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Abstract

Background: Intracellular phase separation and aggregation of proteins with extended poly-glutamine (polyQ)

stretches are hallmarks of various age-associated neurodegenerative diseases. Progress in our understanding of such

processes heavily relies on quantitative fluorescence imaging of suitably tagged proteins. Fluorescence loss in

photobleaching (FLIP) is particularly well-suited to study the dynamics of protein aggregation in cellular models of

Chorea Huntington and other polyQ diseases, as FLIP gives access to the full spatio-temporal profile of intensity

changes in the cell geometry. In contrast to other methods, also dim aggregates become visible during time

evolution of fluorescence loss in cellular compartments. However, methods for computational analysis of FLIP data are

sparse, and transport models for estimation of transport and diffusion parameters from experimental FLIP sequences

are missing.

Results: In this paper, we present a computational method for analysis of FLIP imaging experiments of intracellular

polyglutamine protein aggregates also called inclusion bodies (IBs). By this method, we can determine the diffusion

constant and nuclear membrane transport coefficients of polyQ proteins as well as the exchange rates between

aggregates and the cytoplasm. Our method is based on a reaction-diffusion multi-compartment model defined on a

mesh obtained by segmentation of the cell images from the FLIP sequence. The discontinuous Galerkin (DG) method

is used for numerical implementation of our model in FEniCS, which greatly reduces the computing time. The method

is applied to representative experimental FLIP sequences, and consistent estimates of all transport parameters are

obtained.

Conclusions: By directly estimating the transport parameters from live-cell image sequences using our new

computational FLIP approach surprisingly fast exchange dynamics of mutant Huntingtin between cytoplasm and dim

IBs could be revealed. This is likely relevant also for other polyQ diseases. Thus, our method allows for quantifying

protein dynamics at different stages of the protein aggregation process in cellular models of neurodegeneration.

Keywords: Discontinuous Galerkin, FLIP, Protein aggregation, Rate coefficient, Multi-compartment, Computational

method, Calibration

Background
Our understanding of protein transport and aggrega-

tion has been revolutionalized by the development of

genetically encoded fluorescent protein tags combined

with technical innovations in high-resolution live cell

fluorescence imaging. In particular, various advanced

*Correspondence: wuestner@bmb.sdu.dk
2Department of Biochemistry and Molecular Biology, Campusvej 55, 5230

Odense M, Denmark

Full list of author information is available at the end of the article

imaging methods have been used to study aggregation

and phase partitioning of proteins in the nucleus and

cytosol. Such protein segregation and aggregation is a

hallmark of various age-associated neurodegenerative dis-

eases, such as Alzheimer’s disease, Chorea Huntington,

Ataxia or Parkinson disease. In several inherited neurode-

generative diseases, like ataxia and Huntington disease,

certain proteins bearing a CAG triplet expansion coding

for an extended poly-glutamine (polyQ) stretch causes the

affected proteins to show the tendency to self-associate
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and form small and large aggregates, the latter also called

inclusion bodies (IBs).

Formation of IBs has been associated with disease pro-

gression, but it remains unclear, whether such large aggre-

gates are cytoprotective or cytotoxic [1–3]. In Huntington

disease, the polyQ protein is mutated huntingtin (mtHtt)

containingmore than 30 glutamine repeats typically, while

in ataxia, one finds one out of various ataxin proteins

mutated containing a polyQ stretch.

The aggregation process in Huntington disease and

related polyQ diseases has been studied extensively.

Typically, suitable model cells are transfected with fluo-

rescent protein-tagged derivatives of the studied polyQ

protein, and the aggregation process is studied by a vari-

ety of methods including photobleaching techniques like

fluorescence recovery after photobleaching (FRAP) and

fluorescence loss in photobleaching (FLIP) [4–7], number

and brightness (N & B) analysis of intensity fluctuations

[8], fluorescence complementation assays with split GFP

[9], Förster resonance energy transfer (FRET) [4, 6, 10],

fluorescence correlation spectroscopy [10], fluorescence

lifetime microscopy [4, 11], fluorescence anisotropy

imaging [12], stimulated emission depletion (STED)

microscopy [13] or single molecule tracking (SMT)

[13–15]. Using such techniques, different aspects of the

aggregation process have been revealed. In particular, it

has been suggested that diffusive oligomers and small

fibrillary aggregates co-exist with IBs, which accumulate

after some delay as clearly discernable micron-sized struc-

tures [8, 13, 16–18]. The oligomers or protein fibrils are

sometimes difficult to detect, first due to their small size

compared to IBs and second due to their low bright-

ness which makes that they are often overshined by the

much brighter IBs [8, 13, 15]. However, also the micron-

sized IBs formed of green fluorescent protein–tagged

mtHtt (GFP-mtHtt) come in strongly varying brightness

levels and are eventually replaced by similarly sized but

much more dynamic and eventually less bright inter-

mediate structures in the aggregation process [13, 15].

Indeed, protein aggregates detected in cellular models

of polyQ diseases are dynamic entities, often recruiting

other proteins and thereby sequestering enzymes and

signaling proteins which strongly affect the functional-

ity of cells [5–7, 9]. In detailed FRAP and FLIP studies,

both fast- and slow exchanging components have been

described for ataxins and mtHtt with half-times for the

exchange of tagged protein between cytoplasm and IBs

in the range of less than 10-20 sec for various ataxins

[19, 20] over 1-2 min for larger IBs of mtHtt6 [4, 20].

This strongly suggests that different populations of inclu-

sions with different physico-chemical properties coexist

in affected cells. Supporting that notion, both fibrillary

and globular IBs have been detected upon expression of

fluorescent protein–tagged mtHtt in the same cells, and

this structural heterogeneity was reflected in differing

exchange dynamics [4]. An additional level of complexity

comes from the complex architecture of the cytoplasm,

which generates sub-compartments of varying composi-

tion not only via membrane-bound organelles but also

in the form of membrane-less liquid phases into which

proteins can partition differently [21]. It has been sug-

gested that such variety of physico-chemical phases in the

cyto- and nucleoplasm can be a driving force for pro-

tein segregation, and in case of mutated polyQ proteins,

trigger protein aggregation [22].

Aggregates of polyQ proteins can form in both, the

cytoplasm and nucleus, and some polyQ proteins, such

as mtHtt or ataxins have been shown to bear nuclear

localization and export signals, suggesting active trans-

port across the nuclear membrane [23–26]. On the other

hand for mtHtt, a Ran-GTPase independent transport

across the nuclear membrane has been described [27].

How the nucleo-cytoplasmic transport of polyQ pro-

teins is kinetically coupled to their intracellular diffusion

and binding to IBs is not known. FLIP is in principle

an ideal method to answer this question, as fluores-

cence loss in different cellular areas can be quantified for

repeated localized bleaching far from IBs. However, most

studies applying FLIP in this context do not attempt to

develop a physical model underlying the observed flu-

orescence loss kinetics [5, 6, 19]. In a previous study,

we presented the first attempt at developing a quantita-

tive FLIP model to estimate exchange rate constants for

GFP-mtHtt from FLIP image sequences [7]. We tracked

individual IBs and determined exchange rate constants

relative to the overall fluorescence loss kinetics based

on a multi-compartment model. However, this method

lacked a proper description of intracellular diffusion and

nucleo-cytoplasmic exchange of GFP-mtHtt not associ-

ated with the IBs [7]. In a separate study, we devel-

oped a reaction-diffusion model to quantify diffusion and

nucleo-cytoplasmic exchange parameters for GFP as mea-

sured in FLIP experiments [28]. For that, we made use

of a reaction-diffusion multi-compartment model imple-

mented into FEniCS and solved that on a meshed sur-

face geometry directly obtained from the cell images in

the FLIP sequence. We used a discontinuous Galerkin

(DG) model for improved boundary description and

numerical integration of the underlying partial differen-

tial equation (PDE) system after transforming that into the

weak form.

Here, we combine and extend both approaches and

present what we believe is a new computational method

to directly infer quantitative dynamic parameters for

transport and aggregation of polyQ proteins in living

cells. We suggest two modes of nucleo-cytoplasmic trans-

port of GFP-mtHtt and determine diffusion constants

and nuclear membrane coefficients as well as binding



Hansen et al. BMC Biophysics            (2018) 11:7 Page 3 of 14

dynamics of GFP-mtHtt to IBs in concert with bleaching

coefficients for the intended laser bleach in the FLIP

experiment directly from experimental confocal FLIP

images.

Methods

A reaction–diffusion model on real cell geometry.

In [28] we present a reaction–diffusion model with

semipermeable nuclear membrane and hindrance for spa-

tial heterogeneity. In this paper, the mathematical model

is extended such that it can be applied to describe addi-

tionally protein aggregations from FLIP image sequences

of living cells. Further, both the semipermeable model

and also an active transport model for the nuclear mem-

brane is presented. As described in [28] an appropriate

FLIP model has to account for dynamic heterogeneity,

local hindrance and molecular crowding in living cells,

which are very conspicuous on the FLIP images. As in

[28], it is assumed that the high-intensity areas are the

areas in which we find that GFP-mtHtt is hindered in

its motion. Therefore, our computational FLIP model

allows for this by a space-dependent first order reaction

given by:

u
kon
⇋

koff
ub, (1)

where u and ub are the intensities of the free and hindered

molecules, respectively.

The observed fluorescence intensity from the FLIP

images is described by:

c = u + ub. (2)

For areas with high intensity we would find a higher

population of the hindered ub proteins. Then given the

first order reaction kinetic (1), the space dependent reac-

tion rate kon will be high in high-intensity areas and zero in

the areas with lowest intensities. First assume that the first

FLIP image is in equilibrium and the free molecules are

uniformly distributed, next let c0 be the observed inten-

sity from the first FLIP image, u0 be the intensity of the

free molecules and u0b be the intensity of the hindered

molecules such that (2) is fulfilled. Letting γ be the pro-

portionality constant then by [28] the reaction rates are

set to:

kon(x) = γu0b(x) = γ
(
c0(x) − u0

)
, (3)

where γ is a proportionality constant. Consequently, koff
is constant

koff =
kon(x)

u0b(x)
u0 = γu0 . (4)

Letting diffusion be expressed in the terms of Fick’s law

and α being the diffusion constant for the free molecules,

our time-dependent PDE model reads:

ut = ∇ · (α∇u) + koffub − konu − θb
q

1 + q
u

∣∣∣∣
�B

,

(ub)t = konu − koffub − θb
q

1 + q
ub

∣∣∣∣
�B

, (5)

x ∈ � , t > 0 ,

where θ is the time dependent indicator function simu-

lating the high intensity laser bleaches, b is the intrinsic

bleaching rate constant, q is the equilibrium constant for

the reaction between the ground and excited state for

a fluorophore [29] and ut is the time derivative of u.

For mass conservation the Neumann boundary condition

along ∂� is used,

n · ∇u = n · ∇ub = 0 , x ∈ ∂� , (6)

where n is the outward unit normal. With initial

conditions:

u(0, x) = u0(x) , ub(0, x) = (ub)0(x) , x ∈ � .

(7)

Next, two different membrane models are suggested.

Permeable membrane model

For the semipermeable membrane model the cytoplasm

and nucleus are separated by the nuclear membrane

ŴM with diffusive transport for GFP-mtHtt through the

nuclear pore complex leading to the method presented

in [28], where the diffusive flux is expressed as interface

condition

J · n− = −α
∂u−

∂n−
= p�u�n− x ∈ ŴM . (8)

Here, p is the permeability of the membrane measured

inμm/s. The± superscripts indicate that the parameter is

measured in two adjacent triangles, and thus n− is the out-

ward normal for the triangle marked with the minus sign.

As the outward normals along the common interface are

opposite, consequently the flux in (8) is written as a jump

bracket �u� = u+n+ + u−n−. In this special case, the two

adjacent triangles are placed with the nuclear membrane

as their common edge. Consequently, one is located in the

cytoplasm and one in the nucleus.

Active transport - membrane model

Alternatively, we describe the nucleo-cytoplasmic trans-

port of GFP-mtHtt as an active process. For that, we

extend our previous model and include a reaction term

across the nuclear membrane as shown in Fig. 1 and
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Fig. 1 Transport kinetics for the active transport model across the

nuclear membrane

given in (10), below. This reaction term with differ-

ent rate constants in both directions simplifies the

known importin/exportin-mediated nuclear transport. It

is known that differing concentration of the GDP- and

GTP-bound form of the RanGTPase in the nucleus and

cytoplasm control net accumulation of protein cargo in

either compartment [30]. Thus, protein cargo is assumed

to shuttle rapidly back and forth, but net accumulation is

a consequence of the differing abundance of certain bind-

ing partners in both compartments [30–33]. Our model,

thus, only accounts for the net kinetic effect of the trans-

port machinery in the form of differing overall import

and export rate constants for GFP-mtHtt. As illustrated in

Fig. 1 which is a closeup view of our newmembrane trans-

port model, uC and uN are the intensities in each of the

illustrated neighboring triangles, which are located at the

cytoplasmic and nuclear side of the membrane, respec-

tively. Thus, the first order reaction equation between the

two triangles can be written as:

uC
kcn
⇋

knc
uN . (9)

Thus the PDE reads:

(uC)t = kncuN − kcnuC ,

(uN )t = kcnuC − kncuN x ∈ ŴM . (10)

This reaction only happens between two adjacent trian-

gles where their common edge is a part of the membrane

line. An important property is that summing the two

equations from (10) shows mass conservation.

Multi-compartment modeling of GFP-mtHtt exchange

In [7] a simple multi-compartment model was developed

to describe exchange of GFP-mtHtt between cytoplasm

and aggregates. The multi-compartment approach is here

implemented into the reaction-diffusion FLIPmodel as an

internal interface conditions, with the first order transport

kinetics described as:

uC
k1
⇋

k2
uA, (11)

where uC is the intensity in the cytoplasm and uA is

the intensity in the respective aggregate. Contrary to (1),

which by hindrance organize spatial heterogeneity in the

full cell, (11) is used to describe the exchange between

cytoplasm and aggregates and thereby formmultiple com-

partments. Expressed as a differential equation the mass

preserving transport process becomes:

(uC)t = k2uA − k1uC ,

(uA)t = k1uC − k2uA . (12)

As for the active membrane model presented above,

these equations are now applied as an interface condition,

uC and uA becomes the intensities in each of the illus-

trated neighboring triangles in Fig. 2, which are located

Fig. 2 Transport kinetics between the aggregates and cytoplasm
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at the cytoplasmic and aggregate side of the aggregates

boundary ŴA, respectively.

Therefore this reaction only happens between two adja-

cent triangles where their common edge is a part of the

line that separates the cytoplasm and aggregates.

Cell geometry

The cell geometry (see Fig. 3) is like in [28, 34] conveyed

from the FLIP images by use of an extended implemen-

tation of [35] which uses the "Active Contours Without

Edges" method by Chan and Vese [36]. The Chan-Vese

model does not depend on the image gradients and is,

therefore, able to accomplish a segmentation on more

blurred images. The cell geometry is segmented from the

first image whereas the aggregates are all segmented from

the last FLIP image. As bleaching of the FLIP images

occurs in the nucleus, it is hard to segment the nucleus

automatically from the FLIP sequence. Thus the geometry

of the nucleus is here set by hand. The mesh is generated

on the geometry in Fig. 3 with Gmsh and then converted

to XML-file.

A discontinuous Galerkin method with internal interface

condition

In [28], the interface condition along the nuclear mem-

brane (8) was implemented into the IPDG method based

on [37, 38]. Additionally, in this paper, the internal inter-

face condition along the aggregate boundaries are imple-

mented. To derive the weak formulation, we first consider

the aggregate interface conditions.

Fig. 3Mesh with 1825 triangles on the real cell geometry. The green

triangles constitute the cytoplasm, in red is the aggregates, the dark

blue triangles form the nucleus and inside nucleus the round

bleaching area with a diameter of 25 pixel can be found

Let the discretization of � be denoted by Th consisting

of disjoint open elementsK ∈ Th. While integrating along

ŴA, u
− and u+ are considered as the values of two different

but adjacent elements K+ and K− with a common edge

on ŴA. To rewrite (12) into integral form with the u− and

u+ notation, (12) is split up in two cases, one if u− is in the

cytoplasm and one if u− is in the aggregate. An indicator

function IC is therefore introduced as:

IC(u) =

{
1 if Ku ∈ �C

0 else.
(13)

Thus the weak form reads:∫

�

ut dx = A(u, v) , (14)

where

A(u,v):=

∫

ŴA

IC(u+)
((
k2u

−−k1u
+
)
v++

(
k1u

+−k2u
−
)
v−

)
dS

+

∫

ŴA

IC(u−)
((
k1u

−−k2u
+
)
v++

(
k2u

+−k1u
−
)
v−

)
dS

(15)

and v as the usual test function.

For notation, now let Ŵ denote the union of the bound-

aries of all the disjoint open elements K. Furthermore, let

Ŵ consist of four disjoint subsets, such that Ŵ = ∂� ∪

Ŵint ∪ ŴM ∪ ŴA. Thus Ŵint holds all internal edges. Then

usual average and jump term for DG-methods are defined

as {u} =
(
u+ + u−

)
/2, �u� = u+n+ + u−n−. For vector

valued functions q the average and jump term are defined

as: {q} =
(
q+ + q−

)
/2, �q� = q+ · n+ + q− · n−. where

n± is the outward unit vectors on ∂K±.

Reusing the notation from [28] we let

D(u, v,α) :=

∫

�

α∇u · ∇v dx −

∫

Ŵint

{α∇v} · �u� ds

−

∫

Ŵint

{α∇u}·�v� ds +

∫

Ŵint

σ

h
�u� · �v� ds ,

(16)

R(u,ub, v) :=

∫

�

(koffub − konu)v dx , (17)

B(u, v) :=

∫

�B

θb
q

1 + q
uv dx . (18)

Thus our weak formulation reads:∫

�

utv dx + D(u, v,α) = R(u,ub, v)

− B(u, v) + A(u, v) + M(u, v) ,
∫

�

(ub)tw dx = −R(u,ub,w) − B(ub,w) ,

(19)

where v and w are the usual test functions. M(u, v)

represent the transport mechanism for the chosen mem-

brane model.
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For the semipermeable membrane model let:

M(u, v) := −p

∫

ŴM

�u� · �v� ds . (20)

The weak form for the active membrane model reads

M(u, v) :=

∫

ŴM

IC
(
u+

) ((
kncu

− − kcnu
+
)
v+

+
(
kcnu

+ − kncu
−
)
v−

)
dS

+

∫

ŴM

IC(u−)
((
kcnu

− − kncu
+
)
v+

+
(
kncu

+ − kcnu
−
)
v−

)
dS.

(21)

Any L-stable method can be used for discretizing the

time derivative. Here the backward Euler is used for

the implementation using the automated Finite Element

package FEniCS [39]. Pre–assemble the system matrix

will improve the computational time in FEniCS. How-

ever, as the bleaching term is time dependent the system

is here pre–assembled into two system matrices. One

with and one without the bleaching term. Inside the

python script, the weak formulation is therefore expressed

twice in the UFL form language, however, in the short

python script presented here, only the weak formula-

tion from (19) which includes the bleaching term can

be found.

For simplicity the bleaching term b
q

1+q from (18) is

replaced by β in the implementation and calibration.

# F1 and F2 with bleaching
F1b = (1/dt)*(u-u0)*v *dx \
+ alpha*dot(grad(v), grad(u))*dx \
+ p*dot(jump(u,n),jump(v,n))*dSm \
- dot(avg(alpha*grad(v)), jump(u, n))*dSS \
- dot(jump(v, n), avg(alpha*grad(u)))*dSS \
+ sigma/h_avg*dot(jump(v, n), jump(u, n))*dSS \
+ k_on*u*v*dx - k_off*ub*v*dx \
+ beta*u*v*dxb \
- (Ic(’-’)*((k2*u(’-’)-k1*u(’+’))*v(’+’) +

(k1*u(’+’)-k2*u(’-’))*v(’-’)))*dSa \
- (Ic(’+’)*((k1*u(’-’)-k2*u(’+’))*v(’+’) +

(k2*u(’+’)-k1*u(’-’))*v(’-’)))*dSa

F2b = (1/dt)*(ub-ub0)*w *dx \
- dot(avg(grad(w)), jump(ub, n))*dSS \
- dot(jump(w, n), avg(grad(ub)))*dSS \
+ sigma/h_avg*dot(jump(w, n), jump(ub, n))*dSS \
+ k_off*ub*w*dx - k_on*u*w*dx \
+ beta*ub*w*dxb

# preassembly
Fb = F1b + F2b
ab = lhs(Fb); Lb = rhs(Fb)
Ab = assemble(ab)

Where dSm represent the integral along the membrane,

dSa is the integral along the aggregates boundaries, dSS

is the integral on the remaining edges with smooth solu-

tions and dxb represents the bleaching area. A similar

systemmatrix is implemented without the bleaching term

and the left-hand side is pre–assembled as the matrix A

with the right-hand side L. The time dependent system is

solved in FEniCS by:

while t < t_end:
if t%t_frame <= t_bleach:

b = assemble(Lb, tensor=b)
solve(Ab, c1.vector(), b)

else:
b = assemble(L, tensor=b)
solve(A, c1.vector(), b)

c0.assign(c1)
(u0, ub0) = c0.split(True)
t += dt

Results

Calibration and simulation of intracellular transport with

the permeable membrane model

To calibrate the unknown parameters α,β , γ , p, k1, k2 we

make a comparison between the simulation result and the

FLIP images. The frame time for the FLIP experiment

in Fig. 4a-d where 
tframe = 2.8s, within that time the

bleaching area with a diameter of 25μmwas bleachedwith

100% laser intensity for 2s. Thus the imaging process with

a laser power of 0.5% took 0.8s.

To easily compare the simulation results and the

FLIP sequence, the goal function seen in Fig. 4e-h is

created. The goal function is a piecewise linear dis-

continuous Galerkin function defined on the mesh,

which represents the values from the denoised FLIP

images. To denoise the FLIP sequence, Gaussian blur

with a radius of 1 pixel is used. At the discrete times

ti = 
tframe(i − 1) + tcompare seconds i = 1, 2, 3, . . . , n

the L2 norm of the difference between the goal function

and the simulation is calculated to represent the misfit

functional as:

E =
1

n

n∑

i=1

∫

�

|u(ti, x) + ub(ti, x) − cg(ti, x)|
2 dx , (22)

where cg is the goal function. For the sequence in Fig. 4 the

number of FLIP images is n = 40 and the time where the

simulation and FLIP data are compared is tcompare = 2.6s.

To calibrate the unknown parameters, the Nelder–Mead

downhill simplex algorithm [40] from the SciPy library

[41] is used. The stop criterium is set such that either the

difference in the parameter or the difference in the mis-

fit functional between each iteration should be lower than

10−4. Looking at the reactions rates k1 and k2 it is known

from (12) that in equilibrium the equilibrium constant can

be described as:

K =
k1

k2
=

uA

uC
. (23)

Assuming that the first FLIP image before bleaching

(see Fig. 4a) is in equilibrium, K can be determined by

the use of the average intensities from inside the aggre-

gates and cytoplasm, respectively. From the FLIP image

in Fig. 4a the equilibrium constant turns out to be K =

1.16. Thus by expressing k2 in terms of k1, the parame-

ters that need to be calibrated are reduced to α,β , γ , p, k1.



Hansen et al. BMC Biophysics            (2018) 11:7 Page 7 of 14

Fig. 4 The first four images a-d are the original FLIP images of the CHO cells expressing GFP-Q73 in the cytoplasm and nucleus. It is produced in a

temperature controlled (35 ± 1◦
C) environment on a Zeiss LSM 510 confocal microscope using the 488nm line of an Argon laser. The black circle

on the image a shows the 25-pixel wide bleaching area and a scalebar which is 5 μm. The pixel size is here 0.0461847 μm given a width of the

bleach spot of ca. 1.15 μm. The leftmost FLIP image a is taken before bleaching, the next image b is taken after it has been bleached 10 times, i.e.,

time t = 28 s. The third FLIP image c is the 20’th FLIP image in the sequence (time t = 56 s) and the last d is at time t = 109.2 s which correspond to

FLIP fame 39. The second row e-h shows the corresponding goal function. The third row i-l shows the simulation results, all at times corresponding

to the displayed FLIP images

The initial guesses for the calibration are set to α0 = 25,

β0 = 20, γ0 = 0.5, p0 = 0.05 and (k1)0 = 0.001. After

405 iterations and 679 evaluations, the resulting calibrated

parameters are

α̃ = 17.6 μm2/s , β̃ = 36.0 s−1 ,

γ̃ = 0.198 s−1 , p̃ = 0.318 μm/s ,

k̃1 = 0.0718 s−1 , and k̃2 =
k̃1

1.16
= 0.0619 s−1 .

(24)

The misfit functional with the initial parameters

E0 = 7, 141 was lowered to E = 2, 807 for the cali-

brated parameters in (24). The calibration process took

around 9 h on an Intel Core i5 processor at 3.2 GHz

with 8 GB memory running Ubuntu 16.04 LTS. The mesh

used is presented in Fig. 3 and consists of 1825 trian-

gles. The results of the calibration process are presented

in Fig. 4i-l.

In Fig. 5a-d a similar FLIP sequence with 
tframe = 2.6 s,

tcompare = 2.4 s and n = 55 can be seen. The simulations

have been made on a mesh consistent of 1998 trian-

gles, and the initial guesses for the calibration are set to

α0 = 15, β0 = 10, γ0 = 0.05, p0 = 0.5 and (k1)0 = 0.01.

After 353 iterations and 594 evaluations within 13 h the

resulting calibrated parameters are

α̃ = 15.9 μm2/s , β̃ = 34.6 s−1 , γ̃ = 0.0614 s−1 ,

p̃ = 0.447 μm/s ,

k̃1 = 0.0111 s−1 , and k̃2 =
k̃1

1.02
= 0.0109 s−1 .

(25)

The misfit functional was lowered from E0 = 5, 591 to

E = 2, 531 during the calibration. The simulation result

with the calibrated parameters can be seen in Fig. 5i-l.

Active transport of GFP-mtHtt across the nuclear

membrane

Inspired by our previous work on modeling FLIP data of

GFP, we have used a semi-permeable model for nucleo-

cytoplasmic transport of GFP-mtHtt so far. However, it

turns out that the determined membrane permeability, p,

of around 0.5 (see (24) and (25)), is very high for a protein,

the size of ca. 2 GFP molecules, from which we deter-

mined previously a reasonable value of p = 0.111 [28].

Thus, the relatively high permeabilities of the GFP-mtHtt

protein may indicate that the traffic across the nuclear

membrane could be caused by enzyme-catalyzed active
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Fig. 5 (a-d) are the original FLIP images of the CHO cells expressing GFP-Q73 in the cytoplasm and nucleus. The black circle on the image a shows

the 18-pixel wide bleaching area in the nucleus with a pixel size of 0.0624404 μm and a scalebar which is 5 μm. a is taken before bleaching, b is

after 10 time bleaches, i.e., time t = 26 s. c is the 20’th FLIP image in the sequence (time t = 52 s) and d is produced at time t = 104 s which

correspond to FLIP fame 40. The second row e-h shows the corresponding goal function. The third row i-l shows the simulation results, all at times

corresponding to the displayed FLIP images

transport [42]. Two to three days after transient trans-

fection, we often observed slowed nuclear-cytoplasmic

exchange of GFP–mtHtt compared to GFP, likely due

to the pronounced formation of sub-resolution aggre-

gates which interfere with normal nucleo–cytoplasmic

transport (not shown but see Fig. 6 in [7]). Such vary-

ing results have been reported previously [27, 43–46] and

they could be well attributed to the eventual occurrence

of soluble oligomers, whose transport across the nuclear

membrane is delayed, while transport of monomeric

mtHtt profits from interaction with FG-rich repeats in the

nuclear pore, which can accelerate transport compared to

passive cargo [47].

To account for the possibility of active transport of

GFP-mtHtt across the nuclear membrane, we have devel-

oped an alternative description of this transport step. The

complex nuclear transport machinery was simplified by

including unidirectional rate constants across the nuclear

membrane (from the nucleus to the cytoplasm, knc, and

from cytoplasm to nucleus, kcn). These rate constants

were determined directly from the FLIP data.

By the assumption that the first FLIP image is in equi-

librium, it is possible to find the equilibrium constant

KM for knc and kcn, by measuring the average intensi-

ties inside the nucleus and the cytoplasm from the first

FLIP image, respectively. Thus knc can be expressed as

knc =
kcn
KM

, consequently only kcn have to be calibrated.

Thus for the active model, the parameters which needs

to be calibrated are α,β , γ , k1, kcn. The two cells pre-

sented in the previous section are again used for cali-

bration with the same boundary conditions and initial

values, except for p0 which is replaced by (kcn)0 =
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Fig. 6 Simulation results for both type of models. a and b shows two different cells, the top row in both a and b shows the simulation results for the

semi-permeable, whereas the second row displays the simulation results for the active membrane model. All are simulation results with the

respectively calibrated parameters. The yellow areas are high-intensity areas, whereas the blue areas are low-intensity areas

0.05, in both calibrations. Both calibrations are run on

the same two meshes used for the permeable model.

After 493 iterations, 828 function evaluations and 21 h

of calibration the parameters for the first cell were

found to be:

α̃ = 19.4 μm2/s , β̃ = 52.7 s−1 ,

γ̃ = 0.156 s−1 , k̃1 = 0.0556 s−1 ,

k̃2 =
k̃1

1.16
= 0.0480 s−1, k̃cn = 0.252 s−1 and

k̃nc =
k̃cn

1.26
= 0.200 s−1 .

(26)

The the misfit functional for the initial values E0 =

6, 277 was lowered to E = 2, 755 during the

calibration. For the second cell the calibration took

approximately 14 h to do 250 iterations and 434 func-

tion evaluations, resulting in the following parameter

estimates:

α̃ = 18.2μm2/s , β̃ =32.0 s−1 , γ̃ =0.0617 s−1 ,

k̃1 = 0.0111 s−1,

k̃2 =
k̃1

1.02
= 0.0108 s−1, k̃cn = 0.377 s−1 and

k̃nc =
k̃cn

1.10
= 0.342 s−1 . (27)

With a reduction in the misfit functional from E0 =

8, 925 to E = 2, 527.

We directly compared the calibration results for both

models in Fig. 6. Overall, the difference is minor, mean-

ing that both models, i.e., with a passive exchange or

active transport of GFP-mtHtt across the nuclear mem-

brane can describe the experimental FLIP data equally

well. In Fig. 6b there is a slightly more pronounced inten-

sity in the IB’s for the active compared to the passive

transport model. Since the exchange rate constants k1
and k2 are comparable, this could be a consequence of

the slightly faster diffusion of GFP-mtHtt in the active
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transport model, making that the cytoplasmic signal sur-

rounding the IBs decays faster compared to what is found

in the passive model.

The nuclear import and export rate constants we deter-

mined for GFP-mtHtt in both cells are in the same

range with a slightly higher import than export rate con-

stant (compare (26) and (27)). This reflects the exper-

imental observation, that GFP-mtHtt does not become

enriched in the nucleus compared to the cytoplasm.

Huntingtin contains a conserved nuclear export signal

(NES), and its export from the nucleus can be inhibited

by mutations in the this NES or by using the inhibitor

leptomycin B [26]. We simulate the effect of such an

inhibition of nuclear export on FLIP image data of GFP-

mtHtt by systematically lowering the rate constant knc
in the active transport model Fig. 7. Our simulations

predict that the lower knc is, the faster decays fluores-

cence of GFP-mtHtt in the nucleus when the bleach spot

is located in this compartment. When knc is lowered

more than 6 fold compared to control conditions (i.e.

knc = 0.05 s−1 instead of knc = 0.342 s−1), we observe

a strong accumulation of GFP-mtHtt in the nucleus and

only very little enrichment in the cytoplasmic aggregates,

see Fig. 7. This prediction could be directly tested in future

experiments.

Calibration test

To validate the calibration approach, a ground-truth

in the form of a forward simulation of the semi-

permeable membrane model with known parameters

is made to represent and replace the FLIP images,

which we calibrated against. The forward simulation is

made with the same initial and boundary conditions as

used in Fig. 4, on the mesh from Fig. 3. The chosen

parameters are:

α = 17 μm2/s , β = 36 s−1 ,

γ = 0.2 s−1 , p = 0.3 μm/s ,

k1 = 0.0718 s−1 , and k2 =
k1

1.16
= 0.0619 s−1 .

(28)

Fig. 7 Simulation results illustrating an inhibition of nuclear export by lowered rate constant knc . The three different simulations a, b and c, are all

results of simulations of the model with the active membrane term. Common for them is that the parameters α,β , γ , k1 , k2 , kcn are given from the

calibration results in (27), wheres as knc is varying. First simulation a shows the resulting simulation from the calibration, i.e. knc = 0.342. In b nuclear

export rate knc is lowered to 0.2 s−1 . In c it is further lowered to knc = 0.05 s−1
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Gaussian noise with the mean set to zero and a vari-

ance whose size is approximately 10% of the maximum

intensity is added to the results of the forward simulation.

The forward simulation result now replace the goal func-

tion that is usually extracted from the experimental FLIP

images in the calibration process. The rest of the setup,

including the initial guesses on the parameters for the cal-

ibration, is identical to the one used for the calibration in

Fig. 4. Through the calibration process the misfit function

E was lowered from 639.4 to 169.7 in 388 iterations with

612 function evaluations which took around 10 h. The

calibrated parameters are:

α̃ = 16.96 μm2/s , β̃ = 35.99 s−1 ,

γ̃ = 0.2002 s−1 , p̃ = 0.3003 μm/s ,

k̃1 = 0.07182 s−1 , and k̃2 =
k̃1

1.16
= 0.06191 s−1 .

(29)

A small error is seen on the fourth digit, which is due

to both the Gaussian noise and the size of the stop cri-

terion for the Nelder–Mead algorithm. To determine the

sensitivity and robustness of the calibration of the model

against parameter variation, the fit to the experimental

FLIP data has been repeated for different initial param-

eter values for both, the semi-permeable and the active

membrane transport model (See Additional file 1).

Discussion
Phase separation and aggregation of polyQ proteins are

prominent signs of certain neurodegenerative diseases.

Often, protein inclusions of GFP–tagged polyQ pro-

teins are first visible in cells after several days in cul-

ture allowing only for studying relatively inert, bright

and stable aggregate structures [13, 15]. Thus a key

requirement in traditional approaches is that the IBs

and similar fluorescent protein aggregates differ in their

intensity significantly from the fluorescent protein pool

in the surrounding cyto- or nucleoplasm. This, how-

ever, limits the analysis to certain inclusion types. Here,

we present a new computational approach for infer-

ring diffusion, membrane permeability, and exchange rate

constants of GFP–mtHtt between cytoplasm and aggre-

gates of differing brightness directly from experimental

FLIP image sequences. Our method allows for detec-

tion and dynamic characterization of protein aggregates

even in cases, where they are not visible in single image

acquisitions.

Using the calibrated reaction–diffusion model, we

found that rate constants for exchange of GFP–mtHtt

between such large but dim inclusions and the cytoplasm

are fast (binding rate constant k1 = 0.0718 s−1 (Fig. 4)

and k1 = 0.0111 s−1 (Fig. 5) and release rate constant of

k2 = 0.0619 s−1 (Fig. 4) and k2 = 0.0109 s−1 (Fig. 5).

We found similar values previously for the same pro-

tein and cell system using a simple multi–compartment

model which ignored diffusion and nucleo–cytoplasmic

exchange of GFP–mtHtt (i.e. binding rate constant

k1 = 0.016 ± 0.006 s−1 and release rate constant of k2 =

0.0127±0.004 s−1, mean ± SEM of 6 cells) [7]. From that,

we can conclude, that the typical residence time of GFP–

mtHtt once bound to cytoplasmic aggregates is on order

16–83 s before being again released and available for free

cytoplasmic transport and nucleo–cytoplasmic exchange.

Our estimates of intracellular diffusion constants for

GFP–mtHtt of α = 1
2 (15.9 + 17.6) = 16.75 μm2/s are in

good agreement with what would be expected for a pro-

tein the size of GFP-Q73 (i.e. Stokes radius of R ≈ 3.4 nm

[9]) in the cytoplasm (i.e. viscosity of η = 3.79 · 10−9 kg
s·m

predicts α = 16.6 according to data from [47]). Support-

ing that notion is a previous report, which found α =

18.4 ± 3.3μm2/s for diffusion of GFP–mtHtt of the same

size (i.e., Q73) in the cytoplasm of N2a cells using FRAP

[9]. Using an average cytoplasmic diffusion constant of

α = 16.75μm2/s and the upper estimate of the time con-

stant for binding of 1/(k1 = 0.0718 s−1) = 14 s from

our analysis, we conclude that GFP–mtHtt can diffuse on

average 30μm away from an aggregate after release before

the next binding event takes place. Thus, diffusion is not

limiting the aggregation kinetics, which explains, why we

found very similar estimates for the binding and dissocia-

tion constants as reported here with our previous model

which ignored cytoplasmic diffusion altogether [7]. A fur-

ther point to note is that the IBs in this and our previous

study are circular suggesting that they are in a liquid-like

state phase-separated from the cytoplasmic pool. This is

in line with a recent study [48] and could set a mecha-

nistic basis for the rapid exchange kinetics we observed

for GFP-mtHtt between aggregates and cytoplasm. We

believe that rapid diffusion and exchange of soluble mtHtt

with cytoplasmic inclusions could contribute to the effi-

cient recruitment of other proteins to IBs which further

accelerates cellular dysfunction as observed in various

studies [6, 14, 49].

We found that a model considering only passive

exchange or only active transport of GFP-mtHtt across

the nuclear membrane describe the experimental FLIP

data almost equally well. The estimated passive perme-

ability is with p = 0.4 μm/s higher than that of the

much smaller GFP [28] suggesting that additionally, active

transport mechanisms are at play to facilitate passage of

mtHtt across the nuclear membrane. We accounted for

active transport of mtHtt by using an additional reactive

term at the nucleus-cytoplasm boundary and estimated

kinetic rate constants for such a process. Since the equilib-

rium constant Km =
kcn
knc

is only slightly larger than unity,

we conclude that transport of GFP-mtHtt is similarly
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accelerated by cytosolic and nuclear exchange factors,

such as importin in the cytoplasm and exportin in the

nucleus.

As those components of nucleo-cytoplasmic transport

are not explicitly considered in our model, a direct com-

parison of the rate constants, we obtain to other kinetic

models which account for the details of the transport

machinery is not possible. However, we could use our

active transport model to study the effect of inhibitors

or mutations in the NES of mtHtt on its transport in

FLIP experiments. In accordance with studies from Tru-

ant and colleagues, we find that a slowed nuclear export

of huntingtin increases its nuclear accumulation [25, 26].

Using our model, we can additionally predict that slowed

nuclear export will fasten the fluorescence loss kinetics

of mtHtt in the nucleus and in parallel affect the kinetics

of fluorescence loss measured in cytoplasmic IBs in FLIP

experiments. Such predictions can be directly tested in

future studies.

From the sensitivity test in the Additional file 1, it is

clear that it is hard to determine the bleaching constant

β precisely, as the minimal and maximal β found was

approximately 16 and 250 s−1 for comparable values of

the misfit functional (see S.1.1 in Additional file 1). This

we see as a consequence of the very powerful laser that

bleaches all the fluorescence proteins in the bleaching

area. Ignoring all other terms than the bleaching term

in (5), the equation simplifies to ct = −βc. At the end

of the bleaching time t = 2, with initial value c0 = 1,

it is seen that the difference between the two solutions

for this simple differential equation with β = 16 and

β = 250 is smaller than 10−13. Thus, the change in β

does not have a significant impact on the solution and

may, therefore, be hard to determine. The low sensitivity

of the calibration results against changes in β may indicate

that a better description of the FLIP process necessitates

a three-dimensional FLIP model in the future. Indeed,

we observed in preliminary experiments that a 3D bleach

profile in shape of a double cone is more adequate in mod-

eling 3D FLIP experiments (Hansen et. al. unpublished

data).

Our model allows for testing cellular mechanisms

underlying observed live-cell FLIP image sequences,

but parameter inference from the experimental data is

restricted to a few parameters. This is necessary, as oth-

erwise, low parameter sensitivity and model redundancy

would follow. For example, only one reaction rate is fit-

ted for all aggregates in the same cell. Each new reaction

rate per aggregate would increase the complexity of the

calibration process, such that one should have indepen-

dent evidence for such heterogeneity before extending the

model into that direction. For the readers that may want

individual reaction mechanics for each aggregate, we sug-

gest to calibrate the parameters α,β , γ and p first and

then fix these parameters while finding the ones for the

aggregates. This can be done under the assumption that

the traffic from the aggregates is so small that it would not

affect the other parameters.

Conclusion
Our new computational method allows one to deter-

mine diffusion constants, nucleo-cytoplasmic transport

parameters and exchange kinetics of polyQ proteins, such

as mtHtt, from live-cell FLIP image data. It is the first

time, to our knowledge, that all such transport parame-

ters can be inferred in parallel from the full spatiotemporal

FLIP intensity profile directly within the cell geometry.

Using this new method, we find that polyQ proteins can

exchange rapidly between cytoplasm and aggregates and

that diffusion of protein monomers is not limiting this

exchange process. Furthermore, we show that computa-

tional FLIP is an efficient method to detect dim protein

aggregates due to their delayed fluorescence loss. Bind-

ing and dissociation constants of mtHtt to and from such

aggregates are comparable such that the inclusions are

hardly visible in single images. Such dim and round aggre-

gates of mtHtt have been recently characterized as being

in a liquid-like state, phase separated from themonomeric

cytoplasmic pool of the protein [48]. Our computational

FLIP approach allows for a systematic study of the proper-

ties of such liquid-like aggregates and their transformation

towards solid inclusions during the progression of the

disease.

Finally, we also model the nucleo-cytoplasmic transport

of GFP-mtHtt and show that mutated Htt shuttles rapidly

across the nuclear membrane, likely by Ran-mediated

active transport. Nuclear accumulation precedes the for-

mation of aggregates and IBs of mtHtt in the nucleus,

which likely impairs transcription of essential genes in

the affected cells [14]. Our new method can be employed

in the future to systematically study the effect of mtHtt

aggregation on its transport across the nuclear mem-

brane. Thus our method sets the stage for a system-

atic exploration of how the aggregation process affects

the nucleo-cytoplasmic permeability of polyQ proteins.

Our new approach is widely applicable to quantify pro-

tein dynamics in cellular inclusions of various disease

models.
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