where the constant C depends on t, ||u||k+1 and the bounds on the derivatives |f (m)|,
m = 1, 2, 3, but not on h.

Proof. The proof of this theorem is provided in the Appendix; see Section A.3.

Remark. When k < 2, numerical experiments in the following subsection show that
our scheme is not consistent.

3.3. Numerical examples. In this subsection, we give numerical examples to
demonstrate the performance of our scheme.

Example 3.3.1. We solve the linear third order equation given by

(3.10)

⎧⎨
⎩

ut + uxxx = 0,
u(x, 0) = sin(x),
u(0, t) = u(2π, t).

The exact solution is

(3.11) u(x, t) = sin(x + t).

We use the third order TVD Runge-Kutta time discretization (2.8) with the time
step �t = CFL h3. The optimal CFL number can be obtained by a standard von
Neumann analysis. Here we simply choose a CFL number by numerical experiments
to make the scheme stable. Our computation is based on the flux choice (3.4). The
errors and numerical order of accuracy for P k elements with 1 ≤ k ≤ 3 are listed in
Table 3.1. We observe that our scheme is not consistent for P 1 polynomials, while
optimal (k + 1)-th order of accuracy is achieved for k ≥ 2. However, we remark
that, comparing with the LDG result in [27], for the same mesh, our DG scheme
has larger errors than the LDG scheme, although both achieve the optimal order
of accuracy.

Example 3.3.2. We solve the linear KdV equation given by

(3.12)

⎧⎨
⎩

ut − ux + uxxx = 0,
u(x, 0) = sin(x),
u(0, t) = u(2π, t).

The exact solution is

(3.13) u(x, t) = sin(x + 2t).

We still use (3.4) as our flux choice and take the upwind flux for the first order
convection term, i.e. f(u−

h , u+
h ) = −u+

h . Table 3.2 shows that our scheme gives the
optimal (k + 1)-th order of accuracy when k ≥ 2. For P 0 and P 1, the scheme is
not consistent.
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Table 3.1. Errors and numerical orders of accuracy for Example
3.3.1 when using P k polynomials and Runge-Kutta third order
time discretization on a uniform mesh of N cells. Final time T = 1.

k CFL N L1 error order L2 error order L∞ error order
10 0.60E+00 - 0.68E+00 - 0.11E+01 -

1 0.01 20 0.61E+00 -0.02 0.68E+00 0.00 0.11E+01 0.08
40 0.61E+00 -0.01 0.68E+00 0.00 0.10E+01 0.08

2 0.002

10 0.24E-01 - 0.27E-01 - 0.59E-01 -
20 0.31E-02 2.96 0.35E-02 2.96 0.74E-02 3.00
40 0.39E-03 2.99 0.44E-03 2.99 0.91E-03 3.03
80 0.49E-04 3.00 0.55E-04 3.00 0.11E-03 3.02

3 0.001

10 0.24E-03 - 0.32E-03 - 0.10E-02 -
20 0.15E-04 4.03 0.20E-04 3.99 0.75E-04 3.92
40 0.91E-06 4.02 0.12E-05 4.00 0.43E-05 3.98
80 0.56E-07 4.01 0.78E-07 4.00 0.27E-06 3.99

Table 3.2. Errors and numerical orders of accuracy for Example
3.3.2 when using P k polynomials and Runge-Kutta third order
time discretization on a uniform mesh of N cells. Final time T = 1.

k CFL N L1 error order L2 error order L∞ error order

2 0.001

10 0.23E-01 - 0.27E-01 - 0.58E-01 -
20 0.31E-02 2.90 0.35E-02 2.93 0.73E-02 2.98
40 0.39E-03 2.98 0.44E-03 2.99 0.90E-03 3.02
80 0.49E-04 2.99 0.55E-04 3.00 0.11E-03 3.01

3 0.001

10 0.24E-03 - 0.32E-03 - 0.10E-02 -
20 0.15E-04 4.04 0.20E-04 3.99 0.68E-04 3.92
40 0.91E-06 4.02 0.12E-05 4.00 0.43E-05 3.98
80 0.56E-07 4.01 0.78E-07 4.00 0.27E-06 3.99

Example 3.3.3. We solve the classical soliton solution of the nonlinear KdV equa-
tion

(3.14) ut − 3(u2)x + uxxx = 0

on the domain [−10, 12]. The initial condition is

u(x, 0) = −2sech2(x).

The exact solution is
u(x, t) = −2sech2(x − 4t).

This example was also tested in [27]. We impose the boundary condition

(3.15) u(−10, t) = g1(t), ux(12, t) = g2(t), uxx(12, t) = g3(t)

where gi(t) corresponds to the data from the exact solution, and we use the upwind
flux for the first order convection term and (3.3) as our flux choice. Table 3.3
contains the numerical error and order of accuracy for 2 ≤ k ≤ 5. It seems that
the optimal (k + 1)-th order of accuracy is achieved for k ≥ 3, while for k = 2 the
error seems to be half an order lower than the optimal order 3.
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Table 3.3. Errors and numerical orders of accuracy for Example
3.3.3 when using P k polynomials and Runge-Kutta third order
time discretization on a uniform mesh of N cells. Final time T =
0.1.

k CFL N L1 error order L2 error order L∞ error order

2 0.0001

20 0.20E-01 - 0.33E-01 - 0.11E+00 -
40 0.89E-02 1.25 0.22E-01 0.60 0.12E+00 -0.08
80 0.26E-02 1.75 0.61E-02 1.86 0.28E-01 2.12
160 0.46E-03 2.51 0.10E-02 2.60 0.50E-02 2.47

3 0.0001

20 0.92E-02 - 0.20E-01 - 0.82E-01 -
40 0.62E-03 3.89 0.12E-02 4.07 0.51E-02 4.00
80 0.29E-04 4.44 0.68E-04 4.11 0.49E-03 3.38
160 0.15E-05 4.24 0.41E-05 4.07 0.33E-04 3.88

4 0.0001

20 0.68E-03 - 0.12E-02 - 0.49E-02 -
40 0.27E-04 4.69 0.71E-04 4.07 0.44E-03 3.47
80 0.61E-06 5.47 0.18E-05 5.30 0.12E-04 5.20
160 0.18E-07 5.11 0.58E-07 4.99 0.39E-06 4.95

5 0.0001

20 0.10E-03 - 0.32E-03 - 0.22E-02 -
40 0.98E-06 6.72 0.23E-05 7.11 0.11E-04 7.59
80 0.17E-07 5.83 0.66E-07 5.11 0.50E-06 4.49
160 0.26E-09 6.06 0.10E-08 5.98 0.93E-08 5.74

Table 3.4. Errors and numerical orders of accuracy for Example
3.3.4 when using P k polynomials and Runge-Kutta third order
time discretization on a uniform mesh of N cells. Final time T =
0.1.

k CFL N L1 error order L2 error order L∞ error order

2 0.01

20 0.59E-03 - 0.23E-02 - 0.15E-01 -
40 0.97E-04 2.60 0.40E-03 2.56 0.45E-02 1.70
80 0.11E-04 3.12 0.50E-04 2.98 0.50E-03 3.17
160 0.19E-05 2.57 0.80E-05 2.65 0.66E-04 2.91

3 0.01

20 0.22E-03 - 0.81E-03 - 0.47E-02 -
40 0.16E-04 3.82 0.67E-04 3.61 0.47E-03 3.31
80 0.20E-05 3.01 0.78E-05 3.09 0.74E-04 2.66
160 0.21E-06 3.23 0.95E-06 3.04 0.13E-04 2.56

4 0.01

20 0.87E-04 - 0.34E-03 - 0.21E-02 -
40 0.16E-04 2.46 0.67E-04 2.36 0.47E-03 2.13
80 0.42E-06 5.21 0.16E-05 5.38 0.13E-04 5.20
160 0.18E-07 4.55 0.74E-07 4.43 0.72E-06 4.15

Example 3.3.4. To test the accuracy of our scheme for nonlinear problems with
small coefficients for the third derivative term, we solve the soliton solution of the
generalized KdV equation [27]

(3.16) ut + ux +
(

u4

4

)
x

+ εuxxx = 0
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on the domain [−2, 3]. Here we take ε = 0.2058 × 10−4. The initial condition is

u(x, 0) = A sech
2
3 (K(x − x0))

with A = 0.2275, x0 = 0.5 and K = 3
(

A3

40ε

) 1
2
. The exact solution is

u(x, t) = A sech
2
3 (K(x − x0) − ωt)

where ω = K
(
1 + A3

10

)
. The boundary conditions are given by

(3.17) u(−2, t) = g1(t), ux(3, t) = g2(t), uxx(3, t) = g3(t)

where gi(t) corresponds to the data from the exact solution, and we use the upwind
flux for the first order convection term and (3.3) as our flux choice. Table 3.4
contains the numerical error and order of accuracy for 2 ≤ k ≤ 4. The order of
accuracy seems to be less clean for this example, however, at least k-th order of
accuracy is achieved for the L2 norm.

4. The convection-diffusion equation

Now let us consider the one dimensional convection-diffusion equation

(4.1) ut + f(u)x − (a(u)ux)x = 0

where a(u) ≥ 0 is a non-negative function of u. We denote b(u) =
∫

a(u)du and
rewrite the equation into

(4.2) ut + f(u)x − (b(u))xx = 0.

We propose our DG scheme as follows: find uh ∈ V k
h , such that∫

Ij

(uh)tvhdx −
∫

Ij

f(uh)(vh)xdx −
∫

Ij

b(uh)(vh)xxdx

+(f̂(u−
h , u+

h )v−h )j+ 1
2
− (f̂(u−

h , u+
h )v+

h )j− 1
2
− (b̃(uh)xv−h )j+ 1

2
(4.3)

+(b̃(uh)xv+
h )j− 1

2
+ (b̂(uh)(vh)−x )j+ 1

2
− (b̂(uh)(vh)+x )j− 1

2
= 0

holds true for any vh ∈ V k
h and j = 1, . . . , N .

Here f̂(u−
h , u+

h ) is a monotone numerical flux, b̃(uh)x and b̂(uh) are numerical
fluxes that are chosen to be

(4.4) b̂(uh) = b(u+
h ), b̃(uh)x =

[b(uh)]
[uh]

((uh)−x + ξ[b(uh)])

where ξ is a positive constant that is of the order O(h−1). Comparing with the LDG
method [13], we can notice the appearance of the additional penalty term ξ[b(uh)]
in the flux b̃(uh)x. For the LDG method, such a penalty term is necessary for the
elliptic equation [3] but not for the time dependent convection-diffusion equation
(4.1). However, we will see later in the stability analysis (also verified by numerical
experiments) that the additional jump term ξ[b(uh)] is necessary for the stability of
our DG scheme. This seems to be a disadvantage of our DG scheme in comparison
with the LDG method, however, such an extra penalty term seems to be necessary
for our DG scheme only when even-order diffusive type PDEs are solved.
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4.1. Stability analysis. In this subsection, we will examine the stability property
of the scheme we just proposed. Again, only a periodic boundary condition is
considered.

Theorem 4.1. If a(u) ≥ β > 0 for a constant β, then the DG scheme (4.3) with
the flux choice (4.4) is L2 stable when ξ ≥ C

h for a suitably large constant C > 0:

||uh(t)|| ≤ ||uh(0)||.

Proof. Let F (u) =
∫

f(u)du. In (4.3), we let vh = uh and sum over j to obtain

(4.5)
d

dt

1
2

∫
I

u2
hdx +

∫
I

a(uh)(uh)2xdx +
N∑

j=1

Θj+ 1
2

= 0

where Θj+ 1
2

= ([F (uh)] − f̂(u−
h , u+

h )[uh] + 2[b(uh)](uh)−x + ξ[b(uh)]2)j+ 1
2
. Follow-

ing the same argument as that in the proof of Theorem 3.1, we have [F (uh)] −
f̂(u−

h , u+
h )[uh] ≥ 0. Thus,

d

dt

1
2

∫
I

u2
hdx = −

∫
I

a(uh)(uh)2xdx −
N∑

j=1

Θj+ 1
2

≤ −
∫

I

a(uh)(uh)2xdx −
N∑

j=1

ξ[b(uh)]2j+ 1
2

+ 2
N∑

j=1

|[b(uh)](uh)−x |j+ 1
2
.(4.6)

From the inverse property, there exists a constant C, such that

(4.7) ((uh)−x )2j+1/2 ≤ C

h

∫
Ij

(uh)2xdx,

so by Young’s inequality, for any ε > 0, we have
d

dt

1
2

∫
I

u2
hdx

≤ −
∫

I

a(uh)(uh)2xdx −
N∑

j=1

ξ[b(uh)]2j+ 1
2

+
N∑

j=1

(
ε2[b(uh)]2 +

((uh)−x )2

ε2

)
j+ 1

2

(4.8)

≤
(

C

hε2
− β

) ∫
I

(uh)2xdx −
N∑

j=1

(ξ − ε2)[b(uh)]2j+ 1
2
.

By taking ε =
√

C
hβ and ξ ≥ 2ε2 = 2C

hβ , (4.8) becomes

(4.9)
d

dt

1
2

∫
I

u2
hdx ≤ − C

hβ

N∑
j=1

[uh]2j+ 1
2
≤ 0,

which finishes the proof. �

4.2. Error estimate. In this subsection, we state the error estimate of our scheme
for the linear diffusion case a(u) = 1. The rather technical proof of this result is
again left to the Appendix.

Theorem 4.2. Let u be the exact solution of the equation (4.1) with a(u) = 1,
which is sufficiently smooth with bounded derivatives, and assume f ∈ C3. Let uh

be the numerical solution of (4.3) with (4.4) as our flux choice with ξ = C
h for the



710 YINGDA CHENG AND CHI-WANG SHU

same C as that in Theorem 4.1. If we impose periodic boundary condition, and use
V k

h space with k ≥ 1, then we have an error estimate as

(4.10) ||u(t) − uh(t)|| ≤ Chk

where the constant C depends on k, t, ||u||k+1 and the bounds on the derivatives
|f (m)|, m = 1, 2, 3, but not on h. For k = 1, we also require the convection term to
be linear f(u) = cu.

Proof. The proof of this theorem is provided in the Appendix; see Section A.4.

Remark. When k = 0, numerical experiments show that our scheme is not consis-
tent.

4.3. A numerical example. In this subsection, we give a numerical example to
demonstrate the performance of our scheme.

Example 4.3.1.

(4.11)

⎧⎨
⎩

ut − uxx = 0,
u(x, 0) = sin(x),
u(0, t) = u(2π, t).

The exact solution is given by

(4.12) u(x, t) = e−t sin(x).

In our computation below, we use the backward Euler time discretization. How-
ever, in order for the time error not to dominate, we still use a small time step
�t = CFL hk+1 for the V k

h space. The errors and numerical order of accuracy for
P k elements with 0 ≤ k ≤ 3 are listed in Table 4.1. We observe that our scheme
is not consistent for P 0 polynomials, while optimal (k + 1)-th order of accuracy is
achieved for k ≥ 1. We also remark that the additional jump term ξ[uh] in the
flux is necessary for stability. Without this term, when k = 3, N = 80, and the
numerical solution blows up.

4.4. Remark on another DG scheme. For (4.1), we can propose another DG
scheme that is formulated by one integration by parts instead of two: find uh ∈ V k

h ,
such that ∫

Ij

(uh)tvhdx −
∫

Ij

f(uh)(vh)xdx +
∫

Ij

a(uh)(uh)x(vh)xdx

+(f̂(u−
h , u+

h )v−h )j+ 1
2
− (f̂(u−

h , u+
h )v+

h )j− 1
2

(4.13)

−( ˜a(uh)(uh)xv−h )j+ 1
2

+ ( ˜a(uh)(uh)xv+
h )j− 1

2
= 0

holds for any vh ∈ V k
h and j = 1, . . . , N . We take the numerical flux to be

˜a(uh)(uh)x = a(u−
h )((uh)−x + ξ[uh]) with the same choice of ξ as before. Then

L2 stability can be proven without the positivity restriction a(u) ≥ β > 0 as in
Theorem 4.2, rather a(u) ≥ 0 suffices. Numerical experiments on the heat equation,
however, indicate that this scheme is only k-th order accurate when P k polynomials
are used.
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Table 4.1. Errors and numerical orders of accuracy for Example
4.3.1 when using P k polynomials and backward Euler time dis-
cretization on a uniform mesh of N cells. Final time T = 1. ξ =
10/h.

k CFL N L1 error order L2 error order L∞ error order

0 1
10 0.21E+00 - 0.24E+00 - 0.34E+00 -
20 0.23E+00 -0.09 0.25E+00 -0.09 0.36E+00 -0.09
40 0.23E+00 -0.03 0.26E+00 -0.03 0.37E+00 -0.03

1 1

10 0.32E-01 - 0.36E-01 - 0.63E-01 -
20 0.97E-02 1.70 0.11E-01 1.71 0.19E-01 1.74
40 0.25E-02 1.95 0.28E-02 1.95 0.48E-02 1.97
80 0.64E-03 1.98 0.71E-03 1.98 0.12E-02 1.99

2 1

10 0.26E-01 - 0.29E-01 - 0.41E-01 -
20 0.36E-02 2.88 0.40E-02 2.88 0.56E-02 2.87
40 0.45E-03 2.98 0.50E-03 2.98 0.71E-03 2.98
80 0.57E-04 3.00 0.63E-04 3.00 0.89E-04 3.00

3 1

10 0.17E-01 - 0.18E-01 - 0.26E-01 -
20 0.11E-02 3.86 0.13E-02 3.86 0.18E-02 3.86
40 0.71E-04 3.99 0.79E-04 3.99 0.11E-03 3.99
80 0.45E-05 4.00 0.49E-05 4.00 0.70E-05 4.00

5. Equations with higher order derivatives

In this section, we will generalize our scheme to deal with equations with higher
order derivatives.

5.1. A fifth order nonlinear equation. Our scheme can be applied to the fol-
lowing equation:

(5.1) ut + f(u)x + σuxxxxx = 0.

We propose a scheme as follows: find uh ∈ V k
h , such that∫

Ij

(uh)tvhdx −
∫

Ij

f(uh)(vh)xdx + (f̂(u−
h , u+

h )v−h )j+ 1
2
− (f̂(u−

h , u+
h )v+

h )j− 1
2

−σ

∫
Ij

uh(vh)xxxxxdx + σ(ûh(vh)−xxxx)j+ 1
2
− σ(ûh(vh)+xxxx)j− 1

2

−σ( ˜(uh)x(vh)−xxx)j+ 1
2

+ σ( ˜(uh)x(vh)+xxx)j− 1
2

+ σ( ¯(uh)xx(vh)−xx)j+ 1
2

(5.2)

−σ( ¯(uh)xx(vh)+xx)j− 1
2
− σ( ˇ(uh)xxx(vh)−x )j+ 1

2
+ σ( ˇ(uh)xxx(vh)+x )j− 1

2

+σ( ˙(uh)xxxxv−h )j+ 1
2
− σ( ˙(uh)xxxxv+

h )j− 1
2

= 0

holds for any vh ∈ V k
h and j = 1, . . . , N . In (5.2), f̂(u−

h , u+
h ) is a monotone nu-

merical flux. The pair of fluxes ûh and ˙(uh)xxxx should be taken from the opposite
directions of each other; likewise for the pair ˜(uh)x and ˇ(uh)xxx. If σ > 0, then

¯(uh)xx = (uh)−xx; otherwise, ¯(uh)xx = (uh)+xx. Therefore, for each fixed σ, there are
four combinations of flux choices available.

For simplicity of discussion, we will only consider the case σ > 0 from now on.
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5.1.1. Stability analysis. In this subsection, we will examine the stability property
of the scheme (5.2). As before, we assume periodic boundary condition.

Theorem 5.1. Our numerical scheme (5.2) is L2 stable for all four flux choices,
i.e.

||uh(t)|| ≤ ||uh(0)||.

Proof. The proof is almost the same as the proof of Theorem 3.1. Let F (u) =∫
f(u)du. In (5.2), we take vh = uh and sum over j to obtain

(5.3)
d

dt

1
2

∫
I

u2
hdx +

N∑
j=1

Θj− 1
2

= 0

where Θj− 1
2

= ([F (uh)] − f̂(u−
h , u+

h )[uh] + σ
2 [(uh)xx]2)j− 1

2
. This holds for all four

flux choices. Now, by the property of a monotone flux f̂ , we can show that [F (uh)]−
f̂(u−

h , u+
h )[uh] ≥ 0, so that Θj− 1

2
≥ 0, which finishes the proof. �

5.1.2. Error estimates. In this subsection, we state the error estimates of our scheme.
The proof of these results is left to the Appendix.

Theorem 5.2. Let u be the exact solution of the equation (5.1), which is sufficiently
smooth with bounded derivatives, and assume f ∈ C3. Let uh be the numerical
solution of (5.2). If we impose periodic boundary condition, and use V k

h space with
k ≥ 5, then we have an error estimate as

(5.4) ||uh(t) − u(t)|| ≤ Chk

where the constant C depends on k, t, ||u||k+1 and the bounds on the derivatives
|f (m)|, m = 1, 2, 3, but not on h.

Proof. The proof of this theorem is provided in the Appendix; see Section A.5.

Remark. If f(u) = 0, then the result of Theorem 5.2 can be improved to the optimal
O(hk+1) error estimate.

Theorem 5.2 only deals with the case of k ≥ 5. If k = 4, the following theorem
gives a more sub-optimal error estimate.

Theorem 5.3. Under the same condition of Theorem 5.2, if k = 4, then we have
an error estimate as

(5.5) ||uh(t) − u(t)|| ≤ Ch
5
2

where the constant C depends on t, ||u||k+1 and the bounds on the derivatives |f (m)|,
m = 1, 2, 3, but not on h.

Proof. The proof of this theorem is provided in the Appendix; see Section A.6.

Remark. When k < 4, numerical experiments show that our scheme is not consis-
tent.
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5.1.3. A numerical example. In this subsection, we give a numerical example.

Example 5.1.1. Consider the fifth order linear equation

(5.6)

⎧⎨
⎩

ut + ux + uxxxxx = 0,
u(x, 0) = sin(x),
u(0, t) = u(2π, t).

The exact solution is given by

(5.7) u(x, t) = sin(x − 2t).

We test the DG scheme with the following flux choice: ûh = u−
h , ˜(uh)x = (uh)−x ,

¯(uh)xx = (uh)−xx, ˇ(uh)xxx = (uh)+xxx and ˙(uh)xxxx = (uh)+xxxx. For the first order
convection term, we will just use the upwind flux, i.e. f̂(u−

h , u+
h ) = u−

h . We use
the backward Euler time discretization with a small time step in order for the time
error not to dominate. The errors and numerical order of accuracy for P k elements
with 3 ≤ k ≤ 5 are listed in Table 5.1. We observe that our scheme is not consistent
for P 3 polynomials, while optimal (k+1)-th order of accuracy is achieved for k ≥ 4.

Table 5.1. Errors and numerical orders of accuracy for Example
5.1.1 when using P k polynomials and backward Euler time dis-
cretization on a uniform mesh of N cells. Final time T = 1. �t =
CFL hk+1.

k CFL N L1 error order L2 error order L∞ error order

3 1
10 0.54E+00 - 0.61E+00 - 0.10E+01 -
20 0.56E+00 -0.06 0.63E+00 -0.05 0.10E+01 0.00
40 0.59E+00 -0.06 0.65E+00 -0.05 0.98E+00 0.02

4 1

10 0.11E+00 - 0.12E+00 - 0.17E+00 -
20 0.39E-02 4.83 0.43E-02 4.83 0.61E-02 4.83
40 0.12E-03 4.99 0.14E-03 4.99 0.19E-03 4.99
80 0.36E-05 5.08 0.40E-05 5.08 0.57E-05 5.08

5 1
10 0.73E-01 - 0.81E-01 - 0.11E+00 -
20 0.12E-02 5.89 0.14E-02 5.89 0.19E-02 5.89
40 0.19E-04 6.00 0.21E-04 6.00 0.30E-04 6.00

5.2. A time dependent biharmonic equation. Now let us consider a time de-
pendent biharmonic equation given by

(5.8) ut + f(u)x + σuxxxx = 0

where σ > 0 is a constant.
We propose a DG scheme as follows: find uh ∈ V k

h , such that∫
Ij

(uh)tvhdx −
∫

Ij

f(uh)(vh)xdx + σ

∫
Ij

uh(vh)xxxxdx

+(f̂(u−
h , u+

h )v−h )j+ 1
2
− (f̂(u−

h , u+
h )v+

h )j− 1
2
− σ(ũh(vh)−xxx)j+ 1

2

+σ(ũh(vh)+xxx)j− 1
2

+ σ( ˇ(uh)x(vh)−xx)j+ 1
2
− σ( ˇ(uh)x(vh)+xx)j− 1

2
(5.9)

−σ( ¯(uh)xx(vh)−x )j+ 1
2

+ σ( ¯(uh)xx(vh)+x )j− 1
2

+ σ( ˆ(uh)xxxv−h )j+ 1
2

−σ( ˆ(uh)xxxv+
h )j− 1

2
= 0

holds for any vh ∈ V k
h and j = 1, . . . , N .
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Here f̂(u−
h , u+

h ) is a monotone numerical flux. ũh, ˇ(uh)x, ¯(uh)xx and ˆ(uh)xxx are
numerical fluxes that can be chosen as

(5.10) ũh = u+
h , ˇ(uh)x = (uh)−x , ¯(uh)xx = (uh)+xx, ˆ(uh)xxx = (uh)−xxx − ξ[uh]

where ξ is a positive constant that is of the order O(h−3). Comparing with the
LDG method [28], we again notice the appearance of the additional penalty term
ξ[uh] in the flux ˆ(uh)xxx. For the LDG method, such a penalty term is necessary for
the steady state biharmonic equation but not for the time dependent biharmonic
equation [28]. However, we will see later in the stability analysis (also verified by
numerical experiments) that the additional jump term ξ[uh] is necessary for the
stability of our DG scheme.

5.2.1. Stability analysis. Here, we follow the lines of Section 4.1 and examine the
stability property of the scheme we just proposed. For simplicity, let us impose the
periodic boundary condition.

Theorem 5.4. The DG scheme (5.9) with the flux choice (5.10) is L2 stable when
ξ ≥ C

h3 for a suitably chosen constant C > 0:

||uh(t)|| ≤ ||uh(0)||.

Proof. Let F (u) =
∫

f(u)du. In (5.9), we let vh = uh and sum over j to obtain

(5.11)
d

dt

1
2

∫
I

u2
hdx +

∫
I

(uh)2xxdx +
N∑

j=1

Θj− 1
2

= 0

where Θj− 1
2

= ([F (uh)] − f̂(u−
h , u+

h )[uh] − 2σ[uh](uh)−xxx + ξσ[uh]2)j− 1
2
. From the

same deduction as in the proof of Theorem 3.1, we have [F (uh)]−f̂(u−
h , u+

h )[uh] ≥ 0.
Thus,

d

dt

1
2

∫
I

u2
hdx = −

∫
I

(uh)2xxdx −
N∑

j=1

Θj− 1
2

≤ −
∫

I

(uh)2xxdx − σ
N∑

j=1

ξ[uh]2j+ 1
2

+ 2σ
N∑

j=1

|[uh](uh)−xxx|j+ 1
2
.(5.12)

From the inverse property, there exists a constant C, such that

(5.13) ((uh)−xxx)2j+1/2 ≤ C

h

∫
Ij

(uh)2xxxdx ≤ C

h3

∫
Ij

(uh)2xxdx.

So by Young’s inequality, for any ε > 0, we have

d

dt

1
2

∫
I

u2
hdx

≤ −
∫

I

(uh)2xxdx − σ
N∑

j=1

ξ[uh]2j+ 1
2

+ σ
N∑

j=1

(
ε2[uh]2 +

((uh)−xxx)2

ε2

)
j+ 1

2

(5.14)

≤
(

σC

h3ε2
− 1

)∫
I

(uh)2xxdx − σ
N∑

j=1

(ξ − ε2)[uh]2j+ 1
2
.
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By taking ε =
√

σC
h3 and ξ ≥ 2ε2 = 2σC

h3 , (5.14) becomes

(5.15)
d

dt

1
2

∫
I

u2
hdx ≤ −σ

C

h3

N∑
j=1

[uh]2j+ 1
2
≤ 0

which finishes the proof. �

5.2.2. Error estimate. In this subsection, we state the error estimate of our scheme
and leave the proof to the Appendix.

Theorem 5.5. Let u be the exact solution of the equation (5.8), which is sufficiently
smooth with bounded derivatives, and assume f ∈ C3. Let uh be the numerical
solution of (5.9) with (5.10) as our flux choice with ξ = C

h3 for the same C as in
Theorem 5.4. If we impose the periodic boundary condition, and use V k

h space with
k ≥ 3, then we have an error estimate as

(5.16) ||uh(t) − u(t)|| ≤ Chk−1

where the constant C depends on k, t, ||u||k+1 and the bounds on the derivatives
|f (m)|, m = 1, 2, 3, but not on h.

Proof. The proof of this theorem is provided in the Appendix; see Section A.7.

5.2.3. A numerical example. In this subsection, we give a numerical example.

Example 5.2.1. Consider the linear biharmonic equation

(5.17)

⎧⎨
⎩

ut + uxxxx = 0,
u(x, 0) = sin(x),
u(0, t) = u(2π, t).

The exact solution is given by

(5.18) u(x, t) = e−t sin(x).

In our computation below, we will use the backward Euler time discretization.
For the V k

h space, we require that time step �t = CFL hk+1. Our scheme turns
out to be inconsistent for P k polynomials with k < 2. For the P 2 case, although we
cannot prove its convergence, numerical results from Table 5.2 show second order
accuracy, which is one order lower than optimal. For the k > 2 case, our scheme
achieves the optimal (k + 1)-th order accuracy.

5.3. The fifth order fully nonlinear K(n, n, n) equation. The fifth-order fully
nonlinear K(n, n, n) equation is given by

(5.19) ut + (un)x + (un)xxx + (un)xxxxx = 0.

For the following discussions, we need to use the Ln+1 norm, defined as ||u||n+1
Ln+1 =∫

I
|u(x)|n+1dx, of a function u in the space Ln+1 = {f(x) : ||f ||Ln+1 < ∞}. An

LDG method for this equation is given in [22], which can be proved to be Ln+1

stable when n is odd. Here, we introduce a DG scheme with the same Ln+1 stability
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Table 5.2. Errors and numerical orders of accuracy for Example
5.2.1 when using P k polynomials and backward Euler time dis-
cretization on a uniform mesh of N cells. Final time T = 1. ξ =
10/h3.

k CFL N L1 error order L2 error order L∞ error order

2 1

10 0.71E-02 - 0.79E-02 - 0.12E-01 -
20 0.18E-02 1.98 0.20E-02 1.98 0.30E-02 2.04
40 0.89E-03 1.00 0.99E-03 1.00 0.14E-02 1.09
80 0.28E-03 1.67 0.31E-03 1.67 0.44E-03 1.68
160 0.77E-04 1.86 0.86E-04 1.86 0.12E-03 1.86

3 1

10 0.18E-01 - 0.20E-01 - 0.30E-01 -
20 0.13E-02 3.87 0.14E-02 3.87 0.21E-02 3.84
40 0.79E-04 3.99 0.88E-04 3.99 0.13E-03 3.99
80 0.49E-05 4.00 0.55E-05 4.00 0.82E-05 4.00

4 1
10 0.11E-01 - 0.12E-01 - 0.17E-01 -
20 0.36E-03 4.92 0.40E-03 4.92 0.56E-03 4.92
40 0.11E-04 5.00 0.12E-04 5.00 0.18E-04 5.00

for odd n. Our scheme is formulated as to find uh, wh ∈ V k
h , such that∫

Ij

(uh)tvhdx −
∫

Ij

wh(vh)xdx −
∫

Ij

wh(vh)xxxdx −
∫

Ij

wh(vh)xxxxxdx

+(w̄hv−h )j+ 1
2
− (w̄hv+

h )j− 1
2

+( ˜(wh)xxv−h )j+ 1
2
− ( ˜(wh)xxv+

h )j− 1
2
− ( ˜(wh)x(vh)−x )j+ 1

2

+( ˜(wh)x(vh)+x )j− 1
2

+ ( ˜(wh)(vh)−xx)j+ 1
2
− ( ˜(wh)(vh)+xx)j− 1

2

+(ŵh(vh)−xxxx)j+ 1
2
− (ŵh(vh)+xxxx)j− 1

2
− ( ˆ(wh)x(vh)−xxx)j+ 1

2
(5.20)

+( ˆ(wh)x(vh)+xxx)j− 1
2

+ ( ˆ(wh)xx(vh)−xx)j+ 1
2
− ( ˆ(wh)xx(vh)+xx)j− 1

2

−( ˆ(wh)xxx(vh)−x )j+ 1
2

+ ( ˆ(wh)xxx(vh)+x )j− 1
2

+ ( ˆ(wh)xxxxv−h )j+ 1
2

−( ˆ(wh)xxxxv+
h )j− 1

2
= 0

and

(5.21)
∫

Ij

whghdx =
∫

Ij

un
hghdx

hold true for any vh, gh ∈ V k
h and j = 1, . . . , N . In this scheme, wh is the L2

projection of un
h into the finite element space V k

h . All the “hat” terms are numerical
fluxes. The second line of (5.20) contains the numerical fluxes from integration by
parts of the term wx and they should take the form w−

h . The third and fourth line
contains flux terms from wxxx and the flux choice is the same as that in Section
3, namely, ˜(wh)x = (wh)+x and w̃h, ˜(wh)xx from opposite directions. The fifth to
eighth lines contain flux terms induced by (wh)xxxxx. The choices are the same as
those in Section 5.1, namely, ˆ(wh)xx = (wh)−xx and ŵh, ˆ(wh)xxxx and ˆ(wh)x, ˆ(wh)xxx

from opposite directions of each other. We will see in the following theorem that
this flux choice will give us a Ln+1 stable scheme for odd n.
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Theorem 5.6. The following inequality holds
d

dt

∫
I

un+1
h dx ≤ 0.

In particular, our numerical scheme for (5.19) is Ln+1 stable for odd n:

||uh(t)||Ln+1 ≤ ||uh(0)||Ln+1 .

Proof. Letting vh = wh in our scheme and summing over j, we obtain

(5.22)
∫

I

(uh)twhdx +
N∑

j=1

Θj− 1
2

= 0

where Θj− 1
2

= 1
2 [wh]2

j− 1
2

+ 1
2 [(wh)x]2

j− 1
2

+ 1
2 [(wh)xx]2

j− 1
2
≥ 0. Invoking (5.21) then

finishes the proof. �
Remark. Our scheme can be generalized to solve equations of the type

ut + b(u)xxx = 0,

ut + b(u)xxxxx = 0,

ut + b(u)x + b(u)xxxx = 0

and so on. The idea is to first get the L2 projection of b(u) onto V k
h as a function

wh, then treat the equation as a linear equation as in the case of the K(n, n, n)
equation. Denote B(u) =

∫
b(u)du. If H is positive, we will have a stability for the

DG scheme in the form
d

dt

∫
I

B(u)dx ≤ 0.

6. Concluding remarks and a plan for future work

We have proposed a DG method to solve time dependent PDEs with higher order
spatial derivatives. The scheme is formulated by repeated integration by parts of
the original equation and then replacing the interface values of the solution by
carefully chosen numerical fluxes. Stability and error estimates have been proven
for a few representative PDEs. Compared to the LDG method, our DG method has
the advantage of easier formulation and implementation, it has a smaller effective
stencil (communication is only with immediate neighboring cells regardless of the
polynomial degree or the order of the PDE, unlike the LDG method which would
have a wider effective stencil for PDEs with higher spatial derivatives), and it may
save storage and computational cost as it does not introduce auxiliary variables
for the derivatives. Similar to the LDG method, a careful choice of the numerical
fluxes is a key ingredient for the stability of the scheme. It turns out that for
odd order derivative terms, the choice of the numerical fluxes is similar to that
of LDG and is rather straightforward, while for even order derivative terms, extra
penalty terms involving the jumps of the solution must be added to the numerical
flux to ensure stability, which is different from the LDG choice of fluxes. Other
disadvantages against the LDG method include the fact that our DG method is
in general inconsistent for lower order P k elements when k + 1 is smaller than
the highest order of the spatial derivative in the PDE, while the LDG method
can be designed from P 0 elements; and the fact that different and sometimes more
restrictive nonlinear PDEs can be solved stably by our DG method than by the LDG
method. Nevertheless, the new DG method can be designed and proven stable for
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many nonlinear high order PDEs such as the K(n, n, n) equation. Future work will
include the development and analysis of this class of DG methods for more general
nonlinear PDEs in multi-dimensions, and a more systematic comparison with the
LDG method.

A. Appendix: Collections of lemmas and proofs

In this appendix, we collect some technical lemmas and proofs for the error
estimates.

A.1. A quantity related to the numerical flux. In [29], Zhang and Shu in-
troduced an important quantity to measure the difference between a monotone
numerical flux and the physical flux.

Lemma A.1 ([29]). w ∈ L2(0, 1), on each cell boundary point we define

α(f̂ ; w) ≡ α(f̂ ; w−, w+) �
{

[w]−1(f(w̄) − f̂(w)), if [w] �= 0,
1
2
|f ′(w̄)|, if [w] = 0,

where f̂(w) ≡ f̂(w−, w+) is a monotone numerical flux consistent with the given
flux f . Then α(f̂ ; w) is non-negative and bounded for any bounded (w−, w+) ∈ R2.
Moreover, we have

1
2
|f ′(w̄)| ≤ α(f̂ ; w) + C�|[w]|, −1

8
|f ′′(w̄)|[w] ≤ α(f̂ ; w) + C�|[w]|2.

For simplicity, we will use the following notation:

α(f̂ ; w)[φ]2 =
N∑

j=1

α(f̂ ; w)j+ 1
2
[φ]2j+ 1

2
.

A.2. Proof of Theorem 3.2. Without loss of generality, let us assume σ = 1 and
prove for the flux choice (3.4). Let eu = u− uh be the error between the numerical
and exact solutions. For the nonlinearity of f(u), following the lines of [26], we
would like to make an a priori assumption that, for small enough h, it holds that

(A.1) ||u − uh|| ≤ h,

and by the interpolation property,

(A.2) ||eu||∞ ≤ Ch
1
2 and ||Phu − uh||∞ ≤ Ch

1
2 .

This assumption is unnecessary for linear f . Since u clearly satisfies (3.2), we can
obtain the cell error equation∫

Ij

(u − uh)tvhdx −
∫

Ij

(f(u) − f(uh))vhxdx −
∫

Ij

(u − uh)(vh)xxxdx

+((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2
− ((f(u) − f̂(u−

h , u+
h ))v+

h )j− 1
2

+((u − u+
h )(vh)−xx)j+ 1

2
− ((u − u+

h )(vh)+xx)j− 1
2
− ((ux − (uh)+x )(vh)−x )j+ 1

2
(A.3)

+((ux − (uh)+x )(vh)+x )j− 1
2

+ ((uxx − (uh)−xx)v−h )j+ 1
2

−((uxx − (uh)−xx)v+
h )j− 1

2
= 0

for all vh ∈ V k
h .
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Define

Bj(u − uh; vh) =
∫

Ij

(u − uh)tvhdx −
∫

Ij

(u − uh)(vh)xxxdx

+((u − u+
h )(vh)−xx)j+ 1

2
− ((u − u+

h )(vh)+xx)j− 1
2

(A.4)

−((ux − (uh)+x )(vh)−x )j+ 1
2

+ ((ux − (uh)+x )(vh)+x )j− 1
2

+((uxx − (uh)−xx)v−h )j+ 1
2
− ((uxx − (uh)−xx)v+

h )j− 1
2

and

Hj(f ; u, uh; vh) =
∫

Ij

(f(u) − f(uh))(vh)xdx − ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2

+ ((f(u) − f̂(u−
h , u+

h ))v+
h )j− 1

2
.(A.5)

Summing over all j, the error equation becomes

(A.6)
N∑

j=1

Bj(u − uh; vh) =
N∑

j=1

Hj(f ; u, uh; vh)

for all vh ∈ V k
h .

Since k ≥ 3, we can choose a projection Ph onto V k
h such that, for any u, Phu

satisfies ∫
Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V k−3
h and

Phu+ = u+, (Phu)+x = u+
x , (Phu)−xx = u−

xx

at all xj+1/2.
Denote

(A.7) wh = Phu − uh, we = Phu − u

and let vh = wh in (A.6) such that we obtain the energy equality

(A.8)
N∑

j=1

Bj(wh − we; wh) =
N∑

j=1

Hj(f ; u, uh; wh).

We first consider the left side of the energy equality (A.8).

Lemma A.2. The following equality holds:

(A.9)
N∑

j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

(wh)e
twhdx +

N∑
j=1

1
2
[(wh)x]2j+ 1

2
.

Proof of Lemma A.2.

(A.10) Bj(wh − we; wh) = Bj(wh; wh) − Bj(we; wh).

By a similar argument as that in the stability proof (Theorem 3.1), we have

(A.11)
N∑

j=1

Bj(wh; wh) =
∫

I

(wh)twhdx +
N∑

j=1

1
2
[(wh)x]2j+ 1

2
.
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From the definition of the projection Ph,

(A.12) Bj(we; wh) =
∫

I

we
t whdx.

Thus, by combining (A.11) and (A.12), we obtain (A.9). �

Now, consider the right hand side of (A.8), we can rewrite it into the following
form:

N∑
j=1

Hj(f ; u, uh; wh) =
N∑

j=1

∫
Ij

(f(u) − f(uh))(wh)xdx

+
N∑

j=1

((f(u) − f(ūh))[wh])j+ 1
2

+
N∑

j=1

((f(ūh) − f̂)[wh])j+ 1
2
.

In [26], Xu and Shu proved the following lemma.

Lemma A.3 ([26]). The following inequality holds:

(A.13)
N∑

j=1

((f(ūh) − f̂)[wh])j+ 1
2
≤ −3

4
α(f̂ ; uh)[wh]2 + Ch2k+1.

Proof of Lemma A.3. The proof is exactly the same as that in [26]. Note that
although we use a different projection Ph, the interpolation property still holds. �

Lemma A.4 ([26]). The following inequality holds:

N∑
j=1

∫
Ij

(f(u) − f(uh))(wh)xdx +
N∑

j=1

((f(u) − f(ūh))[wh])j+ 1
2

≤ 1
2
α(f̂ ; uh)[wh]2 + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2(A.14)

+(C + C�||eu||2∞)h2k.

Proof of Lemma A.4. The proof follows the same line as that in [26]. Note that
our bound in this lemma is different from that in [26]; the last term in (A.14)
is O(h2k) while in [26] it is O(h2k+1). This is because we use a different pro-
jection Ph, hence in the T3 term (see the proof in [26]) we have an extra term
−

∑N
j=1

∫
Ij

f ′((uh)j)we(wh)xdx. �

Combining Lemmas A.3 and A.4, we arrive at the following conclusion.

Corollary A.5 ([26]). The following inequality holds:

N∑
j=1

Hj(f ; u, uh; wh)

≤ −1
4
α(f̂ ; uh)[wh]2 + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2(A.15)

+(C + C�||eu||2∞)h2k.
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Now, combining (A.9) and (A.15), we obtain∫
I

(wh)twhdx +
N∑

j=1

1
2
[(wh)x]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

From Young’s inequality,∫
I

(wh)twhdx +
N∑

j=1

1
2
[(wh)x]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2

≤ (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

Using the results implied by the a priori assumption,

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch2k.

Then Theorem 3.2 follows. Finally, the a priori assumption is justified by (3.8).
To be more precise, since k ≥ 3, we can consider h small enough so that Chk < 1

2h,
where C is the constant in (3.8) determined by the final time T . Then, if t∗ =
sup{t : ||uh(t) − u(t)|| ≤ h}, we would have ||uh(t∗) − u(t∗)|| = h by continuity if
t∗ is finite. On the other hand, our proof implies that (3.8) holds for t ≤ t∗, in
particular, ||uh(t∗)− u(t∗)|| ≤ Chk < 1

2h. This is a contradiction if t∗ < T . Hence
t∗ ≥ T and our a priori assumption is justified.

Remark. If f(u) = 0, then
∑N

j=1 Hj(f ; u, uh; wh) = 0. We can then easily improve
the proof to (k + 1)-th order accuracy.

A.3. Proof of Theorem 3.3. The proof is similar to that for Theorem 3.2, except
that we need to use another projection Ph that satisfies, for any u,∫

Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V 0
h and

Phu+ = u+, (Phu)−xx = u−
xx

at all xj+1/2. Then,

(A.16)

N∑
j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx

+
N∑

j=1

1
2
[(wh)x]2j+ 1

2
−

N∑
j=1

((we)+x [(wh)x])j+ 1
2
.

Corollary A.5 still holds in this case. Thus we have∫
I

(wh)twhdx +
N∑

j=1

1
2
[(wh)x]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2 −

N∑
j=1

((we)+x [(wh)x])j+ 1
2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h4.
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From Young’s inequality,∫
I

(wh)twhdx +
N∑

j=1

1
4
[(wh)x]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2

≤ (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h4 + Ch3.

Using the results implied by the a priori assumption,

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch3.

Thus, Theorem 3.3 follows. Finally, the a priori assumption is justified by (3.9).

A.4. Proof of Theorem 4.2. Let eu = u−uh be the error between the numerical
and exact solutions. For a nonlinear f(u), we will still need the a priori assumption
(A.1). This assumption is unnecessary for linear f .

Since u clearly satisfies (4.3), we can obtain the cell error equation

(A.17)

∫
Ij

(u − uh)tvhdx −
∫

Ij

(f(u) − f(uh))(vh)xdx −
∫

Ij

(u − uh)(vh)xxdx

+ ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2
− ((f(u) − f̂(u−

h , u+
h ))v+

h )j− 1
2

− ((u − uh)−x + ξ[u − uh])v−h )j+ 1
2

+ ((u − uh)−x + ξ[u − uh])v+
h )j− 1

2

+ ((u − u+
h )(vh)−x )j+ 1

2
− ((u − u+

h )(vh)+x )j− 1
2

= 0

for all vh ∈ V k
h .

Define
(A.18)

Bj(u − uh; vh) =
∫

Ij

(u − uh)tvhdx

−
∫

Ij

(u − uh)(vh)xxdx − ((u − uh)−x + ξ[u − uh])v−h )j+ 1
2

+ ((u − uh)−x + ξ[u − uh])v+
h )j− 1

2
+ ((u − u+

h )(vh)−x )j+ 1
2
− ((u − u+

h )(vh)+x )j− 1
2

and

(A.19)
Hj(f ; u, uh; vh) =

∫
Ij

(f(u) − f(uh))(vh)xdx

− ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2

+ ((f(u) − f̂(u−
h , u+

h ))v+
h )j− 1

2
.

Summing over all j, the error equation becomes

(A.20)
N∑

j=1

Bj(u − uh; vh) =
N∑

j=1

Hj(f ; u, uh; vh)

for all vh ∈ V k
h .

When k ≥ 2, we can choose a projection Ph onto V k
h such that, for any u, Phu

satisfies ∫
Ij

uvhdx =
∫

Ij

Phuvhdx
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for any vh ∈ V k−2
h and

Phu+ = u+, (Phu)−x = u−
x

at all xj+1/2.
Denote

(A.21) wh = Phu − uh, we = Phu − u

and let vh = wh in (A.20); we obtain the energy equality

(A.22)
N∑

j=1

Bj(wh − we; wh) =
N∑

j=1

Hj(f ; u, uh; wh).

It is easy to verify the following equality:
N∑

j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx

+
∫

I

(wh)2xdx +
N∑

j=1

(2[wh](wh)−x + ξ[wh]2)j+ 1
2

+
N∑

j=1

ξ((we)−[wh])j+ 1
2
.

Now, consider the right hand side of (A.22). Corollary A.5 will still hold for this
projection. We obtain∫

I

(wh)twhdx +
∫

I

(wh)2xdx +
N∑

j=1

(2[wh](wh)−x + ξ[wh]2)j+ 1
2

+
N∑

j=1

ξ((we)−[wh])j+ 1
2

+
1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

From the choice of ξ and the stability proof,∫
I

(wh)twhdx +
N∑

j=1

C

h
[wh]2j+ 1

2
+

N∑
j=1

ξ((we)−[wh])j+ 1
2

+
1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

From ξ = C
h and Young’s inequality,∫

I

(wh)twhdx +
1
4
α(f̂ ; uh)[wh]2

≤ (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

Using the results implied by the a priori assumption (A.1),

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch2k.

Then Theorem 4.2 follows for this k ≥ 2 case. Finally, the a priori assumption is
justified by (4.10).

For the case of k = 1, we further assume that the convection term is also linear,
namely f(u) = cu. This is to avoid the need of the a priori assumption (A.1),
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which is no longer justifiable since our error estimate is of the same order O(h) in
this case. The proof of the error estimate is similar to that for the k ≥ 2 case given
above, except that we need to use another projection Ph that satisfies, for any u,∫

Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V 0
h and

Phu+ = u+

at all xj+1/2. Then,
N∑

j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx +

∫
I

(wh)2xdx

+
N∑

j=1

(2[wh](wh)−x + ξ[wh]2)j+ 1
2
−

N∑
j=1

(((we
x)− + ξ[we])[wh])j+ 1

2
.

Corollary A.5 still holds in this case. Thus we have∫
I

(wh)twhdx +
∫

I

(wh)2xdx +
N∑

j=1

(2[wh](wh)−x + ξ[wh]2)j+ 1
2

−
N∑

j=1

(((we
x)− + ξ[we])[wh])j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + C||wh||2 + Ch2.

From Young’s inequality,∫
I

(wh)twhdx +
1
4
α(f̂ ; uh)[wh]2 ≤ C||wh||2 + Ch2.

Thus, Theorem 4.2 follows also for this k = 1 case with a linear convection flux.

A.5. Proof of Theorem 5.2. Without loss of generality, let us assume σ = 1 and
prove for the flux choice ûh = u+

h , ˜(uh)x = (uh)+x , ¯(uh)xx = (uh)−xx, ˇ(uh)xxx =
(uh)−xxx and ˙(uh)xxxx = (uh)−xxxx. Let eu = u − uh be the error between the
numerical and exact solutions. For a nonlinear f(u), we will still need the a priori
assumption (A.1). This assumption is unnecessary for linear f .

Because u clearly satisfies (5.2), we can obtain the cell error equation

(A.23)

∫
Ij

(u − uh)tvhdx −
∫

Ij

(f(u) − f(uh))(vh)xdx −
∫

Ij

(u − uh)(vh)xxxxxdx

+ ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2
− ((f(u) − f̂(u−

h , u+
h ))v+

h )j− 1
2

+ ((u − u+
h )(vh)−xxxx)j+ 1

2
− ((u − u+

h )(vh)+xxxx)j− 1
2

− ((ux − (uh)+x )(vh)−xxx)j+ 1
2

+ ((ux − (uh)+x )(vh)+xxx)j− 1
2

+ ((uxx − (uh)−xx)(vh)−xx)j+ 1
2

− ((uxx − (uh)−xx)(vh)+xx)j− 1
2

− ((uxxx − (uh)−xxx)(vh)−x )j+ 1
2

+ ((uxxx − (uh)−xxx)(vh)+x )j− 1
2

+ ((uxxxx − (uh)−xxxx)(vh)−)j+ 1
2
− ((uxxxx − (uh)−xxxx)(vh)+)j− 1

2
= 0

for all vh ∈ V k
h .
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Define
(A.24)

Bj(u − uh; vh) =
∫

Ij

(u − uh)tvhdx −
∫

Ij

(u − uh)(vh)xxxxxdx

+ ((u − u+
h )(vh)−xxxx)j+ 1

2
− ((u − u+

h )(vh)+xxxx)j− 1
2
− ((ux − (uh)+x )(vh)−xxx)j+ 1

2

+ ((ux − (uh)+x )(vh)+xxx)j− 1
2

+ ((uxx − (uh)−xx)(vh)−xx)j+ 1
2

− ((uxx − (uh)−xx)(vh)+xx)j− 1
2

− ((uxxx − (uh)−xxx)(vh)−x )j+ 1
2

+ ((uxxx − (uh)−xxx)(vh)+x )j− 1
2

+ ((uxxxx − (uh)−xxxx)(vh)−)j+ 1
2
− ((uxxxx − (uh)−xxxx)(vh)+)j− 1

2

and

Hj(f ; u, uh; vh) =
∫

Ij

(f(u) − f(uh))(vh)xdx

− ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2

+ ((f(u) − f̂(u−
h , u+

h ))v+
h )j− 1

2
.(A.25)

Summing over all j, the error equation becomes

(A.26)
N∑

j=1

Bj(u − uh; vh) =
N∑

j=1

Hj(f ; u, uh; vh)

for all vh ∈ V k
h .

Since k ≥ 5, we can choose a projection Ph onto V k
h such that, for any u, Phu

satisfies ∫
Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V k−5
h and

Phu+ = u+, (Phu)+x = u+
x , (Phu)−xx = u−

xx,

(Phu)−xxx = u−
xxx, (Phu)−xxxx = u−

xxxx

at all xj+1/2.
Using the same notations as before, we denote

(A.27) wh = Phu − uh, we = Phu − u

and let vh = wh in (A.26) to obtain the energy equality

(A.28)
N∑

j=1

Bj(wh − we; wh) =
N∑

j=1

Hj(f ; u, uh; wh).

It is easy to verify the following equality:

(A.29)
N∑

j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx +

N∑
j=1

1
2
[(wh)xx]2j+ 1

2
.
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Corollary A.5 still holds for the left hand side of the energy equation, so we obtain
∫

I

(wh)twhdx +
N∑

j=1

1
2
[(wh)xx]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

By the same reasoning as that in the proof of Theorem 3.2,

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch2k.

Finally, the a priori assumption is justified by (5.4).

A.6. Proof of Theorem 5.3. The proof is similar to that for Theorem 5.2, except
that we need to use another projection Ph which satisfies, for any u,∫

Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V 0
h and

Phu+ = u+, (Phu)+x = u+
x , (Phu)−xxx = u−

xxx, (Phu)−xxxx = u−
xxxx

at all xj+1/2. Then,

(A.30)

N∑
j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx

+
N∑

j=1

1
2
[(wh)xx]2j+ 1

2
+

N∑
j=1

((we)−xx[(wh)xx])j+ 1
2
.

Corollary A.5 still holds in this case. Thus we have
∫

I

(wh)twhdx +
N∑

j=1

1
2
[(wh)xx]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2 +

N∑
j=1

((we)−xx[(wh)xx])j+ 1
2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h8.

From Young’s inequality,
∫

I

(wh)twhdx +
N∑

j=1

1
4
[(wh)xx]2j+ 1

2
+

1
4
α(f̂ ; uh)[wh]2

≤ (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h8 + Ch5.

Using the results implied by the a priori assumption,

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch5.

Thus, Theorem 5.3 follows. Finally, the a priori assumption is justified by (5.5).
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A.7. Proof of Theorem 5.5. Without loss of generality, let us assume σ = 1. For
a nonlinear f(u), we will still need the a priori assumption (A.1). This assumption
is unnecessary for linear f . Since u clearly satisfies (5.9), we can obtain the cell
error equation
(A.31)∫

Ij

(u − uh)tvhdx −
∫

Ij

(f(u) − f(uh))(vh)xdx +
∫

Ij

(u − uh)(vh)xxxxdx

+ ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2
− ((f(u) − f̂(u−

h , u+
h ))v+

h )j− 1
2

− ((u − u+
h )(vh)−xxx)j+ 1

2
+ ((u − u+

h )(vh)+xxx)j− 1
2

+ ((ux − (uh)−x )(vh)−xx)j+ 1
2
− ((ux − (uh)−x )(vh)+xx)j− 1

2

− ((uxx − (uh)+xx)(vh)−x )j+ 1
2

+ ((uxx − (uh)+xx)(vh)+x )j− 1
2

+ (((u − uh)−xxx − ξ[u − uh])(vh)−)j+ 1
2
− (((u − uh)−xxx − ξ[u − uh])(vh)+)j− 1

2

= 0

for all vh ∈ V k
h .

Define

(A.32)

Bj(u − uh; vh) =
∫

Ij

(u − uh)tvhdx +
∫

Ij

(u − uh)(vh)xxxxdx

− ((u − u+
h )(vh)−xxx)j+ 1

2

+ ((u − u+
h )(vh)+xxx)j− 1

2
+ ((ux − (uh)−x )(vh)−xx)j+ 1

2

− ((ux − (uh)−x )(vh)+xx)j− 1
2
− ((uxx − (uh)+xx)(vh)−x )j+ 1

2

+ ((uxx − (uh)+xx)(vh)+x )j− 1
2

+ (((u − uh)−xxx − ξ[u − uh])v−h )j+ 1
2

− (((u − uh)−xxx − ξ[u − uh])v+
h )j− 1

2

and

(A.33)
Hj(f ; u, uh; vh) =

∫
Ij

(f(u) − f(uh))(vh)xdx

− ((f(u) − f̂(u−
h , u+

h ))v−h )j+ 1
2

+ ((f(u) − f̂(u−
h , u+

h ))v+
h )j− 1

2
.

Summing over all j, the error equation becomes

(A.34)
N∑

j=1

Bj(u − uh; vh) =
N∑

j=1

Hj(f ; u, uh; vh)

for all vh ∈ V k
h .

When k ≥ 4, we can choose a projection Ph onto V k
h such that, for any u, Phu

satisfies ∫
Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V k−4
h and

Phu+ = u+, (Phu)−x = u−
x , (Phu)+xx = u+

xx, (Phu)−xxx = u−
xxx

at all xj+1/2.
Denoting

(A.35) wh = Phu − uh, we = Phu − u
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and letting vh = wh in (A.34), we obtain the energy equality

(A.36)
N∑

j=1

Bj(wh − we; wh) =
N∑

j=1

Hj(f ; u, uh; wh).

It is not hard to prove the following equality
N∑

j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx +

∫
I

(wh)2xxdx

+
N∑

j=1

(−2[wh](wh)−xxx + ξ[wh]2)j+ 1
2

+
N∑

j=1

ξ((we)−[wh])j+ 1
2
.

Now, consider the right hand side of (A.36). Corollary A.5 still holds for this
projection. We obtain∫

I

(wh)twhdx +
∫

I

(wh)2xxdx +
N∑

j=1

(−2[wh](wh)−xxx + ξ[wh]2)j+ 1
2

+
N∑

j=1

ξ((we)−[wh])j+ 1
2

+
1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k.

From the choice of ξ and the stability proof,∫
I

(wh)twhdx +
N∑

j=1

C

h3
[wh]2j+ 1

2
+

N∑
j=1

ξ((we)−[wh])j+ 1
2

+
1
4
α(f̂ ; uh)[wh]2

≤
∫

I

we
t whdx + (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2

+(C + C�||eu||2∞)h2k + Ch2k−2.

From ξ = C
h3 and Young’s inequality,∫

I

(wh)twhdx +
1
4
α(f̂ ; uh)[wh]2

≤ (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h2k + Ch2k−2.

Using the results implied by the a priori assumption (A.1),

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch2k−2.

Then Theorem 5.5 follows for the k ≥ 4 case and the a priori assumption is justified
by (5.16).

The proof for the k = 3 case is similar to that for the k ≥ 4 case above, except
that we need to use another projection Ph that satisfies, for any u,∫

Ij

uvhdx =
∫

Ij

Phuvhdx

for any vh ∈ V 0
h and

Phu+ = u+, (Phu)−x = u−
x , (Phu)+xx = u+

xx
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at all xj+1/2. Then,

N∑
j=1

Bj(wh − we; wh) =
∫

I

(wh)twhdx −
∫

I

we
t whdx +

∫
I

(wh)2xxdx

+
N∑

j=1

(−2[wh](wh)−xxx + ξ[wh]2)j+ 1
2

+
N∑

j=1

(((we)−xxx + ξ(we)−)[wh])j+ 1
2
.

Then, plugging in Corollary A.5 and applying Young’s inequality, we obtain∫
I

(wh)twhdx +
1
4
α(f̂ ; uh)[wh]2

≤ (C + C�(||wh||∞ + h−1||eu||2∞))||wh||2 + (C + C�||eu||2∞)h6 + Ch4.

Using the results implied by the a priori assumption,

1
2

d

dt

∫ 1

0

w2
hdx ≤ C||wh||2 + Ch4.

Thus, Theorem 5.5 follows for the k = 3 case. Finally, the a priori assumption is
justified by (5.16).
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