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Abstract

We propose and analyze a symmetric weighted interior penalty (SWIP) method

to approximate in a Discontinuous Galerkin framework advection-diffusion equa-

tions with anisotropic and discontinuous diffusivity. The originality of the method

consists in the use of diffusivity-dependent weighted averages to better cope with

locally small diffusivity (or equivalently with locally high Péclet numbers) on fitted

meshes. The analysis yields convergence results for the natural energy norm that

are optimal with respect to mesh-size and robust with respect to diffusivity. The

convergence results for the advective derivative are optimal with respect to mesh-

size and robust for isotropic diffusivity, as well as for anisotropic diffusivity if the

cell Péclet numbers evaluated with the largest eigenvalue of the diffusivity tensor

are large enough. Numerical results are presented to illustrate the performance of

the proposed scheme. discontinuous Galerkin, weighted averages, locally small

diffusion with advection, anisotropic diffusion

1 Introduction

Since their introduction over thirty years ago [19, 16], Discontinuous Galerkin (DG)

methods have emerged as an attractive tool to approximate numerous PDEs in the en-

gineering sciences. Here we are primarily interested in advection–diffusion equations

with anisotropic (e.g., tensor-valued) and heterogeneous (e.g., non-smooth) diffusiv-

ity. Such equations are encountered, for instance, in groundwater flow models which

constitute the motivation for the present work.

The analysis of DG methods to approximate advection–diffusion equations is ex-

tensively covered in [15]. This work already addresses anisotropic and heterogeneous

diffusivity. However, one particular aspect that deserves further attention is that where

the diffusivity becomes very small in some parts of the computational domain. In-

deed, in this case it is well-known that the presence of an advective field can trigger

internal layers. In the locally vanishing diffusivity limit, the solution becomes discon-

tinuous on the interfaces where the advective field flows from the vanishing-diffusivity
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region towards the nonvanishing-diffusivity region. This situation has been analyzed

in [10] and, more recently, in [5, 6]. For (very) small but positive diffusivity, the usual

DG methods meet with difficulties in the presence of internal layers that are not suf-

ficiently resolved by the mesh. Indeed, these methods are designed to weakly enforce

continuity of the discrete solution across mesh interfaces, but because internal layers

are under-resolved, the exact solution is better approximated by a discontinuous func-

tion at the interfaces adjacent to internal layers. One possible remedy is to consider

a hard-wired modification of the DG method at those interfaces, as already proposed

in [15] and, more recently, in [8]. However, a more satisfactory approach would be

to design a DG method that can handle internal layers in an automated fashion. This

is the purpose of the present work. The key ingredient is the use of weighted instead

of arithmetic averages in certain interface terms of the DG method, with weights de-

pending on the diffusivity on both sides of the interface. The present method relies on

the (mild) assumption that fitted meshes are used, i.e., that discontinuities in the dif-

fusivity are aligned with the mesh. When this assumption is not possible (e.g., in the

case of nonlinear diffusivity), the present method is not expected to behave better than

the usual DG methods, since all methods will suffer from the fact that they attempt to

approximate a rough solution within some mesh elements.

The idea of utilizing weighted averages stems from the mortar finite-element method

originally proposed by Nitsche [17, 18]. This method imposes weakly the continuity

of fluxes between different regions. Various authors have highlighted the possibility

of using an average with weights that differ from one half; see [21, 14, 12, 13] where

several mortaring techniques are presented to match conforming finite elements on pos-

sibly nonconforming computational meshes. In the cited works, weighted averages are

introduced as a generalization of standard averages and the analysis is carried out in

the general framework, but a possible dependency of the weights on the coefficients

of the problem is not considered. This dependency was investigated recently in [3] for

isotropic advection–diffusion problems, using a weighted interior penalty technique

with mortars; when applied elementwise, this approach yields a DG method. It was

shown in [3] that a specific choice of weights improves the stability of the scheme

when the diffusivity takes locally small values. The reason why weighted averages are

needed to properly handle internal layers is rooted in the dissipative structure of the un-

derlying Friedrichs’s system. The design of the corresponding DG bilinear form, where

dissipation at the discrete level is enforced by a consistency term involving averages,

has been recently proposed in [7]. The extension to advection–diffusion equations in-

cluding the locally vanishing diffusivity limit is analyzed in [6].

In the present work, we extend the DG method implicitly derived in [3] for isotropic

diffusivity to anisotropic problems. This task is not as simple as it may appear on first

sight since the presence of internal layers now depends on the spectral structure of

the diffusivity tensor on both sides of each mesh interface. The spectral structure also

raises the question of the appropriate choice of the penalty term in the DG method at

each mesh interface. The analysis presented below will tackle these issues.

We design and analyze one specific DG method with weighted averages, namely

the Symmetric Weighted Interior Penalty (SWIP) method, obtained by modifying the

well-known (Symmetric) Interior Penalty (IP) method [2, 1]. Many other well-known

DG methods, including the Local Discontinuous Galerkin method [4] and the Nonsym-

metric Interior Penalty Galerkin method [20], can also be modified to fit the present

scope; for brevity, these developments are omitted herein.

This paper is organized as follows: Section 2 presents the setting under scrutiny and

formulates the SWIP method, while Section 3 contains the error analysis in the natural

2



energy norm for the problem. The estimate is fully robust, meaning that the constant in

the error upper bound is independent of both heterogeneities and anisotropies in the dif-

fusivity. Section 4 is concerned with the error analysis on the advective derivative. The

derived estimate is again robust with respect to heterogeneities in the diffusivity, but

the constant in the error upper bound can in some cases depend on local anisotropies.

Robustness is achieved for instance if the cell Péclet numbers evaluated with the largest

eigenvalue of the diffusivity tensor are large enough. Numerical results, including com-

parisons with the more usual IP methods, are presented in Section 5 and illustrate the

benefits of using weighted interior penalties to approximate advection–diffusion equa-

tions with locally small and anisotropic diffusivity. Finally, Section 6 contains some

concluding remarks.

2 The SWIP method

Let Ω be a domain in R
d with boundary ∂Ω in space dimension d ∈ {2,3}. We con-

sider the following advection-diffusion equation with homogeneous Dirichlet boundary

conditions:

{

−∇ ·(K∇ u)+β ·∇ u+ µu = f in Ω,

u = 0 on ∂Ω.
(1)

Here µ ∈ L∞(Ω), β ∈ [W 1,∞(Ω)]d , the diffusivity tensor K is a symmetric, positive

definite field in [L∞(Ω)]d,d and f ∈ L2(Ω). The regularity assumption on β can be

relaxed, but is sufficient for the present purpose. The weak formulation of (1) consists

of finding u ∈ H1
0 (Ω) such that

(K∇ u, ∇ v)0,Ω +(β ·∇ u,v)0,Ω +(µu,v)0,Ω = ( f ,v)0,Ω ∀v ∈ H1
0 (Ω) (2)

where (·, ·)0,Ω denotes the L2-scalar product on Ω. Henceforth, we assume that

µ − 1
2
∇ ·β ≥ µ0 > 0 a.e in Ω. (3)

Furthermore, we assume that the smallest eigenvalue of K is bounded from below by a

positive (but possibly very small) constant. Then, owing to the Lax–Milgram Lemma,

(2) is well–posed.

Let {Th}h>0 be a shape-regular family of affine triangulations of the domain Ω.

The meshes Th may possess hanging nodes. For simplicity we assume that the meshes

cover Ω exactly, i.e., Ω is a polyhedron. A generic element in Th is denoted by T , hT

denotes the diameter of T and nT its outward unit normal. Set h = maxT∈Th
hT . We

assume without loss of generality that h ≤ 1. Let p ≥ 1. We define the classical DG

approximation space

Vh = {vh ∈ L2(Ω);∀T ∈ Th,vh|T ∈ Pp}, (4)

where Pp is the set of polynomials of total degree less than or equal to p. Henceforth,

we assume that the discontinuities in the diffusivity tensor are aligned with the mesh.

This is a mild assumption in the context of linear problems. Moreover, for the sake of

simplicity, we assume that the diffusivity tensor K is piecewise constant on Th. This

assumption, which is reasonable in the context of groundwater flow models, can be

generalized by assuming a smooth enough behavior of K inside each mesh element.

3



We say that F is an interior face of the mesh if there are T−(F) and T +(F) in Th

such that F = T−(F)∩T +(F). We set T (F) = {T−(F),T +(F)} and let nF be the unit

normal vector to F pointing from T−(F) towards T +(F). The analysis hereafter does

not depend on the arbitrariness of this choice. Similarly, we say that F is a boundary

face of the mesh if there is T (F) ∈ Th such that F = T (F)∩ ∂Ω. We set T (F) =
{T (F)} and let nF coincide with the outward normal to ∂Ω. All the interior (resp.,

boundary) faces of the mesh are collected into the set F i
h (resp., F ∂Ω

h ) and we let

Fh = F i
h ∪F ∂Ω

h . Henceforth, we shall often deal with functions that are double-

valued on F i
h and single-valued on F ∂Ω

h . This is the case, for instance, of functions

in Vh. On interior faces, when the two branches of the function in question, say v,

are associated with restrictions to the neighboring elements T∓(F), these branches are

denoted by v∓ and the jump of v across F is defined as

[[v]]F = v−− v+. (5)

On a boundary face F ∈F ∂Ω, we set [[v]]F = v|F . Furthermore, on an interior face F ∈
F i

h, we define the standard (arithmetic) average as {v}F = 1
2
(v− + v+). The subscript

F in the above jumps and averages is omitted if there is no ambiguity.

The L2-scalar product and its associated norm on a subset R ⊂ Ω (evaluated with

the appropriate Lebesgue’s measure) are indicated by the subscript 0,R. For s ≥ 1,

a norm (seminorm) with the subscript s,R designates the usual norm (seminorm) in

Hs(R). When the region R is the boundary of a mesh element ∂T and the arguments

in the scalar product or the norm are double-valued functions, it is implicitly assumed

that the value considered is that of the branch associated with the restriction to T . For

s ≥ 1, Hs(Th) denotes the usual broken Sobolev space on Th and for v ∈ H1(Th),
∇ hv denotes the piecewise gradient of v, that is, ∇ hv ∈ [L2(Ω)]d and for all T ∈ Th,

(∇ hv)|T = ∇ (v|T ). It is also convenient to set V (h) = H2(Th)+Vh.

The formulation of the SWIP method requires two parameters. As in the formula-

tion of the usual IP method we introduce a single- and scalar-valued function γ defined

on Fh. The purpose of this function is to penalize jumps across interior faces and val-

ues at boundary faces. Additionally, we define a scalar- and double-valued function ω
on F i

h. This function, which is not present in the usual IP method, is used to evaluate

weighted averages of diffusive fluxes. On an interior face F ∈ F i
h, the values taken by

the two branches of ω are denoted by (ω|F)∓, or simply ω∓ if there is no ambiguity.

Henceforth, it is assumed that for all F ∈ F i
h, both values are non-negative and that

ω− +ω+ = 1. (6)

For v ∈V (h), we define the weighted average of the diffusive flux K∇ hv on an interior

face F ∈ F i
h as

{K∇ hv}ω = ω−(K∇ hv)− +ω+(K∇ hv)+. (7)

For convenience, we extend the above definitions to boundary faces as follows: on

F ∈ F ∂Ω
h , ω is single-valued and equal to 1, and we set {K∇ v}ω = K∇ v.

The SWIP bilinear form Bh(·, ·) is defined on V (h)×V (h) as follows

Bh(v,w) = (K∇ hv, ∇ hw)0,Ω +((µ − ∇ ·β)v,w)0,Ω − (v,β ·∇ hw)0,Ω

+ ∑
F∈Fh

(

(γ[[v]], [[w]])0,F − (nt
F{K∇ hv}ω, [[w]])0,F − (nt

F{K∇ hw}ω, [[v]])0,F

)

+ ∑
F∈F i

h

(β ·nF{v}, [[w]])0,F + ∑
F∈F ∂Ω

h

1
2
(β ·nF v,w)0,F . (8)
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The SWIP bilinear form can equivalently be expressed, after integrating the advective

derivative by parts, as

Bh(v,w) = (K∇ hv, ∇ hw)0,Ω +(µv,w)0,Ω +(β ·∇ hv,w)0,Ω

+ ∑
F∈Fh

(

(γ[[v]], [[w]])0,F − (nt
F{K∇ hv}ω, [[w]])0,F − (nt

F{K∇ hw}ω, [[v]])0,F

)

− ∑
F∈F i

h

(β ·nF{w}, [[v]])0,F − ∑
F∈F ∂Ω

h

1
2
(β ·nF v,w)0,F . (9)

Both (8) and (9) will be used in the analysis. The discrete problem consists of finding

uh ∈Vh such that

Bh(uh,vh) = ( f ,vh)0,Ω ∀vh ∈Vh. (10)

The penalty parameter γ is defined as

∀F ∈ Fh, γ = α
γK

hF

+γβ , (11)

where α is a positive scalar (α can also vary from face to face) and where

∀F ∈ F
i
h, γK = (ω−)2δ−

Kn +(ω+)2δ+
Kn (12)

∀F ∈ F
∂Ω
h , γK = δKn, (13)

∀F ∈ Fh, γβ = 1
2
|β ·nF |, (14)

with δ∓
Kn = nt

F K∓nF if F ∈ F i
h and δKn = nt

F KnF if F ∈ F ∂Ω
h . Note that the choice

for γβ amounts to the usual upwind scheme to stabilize the advective derivative. As for

any symmetric IP method, the size of the penalty parameter α is assumed to be large

enough. This assumption is made for the rest of this work. The minimal value for α
depends on the actual value of the constant arising in the trace inequality (17) stated

below; it can be determined from the proof of Lemma 3.1 to ensure coercivity. Because

they are standard, these developments are omitted.

For the error analysis in the energy norm (see Section 3), no other assumption

than (6) is made for the weights. In particular, it is possible to choose ω∓ = 1
2
, in

which case the SWIP bilinear form Bh reduces to the standard IP bilinear form with

the penalty parameter scaling as the standard average of the diffusivity in the normal

direction; this method has been analyzed in [11]. Note also that the choice made in

[15] for the penalty parameter is different since it involves the maximum eigenvalue of

K.

For the error analysis in the advective derivative (see Section 4), a specific choice

of the weights differing from ω∓ = 1
2

has to be made to yield robust error estimates

with respect to the diffusivity. Specifically, we shall set

ω− =
δ+

Kn

δ+
Kn +δ−

Kn

, ω+ =
δ−

Kn

δ+
Kn +δ−

Kn

, (15)

and thus

∀F ∈ F
i
h, γK =

δ+
Knδ−

Kn

δ+
Kn +δ−

Kn

. (16)
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Note that with this choice γK = ω−δ−
Kn = ω+δ+

Kn, and that 2γK is the harmonic aver-

age of the normal component of the diffusivity tensor across the interface. Observe

also that γK ≤ inf(δ−
Kn,δ

+
Kn), a point that becomes important to ensure even the con-

sistency of the method when the diffusivity is actually allowed to vanish locally, see

[6]. The numerical results presented in Section 5 show that also in the energy norm,

the DG method behaves better if the weights are chosen according to (15). Hence, we

recommend this choice whenever the diffusivity exhibits heterogeneities.

3 Error analysis in the energy norm

The goal of this section is to establish an error estimate for the SWIP method in the

energy norm, the estimate being robust with respect to heterogeneities and anisotropies

in the diffusivity. The analysis is performed using fairly standard arguments, i.e., by

establishing coercivity, consistency and continuity properties for the SWIP bilinear

form in the spirit of Strang’s Second Lemma [9].

In the sequel, the symbol . indicates an inequality involving a positive constant

C independent of the mesh family and of the diffusivity. The constant C can depend

on ‖β‖[W 1,∞(Ω)]d , ‖µ‖L∞(Ω), µ−1
0 (see (3)), and the shape-regularity of the mesh family.

Without loss of generality, it can be assumed that the problem data is normalized so

that ‖β‖[W 1,∞(Ω)]d is of order unity. We will not be concerned with the dependency

on ‖µ‖L∞(Ω) since we are not interested in strong reaction regimes. The dependency

on µ−1
0 can be addressed by means of Poincaré inequalities; this will not be further

discussed here. Owing to the shape-regularity of the mesh family, the following inverse

trace and inverse inequalities hold: For all T ∈ Th and for all vh ∈Vh,

‖vh‖0,∂T . h
−

1
2

T ‖vh‖0,T , (17)

‖∇ hvh‖0,T . h−1
T ‖vh‖0,T , (18)

which result from the shape regularity of the mesh family {Th}h>0.

For a function v ∈V (h), we consider the following jump seminorms

|[[v]]|2σ = ∑
F∈Fh

|[[v]]|2σ ,F , |[[v]]|2σ ,F = (σ [[v]], [[v]])0,F , (19)

with σ := γβ , σ := γK or σ := γ. The natural energy norm with which to equip V (h) is

‖v‖h,B = ‖v‖0,Ω +‖κ ∇ hv‖0,Ω + |[[v]]|γ (20)

where κ denotes the (unique) symmetric positive definite tensor-valued field such that

κ 2 = K a.e. in Ω.

LEMMA 3.1 (Coercivity) The bilinear form Bh is ‖·‖h,B-coercive, i.e., for all vh ∈Vh,

Bh(vh,vh) & ‖vh‖
2
h,B. (21)

Proof. Let vh ∈Vh. Taking v = w = vh in (8) yields

Bh(vh,vh) = ‖κ ∇ hvh‖
2
0,Ω +(µvh,vh)0,Ω − ((∇ ·β)vh,vh)0,Ω − (vh,β ·∇ hvh)0,Ω

+ |[[vh]]|
2
γ − ∑

F∈Fh

2(nt
F{K∇ vh}ω, [[vh]])0,F

+ ∑
F∈F i

h

(β ·nF{vh}, [[vh]])0,F + ∑
F∈F ∂Ω

h

1
2
(β ·nF vh,vh)0,F . (22)
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Integrating by parts the fourth term on the right hand side of (22) and owing to hypoth-

esis (3), we obtain

(µvh,vh)0,Ω − ((∇ ·β)vh,vh)0,Ω − (vh,β ·∇ hvh)0,Ω (23)

+ ∑
F∈F i

h

(β ·nF{vh}, [[vh]])0,F + ∑
F∈F ∂Ω

h

1
2
(β ·nF vh,vh)0,F = ((µ − 1

2
∇ ·β)vh,vh)0,Ω & ‖vh‖

2
0,Ω.

Consider now the sixth term in the right-hand side of (22). Let F ∈ Fh. First, observe

that owing to Young’s inequality

|2(nt
Fω∓(K∇ hvh)

∓, [[vh]])0,F | = |2((κ ∇ hvh)
∓,ω∓κ∓nF [[vh]])0,F |

≤ hFα0‖(κ ∇ hvh)
∓‖2

0,F +
1

α0

(

(ω∓)2δ∓
Kn

hF

[[vh]], [[vh]]

)

0,F

,

where α0 > 0 can be chosen as small as needed. Using the trace inverse inequality (17)

and the definition of γK (12)-(13) yields

|2(nt
F{K∇ hvh}ω, [[vh]])0,F | . α0‖κ ∇ hvh‖

2
0,T (F) +

1

α0hF

|[[vh]]|
2
γK ,F .

The end of the proof is classical since α in (11) can be chosen to be large enough. �

LEMMA 3.2 (Consistency) Let u solve (2) and let uh solve (10). Assume that u ∈
H2(Th). Then

∀vh ∈Vh, Bh(u−uh,vh) = 0 (24)

Proof. Let vh ∈Vh. Since u ∈ H1
0 (Ω), (9) yields

Bh(u,vh) = (K∇ u, ∇ hvh)0,Ω +(µu,vh)0,Ω +(β ·∇ u,vh)0,Ω − ∑
F∈Fh

(nt
F{K∇ u}ω, [[vh]])0,F .

Using the fact that nt
F K∇ u is continuous on interior faces yields nt

F{K∇ u}ω = (ω− +
ω+)nt

F K∇ u = nt
F K∇ u owing to (6). Hence, integrating by parts leads to

(K∇ u, ∇ hvh)0,Ω − ∑
F∈Fh

(nt
F{K∇ u}ω, [[vh]])0,F = − ∑

T∈Th

(∇ ·(K∇ u),vh)0,T .

As a result,

Bh(u,vh) = ∑
T∈Th

(−∇ ·(K∇ u)+β ·∇ u+ µu,vh)0,T = ( f ,vh)0,Ω = Bh(uh,vh),

yielding (24). �

We now establish a continuity property for the SWIP bilinear form Bh. To this

purpose, we introduce on V (h) the norm

‖v‖
h,

1
2

= ‖v‖h,B +

(

∑
T∈Th

‖v‖2
0,∂T

)

1
2

+

(

∑
T∈Th

hT‖κ ∇ hv‖2
0,∂T

)

1
2

. (25)

Let V⊥
h = {v ∈V (h),∀vh ∈Vh,(v,vh)0,Ω = 0}.
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LEMMA 3.3 (Continuity) The following holds:

∀(v,wh) ∈V⊥
h ×Vh, |Bh(v,wh)| . ‖v‖

h,
1
2

‖wh‖h,B. (26)

Proof. Let (v,wh) ∈V⊥
h ×Vh. The first two terms in (8) are easily bounded as

|(K∇ hv, ∇ hwh)0,Ω|+ |((µ − ∇ ·β)v,wh)0,Ω| . ‖v‖h,B‖wh‖h,B.

To bound the third term, let β be the piecewise constant, vector-valued field equal to

the mean value of β on each T ∈ Th. Then,

(v,β ·∇ hwh)0,Ω = (v,β ·∇ hwh)0,Ω +(v,(β −β)·∇ hwh)0,Ω

= (v,(β −β)·∇ hwh)0,Ω,

since β ·∇ hwh ∈Vh and v ∈V⊥
h . Moreover, since β ∈ [W 1,∞(Ω)]d ,

∀T ∈ Th, ‖β −β‖[L∞(T )]d . hT ,

so that the inverse inequality (18) yields

|(v,β ·∇ hwh)0,Ω| . ‖v‖0,Ω‖wh‖0,Ω ≤ ‖v‖h,B‖wh‖h,B.

Furthermore, proceeding as in the proof of Lemma 3.1 yields, for all F ∈ Fh,

|(nt
F{K∇ hv}ω, [[wh]])0,F | .

(

∑
T∈T (F)

h
1
2
T ‖κ ∇ hv‖0,∂T

)

h
−

1
2

F |[[wh]]|γK ,F

and

|(nt
F{K∇ hwh}ω, [[v]])0,F | . h

−
1
2

F |[[v]]|γK ,F‖κ ∇ hwh‖0,T (F),

so that

∑
F∈Fh

(

|(nt
F{K∇ v}ω, [[wh]])0,F |+ |(nt

F{K∇ wh}ω, [[v]])0,F |
)

. ‖v‖
h,

1
2

‖wh‖h,B.

For the remaining terms, we obtain

∑
F∈Fh

|(γ[[v]], [[wh]])0,F |+ ∑
F∈F i

h

|(β ·nF{v}, [[wh]])0,F |+ ∑
F∈F ∂Ω

h

| 1
2
(β ·nF v,wh)0,F |

. |[[v]]|γ|[[wh]]|γ + ∑
F∈F i

h

‖{v}‖0,F |[[wh]]|γβ ,F ≤ ‖v‖
h,

1
2

‖wh‖h,B.

This completes the proof since ‖·‖h,B ≤ ‖·‖
h,

1
2

. �

THEOREM 3.1 Let Πhu be the L2-projection of u onto Vh. Then,

‖u−uh‖h,B . ‖u−Πhu‖
h,

1
2

. (27)
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Proof. Owing to Lemmata 3.1, 3.2 and 3.3,

‖uh −Πhu‖h,B .
Bh(uh −Πhu,uh −Πhu)

‖uh −Πhu‖h,B
=

Bh(u−Πhu,uh −Πhu)

‖uh −Πhu‖h,B

. ‖u−Πhu‖
h,

1
2

. (28)

We complete the proof by applying the triangle inequality and using the fact that

‖·‖h,B ≤ ‖·‖
h,

1
2

. �

REMARK 3.1 Estimate (27) yields an error upper bound in the natural energy norm

with a constant independent of the diffusivity tensor. Furthermore, if the exact solution

is smooth enough locally on each mesh cell, namely u ∈ H p+1(Th), it is readily seen

using standard approximation properties for the L2-orthogonal projector Πh, that the

upper bound converges as hp, which is optimal.

We now prove that under some assumptions, the error estimate in the L2-norm can

be improved using the Aubin-Nitsche duality argument. Let λm,K denote the lowest

eigenvalue of K in Ω and set λM,K = max(1,λK) where λK denotes the largest eigen-

value of K in Ω. We introduce the following dual problem: seek ψ ∈ H1
0 (Ω) such

that

(K∇ v, ∇ ψ)0,Ω +(β ·∇ v,ψ)0,Ω +(µv,ψ)0,Ω = (v,u−uh)0,Ω ∀v ∈ H1
0 (Ω). (29)

We assume that elliptic regularity holds in the broken H2-norm, namely that

‖ψ‖H2(Th) . λ −1
m,K‖u−uh‖0,Ω. (30)

When K is uniform, it is well-known that the convexity of Ω is sufficient to guaran-

tee (30). This is no longer the case if K is discontinuous. In this case, (30) implicitly

amounts to additional assumptions on the distribution of K inside Ω.

THEOREM 3.2 In the above framework,

‖u−uh‖0,Ω ≤
λ

1
2

M,K

λm,K
h

(

‖u−uh‖h,B + inf
wh∈Vh

‖u−wh‖h,B+

)

(31)

where for all v ∈V (h),

‖v‖h,B+ = ‖v‖h,B +

(

∑
T∈Th

h2
T‖∇ hv‖2

0,T

)

1
2

+

(

∑
T∈Th

hT‖κ ∇ hv‖2
0,∂T

)

1
2

. (32)

Proof. Step (i): observe that for all v ∈V (h), using (8) yields

Bh(v,ψ) = (K∇ hv, ∇ ψ)0,Ω +((µ − ∇ ·β)v,ψ)0,Ω − (v,β ·∇ ψ)0,Ω − ∑
F∈Fh

(nt
F{K∇ ψ}ω, [[v]])0,F

= ∑
T∈Th

(v,−∇ ·(K∇ ψ)−β ·∇ ψ +(µ − ∇ ·β)ψ)0,T = (v,u−uh)0,Ω. (33)

Step (ii): define on V (h) the norm

‖v‖h,1 = ‖v‖
h,

1
2

+

(

∑
T∈Th

h−2
T ‖v‖2

0,T

)

1
2

, (34)

9



and let us prove that for all (v,w) ∈V (h)×V (h),

|Bh(v,w)| . ‖v‖h,B+‖w‖h,1. (35)

Indeed, indicating by Ti, 1 ≤ i ≤ 8, the eight terms on the right-hand side of (9), and

proceeding as in the proof of Lemma 3.3, it is clear that ∑i 6=3 |Ti| . ‖v‖h,B+‖w‖
h,

1
2

.

Moreover,

|T3| = |(β ·∇ hv,w)0,Ω| . ∑
T∈Th

‖∇ hv‖0,T‖w‖0,T = ∑
T∈Th

hT‖∇ hv‖0,T h−1
T ‖w‖0,T ≤ ‖v‖h,B+‖w‖h,1.

Hence, (35) holds.

Step (iii): taking v = u−uh in (33), applying Lemma 3.2 and using (35) yields for all

ψh ∈Vh,

‖u−uh‖
2
0,Ω = Bh(u−uh,ψ) = Bh(u−uh,ψ −ψh) . ‖u−uh‖h,B+‖ψ −ψh‖h,1.

Using standard interpolation results leads to

inf
ψh∈Vh

‖ψ −ψh‖h,1 . λ
1
2

M,Kh‖ψ‖H2(Th),

and taking into account (30) yields

‖u−uh‖0,Ω .
λ

1
2

M,K

λm,K
h‖u−uh‖h,B+ . (36)

Using the inverse inequalities (17) and (18), we infer that for all vh ∈Vh,

‖vh‖h,B+ . ‖vh‖h,B +‖vh‖0,Ω +‖κ ∇ hvh‖0,Ω . ‖vh‖h,B. (37)

Applying the triangle inequality together with (37) leads to

‖u−uh‖h,B+ ≤ ‖u−wh‖h,B+ +‖uh −wh‖h,B+

. ‖u−wh‖h,B+ +‖uh −wh‖h,B

. ‖u−wh‖h,B+ +‖u−uh‖h,B, (38)

where wh is arbitrary in Vh. Substituting (38) into (36) yields (31). �

COROLLARY 3.1 If the exact solution u is in H p+1(Th), then

‖u−uh‖0,Ω .
λM,K

λm,K
hp+1‖u‖H p+1(Th). (39)

Proof. Use Theorem 3.2 and standard approximation properties of Vh. �

4 Error analysis for the advective derivative

When the diffusivity takes small values, it is no longer possible to control the advective

derivative by means of Theorem 3.1. The goal of this section is to obtain a control of

10



the error in the advective derivative that is possibly robust with respect to the diffusivity.

Define on V (h) the norm

‖v‖h,Bβ = ‖v‖h,B +‖v‖h,β , (40)

where

‖v‖h,β =

(

∑
T∈Th

hT‖β ·∇ hv‖2
0,T

)

1
2

. (41)

To prove a convergence result in the ‖·‖h,Bβ -norm, the first step is to derive a stability

property for the SWIP bilinear form Bh in this norm.

LEMMA 4.1 (Stability) Define

∀T ∈ Th, ∆K,T =

{

1 if ‖β‖[L∞(T )]d &
λM,T

hT
,

λM,T

λm,T
otherwise,

(42)

where λM,T and λm,T are respectively the maximum and the minimum eigenvalue of

K|T . Set ∆K = maxT∈Th
∆K,T . Then,

inf
vh∈Vh\{0}

sup
wh∈Vh\{0}

Bh(vh,wh)

‖vh‖h,Bβ‖wh‖h,Bβ
& ∆−1

K . (43)

REMARK 4.1 We stress the fact that the inf-sup condition is robust in the isotropic

case and in the anisotropic case if the cell Péclet numbers evaluated with the largest

eigenvalue of the diffusivity tensor are large enough. Note also that the anisotropies

are local to the mesh element, i.e., ratios of eigenvalues between adjacent elements are

not considered. To achieve this result, the key point (see the control of |[[πh]]|
2
γK

in the

proof below) is that the choice (15) for the weights yields γK ≤ inf(δ−
Kn,δ

+
Kn).

Proof. Let vh ∈Vh and set S = supwh∈Vh\{0}
Bh(vh,wh)
‖wh‖h,Bβ

. We want to prove that ‖vh‖h,Bβ .

∆KS.

Step (i): owing to Lemma 3.1, we infer that

‖vh‖
2
h,B . S‖vh‖h,Bβ , (44)

so it only remains to control the advective derivative in ‖vh‖h,Bβ .

Step (ii): let πh ∈ Vh be such that for all T ∈ Th πh|T = hT β ·∇ hvh where β is defined

in the proof of Lemma 3.3. Let us prove that

‖πh‖h,Bβ . ∆
1
2
K ‖vh‖h,Bβ . (45)

The inverse inequality (18) and the regularity of β yield for all T ∈ Th,

‖πh‖0,T . hT‖β ·∇ hvh‖0,T +hT‖vh‖0,T , (46)

while the inverse inequality (17) yields for all F ∈ Fh

|[[πh]]|
2
γβ ,F . ∑

T∈T (F)

‖πh‖
2
0,∂T . ∑

T∈T (F)

(

hT‖β ·∇ hvh‖
2
0,T +hT‖vh‖

2
0,T

)

.

11



Hence, since ∆K ≥ 1,

‖πh‖0,Ω + |[[πh]]|γβ . ‖vh‖h,Bβ ≤ ∆
1
2
K‖vh‖h,Bβ .

Let us estimate h
−

1
2

F |[[πh]]|γK ,F for all F ∈ Fh. Observe first that γK = ω∓δ∓
Kn ≤ δ∓

Kn

if F ∈ F i
h and γK = δKn if F ∈ F ∂Ω

h . Hence, if there is a T ∈ Th(F) such that

‖β‖[L∞(T )]d &
λM,T

hT
, then

h−1
F |[[πh]]|

2
γK ,F ≤ h−1

F λM,T‖[[πh]]‖
2
0,F ≤ ∑

T∈T (F)

(

hT‖β ·∇ hvh‖
2
0,T +hT‖vh‖

2
0,T

)

.

Otherwise, for all F ∈ F i
h,

h−1
F γK [[πh]]

2 . hFγK

(

((β ·∇ hvh)
−)2 +((β ·∇ hvh)

+)2
)

. hF

(

δ−
K,n((β ·∇ hvh)

−)2 +δ+
K,n((β ·∇ hvh)

+)2
)

,

and similarly for F ∈ F ∂Ω
h . Hence, using the trace inverse inequality (17),

h−1
F |[[πh]]|

2
γK ,F . ∑

T∈T (F)

λM,T‖∇ hvh‖
2
0,T . ∑

T∈T (F)

λM,T

λm,T
‖κ ∇ hvh‖

2
0,T .

Thus, |[[πh]]|γ . ∆
1
2
K ‖vh‖h,Bβ . Furthermore, since κ is piecewise constant,

‖κ ∇ hπh‖0,T = hT‖β ·∇ h(κ ∇ hvh)‖0,T . ‖κ ∇ hvh‖0,T ,

implying that ‖κ ∇ hπh‖0,Ω . ‖vh‖h,B. Finally, the advective derivative of πh is con-

trolled by

‖πh‖
2
h,β . ∑

T∈Th

h−1
T ‖πh‖

2
0,T . ‖vh‖

2
h,Bβ ,

owing to (46). This proves (45).

Step (iii): we can now examine the term ‖vh‖
2
h,β by making use of (9):

‖vh‖
2
h,β = Bh(vh,πh)− (K∇ hvh, ∇ hπh)0,Ω − (µvh,πh)0,Ω

+ ∑
T∈Th

(β ·∇ hvh,hT β ·∇ hvh −πh)0,T + ∑
F∈F i

h

(β ·nF{πh}, [[vh]])0,F

+ ∑
F∈F ∂Ω

h

1
2
(β ·nF vh,πh)0,F − ∑

F∈Fh

(γ[[vh]], [[πh]])0,F

+ ∑
F∈Fh

(

(nt
F{K∇ hvh}ω, [[πh]])0,F +(nt

F{K∇ hπh}ω, [[vh]])0,F

)

= Bh(vh,πh)+T1 +T2 +T3 +T4 +T5 +T6 +T7 +T8.

We observe that

|Bh(vh,πh)| ≤ S‖πh‖h,Bβ ≤ S∆
1
2
K ‖vh‖h,Bβ .

12



It is also clear that

|T1|+ |T2|+ |T6|+ |T7|+ |T8| . ‖vh‖h,B‖πh‖h,B . S
1
2 ∆

1
2
K ‖vh‖

3
2

h,Bβ .

Furthermore, using the inverse inequality (17) together with (46) yields

|T4|+ |T5| . |[[vh]]|γβ

(

∑
T∈Th

‖πh‖
2
0,∂T

)

1
2

. |[[vh]]|γβ

(

∑
T∈Th

h−1
T ‖πh‖

2
0,T

)

1
2

. ‖vh‖h,B‖vh‖h,Bβ . S
1
2 ‖vh‖

3
2

h,Bβ .

Finally,

|T3| ≤ ∑
T∈Th

hT |(β ·∇ hvh,(β −β)·∇ hvh)0,T | . ∑
T∈Th

h2
T‖β ·∇ hvh‖0,T‖∇ hvh‖0,T

. ∑
T∈Th

hT‖β ·∇ hvh‖0,T‖vh‖0,T . ‖vh‖h,Bβ‖vh‖0,Ω . S
1
2 ‖vh‖

3
2

h,Bβ .

Hence,

‖vh‖
2
h,Bβ . ‖vh‖

2
h,B +‖vh‖

2
h,β

. S‖vh‖h,Bβ +S∆
1
2
K ‖vh‖h,Bβ +S

1
2 ∆

1
2
K ‖vh‖

3
2

h,Bβ +S
1
2 ‖vh‖

3
2

h,Bβ

. S∆
1
2
K ‖vh‖h,Bβ +S

1
2 ∆

1
2
K ‖vh‖

3
2

h,Bβ ,

where we have used the fact that ∆K ≥ 1 in the last step. Applying twice Young’s

inequality yields the desired result. �

Proceeding as above, the following result is readily inferred:

THEOREM 4.1 In the above framework,

‖u−uh‖h,Bβ . ∆K inf
vh∈Vh

‖u− vh‖
h,

1
2

β
, (47)

where, for all v ∈V (h),

‖v‖
h,

1
2

β
= ‖v‖h,Bβ +

(

∑
T∈Th

‖v‖2
0,∂T

)

1
2

+

(

∑
T∈Th

hT‖κ ∇ hv‖2
0,∂T

)

1
2

. (48)

REMARK 4.2 Estimate (47) yields an error upper bound on the advective derivative

with a constant depending on ∆K . Robustness is recovered whenever ∆K = 1, i.e., when

working with an isotropic diffusivity tensor or when the cell Péclet numbers evaluated

with the largest eigenvalue of the diffusivity tensor are large enough. Furthermore, if

u ∈ H p+1(Th), the upper bound converges as hp+ 1
2 , which is optimal.

5 Numerical tests

5.1 A test case with discontinuous coefficients

To verify the convergence of the SWIP method and to make quantitative comparisons

between this and other IP methods, we consider the test problem proposed in [3],
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featuring discontinuous coefficients and where the exact solution is known analyti-

cally. We split the domain Ω = [0,1]× [0,1] into two subdomains: Ω1 = [0, 1
2
]× [0,1],

Ω2 = [ 1
2
,1]× [0,1]. The diffusivity tensor K is constant within each subdomain, and

defined as

K(x,y) =

(

ε(x) 0

0 1.0

)

where ε(x) is a discontinuous function across the interface x = 1
2
. Indicating with the

subscript 1 (resp. 2) the restriction to the subdomain Ω1 (resp. Ω2), we will consider

different values of ε1, while ε2 is set equal to 1. Letting β = (1,0)t , µ = 0 and f = 0,

the exact solution is independent of the y-coordinate, and is exponential with respect to

the x-coordinate. The following conditions must be satisfied at the interface between

the two subdomains:

lim

x→
1
2

−
u(x,y) = lim

x→
1
2

+
u(x,y), and lim

x→
1
2

−
−ε1∂xu(x,y) = lim

x→
1
2

+
−∂xu(x,y).

Setting u(0,y) = 1, u(1,y) = 0 and applying the matching conditions, we obtain the

value of the exact solution at the interface:

u
(

1
2
,y
)

=
exp( 1

2ε1
)

1− exp( 1
2ε1

)

(

exp( 1
2ε1

)

1− exp( 1
2ε1

)
+

1

1− exp( 1
2
)

)−1

.

As a result, the exact solution in each subdomain can be expressed as

u1(x,y) =
u( 1

2
,y)− exp( 1

2ε1
)+(1−u( 1

2
,y))exp( x

ε1
)

1− exp( 1
2ε1

)
,

u2(x,y) =
−exp( 1

2
)u( 1

2
,y)+u( 1

2
,y)exp(x− 1

2
)

1− exp( 1
2
)

.

Table 1: Convergence rates of the SWIP method, p = 1

h ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω

0.1000 1.62e-01 1.49e-01 6.94e-03

0.0500 7.96e-02 5.45e-02 2.11e-03

0.0250 3.67e-02 1.87e-02 4.80e-04

0.0125 1.70e-02 6.37e-03 1.21e-04

order 1.11 1.55 1.98

To assess the accuracy of the SWIP method with respect to the mesh-size, we con-

sider a family of uniform triangulations {Th}h>0 which are conforming with respect

to the interface between Ω1 and Ω2. These triangulations are obtained starting from

a uniform partition of ∂Ω in sub-intervals of length h = 0.1, h = 0.05, h = 0.025 and

h = 0.0125 respectively. The value of the penalty parameter α is henceforth set to

α = 1.0 for P1 elements and α = 4.0 for P2 elements. The numerical results obtained

with ε1 = 0.1 are reported in Tables 1 and 2, where the order of convergence is com-

puted with respect to the last two rows of each table. We observe that the SWIP method

exhibits the orders of convergence predicted by the theory.
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Table 2: Convergence rates of the SWIP method, p = 2

h ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω

0.1000 2.31e-02 2.15e-02 6.80e-04

0.0500 4.63e-03 3.31e-03 4.29e-05

0.0250 1.17e-03 5.93e-04 5.20e-06

0.0125 2.95e-04 1.05e-04 6.41e-07

order 1.99 2.49 3.02

Table 3: Comparison of SWIP and IP methods: ε1 = 5e-2, p = 1

method ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω M

SWIP 1.583e-01 1.505e-01 4.586e-03 9.555e-04

IP-A 1.483e-01 1.403e-01 5.153e-03 5.882e-03

IP-B 1.338e-01 1.378e-01 5.903e-03 5.882e-03

We have also compared the performance of the SWIP method with respect to two

IP methods. The first method (IP-A) corresponds to the SWIP method with weights

ω∓ = 1
2
. The penalty parameter γK is thus the arithmetic average of the diffusivity in

the direction normal to the face. This method was analyzed in [11]. The second method

(IP-B), proposed in [15], differs from IP-A in the choice of the penalty parameter: γK

is the arithmetic average of the maximum eigenvalue of K on the triangles sharing

the face F . We consider a uniform triangulation Th characterized by h = 0.05. The

quantitative analysis is based on the norms ‖·‖h,B, ‖·‖h,β , ‖·‖0,Ω and the indicator

M = max(|max
Ω

(uh)−max
Ω

(u)|, |min
Ω

(uh)−min
Ω

(u)|) (49)

which quantifies overshoots and undershoots of the calculated solution. The numer-

ical results for p = 1 are found in Tables 3, 4, and in Figure 1. Table 3 deals with

the case ε1 = 5e-2; the inner layer is not very sharp and is resolved by the meshes

under consideration. We observe that the three methods deliver similar results for all

the quantities of interest. As the inner layer becomes sharper (ε1 = 5e-3, Table 4), the

SWIP scheme performs better than the other IP methods, especially in the L2-norm

and in the indicator M. The reason is that the weights permit sharper discontinuities

in the calculated solution, leading to smaller oscillations in the internal layer, whereas

the other IP methods force the discrete solution to be almost continuous. As can be

observed in Figure 1, this limitation promotes instabilities in the neighborhood of the

Table 4: Comparison of SWIP and IP methods: ε1 = 5e-3, p = 1

method ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω M

SWIP 4.917e-01 1.280 1.474e-02 6.594e-02

IP-A 5.886e-01 1.303 4.973e-02 4.373e-01

IP-B 6.625e-01 1.634 7.553e-02 4.173e-01
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Table 5: Comparison of SWIP and IP methods: ε1 = 5e-3, p = 2

method ‖u−uh‖h,B ‖u−uh‖h,β ‖u−uh‖0,Ω M

SWIP 4.33e-01 1.44e+00 1.69e-02 6.72e-02

IP-A 6.05e-01 1.54e+00 3.77e-02 1.85e-01

IP-B 6.52e-01 1.71e+00 4.52e-02 1.86e-01

internal layer. The spurious oscillations generated in the case ε1 = 5e-3 lead to an over-

shoot of about 40%. The robustness of the SWIP method with respect to standard IP

schemes is also confirmed by further numerical tests concerning vanishing values of ε1

(Figure 2). Finally, Table 5 presents the results for ε1 = 5e-3 and p = 2. We have in this

case considered a coarser mesh yielding approximately the same number of degrees of

freedom as in the simulations with linear polynomials. Then, the same conclusion as

for p = 1 can be reached. As the mesh is further refined (or the polynomial degree is

further increased), the approximation space eventually becomes rich enough to com-

pletely capture the internal layer, and the three methods (SWIP, IP-A and IP-B) exhibit

a similar behavior.

5.2 A test case with genuine anisotropic properties

To conclude the sequence of numerical tests, we consider a test case with genuine

anisotropic properties. Because of the complexity of the problem, it is not possible

to compute analytically the exact solution. Consequently, the comparison between the

SWIP and the IP methods will only be qualitative.

We consider the unit square Ω = [0,1]× [0,1] split into four subdomains: Ω1 =
[0, 2

3
]× [0, 2

3
], Ω2 = [ 2

3
,1]× [0, 2

3
], Ω3 = [ 2

3
,1]× [ 2

3
,1] and Ω4 = [0, 2

3
]× [ 2

3
,1]. The

diffusivity tensor K takes different values in each subregion:

K(x,y) =

(

1e−6 0

0 1.0

)

for (x,y) ∈ Ω1, Ω3,

K(x,y) =

(

1.0 0

0 1e−6

)

for (x,y) ∈ Ω2, Ω4.

For the advection term we consider a solenoidal field β = (βx,βy)
t with βx = 40x(2y−

1)(x−1) and βy =−40y(2x−1)(y−1). Unlike the previous test case, we note that the

field is neither constant nor orthogonal to the interfaces of discontinuity of K, but it is

still oriented along the direction of increasing diffusivity, thus triggering internal layers.

The forcing term only depends on the radial coordinate originating at the center of Ω
in the form f (x,y) = 10−2 exp(−(r−0.35)2/0.005) with r2 = (x−0.5)2 +(y−0.5)2;

this corresponds to a Gaussian hill with center at r = 0.35. Finally, we choose µ = 1.

For the simulations, we consider a quasi-uniform mesh with h = 0.025. The mesh is

conforming with respect to the discontinuities of K. A qualitative representation of the

data is found in Figure 3.

In the left column of Figure 4 we compare the solutions obtained with the SWIP and

the IP methods. The contour plots of the numerical solutions confirm that the methods

at hand behave differently in the neighborhood of the interfaces where the tensor K is

discontinuous. We observe that the SWIP scheme approximates the internal layers by

means of jumps, while the IP schemes attempt to recover a numerical solution which is
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Figure 1: Graphical comparison between the methods SWIP and IP-A. The test case

with ε1 = 5e-2 is reported on the left while the case with ε1 = 5e-3 is on the right.

In both cases ε2 = 1. Each column shows the one-dimensional exact solution u(x) of

the test problem (top) and the numerical approximation uh obtained with the methods

SWIP (center) and IP-A (bottom), by means of piecewise-linear elements (p = 1). The

case IP-B has been omitted since it is qualitatively equivalent to IP-A.
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Figure 2: The norm ‖·‖0,Ω and the indicator (49) (denoted by M) are plotted for the

values ε1 = 2−i, i = 0, . . . ,16. The methods SWIP, IP-A and IP-B are compared with

respect to these indicators for linear (top) and quadratic elements (bottom).
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Figure 3: Test case with genuine anisotropic properties. On the left, an illustration of

the domain and its subregions together with a synoptic description of the diffusivity

tensor. The advection field β is shown on the right.

K22

K11

Ω1

Ω4

K22

K11

Ω2

Ω3

18



almost continuous. Since the computational mesh is insufficiently refined, the scheme

IP-A generates some slight undershoots near the interfaces where K is discontinuous.

For the IP-B method the oscillations generated by the approximation of the internal

layer are much more evident and propagate quite far away from the interfaces. This

behavior can be explained by observing that this type of penalty does not distinguish

between the principal directions of the diffusivity tensor. Consequently, an excessive

penalty is applied along the direction of low diffusivity.

To strengthen these conclusions, we also consider a numerical test where the ad-

vection field is the opposite of the one reported in Figure 3, i.e. it rotates clockwise.

Following this advection field along the interfaces between subdomains, the diffusivity

decreases. These conditions lead to an exact solution which is smooth in the neighbor-

hood of the interfaces. In this case, the three methods are expected to behave similarly,

as is confirmed by the numerical results reported in the right column of Figure 4.

6 Concluding remarks

The SWIP method analyzed in this paper is a DG method with weighted averages

designed to approximate satisfactorily advection-diffusion equations with anisotropic

and locally small diffusivity. A thorough a priori error analysis has been carried out,

yielding robust and optimal error estimates that have been supported by numerical

evidence. The SWIP method is an interesting alternative to other IP methods since it

can approximate more sharply under-resolved internal layers caused by locally small

diffusivity.

This work was partially supported by GdR MoMaS (PACEN/CNRS, ANDRA, BRGM,

CEA, EDF, IRSN)
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