
A Discourse on Complexity of Process Models
(Survey Paper)

J. Cardoso1, J. Mendling2, G. Neumann2, and H.A. Reijers3

1 University of Madeira
9000-390 Funchal, Portugal

jcardoso@uma.pt
2 Vienna University of Economics and Business Administration

Augasse 2-6, 1090 Vienna, Austria
{jan.mendling, neumann}@wu-wien.ac.at

3 Eindhoven University of Technology
P.O. Box 513, 5600 MB Eindhoven, The Netherlands

h.a.reijers@tm.tue.nl

Abstract. Complexity has undesirable effects on, among others, the
correctness, maintainability, and understandability of business process
models. Yet, measuring complexity of business process models is a rather
new area of research with only a small number of contributions. In this
paper, we survey findings from neighboring disciplines on how complexity
can be measured. In particular, we gather insight from software engineer-
ing, cognitive science, and graph theory, and discuss in how far analogous
metrics can be defined on business process models.

1 Introduction

Since business process management has become an accepted concept for the
implementation and integration of large-scale information systems, there is an
increasing need for insight into how errors can be avoided, how maintenance
can be facilitated, or how the quality of the processes can be improved. In this
context, there is some evidence that complexity is a determinant of error prob-
ability of a business process [18]. As process complexity and its measurement
is a rather new field in business process management, there is only a limited
understanding of how far existing knowledge of complexity e.g. for the software
engineering domain can be adopted.

The complexity of a software program comes in three ‘flavors’: computa-
tional complexity, psychological complexity, and representational complexity
[26]. The most important is psychological complexity, which encompasses pro-
grammer characteristics, product/documentation complexity and problem com-
plexity. Obviously, the latter aspect, the complexity of the problem itself, cannot
be controlled in developing software. It is therefore frequently dismissed from
consideration in the software engineering literature. It seems sensible to do the
same for analyzing the complexity of process models. However, the issue remains
that complex processes will require more complex process models. Therefore, for

J. Eder, S. Dustdar et al. (Eds.): BPM 2006 Workshops, LNCS 4103, pp. 115–126, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



116 J. Cardoso et al.

the development of process model complexity it seems worthwhile to evaluate
complexity measures as relative to the underlying process complexity.

Existing theoretical approaches to formulate ’complexity metrics’ for software
include the use of information theory from signal processing (e.g. [10]) and com-
munication theory (e.g. [24]), as well as approaches based on analogues with
graph theory (e.g. [15]) and lattice theory (e.g. [11]). Approaches taking the
cognitive sciences as starting point have resulted, for example, in Bastani’s com-
plexity model [4]. An overview of some 50 different software complexity metrics
is provided in Table 1 in [5].

In this paper, we contribute to a better understanding of business process
model complexity. In particular, we provide a theoretical survey of complexity
considerations and metrics in the fields of software engineering, cognitive science,
and graph theory and we relate them to business process modelling. A further
empirical investigation might ultimately lead to establishing a complexity theory
of business process models. Following this line of argumentation, the rest of the
paper is structured as follows. Section 2 discusses complexity metrics for software
and their applicability for business process models. After a general introduction
to the discipline, we define analogous metrics to the Line-of-Code, McCabe’s
Cyclomatic Complexity called Control-Flow Complexity, Halstead Complexity
Metric, and Information Flow Complexity as defined by Henry and Kafura.
Section 3 relates findings from cognitive science to measuring complexity in
software engineering. In Section 4 graph theoretical measures are considered as
potential complexity metrics for business process models. Section 5 closes the
paper and gives an outlook on future research with a focus on how the process
complexity metrics can be validated.

2 Complexity in Business Processes

2.1 Software Metrics

Over the last 30 years many measures have been proposed by researchers to
analyze software complexity, understandability, and maintenance. Metrics were
designed to analyze software such as imperative, procedural, and object-oriented
programs. Software measurement is concerned with deriving a numeric value for
an attribute of a software product, i.e. a measurement is a mapping from the
empirical world to the formal world. From the several software metrics available
we are particularly interested in studying complexity metrics and find out how
they can be used to evaluate the complexity of business processes.

Software metrics are often used to give a quantitative indication of a pro-
gram’s complexity. However, it is not to be confused with computational com-
plexity measures (cf. O(n)-Notation), whose aim is to compare the performance
of algorithms. Software metrics have been found to be useful in reducing software
maintenance costs by assigning a numeric value to reflect the ease or difficulty
with which a program module may be understood.

There are hundreds of software complexity measures that have been described
and published by many researchers. For example, the most basic complexity



A Discourse on Complexity of Process Models 117

measure, the number of lines of code (LOC), simply counts the lines of executable
code, data declarations, comments, and so on. While this measure is extremely
simple, it has been shown to be very useful and correlates well with the number
of errors in programs.

2.2 The Analogy Between Software and Business Processes

While traditional software metrics were designed to be applied to programs writ-
ten in languages such as C++, Java, FORTRAN, etc, we believe that they can
be revised and adapted to analyze and study business processes characteristics,
such as complexity, understandability, and maintenance. We based our intu-
ition on the fact that there is a strong analogy between programs and business
processes, as argued before in e.g. [23, 9]. Business process languages aim to
enable programming in the large. The concepts of programming in the large
and programming in the small distinguish between two aspects of writing the
type of long-running asynchronous processes that one typically sees in business
processes. Programming in the large emphasis is on partitioning the work into
modules whose interactions are precisely specified and can refer to programming
code that represents the high-level state transition logic of a business process
(typically using splits and joins). This state transition logic included information
such as when to wait for messages from incoming transitions, when to activate
outgoing transitions, and when to compensate for failed activities, etc.

A business process, possibly modeled with a language such as BPEL [2], can
be seen as a traditional software program that has been partitioned into mod-
ules or functions (i.e. activities) that take in a group of inputs and provide
some output. Module interactions are precisely specified using predefine logic
operators such as sequence, XOR-splits, OR-splits, and AND-splits. There is a
mapping that can be established between software programs constructs and busi-
ness processes. Functions, procedures, or modules are mapped to activities. Two
sequential software statements (i.e. instructions or functions) can be mapped
to two sequential process activities. A ’switch’ statement can be mapped to a
XOR-split. In programs, threads can be used to model concurrency and can
be mapped to AND-splits. Finally, the conditional creation of threads using a
sequence of ’if-then’ statements can be mapped to an OR-split.

2.3 Business Process Metrics

We believe that the future for process metrics lies in using relatively simple
metrics to build tools that will assist process analysts and designer in making
design decisions. Furthermore, because business processes are a high-level notion
made up of many different elements (splits, joins, resources, data, activities, etc.),
there can never be a single measure of process complexity. The same conclusion
has been reached in software engineering. Nagappan et al. [20] point out that
there is no single set of complexity metrics that could act as a universally best
defect predictor for software programs. For this reason several process metrics
can be designed to analyze business processes. For example, Cardoso [8] identifies



118 J. Cardoso et al.

four main types of complexity metrics for processes: activity complexity, control-
flow complexity, data-flow complexity, and resource complexity.

The following sections describe several approaches to adapt known software
metrics proposed by researches worldwide to business processes analysis. Having
established that there is a mapping from traditional programming languages and
business processes; we will study and adapt some of the most well known and
widely used source code metric, i.e. number of lines of code (LOC) [13], McCabe
cyclomatic complexity [15, 16], Halstead’s software science measures [10], and
Henry and Kafura [12] information flow metric.

2.4 Adapting the LOC Metric

One of the earliest and fundamental measures based on the analysis of software
code is based on the basic count of the number of Lines of Code (LOC) of a
program. Despite being widely criticized as a measure of complexity, it continues
to have widespread popularity mainly due to its simplicity [3]. The basis of the
LOC measure is that program length can be used as a predictor of program
characteristics such as errors occurrences, reliability, and ease of maintenance.

If we view a process activity as a statement of a software program, we can
derive a very simple metric (metric M1 ) that merely counts the number of
activities (NOA) in a business process. It should be noticed that the NOA metric
characterizes only one specific view of size, namely length, it takes no account
of functionality or complexity. Also, bad process design may cause an excessive
number of activities. Compared to the original LOC metric, the NOA is not
language-dependent and it is easier for users to understand.

M1: NOA = Number of activities in a process

Another adaptation of the LOC metric is to view not only activities as pro-
gram statements, but to also take into account process control-flow elements
(i.e. control structures). Control-flow elements affect the execution sequence of
activities. This statements are different since they are executed for their effect
and do not have values. Two types of metrics can be designed depending on the
structured of process.

On the one hand, we can consider that processes are well-structured [1]. When
processes are well-structured we can simply count the control structures corre-
sponding to splits, since it is explicitly known that a corresponding join exits.
Please note that the structure of well-structured processes is analogue to soft-
ware programs. In computer programming, a statement block is a section of code
which is grouped together, much like a paragraph; such blocks consist of one or
more statements. For example, in a C statement blocks are enclosed by braces
{ and }. In Pascal, blocks are denoted by begin and end statements. Having
these characteristics in mind we design our second metric (M2 ) which counts
the activities and control-flow elements of a process:

M2: NOAC = Number of activities and control-flow elements in a process



A Discourse on Complexity of Process Models 119

On the other hand, we also have to consider that some languages allow the
construction of processes that are not well-structured. As we have already men-
tioned, examples of such languages include EPC and Workflow nets. In these
modeling languages, splits do not have to match a corresponding join. These
processes are generally more difficult to understand and result often in design
errors. For processes that are not well-structured we can design a third metric
(M3 ) which counts the number of activities and the number of splits and joins
of a process.

M3: NOAJS = Number of activities, joins, and splits in a process

In EPC models, we would count the number of activities, XOR-joins and
-splits, OR-joins and -splits, and AND-joins and -splits to calculate NOAJS.

2.5 Adapting McCabe’s Cyclomatic Complexity

An early measure, proposed by McCabe [15], views program complexity related
to the number of control paths through a program module. McCabe derived
a software complexity measure from graph theory using the definition of the
cyclomatic number which corresponds to the number of linearly independent
paths in a program. It is intended to be independent of language and language
format [17]. This measure provides a single number that can be compared to the
complexity of other programs.

Since its development, McCabe’s cyclomatic complexity (MCC ) has been one
of the most widely accepted software metrics and has been applied to tens of
millions of lines of code in both the Department of Defense (DoD) and commer-
cial applications. The resulting base of empirical knowledge has allowed software
developers to calibrate measurements of their own software and arrive at some
understanding of its complexity. McCabe’s cyclomatic complexity is an indica-
tion of a program module’s control-flow complexity and has been found to be a
reliable indicator of complexity in large software projects [25]. Considering the
number of control paths through the program, a 10-line program with 10 assign-
ment statements is easier to understand than a 10-line program with 10 if-then
statements.

MCC is defined for each module to be e − n + 2, where e and n are the
number of edges and nodes in the control flow graph, respectively. Control flow
graphs describe the logic structure of software modules. The nodes represent
computational statements or expressions, and the edges represent transfer of
control between nodes. Each possible execution path of a software module has a
corresponding path from the entry to the exit node of the module’s control flow
graph. For example, in Figure 1, the MCC of the control flow graph for the Java
code described is 14 − 11 + 2 = 5.

2.6 The CFC Metric

In our previous work [6, 7] we have designed a process complexity metric that
borrows some ideas from McCabe’s cyclomatic complexity. Our objective was to



120 J. Cardoso et al.

Fig. 1. of a Java program and its corresponding flowgraph

develop a metric that could be used in the same way as the MCC metric but to
evaluate processes’ complexity.

One of the first important observations that can be made from the MCC
control flow graph, shown in Figure 1, is that this graph is extremely similar
to a process. One major difference is that the nodes of a MCC control flow
graph have identical semantics, while process nodes (i.e., activities) can have
different semantics (e.g., AND-splits, XOR-splits, OR-joins, etc). Our approach
has tackled this major difference.

The metric that we have previously developed and tested, called Control-flow
Complexity (CFC) metric, was based on the analysis of XOR-splits, OR-splits,
and AND-splits control-flow elements. The main idea behind the metric was to
evaluate the number of mental states that have to be considered when a designer
is developing a process. Splits introduce the notion of mental states in processes.
When a split (XOR, OR, or AND) is introduced in a process, the business
process designer has to mentally create a map or structure that accounts for the
number of states that can be reached from the split. The notion of mental state
is important since there are theories [19] suggesting that complexity beyond a
certain point defeats the human mind’s ability to perform accurate symbolic
manipulations, and hence results in error.

Mathematically, the control-flow complexity metric is additive, thus it is very
easy to calculate the complexity of a process, by simply adding the CFC of all
split constructs. The control-flow complexity was calculated as follows, where P
is a process and a an activity.

CFC(P ) =
∑

a∈P,a isa xor−split

CFCXOR(a)

+
∑

a∈P,a isa or−split

CFCOR(a) +
∑

a∈P,a isa and−split

CFCAND(a)



A Discourse on Complexity of Process Models 121

The CFCXOR − split, CFCOR − split, and CFCAND − split functions is
calculated as follows:

– CFCXOR − split(a) = fan − out(a). The control-flow complexity of XOR-
splits is determined by the number of branches that can be taken.

– CFCOR−split(a) = 2fan−out(a)−1. The control-flow complexity of OR-splits
is determined by the number of states that may arise from the execution of
an OR-split construct.

– CFCAND − split(a) = 1. For an AND-split, the complexity is simply 1.

The higher the value of CFCXOR − split, CFCOR − split, and CFCAND −
split, the more complex is a process design, since developer has to handle all
the states between control-flow constructs (splits) and their associated outgoing
transitions and activities. Each formula to calculate the complexity of a split con-
struct is based on the number of states that follow the construct. CFC analysis
seeks to evaluate complexity without direct execution of processes.

The advantages of the CFC metric is that it can be used as a maintenance and
quality metric, it gives the relative complexity of process designs, and it is easy
to apply. Disadvantages of the CFC metric include the inability to measure
data complexity, only control-flow complexity is measured. Additionally, the
same weight is placed on nested and non-nested loops. However, deeply nested
conditional structures are harder to understand than non-nested structures.

2.7 Adapting the Halstead Complexity Metric

The measures of Halstead [10] are the best known and most thoroughly studied
composite measure of software complexity. The measures were developed as a
means of determining a quantitative measure of complexity based on a program
comprehension as a function of program operands (variables and constants) and
operators (arithmetic operators and keywords which alter program control-flow).
Halstead’s metrics comprise a set of primitive measures (n1, n2, N1, and N2)
that may be derived from the source code:

– n1 = number of unique operators (if, while, =, ECHO, etc);
– n2 = number of unique operands (variables or constants);
– N1 = total number of operator occurrences;
– N2 = total number of operand occurrences.

In our work, we suggest to map business process elements to the set of prim-
itive measures proposed by Halstead. For example, n1 is the number of unique
activities, splits and joins, and control-flow elements (such as sequence, switch,
while, etc. in BPEL) of a business process. While the variable n2 is the number
of unique data variables that are manipulated by the process and its activities.
N1 and N2 can be easily derived directly from n1 and n2. With these primitive
measures we introduce the notion of Halstead-based Process Complexity (HPC )
measures for estimating process length, volume, and difficulty. These measures
are based on Halstead measures and are calculates as follows:



122 J. Cardoso et al.

– Process Length: N = n1*log2(n1) + n2*log2(n2)
– Process Volume: V = (N1+N2)*log2(n1+n2)
– Process Difficulty: D = (n1/2)*(N2/n2)

By the means of the presented mapping we can design an additional mea-
sure for processes based on the original measurement proposed by Halstead,
including the process level, effort to implement, time to implement, and number
of delivered bugs. We do not formalize these measurements since they require
calibration that can only be done with empirical experiments.

Using HPC measures for processes has several advantages. The measures do
not require in-depth analysis of process structures, they can predict rate of errors
and maintenance effort, they are simple to calculate, and they can be used for
most process modelling languages.

2.8 Adapting the Information Flow Metric by Henry and Kafura

Henry and Kafura [12] proposed a metric based on the impact of the information
flow in a program’ structure. The technique suggests identifying the number
of calls to a module (i.e. the flows of local information entering: fan-in) and
identifying the number of calls from a module (i.e. the flows of local information
leaving: fan-out). The complexity of a procedure (PC ) is defined as:

PC = Length * (Fan-in * Fan-out)2

The value of the variable length can be obtained by applying the lines of
code or alternatively the McCabe’s cyclomatic complexity metric. The procedure
complexities are used to establish module complexities. A module with respect
to a data structure DS consists of those procedures which either directly update
DS or directly retrieve information from DS. As it can be seen, the measure is
sensitive to the decomposition of the program into procedures and functions, on
the size and the flow of information into procedures and out of procedures.

Henry and Kafura metric can be adapted to evaluate the complexity of pro-
cesses in the following way. To calculate the length of an activity we need first to
identify if activities are seen as black boxes or white boxes by the business pro-
cess management system. If activities are black boxes then only their interface
is known. Therefore, it is not possible to calculate the length of an activity. In
this situation we assume the length to be 1. If activities are white boxes then the
length of an activity is based on knowledge of its source code. In this situation,
the length can be calculated using traditional software engineering metrics that
have been previously presented, namely the LOC and MCC.

The fan-in and fan-out can be mapped directly to the inputs and outputs of
activities. Activities are invoked when their inputs (fan-in) are available and the
activities are scheduled for execution. When an activity completes its execution,
its output data is transferred to the activities connected to it through transitions.
We propose a metric called interface complexity (IC ) of an activity which is
defined as:



A Discourse on Complexity of Process Models 123

IC = Length * (number of inputs * number of ouputs)2

The advantages of the IC metric are that it takes into account data-driven
processes and it can be calculated prior to coding, during the design stage. The
drawbacks of the metric are that it can give complexity values of zero if an
activity has no external interactions. This typically only happens with the end
activities of a process. This means the, for example, EPC processes with a large
percentage of end activities will have a low complexity.

3 Cognitive Science on Software Complexity

Most approaches in the software engineering domain take certain characteristics
of software as a starting point and attempt to define what effect they might have
on the difficulty of the various programmer tasks (e.g. maintaining, testing and
understanding code). In [5], it is argued that it is much more useful to analyse
the processes involved in programmer tasks first, as well as the parameters which
govern those efforts: “.. one should start with the symptoms of complexity, which
are all manifested in the mind, and attempt to understand the processes which
produce such symptoms”. Using results from cognitive sciences, e.g. the division
of the mind into short-term and long-term memory, and the mental processes
involved with programming known as “chunking” and “tracing”, Cant et al.
come up with a set of tentative complexity metrics for software programs [5].

A similar approach for determining the complexity of a process model would
be to determine meaningful process model “chunks”, which can be captured as
a single section in the short-term memory. One could think of constructions
like a (short) sequence of activities or a control construct like an XOR-split.
Each of these “chunks” would have to be characterized by a complexity score.
The work in [5] suggests that notably the size of the chunk would be a good
estimate. Next, it is necessary to see the control flow through these chunks, as
people need to scan the relations between chunks to understand the complete
picture. This is referred to as the “tracing” mechanism. In [5], not only the
length of the path but also the kind of dependency influences the comprehension
of the flow between chunks. For software, for example, Cant et al. state that
“a conditional control structure is more complex to understand than a normal
sequential section of code”. For a process model, this could mean that both (a)
the distance between the chunks and (b) a complexity factor for the specific
kind of dependency should be used. Unfortunately, the work in [5] rather sets
an agenda for complexity metrics than providing exact measures. Therefore, it
is far from straightforward to transfer the presented, tentative relations to the
process modelling domain.

4 Complexity of the Process Graph

Graph theory provides a rich set of graph metrics or graph measures that can
be adapted for calculation of the complexity of the process graph. In [14] the



124 J. Cardoso et al.

coefficient of network complexity (CNC), the complexity index (CI), the restric-
tiveness estimator (RT), and the number of trees in a graph are discussed as
suitable for business process models.

The coefficient of network complexity (CNC) provides a rather simple metric
for the complexity of a graph. It can easily be calculated as the number of arcs
divided by the number of nodes. In the context of a business process model, the
number of arcs has to be divided by the number of activities, joins, and splits.
In formal esthetics this coefficient is also considered with the notion of elegance
[21].

CNC = number of arcs / (number of activities, joins, and splits)

The complexity index (CI), or reduction complexity is defined as the mini-
mal number of node reductions that reduces the graph to a single node. This
measure shares so similarity to the notion of structuredness of a process graph
and respective reduction rules. In a BPEL process it can be associated with the
number of structured activities. The complexity index of a process graph has
to be calculated algorithmically and is not applicable for process models with
arbitrary cycles.

Restrictiveness estimator (RT) is an estimator for the number of feasible se-
quences in a graph. RT requires the reachability matrix rij , i.e. the transitive
closure of the adjacency matrix, to be calculated.

RT = 2Σrij − 6(N − 1)/(N − 2)(N − 3)

There are further measures in graph theory which demand rather complex
computations. The number of trees in a graph requires the tree-generating de-
terminant to be calculated based on the adjacency matrix (see [14]). Measures
such as tree width, directed tree width, and directed acyclic graph width are
compared in [22]. The latter measures how close a graph is to a directed acyclic
graph.

5 Contributions and Limitations

In this paper, we have surveyed several contributions from software engineering,
cognitive science, and graph theory, and we discussed to what extent analogous
metrics and measurements can be defined for business process models. In or-
der to demonstrate that these metrics serves their purpose, we plan to carry
out several empirical validations by means of controlled experiments. These ex-
periments will involve more than 100 students from the Eindhoven University
of Technology (Netherlands), the Vienna University of Economics and Business
Administration (Austria), and the University of Madeira (Portugal). The col-
lected data will be analyzed using statistical methods to verify the degree of
correlation between students’ perception of the complexity of processes and the
proposed metrics. It should be noted that we have already conducted a small



A Discourse on Complexity of Process Models 125

experiment that involved 19 graduate students in Computer Science, as part of
a research project, and tested if the control-flow complexity of a set of 22 busi-
ness processes could be predicted using the CFC metric. Analyzing the collected
data using statistical methods we have concluded that the CFC metric is highly
correlated with the control-flow complexity of processes. This metric can, there-
fore, be used by business process analysts and process designers to analyze the
complexity of processes and, if possible, develop simpler processes.

References

1. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

2. T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Leymann, K. Liu,
D. Roller, D. Smith, S. Thatte, I. Trickovic, and S. Weerawarana. Business Process
Execution Language for Web Services, Version 1.1. Specification, BEA Systems,
IBM Corp., Microsoft Corp., SAP AG, Siebel Systems, 2003.

3. M. Azuma and D. Mole. Software management practice and metrics in the eu-
ropean community and japan: Some results of a survey. Journal of Systems and
Software, 26(1):5–18, 1994.

4. F. B. Bastani. An approach to measuring program complexity. COMPSAC ’83,
pages 1–8, 1983.

5. S. N. Cant, D. R. Jeffery, and B. Henderson-Sellers. A conceptual model of cognitive
complexity of elements of the programming process. Information and Software
Technology, 37(7).

6. J. Cardoso. Control-flow Complexity Measurement of Processes and Weyuker’s
Properties. In 6th International Enformatika Conference, Transactions on Enfor-
matika, Systems Sciences and Engineering, Vol. 8, pages 213–218, 2005.

7. J. Cardoso. Workflow Handbook 2005, chapter Evaluating Workflows and Web
Process Complexity, pages 284–290. Future Strategies, Inc., Lighthouse Point, FL,
USA, 2005.

8. J. Cardoso. Complexity analysis of bpel web processes. Journal of Software Process:
Improvement and Practice, 2006. to appear.

9. A.S. Guceglioglu and O.W. Demiros. Using Software Quality Characteristics to
Measure Business Process Quality. In W.M.P. van der Aalst, B. Benatallah,
F. Casati, and F. Curbera, editors, Business Process Management (BPM 2005),
volume 3649, pages 374–379. Springer-Verlag, Berlin, 2005.

10. M. H. Halstead. Elements of Software Science. Elsevier, Amsterdam, 1987.
11. W. Harrison and K. Magel. A topological analysis of computer programs with less

than three binary branches. ACM SIGPLAN Notices, april:51–63, 1981.
12. S. Henry and D. Kafura. Software structure metrics based on information-flow.

IEEE Transactions On Software Engineering, 7(5):510–518, 1981.
13. G. E. Kalb. Counting lines of code, confusions, conclusions, and recommendations.

Briefing to the 3rd Annual REVIC User’s Group Conference, 1990.
14. Antti M. Latva-Koivisto. Finding a complexity for business process models. Re-

search report, Helsinki University of Technology, February 2001.
15. T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering,

2(4):308–320, 1976.
16. T. J. McCabe and C. W. Butler. Design complexity measurement and testing.

Communications of the ACM, 32:1415–1425, 1989.



126 J. Cardoso et al.

17. T. J. McCabe and A. H. Watson. Software complexity. Journal of Defence Software
Engineering, 7(12):5–9, 1994. Crosstalk.

18. J. Mendling, M. Moser, G. Neumann, H.M.W. Verbeek, and B.F. van Don-
gen W.M.P. van der Aalst. A Quantitative Analysis of Faulty EPCs in the SAP
Reference Model. BPM Center Report BPM-06-08, Eindhoven University of Tech-
nology, Eindhoven, 2006.

19. G. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review, 1956.

20. Nachiappan Nagappan, Thomas Ball, and Andreas Zeller. Mining metrics to pre-
dict component failures. In Proceedings of the 28th International Conference on
Software Engineering, Shanghai, China, 2006.

21. G. Neumann. Metaprogrammierung und Prolog. Addison-Wesley, December 1988.
22. Jan Obdrzalek. Dag-width: connectivity measure for directed graphs. In Sympo-

sium on Discrete Algorithms, pages 814–821. ACM Press, 2006.
23. H.A. Reijers and Irene T.P. Vanderfeesten. Cohesion and Coupling Metrics for

Workflow Process Design. In J. Desel, B. Pernici, and M. Weske, editors, Business
Process Management (BPM 2004), volume 3080, pages 290–305. Springer-Verlag,
Berlin, 2004.

24. M. Shepperd. Early life-cycle metrics and software quality models. Information
and Software Technology, 32(4):311–316, 1990.

25. W. Ward. Software defect prevention using mccabe’s complexity metric. Hewlett
Packard Journal, 40(2):64–69, 1989.

26. H. Zuse. Software Complexity: Measures and Methods. Walter de Gruyter and Co,
New Jersey, 1991.


	Introduction
	Complexity in Business Processes
	Software Metrics
	The Analogy Between Software and Business Processes
	Business Process Metrics
	Adapting the LOC Metric
	Adapting McCabe's Cyclomatic Complexity
	The CFC Metric
	Adapting the Halstead Complexity Metric
	Adapting the Information Flow Metric by Henry and Kafura

	Cognitive Science on Software Complexity
	Complexity of the Process Graph
	Contributions and Limitations

