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Abstract

Neural abstractive summarization models have

led to promising results in summarizing rela-

tively short documents. We propose the first

model for abstractive summarization of single,

longer-form documents (e.g., research papers).

Our approach consists of a new hierarchical

encoder that models the discourse structure of

a document, and an attentive discourse-aware

decoder to generate the summary. Empirical

results on two large-scale datasets of scientific

papers show that our model significantly out-

performs state-of-the-art models.

1 Introduction

Existing large-scale summarization datasets

consist of relatively short documents. For exam-

ple, articles in the CNN/Daily Mail dataset (Her-

mann et al., 2015) are on average about 600 words

long. Similarly, existing neural summarization

models have focused on summarizing sentences

and short documents. In this work, we propose a

model for effective abstractive summarization of

longer documents. Scientific papers are an ex-

ample of documents that are significantly longer

than news articles (see Table 1). They also fol-

low a standard discourse structure describing the

problem, methodology, experiments/results, and

finally conclusions (Suppe, 1998).

Most summarization works in the literature

focus on extractive summarization. Examples

of prominent approaches include frequency-based

methods (Vanderwende et al., 2007), graph-based

methods (Erkan and Radev, 2004), topic mod-

eling (Steinberger and Jezek, 2004), and neural

models (Nallapati et al., 2017). Abstractive sum-

marization is an alternative approach where the

generated summary may contain novel words and

phrases and is more similar to how humans sum-

marize documents (Jing, 2002). Recently, neu-

ral methods have led to encouraging results in

abstractive summarization (Nallapati et al., 2016;

See et al., 2017; Paulus et al., 2017; Li et al.,

2017). These approaches employ a general frame-

work of sequence-to-sequence (seq2seq) models

(Sutskever et al., 2014) where the document is

fed to an encoder network and another (recurrent)

network learns to decode the summary. While

promising, these methods focus on summarizing

news articles which are relatively short. Many

other document types, however, are longer and

structured. Seq2seq models tend to struggle with

longer sequences because at each decoding step,

the decoder needs to learn to construct a context

vector capturing relevant information from all the

tokens in the source sequence (Shao et al., 2017).

Our main contribution is an abstractive model

for summarizing scientific papers which are an

example of long-form structured document types.

Our model includes a hierarchical encoder, captur-

ing the discourse structure of the document and a

discourse-aware decoder that generates the sum-

mary. Our decoder attends to different discourse

sections and allows the model to more accurately

represent important information from the source

resulting in a better context vector. We also in-

troduce two large-scale datasets of long and struc-

tured scientific papers obtained from arXiv and

PubMed to support both training and evaluating

models on the task of long document summariza-

tion. Evaluation results show that our method out-

performs state-of-the-art summarization models1.

2 Background

In the seq2seq framework for abstractive sum-

marization, an input document x is encoded using

a Recurrent Neural Network (RNN) with h
(e)
i be-

ing the hidden state of the encoder at timestep i.

The last step of the encoder is fed as input to an-

other RNN which decodes the output one token

1 Data/code: https://github.com/acohan/long-summarization
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Figure 1: Overview of our model. The word-level RNN

is shown in blue and section-level RNN is shown in

green. The decoder also consists of an RNN (orange)

and a “predict” network for generating the summary.

At each decoding time step t (here t=3 is shown), the

decoder forms a context vector ct which encodes the

relevant source context (c0 is initialized as a zero vec-

tor). Then the section and word attention weights are

respectively computed using the green “section atten-

tion” and the blue “word attention” blocks. The context

vector is used as another input to the decoder RNN and

as an input to the “predict” network which outputs the

next word using a joint pointer-generator network.

at a time. Given an input document along with

the corresponding ground-truth summary y, the

model is trained to output a summary ŷ that is

close to y. The output at timestep t is predicted

using the decoder input x′
t, decoder hidden state

h
(d)
t , and some information about the input se-

quence. This framework is the general seq2seq

framework employed in many generation tasks

including machine translation (Sutskever et al.,

2014; Bahdanau et al., 2014) and summarization

(Nallapati et al., 2016; Chopra et al., 2016).

Attentive decoding The attention mechanism

maps the decoder state and the encoder states to

an output vector, which is a weighted sum of the

encoder states and is called context vector (Bah-

danau et al., 2014). Incorporating this context

vector at each decoding timestep (attentive decod-

ing) is proven effective in seq2seq models. For-

mally, the context vector ct is defined as: ct =
∑N

i=1 α
(t)
i h

(e)
i where α

(t)
i are the attention weights

calculated as follows:

α
(t)
i =softmax

i
(score(h

(e)
i ,h

(d)
t−1)) (1)

where softmax
i

means that the denominator’s sum

in the softmax function is over i. The score func-

tion can be defined in bilinear, additive, or mul-

tiplicative ways (Luong et al., 2015). We use the

additive scoring function:

score(h
(e)
i ,h

(d)
t−1) = v

⊤
a tanh

(

linear(h
(e)
i ,h

(d)
t−1)

)

(2)

where va is a weight vector and linear is a linear

mapping function. I.e.,

linear(XXX1, XXX2) = WWW1XXX1 + WWW2XXX2 + b (3)

where WWW1 and WWW2 are weight matrices and b is the

bias vector.

3 Model

We now describe our discourse-aware summa-

rization model (shown in Figure 1).

Encoder Our encoder extends the RNN encoder

to a hierarchical RNN that captures the document

discourse structure. We first encode each dis-

course section and then encode the document. For-

mally, we encode the document as a vector d ac-

cording to the following:

d = RNNdoc

(

{h
(s)
1 , ...,h

(s)
N }

)

RNN(.) denotes a function which is a recurrent

neural network whose output is the final state of

the network encoding the entire sequence. N is

the number of sections in the document and h
(s)
j

is representation of section j in the document con-

sisting of a sequence of tokens.

h
(s)
j = RNNsec

(

x(j,1), ...x(j,M)}
)

where x(j,i) are dense embeddings correspond-

ing to the tokens w(j,i) and M is the maximum

section length. The parameters of RNNsec are

shared for all the discourse sections. We use a

single layer bidirectional LSTM (following the

LSTM formulation of Graves et al. (2013)) for

both RNNdoc and RNNsec; further extension to

multilayer LSTMs is straightforward. We com-

bine the forward and backward LSTM states to a

single state using a simple feed-forward network:

h = relu(W([
−→
h ,
←−
h ] + b)

where [, ] shows the concatenation operation.

Throughout, when we mention the RNN (LSTM)

state, we are referring to this combined state of

both forward and backward RNNs (LSTMs).

Discourse-aware decoder When humans sum-

marize a long structured document, depending on

the domain and the nature of the document, they

write about important points from different dis-

course sections of the document. For example,

scientific paper abstracts typically include the de-

scription of the problem, discussion of the meth-

ods, and finally results and conclusions (Suppe,

1998). Motivated by this observation, we propose

a discourse-aware attention method. Intuitively, at

each decoding timestep, in addition to the words
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in the document, we also attend to the relevant

discourse section (the “section attention” block in

Figure 1). Then we use the discourse-related in-

formation to modify the word-level attention func-

tion. Specifically, the context vector representing

the source document is:

ct =
∑N

j=1

∑M

i=1
α
(t)
(j,i)h

(e)
(j,i) (4)

where h
(e)
(j,i) shows the encoder state of word i

in discourse section j and α
(t)
(j,i) shows the cor-

responding attention weight to that encoder state.

The scalar weights α
(t)
(j,i) are obtained according

to:

α
(t)
(j,i) = softmax

(i,j)

(

β
(t)
j score(h

(e)
(j,i),h

(d)
t−1)

)

(5)

The score function is the additive attention func-

tion (Equation 2) and the weights β
(t)
j are updated

according to:

β
(t)
j = softmax

j
(score(h

(s)
j ,h

(d)
t−1)) (6)

At each timestep t, the decoder state h
(d)
t and

the context vector ct are used to estimate the prob-

ability distribution of next word yt:

p(yt|y1:t−1) = softmax
(

V
⊤ linear

(

h
(d)
t , ct

))

(7)

where V is a vocabulary weight matrix and

softmax is over the entire vocabulary.

Copying from source There has been a surge of

recent works in sequence learning tasks to address

the problem of unkown token prediction by allow-

ing the model to occasionally copy words directly

from source instead of generating a new token (Gu

et al., 2016; See et al., 2017; Paulus et al., 2017;

Wiseman et al., 2017). Following these works,

we add an additional binary variable zt to the de-

coder, indicating generating a word from vocab-

ulary (zt=0) or copying a word from the source

(zt=1). The probability is learnt during training

according to the following equation:

p(zt=1|y1:t−1) = σ(linear(h
(d)
t , ct,x

′
t)) (8)

Then the next word yt is generated according to:

p(yt|y1:t−1) =
∑

z

p(yt, zt=z|y1:t−1); z = {0, 1}

The joint probability is decomposed as:

p(yt, zt=z) =

{

pc(yt|y1:t−1) p(zt=z|y1:t−1), z=1

pg(yt|y1:t−1) p(zt=z|y1:t−1), z=0

pg is the probability of generating a word from the

vocabulary and is defined according to Equation 7.

pc is the probability of copying a word from the

source vector x and is defined as the sum of the

word’s attention weights. Specifically, the proba-

bility of copying a word xℓ is defined as:

pc(yt = xℓ|y1:t−1) =
∑

(j,i):x(j,i)=xℓ

α
(t)
(j,i) (9)

Decoder coverage In long sequences, the neu-

ral generation models tend to repeat phrases where

the softmax layer predicts the same phrase multi-

ple times over multiple timesteps. To address this

issue, following See et al. (2017), we track atten-

tion coverage to avoid repeatedly attending to the

same steps. This is done with a coverage vector

cov(t), the sum of attention weight vectors at pre-

vious timesteps: cov
(t)

(j,i) =
∑t−1

k=0 α
(k)

(j,i)

The coverage implicitly includes information

about the attended document discourse sections.

We incorporate the decoder coverage as an addi-

tional input to the attention function:

α
(t)

(j,i) = softmax
(i,j)

(

β
(t)
j score(h

(e)

(j,i), cov
(t)

(j,i),h
(d)
t−1)

)

4 Related work

Neural abstractive summarization models have

been studied in the past (Rush et al., 2015; Chopra

et al., 2016; Nallapati et al., 2016) and later ex-

tended by source copying (Miao and Blunsom,

2016; See et al., 2017), reinformcement learning

(Paulus et al., 2017), and sentence salience infor-

mation (Li et al., 2017). One model variant of Nal-

lapati et al. (2016) is related to our model in using

sentence-level information in attention. However,

our model is different as it contains a hierarchi-

cal encoder, uses discourse sections in the decod-

ing step, and has a coverage mechanism. Sim-

ilarly, Ling and Rush (2017) proposed a coarse-

to-fine attention model that uses hard attention to

find the text chunks of importance and then only

attend to words in that chunk. In contrast, we

consider all the discourse sections using soft at-

tention. The closest model to ours is that of See

et al. (2017) and Paulus et al. (2017) who used

a joint pointer-generator network for summariza-

tion. However, our model extends theirs by (i) a

hierarchical encoder for modeling long documents

and (ii) a discourse-aware decoder that captures

the information flow from all discourse sections of

the document. Finally, in a recent work, Liu et al.

(2018) proposed a model based on the transformer

network (Vaswani et al., 2017) for abstractive gen-

eration of Wikipedia articles. However, their focus
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Datasets # docs
avg. doc.

length (words)
avg. summary
length (words)

CNN 92K 656 43
Daily Mail 219K 693 52
NY Times 655K 530 38
PubMed (this work) 133K 3016 203
arXiv (this work) 215K 4938 220

Table 1: Statistics of our arXiv and PubMed datasets

compared with existing large-scale summarization cor-

pora, CNN and Daily Mail (Nallapati et al., 2016) and

NY Times (Paulus et al., 2017).

is on multi-document summarization.

Our datasets are obtained from scientific pa-

pers. Scientific document summarization has been

recently received extended attention (Qazvinian

et al., 2013; Cohan and Goharian, 2015, 2017b,a).

In contrast to ours, existing approaches are extrac-

tive and rely on external information such as cita-

tions, which may not be available for all papers.

5 Data

Seq2seq models typically have a large number

of parameters and thus they require large training

data with ground truth summaries. Researchers

have constructed such training data from news ar-

ticles (e.g., CNN, Daily Mail and New York Times

articles), where the abstracts or highlights of news

articles are considered as ground truth summaries

(Nallapati et al., 2016; Paulus et al., 2017). How-

ever, news articles are relatively short and not suit-

able for the task of long-from document summa-

rization. Following these works, we take scien-

tific papers as an example of long documents with

discourse information, where their abstracts can

be used as ground-truth summaries. We introduce

two datasets collected from scientific repositories,

arXiv.org and PubMed.com.

The choice of scientific papers for our dataset

is motivated by the fact that scientific papers are

examples of long documents that follow a stan-

dard discourse structure and they already come

with ground truth summaries, making it possible

to train supervised neural models. We follow ex-

isting work in constructing large-scale summariza-

tion datasets that take news article abstracts as

ground truth.

We remove the documents that are excessively

long (e.g., theses) or too short (e.g., tutorial an-

nouncements), or do not have an abstract or dis-

course structure. We use the level-1 section head-

ings as the discourse information. For arXiv, we

use the LATEX files and convert them to plain text

using Pandoc (https://pandoc.org) to preserve the

discourse section information. We remove figures

and tables using regular expressions to only pre-

serve the textual information. We also normalize

math formulas and citation markers with special

tokens. We analyze the document section names

and identify the most common concluding sec-

tions names (e.g. conclusion, concluding remarks,

summary, etc). We only keep the sections up to

the conclusion section of the document and we re-

move sections after the conclusion.

The statistics of our datasets are shown in Ta-

ble 1. In our datasets, both document and sum-

mary lengths are significantly larger than the exist-

ing large-scale summarization datasets. We retain

about 3% (5%) of PubMed (ArXiv) as validation

data and about another 3% (5%) for test; the rest

is used for training.

6 Experiments

Setup Similar to the majority of published re-

search in the summarization literature (Chopra

et al., 2016; Nallapati et al., 2016; See et al., 2017),

evaluation was done using the ROUGE automatic

summarization evaluation metric (Lin, 2004) with

full-length F-1 ROUGE scores. We lowercase all

tokens and perform sentence and word tokeniza-

tion using spaCy (Honnibal and Johnson, 2015).

Implementation details We use Tensorflow 1.4

for implementing our models. We use the hyper-

parameters suggested by See et al. (2017). In par-

ticular, we use two bidirectional LSTMs with cell

size of 256 and embedding dimensions of 128.

Embeddings are trained from scratch and we did

not find any gain using pre-trained embeddings.

The vocabulary size is constrained to 50,000; us-

ing larger vocabulary size did not result in any im-

provement. We use mini-batches of size 16 and

we limit the document length to 2000 and section

length to 500 tokens, and number of sections to

4. We use batch-padding and dynamic unrolling

to handle variable sequence lengths in LSTMs.

Training was done using Adagrad optimizer with

learning rate 0.15 and an initial accumulator value

of 0.1. The maximum decoder size was 210 to-

kens which is in line with average abstract length

in our datasets. We first train the model without

coverage and added it at the last two epochs to help

the model converge faster. We train the models on

NVIDIA Titan X Pascal GPUs. Training is per-

formed for about 10 epochs and each training step

takes about 3.2 seconds. We used beam search at
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Summarizer RG-1 RG-2 RG-3 RG-L
E

x
tr

ac
ti

v
e SumBasic 29.47 6.95 2.36 26.30

LexRank 33.85 10.73 4.54 28.99
LSA 29.91 7.42 3.12 25.67

A
b
st

ra
ct

iv
e Attn-Seq2Seq 29.30 6.00 1.77 25.56

Pntr-Gen-Seq2Seq 32.06 9.04 2.15 25.16

This work †‡35.80 †11.05 †3.62 †‡31.80

Table 2: Results on the arXiv dataset, RG: ROUGE. For our
method † (‡) shows statistically significant improvement with
p<0.05 over other abstractive methods (all other methods).

Summarizer RG-1 RG-2 RG-3 RG-L

E
x
tr

ac
ti

v
e SumBasic 37.15 11.36 5.42 33.43

LexRank 39.19 13.89 7.27 34.59
LSA 33.89 9.93 5.04 29.70

A
b
st

ra
ct

iv
e Attn-Seq2Seq 31.55 8.52 7.05 27.38

Pntr-Gen-Seq2Seq 35.86 10.22 7.60 29.69

This work †38.93 †‡15.37 †‡9.97 †‡35.21

Table 3: Results on PubMed dataset, RG:ROUGE. For
our method, † (‡) shows statistically significant improvement
with p<0.05 over abstractive methods (all other methods).

decoding time with beam size of 4. We train the

abstractive baselines for about 250K iterations as

suggested by their authors.

Comparison We compare our method with

several well-known extractive baselines as well

as state-of-the-art abstractive models using their

open-sourced implementations, when available;

we follow the same training setup described in

the corresponding papers. The compared methods

are: LexRank (Erkan and Radev, 2004), SumBa-

sic (Vanderwende et al., 2007), LSA (Steinberger

and Jezek, 2004), Attn-Seq2Seq (Nallapati et al.,

2016; Chopra et al., 2016), Pntr-Gen-Seq2Seq

(See et al., 2017). The first three are extractive

models and last two are abstractive. Pntr-Gen-

Seq2Seq extends Attn-Seq2Seq by using a joint

pointer network during decoding. For Pntr-Gen-

Seq2Seq we use their reported hyperparameters to

ensure that the result differences are not due to hy-

perparameter tuning.

Results Our main results are shown in Tables 2

and 3. Our model significantly outperforms the

state-of-the-art abstractive methods, showing its

effectiveness on both datasets. We observe that

in our ROUGE-1 score is respectively about 4 and

3 points higher than the abstractive model Pntr-

Gen-Seq2Seq for the arXiv and PubMed datasets,

providing a significant improvement. Our method

also outperforms most of the extractive methods

except for LexRank in one of the ROUGE scores.

We note that since extractive methods copy salient

sentences from the document, it is usually easier

Abstract: in this paper , the author proposes a series of multilevel double hash-

ing schemes called cascade hash tables . they use several levels of hash tables

. in each table , we use the common double hashing scheme . higher level

hash tables work as fail - safes of lower level hash tables . by this strategy , it

could effectively reduce collisions in hash insertion . thus it gains a constant

worst case lookup time with a relatively high load factor (@xmath0 ) in random

experiments . different parameters of cascade hash tables are tested .

Pntr-Gen-Seq2Seq: hash table is a common data structure used in large set of

data storage and retrieval . it has an o(1 ) lookup time on average , but the worst

case lookup time can be as bad as . is the size of the hash table . we present a

set of hash table schemes called cascade hash tables . hash table data structures

which consist of several of hash tables with different size .

Our method: cascade hash tables are a common data structure used in large

set of data storage and retrieval . such a time variation is essentially caused

by possibly many collisions during keys hashing . in this paper , we present a

set of hash schemes called cascade hash tables which consist of several levels (

@xmath2 ) of hash tables with different size . after constant probes , if an item

ca ’nt find a free slot in limited probes in any hash table , it will try to find a

cell in the second level , or subsequent lower levels . with this simple strategy

, these hash tables will have descendant load factors , therefore lower collision

probabilities .

Figure 2: Example of a generated summary

for them to achieve higher ROUGE scores.

Figure 2 illustrates the effectiveness of our

model extensions in capturing various discourse

information from the papers. It can be observed

that the state-of-the-art Pntr-Gen-Seq2Seq model

generates a summary that mostly focuses on intro-

ducing the problem, whereas our model generates

a summary that includes more information about

the methodology and impacts of the target paper.

This indicates that the context vector in our model

compared with Pntr-Gen-Seq2Seq is better able to

capture important information from the source by

attending to various discourse sections.

7 Conclusions and future work

This work was the first attempt at addressing

neural abstractive summarization of single, long

documents. We presented a neural sequence-to-

sequence model that is able to effectively summa-

rize long and structured documents such as scien-

tific papers. While our results are encouraging,

there is still much room for improvement for this

challenging task; our new datasets can help the

community to further explore this problem.

We note that following the convention in the

summarization research, our quantitative evalua-

tion is performed by ROUGE automatic metric.

While ROUGE is an effective evaluation frame-

work, nuances in the coherence or coverage of the

summaries are not captured with it. It is non-trivial

to evaluate such qualities especially for long doc-

ument summarization; future work can design ex-

pert human evaluations to explore these nuances.
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