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Abstract

We develop an empirical discrete choice interaction model with a
finite number of agents. We characterize its equilibrium properties –
in particular the correspondence between the interaction strength, the
number of agents, and the set of equilibria – and propose to estimate
the model by means of simulation methods.

In an empirical application, we analyze the individual behavior
of some 8000 high school teenagers from almost 500 different school
classes. We find endogenous social interaction effects to be strong for
behavior closely related to school (truancy), somewhat weaker for be-
havior partly related to school (smoking, cell phone ownership, and
moped ownership) and absent for behavior far away from school (ask-
ing parents’ permission for purchases). Intra-gender interactions are
generally much stronger than cross-gender interactions.
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1 Introduction

Early contributions by Veblen (1899), Duesenberry (1949), Leibenstein (1950),

Pollak (1976), and others show that economists have recognized the poten-

tial importance of social interactions for a long time. The slow progress of

empirical research in this area is to a large extent related to a number of

methodological problems. As described by Manski (1993, 2000) and others,

a major difficulty is to disentangle endogenous social interactions (which im-

ply a social multiplier effect) from other types of social interactions (which

do not imply a multiplier effect). Another problem is the endogeneity of

reference groups. Recent years have shown an increasing number of empir-

ical studies searching for credible empirical evidence on social interactions,

in part by using data that are quasi-experimental in nature; see Sacerdote

(2001), Durlauf and Moffitt (2003), and Duflo and Saez (2003) for examples.

The present paper focuses on methodological problems related to a spe-

cific but frequently encoutered situation: social interactions in small groups

when choice variables are discrete. In a discrete choice model with endoge-

nous social interactions, the choices of other individuals are explanatory

variables in the equation describing the choice behavior of a given indi-

vidual. For estimation and other purposes, the reduced form (or “social

equilibrium” or “solution”) of the model is required. While the reduced

form is straightforwardly obtained in a linear model with continuous vari-

ables, its derivation is more complicated in the case of discrete variables. As

already noted by authors analyzing the simultaneous probit model (see e.g.

Heckman, 1978 and Maddala, 1983), such models may not have a solution

or may have multiple solutions. This in turn may yield problems regarding

the statistical coherency of the model.

In Section 2 we present the model and characterize its equilibrium prop-

erties, in particular the correspondence between the interaction strength, the

number of agents, and the set of equilibria. We also show that – contrary to
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standard binary choice models – these equilibrium properties depend on the

choice of support of the dependent variable ({0, 1} or {−1, 1}). Section 3

proposes to estimate the model by means of simulation moments, assuming

that observed choices represent an equilibrium of the static discrete game

played by all interacting agents. Section 4 is devoted to an empirical appli-

cation. We analyze a sample of almost 500 high school classes with detailed

information on the individual behavior of the students within each class.

As all students in a sampled class are interviewed in principle, the data set

has rich information on the behavior of potentially important peers of each

respondent. We estimate the model for five types of teen discrete choice

behavior: Smoking, truancy, moped ownership, cell phone ownership, and

asking parents’ permission for purchases. To control for sorting into schools

and omitted variables that induce a positive correlation between peers, we

also estimate versions that allow for school specific fixed effects and for

within-class correlation of error terms. We find strong social interaction

effects for behavior closely related to school (truancy), somewhat weaker so-

cial interaction effects for behavior partly related to school (smoking, moped

and cell phone ownership) and no social interaction effects for behavior far

away from school (asking parents’ permission for purchases). Intra-gender

interactions are generally much stronger than cross-gender interactions.

A number of recent papers have analyzed social interactions in a dis-

crete choice framework. Brock and Durlauf (2001a and 2003) use a random

fields approach to study aggregate behavioral outcomes in an economy in

which social interactions are imbedded in individual decisions. Equilibrium

properties of this model are derived by imposing a rational expectations con-

dition on the subjective choice probabilities of the agents and by assuming

that the number of agents is sufficiently large that each agent ignores the

effect of his own choice on the average choice level. In contrast, the present

paper describes behavior in relatively small groups of a given size in which

3



choices of other individuals can be assumed to be fully observable. In this

case, it is more appropriate to make an individual’s payoff dependent on the

actual choice of others in his group. For this reason, the equilbria in the

current model can be interpreted as one-shot pure Nash equilibria. In a re-

cent paper Tamer (2003) proposes a semiparametric estimator which allows

– under certain conditions – for consistent point estimation of the model in

the N = 2 case without making assumptions regarding nonunique outcomes.

Its extension and empricial implementation to N >> 2 have not been fully

developed as yet. Gaviria and Raphael (2001) analyze school-based peer

effects in the individual discrete choice behavior of tenth-graders. However,

their econometric model ignores multiplicity of equilibria.

2 Discrete Choice Interactions and
Multiple Equilibria

2.1 Preliminaries

Consider a population of N individuals indexed by i, i = 1, 2, . . . , N . Each

player i faces a binary choice and these choices are denoted by an indi-

cator variable yi which has support Yi = {−1, 1}. Yi is the strategy set

of player i and Y = ×N
i=1Yi. Elements of Y are called strategy profiles

or choice patterns. A strategy profile is denoted by y = (yi,y−i), where

y−i = (y1, y2, . . . , yi−1, yi+1, . . . , yN )′. Note that the number of elements in

Y is 2N . Each individual makes a choice in order to maximize a payoff

function V : Y → R∪{−∞}. For ease of exposition we will sometimes refer

to y = 1 as “smoking” and to y = −1 as “non-smoking”, although we will

also consider other types of behavior in the empirical part of the paper.

In the standard economic approach, the payoff function is dependent

on individual characteristics. Following the notation in Brock and Durlauf

(2001b), we assume that these characteristics can be divided into an ob-

servable vector xi and a random shock εi(yi) that is unobservable to the
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modeller but observable to agent i. Moreover, in interactions-based models

explicit attention is given to the influence of the behavior of others on each

individual’s choice. Each choice is then described as

(1) max
yi∈Yi

V (yi,xi,y−i, εi(yi)).

Similar to Brock and Durlauf (2001b), we assume that the payoff function

V can be additively decomposed into three terms:

(2) V (yi,xi,y−i, εi(yi)) = u(yi, xi) + S(yi,xi,y−i) + εi(yi),

where the first term u(yi, xi) denotes deterministic private utility, S(yi,xi,y−i)

denotes deterministic social utility and εi denotes random private utility. In

this paper we assume the social utility term to have the following form

Si ≡ S(yi,xi,y−i) =
γ

2(N − 1)
yi

∑
j �=i

yj .

Define y−ij = y\{yi, yj} so that (yi,xi,y−i) = (yi,xi, yj ,y−ij). Note that

(3)

{V (1,xi, 1,y−ij, εi(yi)) − V (−1,xi, 1,y−ij, εi(yi))}−
{V (1,xi,−1,y−ij, εi(yi)) − V (−1,xi,−1,y−ij, εi(yi))} =
{S(1,xi, 1,y−ij) − S(−1,xi, 1,y−ij)}−
{S(1,xi,−1,y−ij) − S(−1,xi,−1,y−ij)} =

2γ
N−1 .

Thus, for γ > 0 the utility of smoking (versus non-smoking) when another

person smokes as well is larger than the utility of smoking (versus non-

smoking) when another person does not smoke. In this case the parameter

γ measures the strategic complementarity between the choice of any pair

of individuals; for γ < 0 it measures the extent to which the choices are

strategic substitutes.1 In fact, for γ > 0 (γ < 0), the model falls into the

class of supermodular (submodular) games. Supermodular (submodular)

games are games in which each player’s strategy set is partially ordered

and the marginal returns to increasing one’s strategy (in this paper moving
1When γ = 0, the model reduces to the standard binary choice formulation without

externalities.
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from y = −1 to y = 1) rise (decrease) with increases in the competitors’

strategies.2

Conditional on the choice by individual i, deterministic private util-

ity is assumed to be a linear function of exogenous characteristics xi, i.e.

u(1, xi) = β′
1xi and u(−1, xi) = β′

−1xi.

The best response function of individual i given the choices of the other

individuals can now be represented as

(4)




y∗i = β′xi + si + εi

yi = 1 if y∗i > 0
yi = −1 if y∗i ≤ 0

where

si =
γ

N − 1

N∑
j=1
j �=i

yj

and where y∗i denotes the difference between the utility individual i derives

from choosing yi = 1 and the utility he derives from choosing yi = −1,

conditional on y−i, that is,

y∗i = V (1,xi,y−i, εi(1)) − V (−1,xi,y−i, εi(−1)),

with β ≡ β1 − β−1; εi ≡ εi(1) − εi(−1).

Define x ≡ (x′
1,x′

2, . . . ,x′
N)′ and ε ≡ (ε1, ε2, . . . , εN )′. A strategy profile

y is a pure Nash equilibrium profile if and only if it is consistent with (4) for

all i, i.e. if after substitution of these values of yi in si we have y∗i > 0 for all

i with yi = 1, and y∗i ≤ 0 for all i with yi = −1. Let Q(β, γ,x, ε,N) denote

the number of pure Nash equilibria given {β, γ,x, ε} and the population size

N . That is, for N ≥ 2,

Q(β, γ,x, ε, N) =(5)

2N∑
t=1


 N∏

i=1

I


εi > −β′xi − γ

N − 1

∑
j �=i

yjt




1+yit
2

I


εi ≤ −β′xi − γ

N − 1

∑
j �=i

yjt




1−yit
2




2Milgrom and Roberts (1990, p. 1255). See also Vives (1990) and the textbook treat-
ments of Topkis (1998) and Vives (1999).
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Figure 1: Multiple equilibria in ε-space (N = 2, γ > 0, β′x1 = β′x2 = 0) for
support Yi (left panel) and support Ỹi (right panel).

with I(·) an indicator function.34 In the model without social interactions

(i.e. γ = 0) each combination of {β, γ = 0,x, ε} obviously defines a unique

equilibrium, and thus Q(β, 0,x, ε,N) = 1.

An important feature of the model with social interactions is that, for

a given combination of {β, γ �= 0,x, ε}, several strategy profiles may be

consistent with (4). For example, if N = 2, γ = 1, and β′x1+ε1 = β′x2+ε2 =

−1
2 , profiles y = (1, 1)′ and y = (−1,−1)′ are both consistent with (4). In

the left panel of figure 1, equilibrium profiles for this two-person game are

drawn in ε-space. The shaded area is the area with multiple equilibria.
3We follow the convention 00 = 1.
4If the disturbances are i.i.d. with cumulative distribution function F (·), the expected

number of equilibria can be expressed as

E[Q(β, γ,x, N)] =
∫

Q(β, γ,x, ε, N)dF (ε) =∑2N

t=1

[∏N
i=1

(
1 − F

(
−β′xi − γ

N−1

∑
j �=i yjt

)) 1+yit
2

F
(
−β′xi − γ

N−1

∑
j �=i yjt

) 1−yit
2

]
.

See Soetevent (2004) for some properties of ∂E[Q(β, γ,x, N)]/∂γ.
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2.2 Choice of support {−1, 1} versus {0, 1}

It is of some importance to discuss the choice of support Yi = {−1, 1}
instead of the alternative Ỹi = {0, 1}. The latter is the common choice in

standard binary choice models where the difference is just a matter of scaling

and therefore immaterial. In this section, we will show that the specific

choice of support does affect the equilibrium properties of binary choice

interaction models. This fact has hitherto not been explicitly recognized

in the literature. Krauth (2001) for example, taciturnly switches to Ỹi as

support in his development of the small sample analog of the Brock-Durlauf

model, whereas these authors themselves employ Yi. Key idea is that in using

support Yi, the model is symmetric and therefore invariant with respect to

interchanging the two choices. This is not the case with Ỹi.

This difference between the two models becomes clear when one com-

pares the equilibria for the two-person game in ε-space under the assumption

that exogenous variables are irrelevant (β′x1 = β′x2 = 0). The left panel of

figure 1 uses support Yi and is symmetric with respect to the line ε1+ε2 = 0.

The right panel, which uses support Ỹi, is not.

Compared to the left panel of figure 1, one observes that in the right

panel the shaded area with multiple equilibria is reduced and restricted to

the points where the private utility difference of smoking for both players is

negative (β′xi +εi = εi < 0, i = 1, 2). When using Ỹi, one implicitly assumes

that only positive choices have a social effect. A justification for this choice

of support might be given from an evolutionary point of view, for example

by arguing that everybody starts as a non-smoker. In that case only the

teenagers who start smoking give a signal while the number of non-smokers

is irrelevant. Note, however, that the decision not to smoke can convey just

as strong a signal to others, especially in environments with many smokers.5

5To give an example, suppose that in a class with 9 teenagers, 3 of them would smoke
were social interactions absent (γ = 0), that is, y∗

i = β′xi + εi > 0 for three of them
and y∗

i ≤ 0 for the others. How would one interpret in this instance the observation

8



In other contexts however, Ỹi may be the preferred support. Consider

for example the context in which firms have to make a decision to enter

a certain market (Tamer, 2002). It is plausible that this decision is only

dependent on how many other firms decide to enter the market and that

the number of firms that decide not to enter is irrelevant. All results in the

sequel are derived while working with support Yi.

2.3 Equilibrium properties

This section provides three propositions on the equilibrium properties of

model (4). Proposition 1 guarantees equilibrium existence. It turns out

that the situation with strategic complements (γ > 0) is characterized by

fundamentally different equilibrium behavior than the one with strategic

substitutes (γ < 0). Moreover, in the latter case it makes a difference

whether the population has an even or an odd number of members. Propo-

sitions 2 and 3 provide strict upper bounds on the number of equilibria, for

the case with strategic complements and for the case with strategic substi-

tutes, respectively.

Define zi ≡ β′xi + εi and k ≡ ∑N
i=1 yi, that is, k is the net number

of agents choosing y = 1.6 Rank observations on basis of the values of

zi. Denote the ordered values as z[1] ≥ z[2] ≥ . . . ≥ z[N ]. Denote the

corresponding values of y for the agent with z[j] as y[j]. Note that the latter

are not ordered, such that it is not precluded that e.g. y[j] < y[j+1].

Proposition 1 Equilibrium existence

For every combination {β, γ,x, ε} there exists at least one vector y ≡ (y1, y2,

of zero smokers in this class? A natural explanation is that due to a social effect, the
six non-smokers keep the potential smokers from smoking. Support Yi allows for this
explanation, since the difference in social utility of smoking when nobody else smokes
equals γ

N−1

∑
j �=i yj = γ −8

8
< 0 for γ > 0. On the contrary, with Ỹi as underlying

support, γ
N−1

∑
j �=i yj = 0 irrespective of γ, such that social interactions cannot offer an

explanation.
6Note that given N , only those values of k for which N + k is an even number are

possible. This follows from the observation that k = a · 1− (N − a), a ∈ {0, 1, . . . , N} can
be rewritten as N + k = 2a.
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. . . , yN )′ for which (4) holds.

Proof: See the Appendix.

Proposition 2 Maximum number of equilibria (strategic comple-

ments)

For every combination {β, γ > 0,x, ε}, the discrete interaction model (4)

with N agents can have at most d(N) distinct equilibria, with

(6) d(N) = �N

2
+ 1	.

Moreover, for every number N , there exists a combination of {β, γ > 0,x, ε}
for which Q(β, γ,x, ε,N) = d(N).

Proof: See the Appendix.

The first part of proposition 2 states that in case of strategic comple-

ments the maximal number of equilibria grows linearly in N . The second

part ensures that the upper bound on the number of equilibria is strict.

Proposition 3 Maximum number of equilibria (strategic substi-

tutes)

For every combination {β, γ < 0,x, ε}, the discrete interaction model (4)

with N agents can have at most d(N) distinct equilibria, with

d(N) = de(N) =
N !

(N/2)!(N/2)!
if N is even, and

d(N) = do(N) =
N !

{(N + 1)/2}!{(N − 1)/2}! if N is odd.

Moreover, for every even (odd) number N , there exists a combination of

{β, γ < 0,x, ε} for which Q(β, γ,x, ε,N) = de(N) (Q(β, γ,x, ε,N) = do(N)).
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Proof: See the Appendix.

Proposition 3 states that for the situation with strategic substitutes, the

maximal number of equilibria grows exponentially in N . As in the case

with strategic complements, the upper bound on the number of equilibria is

strict. Note that de(N)
do(N−1) = 2 for all even N and limN→∞

do(N)
de(N−1) ↑ 2 for N

odd. That is, in the limit adding one agent to the population doubles the

upper bound on the number of equilibria.

It is also worth mentioning that with strategic substitutes |k| = |∑N
i=1 yi|

decreases monotonically to 0 (1) as γ → −∞ for N even (N odd). In fact,

this result holds more generally: in equilibrium, the difference between the

number of agents choosing y = 1 and the number of agents choosing y = −1,

is smaller when γ is more negative, other things equal.

2.4 Extension to more general interactions

The model considered so far only allows for identical interactions between

all individuals in the group. One can think more general interactions, where

the degree of interaction between two given individuals depends on e.g.

their socio-economic characteristics. In this section, we briefly discuss the

consequences of one particular extension of the model given by (4) in which

the degree of interaction is made gender-dependent. This leads to four

different interaction parameters: γGB measures the effect of boys on girls;

γBG from girls on boys, and γGG and γBB the intra-gender effects between

girls and boys, respectively. Specify

(7)




y∗i = β′xi + Si + εi

yi = 1 if y∗i > 0,
yi = −1 if y∗i ≤ 0.

where

Si =

{
(γGG

∑N
j=1,j �=i y

G
j +γGB

∑N
j=1 yB

j )/(N − 1) if i is a girl,
(γBG

∑N
j=1 yG

j +γBB
∑N

j=1,j �=i y
B
j )/(N − 1) if i is a boy,
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with yG
j ≡ yj · I(j is a girl) and yB

j ≡ yj · I(j is a boy), ∀j.

Corollary 1 For every combination {β, γBB ≥ 0, γGG ≥ 0, γGB , γBG,x, ε}
there exists at least one vector y ≡ (y1, y2, . . . , yN )′ for which (7) holds.

Proof: See the Appendix.

The equivalent of proposition 2 for the extended model follows automat-

ically:

Corollary 2 For every combination {β, γBB > 0, γGG > 0, γGB , γBG,x, ε},
the discrete interaction model given by (7) with NG girls and NB boys can

have at most d∗(NB , NG) distinct equilibria, where

d∗(NB , NG) = �NB

2
+ 1	 · �NG

2
+ 1	.

Moreover, for all NG and NB, there exists a combination of {β, γBB ≥
0, γGG ≥ 0, γGB , γBG,x, ε} for which the maximum number of equilibria is

obtained.

It is noteworthy that the values of the cross-gender interaction parame-

ters γGB and γBG do not play a role in determining the maximum number

of equilibria.

3 Estimation by simulation

To estimate the model we require the probability P (y) that we observe y,

for any given set of parameter values.

A choice pattern y observed for a particular group is either a single

equilibrium or one of multiple equilibria. The support in ε-space for choice

pattern y is

(8)
{

εi > −β′xi − s(y−i) if yi = 1
εi ≤ −β′xi − s(y−i) if yi = −1

12



where

s(y−i) =
γ

N − 1

N∑
j=1
j �=i

yj,

for all i, i = 1, . . . , N . Denote the region in ε-space defined in (8) by W (y, θ),

with θ being the parameters to be estimated. Since W (y, θ) may also sup-

port equilibria other than y, we have P (ε ∈ W (y, θ)) ≥ P (y).

Following Bjorn and Vuong (1983) and Kooreman (1994) we make a

randomization assumption in case of multiple equilibria: whenever the model

generates multiple equilibria we assume that one of them will occur with

probability equal to one over the number of equilibria. To determine the

number of equilibria in the various subregions of W (y, θ) we use a simulation

based method. Consider R random draws (indexed by r, r = 1, . . . , R) from

the joint distribution of (ε1, . . . , εN ) on W (y, θ). For each draw, we calculate

the number of equilibria. Recall that by construction of W (y, θ), y is either

the single equilibrium or one of the multiple equilibria. Let Ωr be the set of

equilibria corresponding to draw r and let Er denote the number of elements

in Ωr (i.e. Er is the number of equilibria at draw r). Then the probability

P (y) that choice pattern y will be observed is consistently estimated by the

frequency simulator

(9) P1(y) = P (ε ∈ W (y, θ)) · 1
R1

R1∑
r=1

1
Er

This procedure guarantees the statistical coherency of the model, i.e.
∑2N

t=1 P1(y =

yt) = 1, where yt, t = 1, . . . , N is the enumeration of all elements in Y .

We have found that R1 = 1000 generates estimated probabilities that are

sufficiently precise as inputs in a maximum likelihood procedure. Note that

since Er ≥ 1 we have 1
R1

∑R1
r=1

1
Er

≤ 1. If the disturbances are i.i.d., P (ε ∈
W (y, θ)) can be straightforwardly evaluated as the product of N univariate

probabilities; for a relaxation of the i.i.d. assumption, see subsection 4.6.
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Alternatively, P (y) could be estimated directly using

(10) P2(y) =
1

R2

R2∑
r=1

I(y ∈ Ωr)
Er

with R2 the number of draws from the joint distribution of (ε1, . . . , εN ) on

N . However, this would require the number of draws to be of a much larger

magnitude to achieve the same precision as achieved when using (9).

The characterization of the equilibria in propositions 1, 2, and 3 and

their proofs turns out to be extremely helpful in developing an algorithm

for estimation. Let M =
∑N

i=1 I(yi = 1), i.e. M denotes the number of

individuals choosing y = 1. Then
∑N

i=1 yi = k implies M = 1
2(N +k). From

the proof of proposition 2 it follows that, with γ > 0, the M agents with yi =

1 are those with the M largest values of zi. To determine whether there exists

an equilibrium with
∑N

i=1 yi = k, we therefore first rank observations on the

basis of the values of zi, for a given draw of (ε1, . . . , εN ). An equilibrium

with
∑N

i=1 yi = k exists if and only if the inequalities

(11)
z[N ] + k+1

N−1γ ≤ . . . ≤ z(M+1) + k+1
N−1γ ≤ 0 <

z[M ] + k−1
N−1γ ≤ . . . ≤ z[1] + k−1

N−1γ,

with 1 ≤ M = 1
2(N + k) ≤ N − 1, are satisfied. An equilibrium with M = 0

occurs if and only if zi − γ ≤ 0 for all i; an equilibrium with M = N occurs

if and only if zi + γ > 0 for all i. The proof of proposition 2 also shows

that two vectors y and ỹ that differ in only one element cannot both be

equilibria. As a result, we only have to check d(N) = �N
2 + 1	 out of the 2N

choice patterns as possible equilibria.

Suppose that model (7), with all γ’s positive, has an equilibrium with

MG smoking girls and MB smoking boys. It is straightforward to show that

the smoking girls are those with the largest values of zi in the subset of girls,

and that the smoking boys are those with the largest values of zi in the subset

of boys. As a result, we only have to check d∗(NB , NG) = �NB
2 +1	·�NG

2 +1	
out of the 2N choice patterns as potential equilibria.
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Proposition 3 implies that with one or more negative γ’s estimation is

computationally more demanding. However, negative γ’s were encountered

in only a limited number of cases; see also Kooreman (2003).

Having calculated for each group the probability that the observed choice

pattern occurs using, the model can be estimated by maximum likelihood.

From an empirical perspective it is important to note that in the esti-

mated models the probability of a single equilibrium usually turns out to be

larger than 80 percent, i.e. we usually have 1
R1

∑R1
r=1

1
Er

> 0.8. The estima-

tion results in this paper’s application also appear to be largely insensitive

with respect to the assumptions regarding the treatment of multiple equilib-

ria. For example, maximizing a quasi-loglikelihood based on P (ε ∈ W (y, θ))

yields estimates very similar to those based on P1(y).

4 Empirical application

4.1 The data: the Dutch National School Youth Survey

We will estimate the model outlined in the previous sections using data from

the Dutch National School Youth Survey (NSYS) from the year 2000.7

The data set used in estimation contains information on 7534 pupils in

487 classes in 66 schools. It contains information on the teenagers’ individual

characteristics, time use, income and expenditures, subjective information

on norms and values, and information on various behaviors and durable

goods ownership. There is only limited information on the parents (including

education and working hours) and no information on siblings.

Although in principle all pupils in a sampled class participate in the

survey, some pupils are excluded from the data. In some cases this is because
7Previous surveys were conducted in 1984, 1990, 1992, 1994, and 1996. The NSYS is

a joint effort of the Social and Cultural Planning Office of The Netherlands (SCP) and
the Netherlands Institue for Family Finance Information (NIBUD). In each survey year
a random sample of high schools in The Netherlands is drawn. A participating school is
compensated by means of a report summarizing the survey results for that school. The
series of surveys is not a panel, although some schools have participated more than once.
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a pupil was absent when the questionnaires were filled out, in other cases

because information on some of the variables is missing.

All information is self-reported. Thus, strictly speaking, our analysis

measures social interactions in how teenagers report on their behavior. The

results for “asking parents’ permission for purchases” may provide some

insight in potential differences between social interactions in reported be-

havior and in actual behavior. Asking parents for permission before making

a purchase is an aspect of out-of-class behavior. Since this primarily con-

cerns the relationship between a pupil and his or her parents, we expect

very weak or no endogenous social interaction effects in this type of actual

behavior. However, if pupils copy each others’ responses to the survey ques-

tions when filling out the questionnaire, spurious social interaction effects

might be found.8

4.2 Specification of the empirical model

Given the cross-section nature of the data we will not be able to fully ac-

count for the identification problems that characterize the empirical analysis

of social interactions. In order to provide a proper perspective for the in-

terpretation of the empirical results to be presented, we briefly discuss the

identification issues in relation to the present data set: i) the definition of

the reference group, ii) non-random selection into reference groups, and iii)
8A US data set which is comparable to the present one is the National Education and

Longitudinal Study (NELS), see e.g. Gaviria and Raphael (2001). Both the Dutch NSYS
and the NELS focus on non-cognitive outcomes within schools. The NELS is a biannual
survey, first held in 1988, and samples students within roughly 1000 schools. An important
difference with the Dutch NSYS is that the NELS surveys only a relatively small group of
students within each school. For example, in the 1990 sample used by Gaviria and Raphael,
the mean sample size per school was 13.3 students. While the NELS contains information
on school averages, these are not available per class, grade, or gender. This limits the
possibilities for an analysis of interactions within schools (for example, it is impossible to
allow for a school specific fixed effect) and it precludes any analysis of social interactions
within classes. Two other US data sets on teenagers with peer group information are the
Teenage Attitudes and Practices (TAPS) and the National Longitudinal Survey of Youths
(NLSY). However, the TAPS only contains subjective information on a respondent’s four
best same-sex friends, whereas the NLSY only has subjective peer information based on
questions of the type “What percentage of kids in your grade...?”.
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simultaneity of mutual endogenous interaction effects.

The definition of the reference group

As in any empirical analysis on social interaction we require an assump-

tion regarding the definition of the reference group – Who interacts with

whom? A number of empirical papers have defined the reference group of

an individual as the group of all persons in the population within the same

age group and with the same education level, using the sample analogues

as an approximation; see e.g. Kapteyn et al. (1997) and Aronsson et al.

(1999). This is a crude definition, largely motivated by data limitations.

A more attractive alternative is to use subjective information on an indi-

vidual’s reference group, as in Woittiez and Kapteyn (1998). However, the

information on the reference group of a sampled individual is often limited

as these reference group members are not themselves included in the sample.

The data in the current analysis can be viewed as a reference group based

sample as all students within a sampled class are interviewed in principle.

While teenage behavior is obviously also influenced by persons outside the

class, classmates are likely to play a dominant role in shaping teenagers’

preferences and behavior. On a weekday, the average student in the sam-

ple spends about six hours in his or her school class. The total time spent

on school related activities (including homework and commuting) is about

eight hours per weekday, more than fifty percent of the daily waking time.

Teenagers within the same school or class therefore form social groups that

are more clearly defined and delineated than in many other situations in

which social interactions are likely to play a role. Obviously, the definition

of the reference group could be extended to allow for interactions with stu-

dents outside the class. Also, one could in principle refine the specification

of social groups within the class beyond the boy-girl distinction, for example

on the basis of ethnicity, or by allowing the effect of younger and of older
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classmates to be different. These extensions are left for future research.

Non-random selection into reference groups

With respect to the selection issue one can make a distinction between

selectors and actors. An actor is the one whose behavior is being analyzed.

A selector is the one who decides to which reference group the actor belongs.

Contrary to most other studies on social interactions (see Duflo and Saez

(2002, 2003) for a recent exmaple) selectors and actors are not identical in

the present analysis: Selection into classes and schools is to a large extent

determined by parents and school authorities. More importantly, selection

into classes is usually based on cognitive abilities whereas the present anal-

ysis focuses on non-cognitive behaviors. In fact, we will find that for some

behaviors within-class correlation is absent, suggesting that the selection

issue is less poignant here than in other studies on social interactions. To

control for the selection issue to some extent we will also estimate a version of

the model including school specific fixed effects and allowing for within-class

correlation of error terms.

Endogenous versus contextual effects

Gaviria and Raphael (2001) argue that students are less exposed to the

family background of their school peers than they are exposed to the family

background of peers residing in the same neighborhood. They conjecture

that in an analysis of interactions through schools contextual effects are

less important than in an analysis of interactions through neighborhoods.

In their empirical analysis they assume that contextual effects are absent.

Kawaguchi (2004) invokes subjective information about the perception of

peer behaviors to achieve full identification.9 He finds that the absence

of contextual effects cannot be rejected. The empirical results presented
9Identification is based on the problematic assumption that perceived behavior is not

determined by actual behavior.
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below are based on the assumption that there are no contextual effects. The

estimates on the endogenous social interaction effects should therefore be

interpreted as upper bounds on the true effects.

The vector x includes age, and dummy variables for gender, for be-

ing non-Dutch (based on the question “Do you consider yourself to be

Dutch?”), for the type of education (MAVO (lower level), HAVO (inter-

mediate level), and VWO (higher level), with ‘vocational’ as reference cat-

egory), for catholic, for protestant, and for living in a ‘single parent family’

(based on the question “Do you live in a family with father and mother?”).

Unfortunately, a large proportion of teenagers do not know their parents’

education level (41 and 36 percent for father’s and mother’s education level,

respectively). We therefore choose not to include parents’ eduation levels

as explanatory variables. However, we do include the father’s working time

and the mother’s working time (for a pupil with a single parent the working

time of the missing parent is set equal to the sample average).10 Tables 1

provides sample statistics for both the endogenous and exogenous variables

in the model.

4.3 Estimation results

Table 2 presents four versions of the estimated model for smoking. The first

column contains estimation results for the model without social interactions

(i.e. with γGG = γGB = γBB = γBG = 0). The probability of smoking

strongly increases in age. The effect of gender is insignificant. The higher

the level of the type of education, the smaller the probability that a pupil

smokes. We also find that pupils from single parent households and pupils

whose mother has a paid job have a significantly larger probability to smoke.

The variables non-Dutch, catholic, and protestant negatively affect pupils’
10A number of studies have reported indicators for self-esteem to be important explana-

tory variables in the analysis of teenage behavior; see e.g. Smetters and Gravelle (2001).
We choose not to include such a variable because of its potential endogeneity.
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smoking behavior. The effects are largely consonant with earlier empirical

studies on smoking behavior; see for example, Gruber and Zinman (2001)

and Gruber (2001).

Column two presents results for the model with social interactions. All

social interaction coefficients are positive and highly significant. The largest

one is γBB , measuring the boy-boy interaction, followed in size by γGG,

measuring the interaction between girls. The coefficients γGB and γBG,

measuring the cross-gender interactions are also significant, though smaller

in size. Note that the inclusion of the social interaction coefficients hardly

affects the other parameters.

4.4 Fixed effects

Smoking behavior in all classes of a given school is likely to be affected by

a number of unobserved school specific factors, like smoking behavior of

teachers, the school’s policy regarding smoking, and proximity of tobacco

outlets. Unobserved school specific factors may also be related to a non-

random assignment of pupils to schools. For example, parents who smoke

themselves may be less likely to send their children to a school in which

smoking is strictly prohibited. Significant social interaction coefficients may

then merely reflect the failure to control for these unobserved effects. We

therefore also estimate a version with school specific fixed effects.11

The inclusion of school specific fixed effects amounts to estimating 64

additional parameters (one school is reference category, another school is

deleted because it has non-smokers only). The results are reported in the

third and fourth column of table ??. While, in column four, the cross-gender

interaction effects are not significant for this specification, the within gender

interactions are still sizeable and significant, with again the boy-boy inter-
11Clearly, a more flexible specification would be obtained by allowing for class specific

fixed effects. With the current data, the estimation of class specific effects is infeasible.
However, below we will estimate a version with class specific random effects.
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action being stronger than the girl-girl interaction. The other coefficients

now have somewhat larger standard errors, but this has a negligible effect

on the significance of explanatory variables. More importantly, a χ2-test

shows that the fixed effects are jointly insignificant (p = 0.201).

We have also estimated the model for truancy, moped ownership, cell

phone ownership, and asking parents’ permission for purchases.12 Tables

3 and 4 report the results without and with school specific fixed effects,

respectively. (For ease of comparison the first column in table 3 repeats

the second column from table 2 and the first column in table 4 repeats the

fourth column from table 2.)

The significance of the fixed effects varies across the five types of behav-

ior. For truancy, smoking, and moped ownership the fixed effects are not

significant (see bottom row of table 2), while for cell phone ownerhip and

asking parents’ permission they are significant. The discussion of estimation

results below is therefore based on table ?? for smoking, truancy, and moped

ownership, and on table 2 for the other two choice behaviors.

For truancy, the intra-gender effects are stronger than for smoking.

Moreover, we now also have significant cross-gender interactions. The prob-

ability of truancy sharply increases in age, is larger for non-Dutch pupils,

and decreases in the level of education. The mother’s working time also has

a significant positive effect on truancy.

Moped ownership is the only type of behavior where we find a large

gender effect: The probability of moped ownership is much larger for boys
12The variable ‘truancy’ in the empirical analysis is based on the question “How often

have you been playing truant during the last (school)month?”. As truanters have a larger
probability of being absent when the questionnaire is being filled out, there is a potential
selection bias. The effect on the estimated social interaction coefficients, however, is likely
to be small. The absence of a group of truanters with strong mutual interactions might
bias the estimated γ’s towards zero, but the presence of a group on non-truanters with
strong mutual interactions will have the opposite effect. Moreover, tentative calculations
indicate that the probability of a student truanting on a random schoolday is in the order
of one percent.
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than for girls. It strongly increases in age (the legal minimum age for riding

a moped in The Netherlands is 16) and decreases in the level of education. It

is also the only type of behavior where we have a clear asymmetry in social

interactions between genders. For a boy, the probability of moped ownership

is strongly affected by moped ownership of other boys and of girls. Moped

ownerhip for girls, on the other hand, is not affected by social interactions.

For cell phone ownership we again find an increasing effect of age and a

decreasing effect of education. Teenagers from a single parent family have

a much larger probability of owning a cell phone. Only the girl-girl social

interaction effect is significant.

The probability of asking parents’ permission before purchasing some-

thing strongly decreases in age, and is smaller for non-Dutch pupils and

for pupils in a single parent household. It also significantly decreases in

mother’s working time. The four social interaction coefficients are (jointly)

insignificant. This suggests that pupils do not copy each other’s responses

when filling out the questionnaire. It also indicates that the effects found for

the other four types of choice behavior represent genuine endogenous social

interaction effects rather than unobserved social group effects.

4.5 The magnitude of the social interaction effects

In order to gain some insight in the magnitude of the social interaction ef-

fects implied by the estimated γ’s consider a reference class (largely based

on median values of exogenous variables). This is a hypothetical MAVO

class composed of 8 girls and 8 boys; all of them are aged 14, Dutch, non-

protestant, non-catholic, and come from a two-parent household with a fa-

ther working 36 hours per week and a mother working 16 hours per week.

Using the estimated parameters from table ??, we find that in equilibrium

the expected number of truanters is 3.14 (the probability of truancy is 0.191
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for girls and 0.201 for boys).13

Now suppose that a surely truanting girl is added to this class (i.e. we

add a girl with characteristics such that her probability of truancy is virtually

equal to 1, irrespective of the behavior of others). Without social interaction

effects, the expected fraction of truanters would rise from 0.196 (3.14/16) to

0.244 (4.14/17), a 24 percent increase. Taking social interaction effects into

account, the new equilibrium fraction of truanters rises to 0.278 (4.73/17),

an increase of 41 percent compared to the original level. If a surely non-

truanting girl is added to this class, the expected fraction decreases from

0.196 (3.14/16) to 0.185 (3.14/17) without social interaction effects (a 6

percent decrease), and to 0.169 (2.88/17) with social interaction effects (a

16 percent decrease).

The model also implies that a change in the value of an exogenous vari-

able of only one of the pupils in principle affects the behavior of all pupils

in class. Suppose, for example, that the mother of one of the girls in the

reference class increases her working hours to 46 per week. Then the equi-

librium truancy probability of her daughter increases from 0.191 to 0.210.

However, it also changes the equilibrium truancy probabilities of the other

girls (from 0.1909 to 0.1915) and boys (from 0.2002 to 0.2012). As a result,

the expected of number of truanters in class increases not only by 0.019

(0.210-0.191), but by 0.031.

4.6 Correlated within-class error terms

As an additional check on the robustness of the empirical results we also

estimated the model for smoking with a slightly more general correlation

pattern of the error terms within a class (but without school specific fixed

effects). We assume the covariance matrix Σ of (ε1, . . . , εN ) to be a ‘one-

factor’ matrix such that Σ = {ρij} with ρij = ρ if i �= j and ρij = 1 if i = j.

13All numbers are based on simulations with R=100000.
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To calculate the probabilities P (ε ∈ W (y, θ)) we use a decomposition simu-

lator which effectively depends on only a one-dimensional random variable;

cf. Stern (1992).14

We first estimated this version without social interaction effects. We

then found the estimated ρ to be highly significant (ρ̂=0.098, t-value 8.6,

loglikelihood -2146.8) with the other parameters largely unaffected. When

estimating the model with social interaction effects, the estimated ρ is virtu-

ally equal to zero and highly insignificant, with the other parameters being

identical to those in the second column of table 2. These results are another

indication that the γ’s are measures of genuine endogenous social interac-

tions effects rather than a reflection of unmeasured class specific effects.

5 Conclusion

We derived a number of equilibrium properties for the binary choice interac-

tion model with a finite number of agents. Both for the case with strategic

complements and strategic substitutes, equilibrium existence was proved and

tight upper bounds were derived for the size of the set of equilibria, given

the number of agents and the degree of interaction between them. We also

briefly discussed the consequences for the set of equilibria when the model

is extended to allow for gender-dependent interactions. The main finding

here is that the cross-gender parameters are irrelevant in the derivation of

the upper bounds.

In our application to teenagers’ discrete choices, we found strong social

interaction effects for behavior closely related to school (truancy), somewhat
14Let the random variables u1, . . . , uN , and v be independently normally distributed

with zero means; var(ui) = 1 − ρ, i = 1, . . . , N and var(v) = ρ. (We require ρ > 0; the
procedure for ρ < 0 is slightly different. Note, however, that the positive definiteness of Σ
implies − 1

N−1
< ρ < 1.) Let εi = ui + v, i = 1, . . . , N . Then Cov(ε) = Σ, with Σ defined

in the main text. Now P (ε1 < z1, . . . , εN < zN ) = P (u1 < z1 − v, . . . , uN < zN − v) =∫
Φ

(
z1−v√
1−ρ

)
. . . Φ

(
zN−v√

1−ρ

)
.f(v)dv, with Φ(.) the standard normal cumulative distribution

function and f(v) a N(0, ρ) density function. The integral is simulated by drawing v from

f(.) and then evaluating Φ
(

z1−v√
1−ρ

)
. . . Φ

(
zN−v√

1−ρ

)
conditional on v.
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weaker social interaction effects for behavior partly related to school (smok-

ing, moped and cell phone ownership) and no social interaction effects for

behavior far away from school (asking parents’ permission for purchases).

The latter result suggests that the effects found for the other four types

of choice behavior represent genuine endogenous social interaction effects

rather than unobserved social group effects.

The work presented in this paper indicates various possible extensions for

future research. An example is to allow for more general interaction struc-

tures, for example by making interaction parameters dependent on socio-

economic characteristics. Another, more general issue – typically neglected

in the empirical social interactions literature to date – is the question which

type of equilibrium concept is appropriate. The fact that classmates inter-

act daily, usually for many years, and often become friends suggests that

non-cooperative Nash equilibria may not always be plausible.

While the present data set has a number of important advantages in

terms of information on reference group members, the empirical results are

subject to the usual qualifications regarding inferences about social inter-

actions based on cross-section data. Future steps toward increasing our

understanding of social interactions will require more informative data and

models characterized by a tight link between game theory and econometrics.
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Appendix: Proofs

Proof of Proposition 1: Equilibrium existence

The case for γ = 0 is obvious. We prove proposition 1 for the game with

strategic complements (γ > 0) and the game with strategic substitutes

(γ < 0) separately. For the first case, existence can be readily proved by

showing that the game belongs to the class of supermodular games. Ex-

istence then immediately follows from using Theorem 5 in Milgrom and

Roberts (1990, p. 1265). In this appendix however, we will follow for both

cases the alternative route of proving equilibrium existence through finding

an explicit equilibrium for all combinations of {β, γ,x, ε}. This procedure

may give more insight into some of the peculiarities of the model.

Every possible combination of {β, γ > 0,x, ε} clearly falls into one of the

three following categories

(i) z[1] ≤ 0;

(ii) z[N ] > 0;

(iii) z[1] > 0, z[N ] ≤ 0;

We show that for each z in every category there is an associated y for which

(4) holds, for all values γ > 0.

(i) z[1] ≤ 0:

yi = −1, i = 1, 2, . . . , N (k = −N) is an equilibrium solution, since

y∗[1] = z[1] − γ N−1
N−1 ≤ 0. This implies that y∗[i] ≤ 0 ∀i since γ N−1

N−1 is a

constant and z[i] weakly decreases with i.

(ii) z[N ] > 0:

yi = 1, i = 1, 2, . . . , N (k = N) is an equilibrium solution, since y∗[i] =

z[i] + γ N−1
N−1 > 0,∀i.
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(iii) z[1] > 0, z[N ] ≤ 0:

Define M ≡ 0 if z[j] ≤ −γ (2j−N−1)
N−1 ,∀j, j ∈ {1, 2, . . . , N} and M ≡

arg maxi

(
z[j] > γ (2i−N−1)

N−1 ;∀j ≤ i
)

otherwise. Five examples of se-

quences of z[i] with N = 6 and γ = 1 are plotted in figure 2 together

with the corresponding values of M . The solid line represents the

equation z[i] = −γ (2i−N−1)
N−1 .

If M = 0, y[i] = −1, i = 1, 2, . . . , N is an equilibrium solution, since

y∗[i] = z[i] − γ ≤ z[1] − γ ≤ 0, ∀i. (See the +-sequence in figure 2.)

If M > 0, y[i] = 1 for i = 1, 2 . . . ,M and y[i] = −1 for i = M +

1,M + 2, . . . , N (k = M − [N − M ] = 2M − N) is an equilibrium

solution, since y∗[i] = z[i] + γ 2M−N−1
N−1 > 0 for i = 1, 2, . . . ,M and

y∗[j] ≤ y∗[M+1] = z[M+1] + γ 2M−N+1
N−1 = z[M+1] + γ 2(M+1)−N−1

N−1 ≤ 0 for

all j = M + 1,M + 2, . . . , N .

Note that for sequences of z[i]’s for which M = N (like the sequence

of circles and x-es in figure 2), y[i] = −1, i = 1, 2, . . . , N is another

equilibrium solution iff. z[1] ≤ γ. In figure 2, this condition holds for

the sequence of x-es but not for the sequence of circles. �

Strategic substitutes (γ < 0)

In this case, we distinguish between the case where the number of subjects

N is even and the case where this number is odd.

N even Let γ < 0. Define m ≡ arg maxi

(
z[i] > 0

)
. Suppose that m >

N/2, that is, the majority of the subjects have a value of z greater than

zero. Define the non-overlapping non-empty intervals I0 ≡
[
0, z[m](N−1)

2m−N−1

)
;

Im−N/2 ≡
[

z[N/2+1](N−1)

2(N/2+1)−N−1 ,∞
)

= [z[N/2+1](N − 1),∞) and, if m > N/2 + 1,

Ir ≡
[

z[m−r+1](N−1)

2(m−r+1)−N−1 ,
z[m−r](N−1)

2(m−r)−N−1

)
, for r = 1, 2, . . . ,m − N/2 − 1.

First consider the case m > N/2 + 1. Since the intervals are non-
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Figure 2: Five examples of z[i]-sequences and the corresponding solutions

for M ≡ arg maxi

(
z[j] > γ (2i−N−1)

N−1 ;∀j ≤ i
)

for the case with N = 6 and
γ = 1.

overlapping and since I0∪I1∪. . .∪Im−N/2 = [0,∞), −γ is in one and only one

of these intervals. If −γ ∈ I0, y = (1, 1, . . . , 1m,−1, . . . ,−1)′, (k = 2m−N)

is an equilibrium, since for this solution y∗[1] ≥ . . . ≥ y∗[m] = z[m]+γ 2m−N−1
N−1 >

0 and y∗[N ] ≤ . . . ≤ y∗[m+1] = z[m+1] + γ 2m−N+1
N−1 ≤ 0. If −γ ∈ Ir, for

r = 1, 2, . . . ,m−N/2−1, y = (1, 1, . . . , 1m−r,−1, . . . ,−1)′ (k = 2(m−r)−N)

is an equilibrium, since for this solution y∗[1] ≥ . . . ≥ y∗m−r = z[m−r] +

γ 2(m−r)−N−1
N−1 > 0 and y∗[N ] ≤ . . . ≤ y∗[m−r+1] = z[m−r+1] + γ 2(m−r)−N+1

N−1 ≤ 0.

If −γ ∈ Im−N/2, y = (1, 1, . . . , 1N/2,−1, . . . ,−1)′ (k = 0) is an equilib-

rium, since for this solution y∗[1] ≥ . . . ≥ y∗[N/2] = z[N/2] + γ −1
N−1 > 0 and

y∗[N ] ≤ . . . ≤ y∗[N/2+1] = z[N/2+1] + γ 1
N−1 ≤ 0.

If m = N/2 + 1, then I0 ∪ Im−N/2 = I0 ∪ I1 = [0,∞). Applying similar

reasoning, one can verify that y = (1, 1, . . . , 1N/2+1,−1, . . . ,−1)′, (k = 2)

is an equilibrium when −γ ∈ I0 and that y = (1, 1, . . . , 1N/2,−1, . . . ,−1)′

(k = 0) is an equilibrium when −γ ∈ I1.
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If m = N/2, then y = (1, 1, . . . , 1N/2,−1, . . . ,−1)′ is an equilibrium for

all −γ ∈ (0,∞), since y∗[1] ≥ . . . ≥ y∗[N/2] = z[N/2] + γ −1
N−1 > z[N/2] > 0 and

y∗[N ] ≤ . . . ≤ y∗[N/2+1] = z[N/2+1] + γ 1
N−1 < z[N/2+1] ≤ 0.

Due to symmetry, the above argument can be applied for m < N/2 with

m replaced by m̃ ≡ N − m ≥ N/2 and the roles of the outcomes +1 and -1

interchanged.

N odd The above argument can also be applied for odd N . Suppose that

m > (N+1)/2 and define I0 ≡
[
0, z[m](N−1)

2m−N−1

)
, Im−(N+1)/2 ≡

[
z[(N+1)/2+1](N−1)

2(N+1
2

+1)−N−1
,∞

)
=[

z[(N+1)/2+1](N−1)

2 ,∞
)

and, if m > (N+1)/2+1, Ir ≡
[

z[m−r+1](N−1)

2(m−r+1)−N−1 ,
z[m−r](N−1)

2(m−r)−N−1

)
,

for r = 1, 2, . . . ,m − (N + 1)/2 − 1.

Taking the case that m > (N + 1)/2 + 1, it follows that for −γ ∈
I0, y = (1, 1, . . . , 1m,−1, . . . ,−1)′ (k = 2m − N) is an equilibrium; for

−γ ∈ Ir, r = 1, 2, . . . ,m − (N + 1)/2 − 1, y = (1, 1, . . . , 1m−r,−1, . . . ,−1)′

(k = 2(m − r) − N) is an equilibrium; and for −γ ∈ Im−(N+1)/2, y =

(1, 1, . . . , 1(N+1)/2,−1, . . . ,−1)′ (k = 1) is an equilibrium.

If m = (N + 1)/2+ 1, then I0 ∪ Im−(N+1)/2 = I0 ∪ I1 = [0,∞). Applying

similar reasoning, one can verify that y = (1, 1, . . . , 1(N+1)/2+1,−1, . . . ,−1)′

(k = 3) is an equilibrium when −γ ∈ I0 and that y = (1, 1, . . . , 1(N+1)/2,−1, . . . ,−1)′

(k = 1) is an equilibrium when −γ ∈ I1.

If m = (N +1)/2, then y = (1, 1, . . . , 1(N+1)/2,−1, . . . ,−1)′ is an equilib-

rium for all −γ ∈ (0,∞), since y∗[1] ≥ . . . ≥ y∗[(N+1)/2] = z[(N+1)/2] + γ · 0 > 0

and y∗[N ] ≤ . . . ≤ y∗[(N+1)/2+1] = z[(N+1)/2+1] + γ 2
N−1 < z[N/2+1] ≤ 0. Again,

the case with m < (N + 1)/2 follows from symmetry. �

Proof of Proposition 2: Maximum number of equilibria (strate-
gic complements)

The proof for strategic complements uses the following lemma:
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Lemma 1 Let γ > 0. Suppose model (4) has an equilibrium y. Then

min
{i|yi=1}

zi − max
{i|yi=−1}

zi >
2γ

N − 1
,

where zi ≡ β′xi + εi.

Proof of Lemma 1

Consider an agent i with yi = 1 and an agent j with yj = −1. Suppose

zj ≥ zi − 2γ
N−1 . Then y∗j = zj + γ

(
k+1
N−1

)
≥ zi + γ

(
k−1
N−1

)
= y∗i . But since

yi = 1 and yj = −1 implies y∗i > 0 ≥ y∗j , we have a contradiction. �

The lemma’s effect is that it restricts the maximum number of potential

equilibria to N + 1. The following observation is an immediate consequence

of lemma 1:

1 In any equilibrium the agents with yi = 1 are those with the largest

values for zi.

Now consider two vectors y and ỹ that differ in one element only. With-

out loss of generality, assume that yi = 1 and ỹi = −1 for some i. Define

y−i ≡ (y1, y2, . . . , yi−1, yi+1, . . . , yN )′ and ỹ−i ≡ (ỹ1, ỹ2, . . . , ỹi−1, ỹi+1, . . . , ỹN )′.

Since y−i = ỹ−i, it follows that y∗i = zi + γ
N−1

∑
j �=i yj = zi + γ

N−1

∑
j �=i ỹj =

ỹ∗i given a combination of {β, γ,x, ε}. This implies that yi = ỹi and we ar-

rive at a contradiction. Note that this result holds irrespective of γ being

positive or negative. The following observation is thus obtained:

2 Two vectors y and ỹ that differ in only one element cannot both belong

to the set of equilibria.

From the observations 1 and 2 it follows that the number of equilibria for

a given combination of {β, γ > 0,x, ε} can be at most d = �N
2 + 1	, where

�w	 denotes the largest integer not larger than w. To give an example:

When the number of agents N = 8, the maximum number of equilibria can

be at most �N
2 + 1	 = 5. Due to statements 1 and 2, the strategy profiles of
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these equilibria must be strictly ordered and differ in at least two elements.

This leaves the following five strategy profiles as the only candidates:

(1, 1, 1, 1, 1, 1, 1, 1)′ ; (1, 1, 1, 1, 1, 1,−1,−1)′ ; (1, 1, 1, 1,−1,−1,−1,−1)′ ;
(1, 1,−1,−1,−1,−1,−1,−1)′ ; (−1,−1,−1,−1,−1,−1,−1,−1)′ .

This proves the first part of proposition 2. The proof of the second part

– the upper bound on the number of equilibria is strict – runs as follows.

Denote the d equilibria that are to be sustained as15

y1 = (1, 1, . . . , 1)′

y2 =
{

(1, . . . , 1,−1,−1)′ if N is even,
(1, . . . , 1,−1,−1,−1)′ if N is odd.

...

yj =
{

(1, . . . , 1N−2(j−1),−1N−2(j−1)+1, . . . ,−1)′ if N is even,

(1, . . . , 1N−2(j−1)−1,−1N−2(j−1), . . . ,−1)′ if N is odd,

with j = 3, . . . , d − 1.

yd = (−1,−1, . . . ,−1)′.

First note that y1 can be sustained as an equilibrium outcome if and

only if z[N ] > −γ and that yd can be sustained as an equilibrium outcome

if and only if z[1] ≤ γ. Further note that yd−i, i = 1, . . . , d − 2 can be

sustained as equilibria if and only if z[2i] > γ N−4i+1
N−1 and z[2i+1] ≤ γ N−4i−1

N−1 .

The fact that these necessary and sufficient conditions on the values of z

can be satisfied simultaneously completes the proof.

Proof of Proposition 3: Maximum number of equilibria (strate-
gic substitutes)

In order to prove proposition 3, we will use:

Lemma 2 For a given combination {β, γ < 0,x, ε}, y and ỹ are both equi-

libria of (4), only if
∑N

i=1 yi =
∑N

i=1 ỹi.
15When N is odd, there has to be one equilibrium that differs in at least three elements

when compared to any of the other equilibria. Without loss of generality we assume the
last three elements of y to be the three elements that move together.
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The proof of lemma 2 uses:

Lemma 3 If for a given combination {β, γ < 0,x, ε} there exists an equi-

librium y with y[j] = −1 and y[j+1] = 1, then there also exists an equilibrium

ỹ with ỹ[j] = 1 and ỹ[j+1] = −1 and ỹ[i] = y[i] for i �= j, j + 1.

Proof of Lemma 3

From the fact that y is an equilibrium with y[j] = −1 and y[j+1] = 1, it

follows that

y∗[j] = z[j] + γ
k + 1
N − 1

≤ 0

y∗[j+1] = z[j+1] + γ
k − 1
N − 1

> 0.

However, since γ < 0, we have

ỹ∗[j] = z[j] + γ
k − 1
N − 1

≥ z[j+1] + γ
k − 1
N − 1

> 0

ỹ∗[j+1] = z[j+1] + γ
k + 1
N − 1

≤ z[j] + γ
k + 1
N − 1

≤ 0.

It then follows that ỹ with ỹ[i] = y[i] for i �= j, j + 1 and ỹ[j] = 1 and

ỹ[j+1] = −1 is also an equilibrium. �

Having proved lemma 3 we can now prove lemma 2.

Proof of Lemma 2

Suppose that y with
∑N

i=1 yi = k and ỹ with
∑N

i=1 ỹi = k̃ and k̃ �= k are

both equilibria of (4), given a combination {β, γ < 0,x, ε}. From lemma 3

it follows that this is true only if yk = (11, 12, . . . , 1N+k
2

,−1N+k+2
2

, . . . ,−1N )

and yk̃ = (11, 12, . . . , 1N+k̃
2

,−1N+k̃+2
2

, . . . ,−1N ) are both equilibria given

{β, γ < 0,x, ε}. Assume without loss of generality that k̃ > k, that is:

k̃ − k ≥ 2. Let ν be the first subject whose choice is −1 in equilibrium yk

and +1 in equilibrium yk̃. Then, for this subject

z[ν] + γ
k + 1
N − 1

≤ 0 and z[ν] + γ
k̃ − 1
N − 1

> 0.
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But also

z[ν] +γ
k̃ − 1
N − 1

= z[ν] +γ
k̃ − k + k + 1 − 2

N − 1
= z[ν] + γ

k + 1
N − 1︸ ︷︷ ︸

≤0

+ γ
(k̃ − k) − 2

N − 1︸ ︷︷ ︸
≤0

≤ 0,

and the contradiction follows. �

The message of lemma 2 is that for a given value of γ < 0, two different

equilibria y and ỹ can co-exist only if
∑N

i=1 yi =
∑N

i=1 ỹi. That is, both

equilibria must have the same number of subjects with outcome +1 and

with outcome -1.

Repeated application of lemma 3 shows that a strategy profile y with∑N
i=1 yi = k can only be an equilibrium if the ordered (with respect to the

zi’s) strategy profile y = (11, 12, . . . , 1k,−1k+1, . . . ,−1N )′ is an equilibrium.

This result will prove to be useful later on in deriving upper bounds for the

number of equilibria that may be sustained for a given value of γ.

To complete the proof of Proposition 3, note that the first part of lemma

2 implies that the maximum number of possible equilibria subject to the

condition
∑N

i=1 yi = k is obtained when k is chosen to equal 0 (+1 or -1)

when N is even (odd). In that case, there are N/2 ((N +1)/2 or (N −1)/2)

agents choosing +1 and the others choosing −1, giving the upper bounds

on the number of possible equilibria as given by d(N) in proposition 3.

What is left to show is that there exists a combination of {β, γ < 0,x, ε}
for which the maximum number of equilibria is obtained. From lemma 2

we know that, given a combination of {β, γ < 0,x, ε}, every element in the

equilibrium set must have the same number of agents choosing y = 1. For

N is even, the set can thus only have de(N) elements when the set contains

all strategy profiles for which the number of agents choosing y = 1 equals

the number of agents choosing y = −1. For each of these profiles to be an

equilibrium, it must be optimal for each agent i to choose yi = 1 given that∑
j �=i yj = −1 and to choose yi = −1 given that

∑
j �=i yj = 1. In particular,
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it must hold that for each element the number of agents splits

z[1] + γ
1

N − 1
≤ 0 and;

z[N ] + γ
−1

N − 1
> 0.

For γ negative enough, this condition is satisfied irrespective of the values

of z[1], . . . z[N ].

For N is odd, the equilibrium set can only contain do(N) elements when

the set contains all strategy profiles for which
∑N

i=1 yi = 1 or all strategy

profiles for which
∑N

i=1 yi = −1. The necessary and sufficient conditions for

each of the profiles for which
∑N

i=1 yi = 1 to be an equilibrium, are

(A.1) z[1] + γ
2

N − 1
≤ 0 and z[N ] > 0,

and the corresponding conditions for the strategy profiles with
∑N

i=1 yi = −1

are

(A.2) z[1] ≤ 0 and z[N ] + γ
−2

N − 1
> 0.

From these conditions it follows that the equilibrium set with do(N) ele-

ments for which
∑N

i=1 yi = 1 (
∑N

i=1 yi = −1) is only obtainable when all z

values are positive (non-positive). Together this proves proposition 3. �

Lemma 2 and the observation that for the equilibria in the proof of

proposition 1 |k| = |∑N
i=1 yi| monotonically decreases as γ → −∞, together

lead to the following corollary16 that for all equilibria, |k| decreases mono-

tonically to 0 (1) as γ → −∞, given N even (odd). This result is consonant

with intuition: variation in behavior increases when the utility derived from

being different increases.

16The corresponding result for positive interactions is that |∑N
i=1 yi| ↗ N as γ → ∞.

That is, in the limit all agents conform to y = 1 or to y = −1 regardless their private
utility such that variation in behavior is minimized.
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Corollary 3 For the equilibria y of the discrete choice interaction model

given by (4),

|
N∑

i=1

yi| ↘ 0 as γ → −∞ and N is even,

|
N∑

i=1

yi| ↘ 1 as γ → −∞ and N is odd.

Proof of Corollary 1

Define ∀i, zG
i ≡ β′xi +

γGB
∑N

j=1 yB
j

N−1 + εi if i is a girl and zB
i ≡ β′xi +

γBG
∑N

j=1 yG
j

N−1 + εi if i is a boy. Denote the ordered values of zG
i (zB

i ) as zG
[i]

(zB
[i]) such that zG

[1] ≥ zG
[2] ≥ . . . ≥ z[NG] (zB

[1] ≥ zB
[2] ≥ . . . ≥ z[NB ]), with NG

(NB) denoting the total number of girls (boys) in the sample.

The line of reasoning used in the proof of proposition 1 now can be

applied to the subset of girls (boys), with z[i] replaced by zG
[i] (zB

[i]) and γ

replaced by γGG (γBB). �
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Table 1: Sample statistics at the individual level (7,534 observations)
mean median st. dev. min. max.

girl 0.5167 1.0000 0.4998 0.0000 1.0000
age 14.2520 14.0000 1.4437 11.0000 21.0000
non-Dutch 0.0881 0.0000 0.2835 0.0000 1.0000
single parent hh. 0.0832 0.0000 0.2762 0.0000 1.0000
MAVO 0.3211 0.0000 0.4669 0.0000 1.0000
HAVO 0.1968 0.0000 0.3976 0.0000 1.0000
VWO 0.1724 0.0000 0.3778 0.0000 1.0000
working time father 36.0284 36.0000 12.6600 0.0000 46.0000
working time mother 15.4080 16.0000 15.1320 0.0000 46.0000
catholic 0.2360 0.0000 0.4246 0.0000 1.0000
protestant 0.1856 0.0000 0.3888 0.0000 1.0000

smoking 0.0897 0.0000 0.2858 0.0000 1.0000
truancy 0.1886 0.0000 0.3912 0.0000 1.0000
asking for permission 0.8600 1.0000 0.3470 0.0000 1.0000
moped 0.0657 0.0000 0.2478 0.0000 1.0000
cell phone 0.2104 0.0000 0.4076 0.0000 1.0000

girls (3,893 observations)

smoking 0.0917 0.0000 0.2886 0.0000 1.0000
truancy 0.1811 0.0000 0.3851 0.0000 1.0000
asking for permission 0.8513 1.0000 0.3559 0.0000 1.0000
moped 0.0301 0.0000 0.1708 0.0000 1.0000
cell phone 0.2009 0.0000 0.4007 0.0000 1.0000

boys (3,641 observations)

smoking 0.0876 0.0000 0.2828 0.0000 1.0000
truancy 0.1966 0.0000 0.3975 0.0000 1.0000
asking for permission 0.8693 1.0000 0.3372 0.0000 1.0000
moped 0.1038 0.0000 0.3051 0.0000 1.0000
cell phone 0.2205 0.0000 0.4147 0.0000 1.0000
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Table 2: Estimation results; smoking (t-values in parentheses)
with fixed effects

no SI with SI no SI with SI

constant -4.18 -3.16 -3.84 -3.41
(-19.1) (-10.2) (-11.6) (-8.5)

girl 0.039 0.004 -0.005 -0.034
(0.9) (0.0) (0.1) (-0.1)

age 0.189 0.156 0.169 0.158
(12.3) (8.3) (7.4) (6.5)

non-Dutch -0.274 -0.248 -0.214 -0.215
(-3.3) (-2.8) (-2.0) (-2.0)

single parent family 0.188 0.183 0.170 0.176
(2.8) (2.7) (2.2) (2.3)

MAVO 0.173 0.148 0.269 0.233
(3.6) (2.3) (3.1) (2.4)

HAVO -0.042 -0.034 -0.110 -0.087
(-0.7) (-0.5) (-1.2) (-0.8)

VWO -0.238 -0.194 -0.308 -0.268
(-3.8) (-2.4) (-2.9) (-2.3)

father’s working time 0.002 -0.000 0.001 0.002
(1.0) (1.0) (0.7) (0.8)

mother’s working time 0.004 0.005 0.005 0.005
(3.3) (3.2) (3.3) (3.2)

catholic -0.197 -0.174 -0.160 -0.162
(-4.1) (-3.3) (-2.3) (-2.3)

protestant -0.136 -0.126 -0.167 -0.158
(-2.4) (-1.9) (-1.8) (-1.7)

γBB — 0.880 — 0.491
(4.7) (2.3)

γBG — 0.533 — 0.223
(2.1) (0.8)

γGB — 0.569 — 0.188
(2.6) (0.8)

γGG — 0.765 — 0.386
(4.6) (1.9)

log-likelihood function -2153.9 -2107.2 -2133.8 2097.2
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