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We discuss the general mathematical conditions for solvability, stability and optimal error bounds of 
mixed finite element discretizations. Our objective is to present these conditions with relatively simple 
arguments. We present the conditions for solvability and stability by considering the general coefficient 
matrix of mixed finite element discretizations, and then deduce the conditions for optimal error bounds 
for the distance between the finite element solutions and the exact solution of the mathematical 
problem. To exemplify our presentation we consider the solutions of various example problems. 
Finally, we also present a numerical test that is useful to identify numerically whether, for the solution 
of the general Stokes flow problem, a given finite element discretization satisfies the stability and 
optimal error bound conditions. 

I. Introduction 

During the recent years it has been recognized to an increasing extent that the use of mixed 

finite elements can be of great benefit and may even be necessary to obtain reliable and 

accurate solutions in certain fields of engineering analysis. Mixed finite elements are currently 

used with much success in the solution of incompressible fluid flows, and continue to provide 

great promise for the analysis of solids and structures [1, 2]. 

Of course, the largest area of finite e lement  applications is still structural analysis and mixed 

finite elements are, in principle, much suited for use in the analysis of almost incompressible 

media (for example,  for the analysis of rubber-like materials, elasto-plasticity and creep) and 

the analysis of plates and shells. However,  although many mixed finite elements have been 

proposed over the last two decades in the research literature, it is apparent  that mixed finite 

elements are hardly used in practical structural analysis. 

The reason why mixed finite elements are not  used abundantly in engineering practice is 

that their predictive behavior is much more  difficult to assess than for the conventional and 

commonly used displacement-based elements. Whereas displacement-based elements,  once 

formulated and shown to work well on certain sets of examples (including the patch tests), can 

be generally employed,  mixed finite elements cannot be recommended  for general use unless a 

deeper  analysis and understanding is available. Namely, considering a certain category of 
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problems, a mixed finite element may work well in the solution of certain problems but 

perform very poorly on other problems. Therefore, a mathematical analysis (even a limited 

one) for the stability and convergence of a proposed formulation is an important requirement. 

Such mathematical analysis should give sufficient insight as to the general applicability of the 
finite element under consideration, and is in general no easy task. 

Some researchers have proposed some easily applied 'counting rules' to assess whether a 

mixed finite element can be recommended [3, 4]. However, such rules can at best give some 

guide-lines and do not give the necessary information to assess whether an element is stable 
and accurate. 

Considering mixed finite element discretizations, we recognize that they are governed by a 

system of equations with a coefficient matrix C, that we may write as 

0 ]" (1.1) 

We quote as a main example the analysis of incompressible fluid flow, the Stokes problem, 

when using the velocity-pressure formulation. Other important examples of interest are the 
analysis of incompressible solids and the analysis of plates and shells. In principle, many 

solutions can be formulated using a mixed or hybrid method that results into the coefficient 

matrix (1.1), because this matrix is reached by minimizing a functional under linear con- 
straints [1]. 

The general mathematical theory for the solution of problems that are governed by the 

coefficient matrix in (1.1) is now quite well established and the detailed applications of this 

theory to a number of important problem categories is available. We know necessary and 

sufficient conditions for the existence and uniqueness of the solution, both for the continuous 

and the discretized problems. We also know necessary and sufficient conditions on the choice 
of the discretizations in order to have optimal error bounds [1, 5]. This information is most 

valuable for the design and analysis of mixed finite elements because the basic mathematical 

results are quite generally applicable (while the detailed application to problem areas may of 

course not be straight-forward). 

Our objective in this paper is two-fold. The first aim is to present the general mathematical 
results quoted above with relatively simple arguments. For this purpose we consider the 

general coefficient matrix of mixed finite element formulations and deduce the conditions of 

solvability and stability. In proceeding this way, we refer to the continuous problem only when 
necessary (since the treatment of the continuous problem requires a background in functional 

analysis) and we concentrate on the discretized (finite-dimensional) problem. However, we 
succeed in pointing out the basic mathematical conditions on the discretization and in showing 

that they are necessary to have stability and optimal error estimates. 
Our second aim in this paper is to propose a simple numerical procedure for checking 

whether the above mathematical conditions are satisfied for a given mixed finite element 
formulation. Such a procedure is useful because it may be employed to check a formulation 
and its computer program implementation (much like the patch test is used for incompatible 
displacement-based finite element formulations). We consider in this discussion the analysis of 
incompressible fluid flow and our test is closely related to 'Fortin's trick' to identify whether 
the mathematical conditions of stability and optimal error bounds are satisfied. 
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The paper is organized into the following sections. In Section 2 we recall some basic 

properties of square matrix systems and introduce the basic concepts of stability and 

optimality. In Section 3 we then deal with the special case of systems of the form (1.1); hence 

here we focus onto the analysis of mixed finite element formulations in detail. Finally, in 

Section 4 we discuss two applications and introduce our test for checking the good quality of a 

given discretization, using as an example the case of an incompressible fluid. We then 
conclude our presentation in Section 5. 

2. Some preliminaries and the general problem of solvability and stability 

Let us consider the general case of an N × N matrix M and the associated system 

G i v e n b ~ R  N f i n d x E R  N such that M x = b .  (2.1) 

The following theorem is a well-known cornerstone in linear algebra. 

T H E O R E M  2.1. Problem (2.1 ) has a unique solution for  every given right-hand side b, if  and 

only i f  the associated homogeneous system Mx  = 0 has only the solution x = O. 

In other words, in order to have a solvable problem in (2.1) for every possible b ~ R N we 

need the following condition to hold: 

i f M x = 0 ,  t h e n x = 0 .  (2.2) 

Condition (2.2) answers the problem of the solvability of (2.1) but not of its stability. 

Roughly speaking, we would like that a small change in b determines only a small change in x. 

However,  in order to measure the magnitude of such change we have to introduce norms. 

Assume that we choose a norm II IlL for measuring the size of solutions and a norm II IIR for 
right-hand sides. In principle, we are allowed to choose the same norm for both, but we shall 

see that this, in general, is not the most convenient choice. We also point out explicitly that, in 

finite-dimensional spaces, all norms are equivalent in the sense that for any two norms 1[ IIs, 
and II [Is2 in R N there exist two positive constants s 1 and s z such that 

II vllsl slllolls2, (2.3) 

Ilvlls=  s211vllsl (2.4) 

for every vector v in •u. However,  these constants s a and s 2 will, in general, depend on the 
dimension N. 

E X A M P L E .  This is a very simple example, only used to fix our ideas [2]. Let 

Ilollsl := m a x  Io, I = IIo11,, (2.5) 

Ilvlls= = Io,] = 11o11,1, (2.6) 
i 
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then it is easy to see that 

so that S 1 

that 

max Iv, I ~ E Iv,I, (2.7) 
i i 

E IOil ~ N max Ili[, (2.8) 
i i 

= 1 and s z = N.  Similarly we have for the Euclidean norm, 

IlvllE:= Iv, I 2 =lloll/2, (2.9) 

lie I1,1~< x/-~llv 11,2, Ilvll,<.V-~llvlllo. (2.10) 

We have seen that the choice of one norm or another can change, asymptotically, the 

dependence on N of the various constants. We shall come back to this point with useful 

guidelines for the most convenient choices. For the moment,  we assume that the choice of 

II IlL and II I1~ has been performed and define stability in terms of these norms. 

D E F I N I T I O N .  Let M be a non-singular N × N matrix. We define the stability constant of M 

with respect to the norms II IlL and II IIR as the smallest possible constant SLR such that 

II~bll~ II~xllL ~< sL~ (2.11) 
IlxllL Ilbll. 

for all vectors x and 8x in R u with M x  =: b and M 8x =: 8b. [] 

In other words, (2.11) bounds the relative change in x (in the norm L) by means of the 

relative change in the right-hand side b (in the norm R). We point out that such a constant SLR 

always exists. However, if we consider a sequence of problems of type (2.1) with increasing 

dimension N (corresponding, in general, to a finer and finer finite element mesh) we might 

find that the corresponding constants SLR depend on N and become infinitely large when 

N----> +o0. Thus we might say that a sequence of problems of the type (2.1) is stable with 

respect to the norms II I1~ and II I1~ if the stability constant SLR is uniformly bounded. 
We would like now to present stability from a slightly different point of view. For this, let us 

introduce the matrix norms 

and 

IIMYlIR IIMII~. = sup - -  (2.12) 
Y I l Y l I '  

IIM-1IIRL = sup I l M - l z l l '  (2.13) 
z Ilzll~ 

From (2.13) for z = 8b (so that M - l z  = ~X) we easily obtain 

II~xllL (2.14) 
IIM-~IIRL ~ II~bll------~ ' 
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while (2.12), for y = x (and My = b), gives 

IlbllR 
IIMIILR >I Ilxl-----~ (2.15) 

From (2.14) and (2.15) we then have 

II~xll, (2.16) 
Ilxll---7 -< IIMII,~" IIM-111~L II~bll_____~ 

Ilbll~ ' 

from which 

SL~ = IIMIILR IIM-XII~L • (2.17) 

REMARK 2.1. Noting that for every x one has x = M-IMx, we obtain 

IIxlIL ~ IIM-'II~L IIMIIL~ IIXIIL, (2.18) 

which easily implies 

SL~ = IIM-1IIRL IIMIILR I> 1. (2.19) 

R E M A R K  2.2. If we choose II IlL = II I1~ ----II lie (Euclidean norm) and if M is symmetric and 
positive definite, then 

IIMIIL~ = A m a x ,  IIM-1IIL~ ~- a/~.rnin , (2.20) 

where hma x and Ami . are the maximum and (respectively) minimum eigenvalues of M. 
Hence, for the case of M being symmetric and positive definite, we have that 

/~max (2.21) 
SLR = SEE -- '~min 

coincides with the usual condition number. Note however, that a different choice of norms will 
(obviously) produce different stability constants. For instance, by taking 

1 1 ' II ILL--II I1,o, II I1~ = II I1,, (2.22) 

(see (2.5) and (2.6) for the definition of the norms II I1,~ and II II,), we have 

'~rnax = ½(3 + X/5), '~rnin = ½(3-  V ~ ) ,  IIMIILR -- 5,  IIM-XII~L = 1. (2.23) 

so that SEE = (3 + V ~ ) / ( 3 -  V~) (= condition number) while SLR = 5. We shall see in the 
following that for practical problems we have, in a natural way, choices for the norms II IlL 
and II I1~ for which SLR will be uniformly bounded while SEE is not. 
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From (2.17) we see that a sequence of problems will be stable with respect to the norms 

II IlL and II 114 if both IIMIIL~ and IIM-XII~ are uniformly bounded.  In the applications it is 
very easy to find norms II I1~ such that 

y'Mx~kMllYllL Ilxll, Vx, y ,  (2.24) 

with k M uniformly bounded from above and from below. From (2.24) we have a natural 

choice for II IIR that produces a uniform bound for IIMIIL~. Indeed,  if we define the dual norm 

of II IlL by 

IIzlIDL := sup ytz (2.25) 
y IlylIL ' 

we have the following proposition. 

PROPOSITION 2.1. Let M be an N x N matrix, let II IlL be a norm in R iv and let k M be the 

smallest possible constant for which (2.24) holds true, that is, 

ytMx 
k M = sup . (2.26) 

x , y  IlylIL Ilxll, 

I f  we choose II I1~ = II I1~ (dual norm o f  II IlL as defined in (2.25)), then 

IIMII~ = k ~ .  (2.27) 

PROOF. We have 

IIMxlIR 
IIMIILR = sup IIxlI------T (use (2.12)) 

IIMxlIoL 
= s u p  

x IIxlIL 
(use II IIR = II IIDL) 

{ ll~[~ L y 'Mx ~ = sup sup (use (2.25)) 
x y II--~L J 

ytMx 
= sup - k M (use (2.26)).  

x,y Ilxll~ IlylIL 
[] (2.28) 

If we assume now that we are given a sequence of problems such that 

ytMx<~kMllYllLllXHL Vx, y ,  

with k M uniformly bounded from above and from below, and if we choose l[ 114 = II IIDL, then 
the sequence of problems will be stable with respect to the norms I[ IlL and i] ]]R if and only if 

IIM-Xll~L is uniformly bounded.  In the following proposition we express IIM-111~L in terms of 

the norm II IlL alone. 
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P R O P O S I T I O N  2.2. Let M be a non-singular N x N matrix. Let II II, be a norm in R N and let 

II I1~ be the dual norm of  II II, as defined in (2.25). Then 

(IIM-~II~0 -~ = inf sup ytMx (2.29) 
Y IlylIL Ilxll~" 

PROOF.  We have 

([IM-1IIRL) -1=  (sup 
Z 

)-1 IlzllR IIM-lzll~ =in f  (use (2.13)) 
IlzllR ~ IIM-lzll~ 

IIMxll~ 
=in f  Ilxll~ (set z Mx) 

=inf IIMxlIDL (use II I1~= II IIoL) 
Ilxll, 

1 ytMx 
=in f  [-~LSUPI[--~L J (use (2.25)) 

ytMx [] (2.30) = inf sup 

The following proposition summarizes Propositions 2.1 and 2.2. 

P R O P O S I T I O N  2.3. Let M be an N × N non-singular matrix, let II IlL be a norm in R N and let 

II IIR be its dual norm as defined in (2.25). Setting 

ytMx 
k M = sup , (2.31) 

x,r Ilyll~ IIxlIL 

ytMx 
YM = inf sup , (2.32) 

x ~ IIxlILIlylI~ 

the stability constant SLR of M is given by 

SLR = kM/YM. (2.33) 

The proof is obvious from (2.17), (2.27), (2.29), (2.31) and (2.32). 

R E M A R K  2.3. If we assume to be dealing with a sequence of problems where 

Y tMX ~ kllYlIL IlxllL Vx, y ,  (2.34) 

with k uniformly bounded from above, then k M <<. k and in order to have a uniform bound for 
SLR we only need YM to be uniformly bounded from below, that is, we need a constant y > 0 
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such that 

y t M x  
infsup t> > 0  (2.35) 

x y IIXlILIlYlIL '/ 

for every problem of the sequence. 

R E M A R K  2.4. We remember that the solvability of (2.1) was expressed in (2.2) by 

M x = O  ~ x = 0 .  (2.36) 

Under the assumption (2.34) we have now that the stability can be expressed by (2.35) which, 

in turn, can be written as 

3 , / > 0  such that IIMXlIDLI>'/IIxlI  Wx. (2.37) 

Indeed (2.35) can be written as 

3y >0 such that sup y t M x  Y ~ ~ ' / I I x l I L  Vx, (2.38) 

which becomes (2.37) by using the definition of the dual norm (2.25). 

We end this section by analyzing the connection of the above results with the use of 

Galerkin methods for the discretization of variational problems. Let us consider a general 

linear elasticity problem characterized by a given Hilbert space W and a bilinear form m(~b, qJ) 

defined on W × W. Given a linear functional/3(th) from W to R, we want to approximate the 

solution of the continuous problem 

Find ~b ~ W such that m(th, ~b) =/3(qJ) VqJ ~ W ,  (2.39) 

by means of the sequence of finite dimensional problems 

Find qb h E W h such that m(dPh, ~Oh) = fl(~Oh) VqJ h ~ W h , (2.40) 

where W h is a sequence of finite dimensional subspaces of W h. Let us note that (2.40) is a very 

general mixed formulation. However, it may help the intuition of the reader to think of a 
displacement-based finite element discretization, which is the easiest case. 

By choosing a basis ~b (1), . . ,  ~b (N) in W h we can associate with every vector ~ E R N the 

element 

wh 
i 

(in the usual way). Every problem (2.40) has now the form (2.1) with 

(2.41) 

Mi j := rn(~b (j), ~b(i)), b i := fl(~b(i)). (2.42) 
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If the bilinear form m(4,, q,) satisfies 

m(4,,  ~0)~k~l14 ,11~  IIq'll~ V4,, q ~ W ,  (2 .43)  

then (2.34) will easily hold with k = k m (with k m independent of h) if we choose 

i4, w 
(i) (2.44) 

as a norm in R N. The stability condition (2.35) can now be written in terms of the bilinear 
form m(4,, ~b) and of the space W h as 

m( 4,h , ~bh ) 
inf sup 

¢~hEWh *h~'Wh 114,hllw II~IIw 
t>3 ,>0  (2.45) 

with 3' independent of h. 
We point out that (2.45) on one hand implies (as we have seen) the solvability of every 

discrete problem (2.40). On the other hand, if (2.45) holds with 3, independent of h, then one 
can deduce optimal error bounds for the distance between the solution 4' of (2.39) and the 
solution 4,h of (2.40). Incidentally, we point out that (2.45), together with 

l im{ inf ile-e~llw)=o v ~ e w  (2.49) 
h-.O ~,hew h 

implies that (2.39) has a unique solution. We shall not report here the proof of this fact (which 
has basically little bearing upon our discussion), and shall instead report the proof of the 
optimal error bounds. 

T H E O R E M  2.2 [6]. Assume that the bilinear form m(4,, ~k) and the sequence o f  subspaces 

W h C W satisfy (2.43), (2.45) and (2.49). Let 4> be the solution o f  (2.39) and 4,h the solution o f  

(2.40). Then 

114, - 4,~llw ~<(1 + kin~3, ) inf 114,-  q'~llw • 
~th e W h 

(2 .50)  

PROOF.  For every ~kh E W h we have 

3, II q,h - 4,~11 ~ ~ sup 
Xh E W h 

m(~bh -- 4,h, Xh) 

IIx~ll~ 
(use (2.45)) 

= sup 
)(h E Wh 

{m(O/h -- 4,, Xh) -- m(4, -- 4,h, Xh)} 

m( q'h -- 4,, Xh ) 
---- s u p  

(add and subtract 4,) 

(use (2.39) and (2.40) 

~< sup (use (2.43)) 
Xh~h IIxhll~ 

= kmll~0h - 4,11w • (2 .51)  
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From (2.51) we have, using the triangle inequality, 

II ch  - ¢ II w ~< II ch  - ~h II w + II ~,~ - 6 II w 

<~ ( k m / Y ) l l o h  - 611w + I1~,~ - ¢llw 

= (1 + km/Y)llg'h - ¢ l l w  

and (2.50) follows since (2.52) holds for every ¢'h E W h. [] 

(2.52) 

3. Solvability and stability of  mixed finite element formulations 

We consider now a special case of (2.1). Namely we assume that the matrix M has the 

typical form arrived at when using a mixed finite element formulation, 

[A ° 
M =  B ' (3.1) 

where A is a square N A  × N A  matrix and B a rectangular N B  × N A  matrix with (obviously) 

N A  + N B  = N .  Accordingly we split the unknown x = (u, p) with u ~ R NA and p C R NB and 

the right-hand side b = (f ,  g) with f ~  W vA, g E R NB. With this notation, the linear system 

under examination can be written as 

A u  + B t p  = f , B u  = g . (3.2) 

The analysis of the solvability, stability and optimality of mixed formulations has been 

performed in [5]. However,  we shall follow here the more elegant presentation of Arnold [7]. 

In any case, the following space is of crucial importance. We set 

K =  {v  E f f ~ N A I B v  =0} 

(in other words K = Ker(B)).  Let N K  be the dimension of K; we can split R/vA as 

(3.3) 

If N T  is the dimension of T, we will obviously have N T  + N K  = N A .  

Let us now assume that the system of equations with the matrix M has been established in a 

suitable basis so that we can write the matrix A as 

A rr  ] (3.6) A T K  o 

A =  A K  r AKK 

~ N A  = T ~ K ,  (3.4) 

where T is the orthogonal of K in R NA. As a consequence of (3.4) every v ~ R NA can be split, 

in a unique way, as a sum 

v v r + o K with o r E T, v K ~ K and t = v r v  K = O. (3.5) 
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The notation (3.6) implies that the choice of the basis and the ordering of the unknowns in 
R NA has been done in such a way that every v r E T has only the first N T  components which 

are a priori different from zero, while every v r ~ K has only the last N K  components (a 

priori) different from zero. With a (quite natural) abuse of notation we shall therefore, when 

convenient, treat o r as an element of R Nr (discarding the last N K  components which are 

identically zero). Similarly we shall treat, when convenient, v K as an element of R NK 

(discarding the first N T  components) so that, for v = o r + v r ,  we can write 

A v  = ( A f r o  r + A r r V K )  + ( A f r o  r + AKKVK) . (3.7) 

in (3.7) the first term of the right-hand side belongs to T and the second one belongs to K. 
Similarly, the matrix B will have the form 

with 
B = [ B v  BKI, (3.8) 

Bo = Bro  r + B r o  r , (3.9) 

always with the notation (3.5). Note now that from (3.3) and the definition of T we will have 

and 
Bv r =  B r v  r = O  Vv  r E K  (3.10) 

By  r = B r v  T = O  iff v r = 0 ,  (3.11) 

so that (3.9) can actually be written as 

Bv = B r v  r . (3.12) 

We also have 

Btq  = Btrq ~ T Vq  E R N8 . (3.13) 

With a similar splitting for the right-hand side f = f r  + fK the original system (3.2) can now be 
written as 

t 

A r r u r  + A r r u r  + B r P  = f r ,  

A r r u r  + A r r u r  = f r  , 

B r u  r = g • 

(3.14) 

The conditions for the solvability of (3.14) (and hence of (3.2)) are now clear: we need that (i) 
the equation B r u  r = g is solvable for every g E R NB, (ii) the equation A r r u  r = f x  is solvable 

for every f r  E K and (iii) the equation Btrp = fT is solvable for every fT in T. Condition (i) is 
equivalent to 

BT, a s  a mapping: T---> R NB, is invertible. (3.15) 
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On the other hand, condition (ii) is equivalent to 

AKK, as a mapping: K---> K, is invertible. (3.16) 

Note now that, from the definition of B r and in particular from (3.11) we have that B r is 
always injective, so that (3.15) implies N T  = NB.  Now we conclude that the matrix Br,  as a 

mapping: T---> R NB, is a non-singular square matrix, and therefore its transposed matrix B~- is 
also non-singular and (iii) is automatically satisfied. 

We now want to express (3.15) and (3.16) in terms of the matrices A and B, and of the 
kernel K (defined in (3.3)). Condition (3.15) is clearly equivalent to 

B t p = 0  z:) p = 0 ,  (3.17) 

while (3.16) can be written as 

( u C K  and v tAu=O V v ~ K )  :ff u = 0 .  (3.18) 

Conditions (3.17) and (3.18) are necessary and sufficient for the solvability of (3.2) for every 

right-hand side f ~ •NA and g E R NB. We can summarize the above results in the following 
proposition. 

P R O P O S I T I O N  3.1. Let A be an N A  x N A  square matrix and let B be an N B  x N A  matrix, 

and let K (the kernel o r B )  be defined as in (3.3). The linear system (3.2) is uniquely solvable 

for  every f ~ N A  and for  every g E R  NB i f  and only i f  conditions (3.17) and (3.18) are 

satisfied. [] 

Note that, in particular, condition (3.17) implies 

N A  = N K  + N T  = N K  + N B  >>- N B  , (3.19) 

which is (obviously) a necessary condition for the solvability of (3.2). However, we now 
recognize that the use of (3.19) as a test for solvability (or, worse, for stability) is too 
simplistic and hence misleading. Note also that, if A is symmetric and positive semi-definite, 
then (3.18) can be expressed by the easier form 

vtAv > 0  Vv E K .  (3.20) 

We address now the problem of stability of (3.2). In agreement with the approach of the 
previous section we might decide now from the very beginning to use dual norms for 
measuring the right-hand sides. Hence we assume that we have chosen a norm II IIv in R Na 

N B  
and a no rm I I Iio in R and define the stability constant S as the smallest constant such that 

IlSullv + IlSpllo 

Ilullv+llpllo 
IlafllDv + IlagllDo (3.21) 
IlfllDv + IlgllDo 

for all u, p, 8u, 8p and f, g, 8f, 8g with A u  + Btp = f;  Bu = g; A 8u + B t 8p = 8 f  and 
B 8u = 8g. From the previous section we have again S I> 1. 
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R E M A R K  3.1. Definition (3.21) coincides with (2.11) if we take 

II(u, P)II~ = Ilull~ + IIPlIo, (3.22) 

II(f, g)llR = I[fllDv + IlgllD~ • (3.23) 

We notice that in this case the norm II IIR is not the dual norm of II I1,. Actually we have 

II(L g)llD~ = max (llfl lov, Ilgll~Q) • 

However one can easily check that 

(3.24) 

II(f, g)IIDL ~ II(f' g)llR ~ 211(f, g)IIDL, (3.25) 

so that the conditions for the uniform stability are still as discussed in the previous section. 

Our aim is now to give conditions on a sequence of problems (3.2) in order to have S 
uniformly bounded. We might of course use, for instance, (2.34) and (2.35) as in the previous 
section (since we are dealing here with a particular case of the previous discussion). However, 
we prefer to have separate conditions on the (sequence of) matrices A and B, as we did for the 
solvability problem. This, actually, is much more convenient in actual applications. 

We assume, for the sake of simplicity, that there exist two constants k a and k B such that 

o~u<~kal lo l l~  Ilull¢ Vv, u,  (3.26) 

v'n'q~llvll~ IlqllQ Vu, q ,  (3.27) 

with k a and k B uniformly bounded from above and from below. In actual applications, (3.26) 

and (3.27), are easily fulfilled with the 'natural choice' for the norms II IIv and II IIQ. Notice 

that (3.26) and (3.27) immediately imply that A has norm ~< k a from II IIv into II II~v (as in 
the previous section, Proposition 2.1). Similarly B r has norm ~< k B from II I1~ into II IIDo. On 
the other hand (3.26) and (3.27) also imply 

IIMII~R ~ ka + 2kB (3.28) 

for M given in (3.1) and the norms II IlL and II ItR as in (3.22), (3.23). Hence, in view of 
(2.17) we only have to control IIM -111RL Assuming that M is invertible (and hence, by (3.14) 
A r K  and B r are also invertible) we easily have from (3.14) that 

IluTIl~ ~ l ln~ l l l  Ilgll~Q, (3.29) 

IlUKIIv ~ IIA~LII(II fKIIDv ÷ IIAKTU~IIDv) 

IIAT~II(II fKII~v + kAIlu~llv), (3.3o) 
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[IpIIQ ~ II(B~)-lll(llfrll~v ÷ [IA~u~llov ÷ IIA~,~uKllov) 

II(B~)-lll(llfrllDv ÷ ka(llu~ll~ ÷ Ilu,~ll~)), (3.31) 

where 

and 

IIB;II[ = sup IlB~lgllv (3.32) 
g Ilgll.o ' 

IIA;~II = sup IlA;~vllv (3.33) 
o ~  IlollDv 

II(B~)-Iw~IIQ 
II(n~)-lll = sup (3.34) 

:T [I/~l[Dv 

Substituting (3.29) into (3.30) and then (3.29) and (3.30) into (3.31), one obtains 

II(u, p)ll ~ ~(IIB;~ II, IIA~II, I[(n~)-lll ,  kA)" II(f, g)ll .  (3.35) 

Since, as is easy to check, 

IIB;~[[ : II(B~)-~II, (3.36) 

it follows from (3.35) that, in order to  have a uniform bound for S (in (3.21)), we only need 
that [[Br I [[ (or (Br)-~[[) and [[A~[[ are uniformly bounded from above. In order to express 
this condition in terms of the matrices A, B (and of the kernel K as defined in (3.3)) we shall 

rather write that [[(B~)-~[[ -1 and [[Arl[[ -~ are uniformly bounded from below by some 
positive constant. Actually we have 

II(B~)-lll -I = (sup  [l(B~)-lfrllQ~-I 
" ¢r [[-'~r[[~v ] (use (3.35)) 

= in f  IIA-II.v 
fT II(B~.)-I/~.lIQ 

=inf II~-qlIDv (use f~.= Bh,)  
IIqlIQ 

=inf  IIB'qllDv (use (3.13)) 
q IIqlIQ 

°tBtq (use (2.25)) = inf sup 
q o [[q[[QllolIv 

q tBo 
= inf sup 

q o IIollv IlqlIQ 
(3.37) 



F. Brezzi, K.J. Bathe, A discourse on the stability conditions for FE formulations 41 

and 

IIA7,~11-1= (sup IIA~:~'vllv~-I (use (3.33)) 
"veX" ~ ] 

= inf Ilvllov 

Axxvll~ 

= i n f  Ilmxxullov (use v = axxu) 
u~X Ilull~ 

z t A  KK u 
= inf sup (use (2.25)) 

ztAu 
= inf sup (use (3.7)). (3.38) 

From (3.37), (3.38) and the previous discussion we now have the following proposition. 

PROPOSITION 3.2. Assume that we are given a sequence of problems of type (3.2). Assume 

that the matrices A and B satisfy (3.26) and (3.27) with kA and k B uniformly bounded. The 

stability constant S in (3.21) will then be uniformly bounded if and only if there exist two 

positive constants ot and [3 such that 

v~Au 
inf sup >I a > 0 (3.39) 
u~xo~x  Ilvllv Ilullv 

and 

inf sup q tBO 
q o Ilvl lvIIqllo ~ > 8 > ° "  (3.40)  

for every problem of the sequence. 

R E M A R K  3.2. If every matrix A is symmetric and positive semi-definite, then (3.39) takes the 
simpler form 

3 a > 0  such that o~Ao~l lv l l  L VoEK,  (3.41) 

with K (as in (3.39)) always given by (3.3). In some applications (typically in the solution of 
Stokes fluid flow problems) the matrices A will be positive definite and satisfy (3.41) for all v 
in R NA. This led some authors to consider (3.40) as the condition for stability and convergence 
of mixed methods, which obviously is not the case. For instance, in the analysis of the mixed 
(o-, u) formulation of elasticity problems in the nearly incompressible case, condition (3.39) is 
more delicate to enforce than (3.40). On the same erroneous trend, some authors seem 
incapable of distinguishing between (2.35) (which is a condition on the whole matrix M) and 
(3.40) (which is a condition on the rectangular submatrix B of a special case of the matrix M, 
namely (3.1)). 
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Let us consider now, as we did in the previous section, an abstract continuous problem and 
its Galerkin approximation. Assume that we are given two Hilbert spaces V and Q and two 

bilinear forms a(u, v) (on V x V) and b(v, p) (on V × Q). We assume from the beginning 

that the two forms are continuous in the sense that there exist two positive constants k s and k b 
such that 

and 
a(u, v) <~ k~llullv Ilvllv 

b(v, p) ~ kollvllv Ilpllo 

Vu, v E V (3.42) 

Vv ~ V, p ~ Q .  (3.43) 

We can also introduce a kernel 

Y ( = { v E V I b ( v , q ) = O  V q E Q } ,  (3.44) 

which is the continuous version of the kernel K defined by (3.3). For the sake of simplicity we 

shall also assume that a(u, v) is symmetric and positive semi-definite, that is, 

a(u, v) = a(v, u) Vu, v E V ,  (3.45) 

a(v, v) >>- 0 Vv ~ V .  (3.46) 

Finally, in analogy with (3.40) and (3.41) we make the following assumptions: 

2 V v E ~  (3.47) 3 & > 0  such that a(v,v)>>-&llvllv 

b(v, q) 
3/3 > 0 such that inf sup t>/3. (3.48) 

q~Q oEV IIvlIv Ilqllo 

We have the following existence and uniqueness theorem. 

THEOREM 3.1. [5] Assume (3.42)-(3.48). For every f E V '  and for every g E Q', where V '  
and Q' are the dual spaces of V and Q, respectively, there exists a unique pair (u, p) in V x Q 

such that 

a(u, v) + b(v ,  p )  = f ( v )  Vv  E V , 

b(u, q) = g(q) Vq E Q .  (3.49) 

Assume now that we are given a sequence (V h, Qh) of finite dimensional subspaces of V and 
Q, respectively, and consider the finite dimensional approximations of (3.49): 

Find u h E Vh and Ph E Qh such that 

a(Uh, Oh) + b(Vh, Ph) =]:(Oh) VVhEVh,  (3.50) 

b(Uh, qh) = g( qh) Vqh E Qh " 
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It will also be convenient to introduce the finite dimensional kernels 

~g h = {o h E V h I b(Vh, qh) = 0 Vqh E Qh} " (3.51) 

It is clear that, by choosing bases in V h and Oh, (3.50) can be written in the form (3.2). As 
a consequence, the solvability conditions for (3.50) will be 

a(Vh, V h) > 0 VV h ~ ~ h ,  (3.52) 

{b(Vh'qh)=O Vv hEVh}  ~ qh=O,  (3.53) 

as it can easily be deduced from (3.20) and (3.17). The uniform stability conditions now 
become 

3 4 * > 0  such that a(vh, Vh)~*llvhll~ V V h ~ C h ,  (3.54) 

3/3* > 0  such that inf sup b(vh, qh) /3, (3.55) 
qhEQh VhEV h Ilvhll~ IlqhllQ ~> ' 

with or* and/3* independent of h. It is clear that (3.54) and (3.55) are just a different way of 
writing (3.41) and (3.40). It is also clear that (3.54) implies (3.52), and (3.55) implies (3.53), 
so that stability implies solvability. 

As far as error estimates are concerned we have the following theorem. 

T H E O R E M  3.2. [5] Assume that the sequence o f  subspaces (Vh, Qh) satisfies (3.54) and 

(3.55). Then problem (3.50) has a unique solution (Uh, Ph) for every h > O. Moreover there 

exists a constant c > O, depending only on k a (3.42), k b (3.43), a* (3.54) and/3* (3.55) such 

that 

Ilu- uhll~ + lip -PhlIQ ~ C{ inf Ilu- ohllv + inf l ip -  qhllQ} (3.56) 
Oh •Vh qh ~ Qh ' 

where (u, p) is the solution o f  (3.49). 

PROOF. We shall only sketch the proof, which is based on a classical 'stability-consistency' 
argument. Let u~, and p~, be the best approximation one can have for u and p, respectively, in 
the subspaces, that is, 

Ilu- u~lIv = inf Ilu- ohllv, 
Vh ~ V  h 

(3.57) 

I l p - p ~ l I Q  = inf I I P - q h l I Q .  
qh ff-Qh 

Let now 

(3.58) 

f(Vh) "= a(u~, Vh) "~- b(Vh, p~) , (3.59) 

g( qh) := b(u~, qh) , (3.60) 
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and notice that 

( f  -- f ) (vh)  = a ( u -  u~,, Vh) + b(Vh, p - -p 'h) ,  (3.61) 

( g -  ff)(qh) = b ( u -  u~, qh) " (3.62) 

Notice finall X that (u h - u~, Ph --P*h ) solves a problem of type (3.50) with right-hand side 

given by ( f - f ,  g -  ~). The stability of (3.50) implies that 

Iluh - u*~llv + Ilph -p~IIQ ~ c l ( l l f -  fllDv + [ I g -  fflIDQ) 

CI/su p ( f -  f)(Vh) + sup (g  -- ff)(qh) I 
- - oh Ilv~ll~ qh Wq-~Q " <<- C=(llu - u~ll~ ÷ lip - p ~ l l o } ,  

(3.63) 

with C x and C 2 depending only on Ol 
now have 

*,/3*, k a, k b. From (3.62) and the triangle inequality we 

I l u - u h l l v  + l i p -  PhlIQ ~<(1 + c 2 ) ( l l u - u ~ l l v  + I I p - p ~ I I Q ) ,  (3.64) 

and (3.64) with (3.57) and (3.58) gives (3.56). [] 

We end this section with some observations regarding penalty methods applied to systems 
of the form (3.2). For the sake of simplicity, assume that N A  = 3, N B  = 2 and that M has the 
form 

Vii ° ° il ol2 0 2 

M =  0 Ol3 0 . :10000 
/32 0 0 0 

(3.65) 

For a more realistic situation we have to think of (3.65) as a block partitioning of M. It is clear 
that the system (3.2) splits now into 

and 
olin,  ÷ /3 iPi  = f i  , /3iUi = g i  , i = 1, 2 (3 .66)  

ol3u3 = L .  (3.67) 

If one of the/3; vanishes then (3.17) is violated and M is singular. If instead/3i # 0 (i = 1, 2), 
then 

K = {(0 ,  0,  u3)lu3 ~ R) (3.68) 

and a 3 # 0 satisfies (3.18). Assuming that all the a; (i = 1, 2, 3) are bounded away from zero 
(for the sake of simplicity) we only have to consider systems of type (3.66) that we consider 
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through their typical representative: 

a u  + / 3 p  = f ,  /3u = g .  (3.69) 

A penalty approach to (3.69) consists in finding, for e > 0 (and 'small'), the solution of 

a u ~  + / 3 p ~  = f , /3u ,  - ep~ = g ,  (3.70) 

which is given by 

ef +/3g /3f-  ~g 
u~ = e a  + /32 , P~ = e a  + /32 • ( 3 . 7 1 )  

It is clear that (for a ~ 0) the solution (3.70) always exists, even for/3 = 0. However,  for 

/3 = 0, p,---> ~ as e---> 0 when g ~ 0. On the other hand, in some applications (as, for instance, 

incompressibility conditions with zero Dirichlet boundary conditions), we have g = 0, and the 

situation improves. For g = 0 (3.71) becomes 

~f  /3f 
u~ = e a  + /32 , P" = ea  + /32 • (3.72) 

For/3 = 0 (3.72) gives 

f 
u~ = - ,  p~ = 0 ,  (3.73) 

which is a nice result. Actually a closer look at (3.69) for /3 = g  = 0 shows a singular but 

compatible system with solution u = f / a ,  p = undetermined. Clearly (3.73) gives the solution 
of minimum norm. 

Let us now consider the case g = 0 and/3 very small. The system (3.69) will have a very 

large stability constant. However,  if we look only at the u, component of (3.72), we have 

u ~ 0 for e ~ 0 (/3 fixed) (3.74) 

and u, is uniformly bounded (in e) as e goes to zero. On the other hand 

u~---> f f o r / 3 - * 0  (e fixed), (3.75) 
ot 

which shows that we have difficulties to interpret the results even if u~ is computed as a 

number of reasonable size. A look at the p,  part of the solution shows that 

p,---> f for e---->0 (/3 fixed) (3.76) 
/3 

If/3 is very small, p~ will be very large and this indicates that a change in discretization may be 
required. 
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In a practical analysis, there will generally be only a limited number of the /3i's that are 
small. Hence, only the corresponding pi components will be large, and this can explain the 
appearance of the so-called checker-board modes that appear, even when u, behaves nicely. 
Note also that, when solving with the penalty approach (for g = 0) a small/3; can be more 
dangerous than a/3; = 0, as shown by (3.73) compared with (3.74) and (3.76). 

4. Examples of applications 

In this section we present two examples that demonstrate the theory we have presented in 
the earlier part of the paper, and we also present a numerical procedure to test whether the 
inf-sup condition is satisfied for a finite element formulation to solve Stokes fluid flow 
problems. 

4.1. Mixed methods for linear second-order elliptic problems 

We start here with a very simple example to show the importance of the condition (3.54) 
(~h-ellipticity). Consider the mixed formulation of the model problem 

4, " =1  = i n ] - l , l [ ,  

The solution is clearly 

~(x) = ½(x 2 -  1). 

Introducing the additional variable 

O" : I ] / t  , 

the mixed formulation of (4.1) now reads 

f ~ ~z dx + f j ~,z ' dx = O W 1 

which is clearly of the form (3.49) with 

v= {~-~ L2(]-1, l[) l , '  e L2(]-1, 1[), 

e = e2(] -1 ,  1D, II~IIQ = I1~110, 

a(o',~-)=f~ o'~-dx b(z, ~b)= f2 
1 ' 1 

q,(-1) = ~(1) = 0. 

I1~11~ = I1~11~ + I1~'110 ~ , 

~bz' dx,  

(4.1) 

(4.2) 

(4.3) 

(4.4) 

(4.5) 

(4.6) 

(4.7) 

(4.8) 
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where in (4.6) and (4.7) we used 

Iloll~ := f ~  o2(x) dx .  (4.9) 

Note how the form of a and b in (4.8) easily determines the norms (4.6) and (4.7) which 
are needed to have (3.42) and (3.43). 

Let us check, as an exercise, that our problem satisfies (3.47) and (3.48). We first have to 
find what ~ is, as defined by (3.44). We have 

{fJl ~bz 'dx=0  Vth} ¢:> r ' = 0  ¢:> r = c o n s t a n t ,  (4.10) 

so that ~ contains only the constant functions. For ~- G Y( we have 

a(z, z )=  I1~11~ = II~IIL (since r '  =0 )  (4.11) 

and therefore (3.47) holds with ~ = 1. 
Let us now turn to (3.48). For every q~ E L2(]-1 ,  1[) we can set 

~:(x) = fo q~(t) d t .  (4.12) 

We then obviously have 

_- f~ ,~2= I1,~11,~, (4.13) b (,.?, q~) 

I1÷'11o ~ = I1,~11,~ • (4.14) 

Furthermore 

I1÷11~ I1~11~ (4.15) 

and hence we have 

b(r, (~) b(~, q~) I1,~11~o 
- -  ~ - -  = 2 ~ 1 / 2  

sup~ II~llv II÷llv (11~11~0+11~'110, 

I1~11~ 1 
(11~110 z + II~ll0Z) 1'2 - v ~  I1~110 

(use (4.14) and (4.15)). (4.16) 

Since (4.16) holds for every ~ we obtain (3.48) with/3 = 1/~/2. 
Let us now consider the discretization of (4.4), (4.5). We take a decomposition of ] - 1 ,  1[ 

into N equal intervals and set 

Qh = {piecewise constants (---Lp0 with the notation of [1])} . (4.17) 
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It would now be reasonable to take 

V h = (piecewise linear continuous functions (= ZP~)}. (4.18) 

In this case it is easy to check that ~h is also reduced to the constant functions, and 
therefore (3.54) holds with a * =  1 (always by (4.11)). On the other hand the construction 

(4.12) still works, since q~ E ~ 0  ° implies ? E Aq11. Hence (3.55) also holds, with/3* = 1/V~,  and 
the assumptions of Theorem 3.2 are fulfilled. In our particular case ( g -  1) it is also easy to 
prove that, for every decomposition, we have 

trh(X ) = X in ]--1, 1[, (4.19) 

which is the exact solution. 

Assume now, for our discussion, that we take a larger Vh, namely 

V h = {piecewise quadratic continuous functions (= ~ ) } .  (4.20) 

Setting 

B E = {piecewise quadratic functions vanishing at the subdivision nodes},  (4.21) 

we easily have 

Vh = c~1 = ~,~11 ~) B2 " (4 .22)  

We can now make an observation which is of general validity: the choice of a larger V h (with 

the same Qh) makes the inf-sup condition (3.55) easier to satisfy and the ~h-ellipticity 
condition (3.54) more difficult to satisfy (unless, obviously, the bilinear form a is V-elliptic: in 

such a case (3.54) is always satisfied for all choices of V h and Qh). In our case 

/ =o (4.23) 

where ~ is the space of global constants as in (4.10). Let now, for every subinterval 

Ik(k = 1 , . . . ,  N) ,  b k be the second order polynomial vanishing at the endpoints of I k and 
normalized in such a way that 

ft, b2k(X) dx = 1. (4.24) 

A simple computation shows that 

Ilb ll0 = lO /h ,  (4.25) 

so that 

a(bk, bk) = Ilbkll0 = 1 (4.26) 
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and 
r 2 

Ilbkll  = IIb ll  + IIb ll0 = 1 + l O / h ,  (4.27) 

and condition (3.54) can only hold for 

a* = h / ( h  + 10), (4.28) 

which is not bounded uniformly from below. On the other hand, it is obvious that for every 
~b E Lp0 we have 

sup b(r, d~) >I sup b(r, ~b) I> 1 (4.29) 

and (3.55) as predicted is easier satisfied with a larger V h. We are therefore facing a case 

where the inf-sup condition (3.55) is easily satisfied, but the 9~h-ellipticity condition (3.54) 

holds only with a* - h. Notice that (3.52) is still satisfied so that the discrete problem will be 

uniquely solvable. Notice as well that we started with an effective discretization ( V  h = ~ ,  

Qh = ~0) ,  that gave the exact value for trh, and that we enlarged V h (which, as we have seen, 

does not affect the ability to satisfy the inf-sup condition). The key question must now of 
course be 'how is our solution accuracy affected by the enlargement by Vh?' 

The solution of the discrete problem: 

Find o- h ~ ~12 and qJh ~ ~0  such that 

f•,trh•'dx+f] ~bhT'dx=0 Vr~x2 (4.30) 
X 

1 ~O'~ dx - -  J_ (~ dx = 0 Vth E 3? 0 (4.31) 

r l  

1 

can again be computed by hand. Namely, from (4.31) we obtain 

N 

 h(x) = x + c + c k b k ( x )  , 
k = l  

with c and c k to be determined. Now c = 0 for symmetry reasons (the solution is unique) and 
choosing ~- = bk(X ) in (4.30) yields 

- c  k = fz k Xbk(X ) dx  =: (x,  bk) , (4.32) 

so that 

N 

Oh(X ) = X -- ~ ,  bk(X)(X , bk) , (4.33) 
k = l  
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and the L 2 norm of the error er h - o" = o" h - x is given by 

N 

-  1120 = ( x ,  b k )  2 , 
k = l  

which does not tend to zero. Hence our solution scheme with the enlarged 

acceptable. 

4.2. Analysis of stationary incompressible fluids (the Stokes problem) 

We consider now the following model problem in a smooth domain /2  C R2: 

Find u E (H1(/2)) 2 and pC L2(/2)/R such that 

fngradu:gradvdO-fa pdivvd12=faf ,  vdO Vv, 

fa qdivudl2=O Vq, 

which is again of type (3.49) for 

V= (H~(/2)) 2 = {v ~ (L2(/2))2 [grad v E (L2(/2))4 and rio n = 0},  

Q= L2(/2)/R= { q E L2(/2) l fn 

a(u, v) = fa grad u :grad v d O ,  

(4.34) 

V h is not 

and 

(4.35) 

f 
b(o, q) = Ja q div o d O .  (4.38) 

Note again how the form of a and b in (4.38) easily determines the norms (4.36) and (4.37) 

which are needed for having (3.42) and (3.43). 

Problem (4.35) is the variational formulation of the problem 

- A u + V p = f  in /2 ,  d i v u = 0  i n O ,  u = 0  on 0/2 ,  (4.39) 

which are the governing equations of an incompressible fluid. The well-known Poincar6 

inequality, 

3 c = c ( / 2 )  with f lvl2d/2<-c(O)folgradvl2d/2 Vv~V (4.40) 

now ensures that 

(1) 
a(o,v) >- ~ IIo11 , v o e v ,  (4.41) 

so that (3.47) holds with ~ = 1/(c + 1) for all v E V and we do not need to be concerned with 

kernel Yg. In particular, we have that (3.54) will also hold (with a~*= 1/(c + 1)) for every 

(4.36) 

qd/2  =0}  (4.37) 
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choice of V h C V and Qh C Q. Hence we can concentrate our attention on (3.48) and (3.55), 

that is, on the inf-sup condition. As far as (3.48) is concerned we remark that we actually 

have 

fn q div v dO 
3/3(O) > 0  such that inf sup I>/3(O),  (4.42) 

IlqllQ Ilvll  

which is a nontrivial result in functional analysis (see, e.g., [8, 9]). We also notice that the 

following result obviously holds as an immediate consequence of (4.42): for every set ~ with 

(Ho~(O)) 2 c_ ~ c_ ( H i ( O ) )  2 , (4.43) 

we have 

inf sup fa q div v dO 
qEQ vEOl: Ilqllo Ilvllv (4.44) 

since the supremum over ~ is obviously larger than the supremum over V =  (H0~(O)) 2. In a 

sense we can therefore say that the case of homogeneous Dirichlet boundary conditions is the 

most difficult to treat. This is the reason why we shall mainly concentrate on this case only. 

Assume now that we are given a sequence of finite dimensional subspaces V h E V and 

Qh E Q and consider the discrete problem: 

Find u h E V h and Ph E Oh 

a(Uh, Vh) - b(Vh, Ph) = fa 

b(Uh, qh )=O Vqh E Qh . 

such that 

f " Vh dO VVh ~ Vh , 

(4.45) 

As we have observed above, we only have to check condition (3.55) in order to have 

solvability, stability and optimal error bounds. The following theorem, known as 'Fortin's 

trick' (see [10]) is often useful in order to prove (3.55) (see e.g. [11]). 

T H E O R E M  4.1. Assume that (3.48) holds and that, for every h, we can build a linear operator 

II  h • V---> V h with the following properties: 

b(v - HhV, qh) = 0 VV E V Vqh E Qh,  (4.46) 

3 3 / > 0  such that I I / / hv l l~3 / l lv l l .  Vv V, (4.47) 

where 3/is independent o f  h. Then (3.55) holds with [3* = f313/. 

PROOF.  We have for every qh E Qh 

b(Vh, qh) b(IIhv, qh) 
sup I> sup 

oh vh Ilohllv II//hvll  
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b(v, qh) 
= sup (use (4.46)) 

o~v II//~vll~ 

b(v, qh) 
>I sup (use (4.47)) 

/>/~/~llqhllQ (use (3.48)), (4.48) 

where the first inequality holds since the image Hh(V ) is contained in V h. [] 

In many cases, it will actually be sufficient to prove that for every qh E Qh we have 

b(Vh, qh) 
sup t> KIIq~ - 4~110 (4.49) 

oh~Vh IIv~IIv 

where K is independent of h and 

qh = {L2"pr°j ecti°n of qh onto the space ~ of piecewise constants}. (4.50) 

Here for instance we present two classes of discretizations for which (4.49) implies (3.55). 

PROPOSITION 4.1. Assume that Qh C C°(~-~) (and piecewise polynomial) and that V h is 

locally first order accurate in the sense that for every v ~ V there exists a v I E V h with 

IIv-v'll,2<-Clhllvll,, (4.51) 

Ildll~ ~ c~lloll~ (4.52) 

Assume finally that the decomposition is quasi-uniform, in the sense that the maximum diameter 

h is bounded by C3hmi n (hmi n is the minimum diameter o f  the element). Then (4.49) implies 

(3.55). 

PROOF. We note that for every qh E Oh there exists a 6 E V such that 

Hence 

b(6, qh) 

11611~ 
~l lqhl lQ" (4.53) 

b(Vh, qh) b( 61, qh) 
sup I> 

b ( 5 ' -  6, qh) b(5, qh) 
+ (+_6) 

116'11~ 116'11~ 

b ( 6 1 -  6, qh) b(6, qh) 
i> + (use (4.52)) 

c211611v c211611v 
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b ( v ' -  6, qh) + ~llq~llQ (use (4.53)) 

fgl qh div( 61 - 6) dO 

c~ll~ll. 
+ ~llq~llQ (definition of b) 

fa ( 6 -  6I).grad qh dO 

c~ll~ll~ 
+~llq~llQ (integrate by parts) 

~l lq ,  llQ - I1~-  ~'11o ilgra d qh]lO 
czll~ll~ 

cl Ilgrad qhl loh  (use (4.51)) I> t~llq~llQ - c2 (4.54) 

Now a simple scaling argument (using the quasi-uniformity of the mesh) shows that 

hllgrad qhllO ~ c41lqh - 4~11o (4.55) 

and from (4.54) and (4.55) we have 

b(Vh' qh) 
sup I> t~ll q, l lo -  c, llq~ - 4,11o • (4.56) 

It is now clear that (4.49) and (4.56) imply 

(1+ f--)(sup b(Vh'qh))>~fl 'K Ilqhll0 (4.57) 

and (3.55) holds with/3* = flK/cs/(1 + K/cs). [] 

REMARK 4.1. The quasi-uniformity assumption is actually not necessary. We used it only in 
order to simplify the argument. See [1, 12] for the general case. 

PROPOSITION 4.2. Assume that we know that for all [lh ~ ~ 

b(Vh, qh) 
sup I> ~lll4~llo • (4.58) 
oh~h IIvhll~ 

Then (4.49) implies (3.55). 

PROOF. We have, for every qh E Qh, 

b(Vh, qh) ~ b(Vh, qh - -  q h )  

°hevhSUp IIo~llv - OhevhSUp ]. I1~11~ 

b(vh, qh) 
>I sup 

b(Vh, qh) } (++-qh) 
+ IIo~llv 

b(Vh, qh -- qh) 
sup 

• 1114,11o- Ilqh - 4,11o • (4.59) 
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Now from (4.59) and (4.49) we deduce (as in (4.57)) that 

b(Vh, qh) KZ 
sup i> I1,  110 (4.60) 

oh vh II Oh 

Finally from (4.49) and (4.60) the result follows. [] 

R E M A R K  4.2. As we can see, (4.49) implies the inf-sup condition in an impressive number 

of cases: using (4.49) basically all the approximations with continuous pressure can be 

considered, as well as all the choices of V h that give a stable pair when used with a piecewise 

constant pressure. This second case for instance holds true, if for triangular elements V h 

contains the space of piecewise quadratic functions, and if for quadrilateral elements, V h 

contains the reduced (8 nodes) biquadratic functions. If we succeed in giving an easy test for 

(4.49) then we can treat a very wide number of cases. Such a test will be a consequence of 

Proposition 4.3 below. 

R E M A R K  4.3. More generally the condition we need on V h (in order to have (4.58)) is the 

following: we can use as degrees of freedom the values v.  n (normal component of velocity) at 

midpoints of edges (respectively, faces in R3). Indeed, if this is the case, we can (roughly) 

consider a 'Fortin interpolator' I I  h such that 

and 
f (V -- IlhV ) • n de = 0 for all edges (faces) e 

'v  = I lhv '  for the other degrees of f reedom. 

(4.61) 

(4.62) 

From (4.61) and (4.62) we now have, for every qh E ~0,  

fK div(v - HhV)4 h d K  = Jar (v - HhV ) • nqh de (use Gauss' theorem) 
f 

= 0 (use (4.61) on each e) (4.63) 

for every element K. This gives (4.46) for Qh = *°97°, which is the essential step (through 
Theorem 4.1) in order to have (4.58). Note however that the actual proof of this fact has some 
more technicalities (see [1, 13] for similar arguments). It is clear by now that, in designing a 
new element, to satisfy (4.49) is the essential step in almost every case. 

P R O P O S I T I O N  4.3. A s s u m e  that ~1 and ~2 are unions o f  elements,  with ~ l  fq ~2 = ~. A s s u m e  

that, f o r  i = 1, 2, we have f o r  all qh ~ Qh 

f~'i qh div v h 
sup >t K~ll qh -- Zth I[ L2<~,) , (4.64) 

Vh~V h I l o h l I v  
Vh=O in J'] \~i 
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then 

f~lU~2 qh div v h 
sup 

Oh=O in 12 \(~1U9~2) 

KIIq~ - qh II L~(~,u~) (4.65) 

for all qh E Qh and with 

r I> min(K~, K2). (4.66) 

p R O O F .  The  proof is elementary. From (4.64) we have, for all qh E Qh, tWO elements 
O i 1 2 E ( n 0 ( ~ ) )  ~ V h (i = 1, 2), such that 

and 
b( Oi, qh)= K,l[qh- 4~11~(~,) (4.67)  

IIo'II~ ~< IIq, -- 4hll~(~,) • (4.68)  

Taking v = v I J r  V 2 we have 

and 

2 

b(v,  qh) ~ K~llqh - 2 >_ = -- qhllL2(,,) ~ Kllqh - qhll2z(,lu~2) 
i=1  

Iloll~, = II0111~ + IIo211~, ~ Ilqh - qh l122<~, lu ,e )  

(use (4.66)) (4.69) 

(4.70) 

and (4.69) with (4.70) implies (4.65). [] 

R E M A R K  4.4. The  condition ~1 N ~2 = t~, as we can see from the proof, is not crucial. Its 
only purpose is to avoid a factor 2 in (4.69) and (4.70). However, we always think of using the 
result in the 'disjoint' case. 

R E M A R K  4.5. In (4.64), (4.65) the choice of tlh as an element by element projection onto the 
space ~ 0  of piecewise constants is unnecessary. We might as well use a 'patch by patch' 

projection, that is, we might assume that t~h is constant in every patch (and equal to the mean 

value of qh)" On the other hand, the choice qh = 0 (which would give directly the inf-sup 
condition without passing through Propositions 4.1 and 4.2) is not allowed. If qh has zero 
mean value o n  ~1 L~ ~[)2 it does not necessarily have zero mean value separately on ~1 and on 
~2. But (4.64) is unrealistic if the right-hand side does not have zero mean value. Finally let us 
note that, if qh is the element by element projection and t~h is the patch by patch projection, 
then 

I I q -  ~hllL2 ~ IIq-- 4hilL2 • 

R E M A R K  4.6. Proposition 4.3 deals with two patches. It is clear that the argument applies as 
well to any finite number of patches: the smallest Kg gives the global K. 

R E M A R K  4.7. It is very important to point out that conditions (4.64) do not depend on the 
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size of the patches. Assume that we have, for a given patch, say, of size one 

f~' qh div V h 
sup I> Ilqh - qh 11~2~) (4.71) 

for all qh E Qh(~), where Vh(~ ) is a finite element subspace of ( H I ( ~ ) )  2 and Q h ( ~ )  is a 

finite element subspace of L 2 ( ~ )  and finally C~h is the mean value of qh on ~.  If we shrink ~ to 

a small patch ~s  of size h by the change of variable, 

~ x = ~ / h ,  ~ E ~ ,  (4.72) 

and if we change the finite element spaces accordingly, we have 

J'~*' qh div v h s 
sup s I> KIIqh -- ~llL2~,s~ (4.73) 

exactly with the same K as in (4.71). 

The same is true if, instead of the change of variable (4.72), we apply any other change of 

variable which is 'affine', that is with constant Jacobian: actually a distortion in the shape 

might change r to some 8 • r ,  where 8 depends on the amount of distortion (essentially if J is 

the Jacobian matrix, 8 will depend on I1-11 • IIJII 2 and IJl" 111-1112), and for reasonable 
distortions r will remain greater than zero. 

Proposition 4.3 and all the remarks after it suggest now a strategy for checking the inf-sup 

condition, if we have a continuous pressure field or if we know already that the velocity space 

V h under consideration can be used with piecewise constant pressures. Assume that we can 
find a finite number of 'representative patches', ~1, ~2, .  • •,  ~R, such that one can cover the 

decomposition with affine images of the ~i's. For each patch ~i we then check if the discrete 

problem is uniquely solvable on the patch (for both velocity and pressure) with homogeneous 

Dirichlet boundary conditions for velocities and obviously discarding the constant value of the 

pressure on the patch. If this is true, then a constant K i must exist; we do not need to compute 

it, we just want to know that it exists. Finally, the smallest Ki will give the constant K in (4.49) 

and the inf-sup condition will hold. 

5. Concluding remarks 

Our objective in this paper was to review and discuss conditions for the stability of mixed 

finite element formulations. We also presented a numerical test that can be employed to check 
whether a given mixed finite element formulation for the general Stokes problem satisfies the 

mathematical conditions of stability and optimal error bounds. 
While the general mathematical theory for mixed formulations is quite well established, 

both for the continuous and discretized problems, the actual detailed use of that theory for the 

design and analysis of mixed finite element formulations can be a very difficult task. We note 
that quite effective mixed finite elements that satisfy the mathematical conditions of stability 
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and optimal error  bounds  are available for the solution of  incompressible  fluid flow [1] and the 

analysis of  incompressible  or  almost incompressible solid media  [1, 14, 15]. Howeve r ,  the 

situation is quite different,  for example,  in the field of  analysis of  plate and shell structures 

[16]. He re  numerous  mixed finite e lements  have been  p roposed  but  mathematical  analyses are 

hardly available. Indeed  the construction of  effective mixed plate and shell e lements  that can 

be  analysed and satisfy t h e  mathematical  condit ions of stability and optimal error  bounds  is 

very difficult, and such elements  are now under  active research,  see for example [16-18]. 
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