
A Discrete Differential Evolution Algorithm
for the Permutation Flowshop Scheduling Problem

Quan-Ke Pan

College of Computer Science,
Liaocheng University,

Liaocheng, Shandong Province,
252059, P. R. China
qkpan@lcu.edu.cn

M. Fatih Tasgetiren
Department of Operations

Management and Business
Statistics, Sultan Qaboos
University, Muscat, Oman

mfatih@squ.edu.om

Yun-Chia Liang
Department of Industrial

Engineering and Management,
Yuan Ze University, No 135
Yuan-Tung Road, Chung-Li,

Taoyuan County, Taiwan
ycliang@saturn.yzu.edu.tw

ABSTRACT
In this paper, a novel discrete differential evolution (DDE)
algorithm is presented to solve the permutation flowhop
scheduling problem with the makespan criterion. The DDE
algorithm is simple in nature such that it first mutates a target
population to produce the mutant population. Then the target
population is recombined with the mutant population in order to
generate a trial population. Finally, a selection operator is applied
to both target and trial populations to determine who will survive
for the next generation based on fitness evaluations. As a
mutation operator in the discrete differential evolution algorithm,
a destruction and construction procedure is employed to generate
the mutant population. We propose a referenced local search,
which is embedded in the discrete differential evolution algorithm
to further improve the solution quality. Computational results
show that the proposed DDE algorithm with the referenced local
search is very competitive to the iterated greedy algorithm which
is one of the best performing algorithms for the permutation
flowshop scheduling problem in the literature.

Categories and Subject Descriptors
I.2.8 [Computing Methodology]: Problem Solving, Control
Methods, and Search – heuristic methods, scheduling

General Terms
Algorithms

Keywords
Scheduling; Particle swarm optimization; Permutation flowshop;
Makespan; Discrete differential evolution.

1. INTRODUCTION
The Permutation Flowshop Sequencing Problem (PFSP) basically
deals with finding a permutation of jobs on machines such that

certain performance measures will be minimized and the same job
permutation applies to each machine. Flowshop problems have
attracted the attention of researchers since the proposal of the
problem by Johnson [1]. Among the practical performance
measures, the minimization of makespan are known to lead to the
minimization of total production run, stable utilization of
resources, rapid turn-around of jobs, and the minimization of
work-in-process (WIP) inventory.

The formulation of the PFSP can be given as follows: Given the
processing times jkp for job j and machine k, and a job

permutation { }nππππ ,...,, 21= where n jobs ()nj ,...,2,1= will
be sequenced through m machines ()mk ,...,2,1= , then the
problem is to find the best permutation of jobs to be valid for each
machine. For max/// CPmn problem, ()mC j ,π denotes the

completion time of the job jπ on the machine m. Given the job

permutation { }nππππ ,...,, 21= , the calculation of completion
time for the n-job, m-machine problem is given as follows:

() 1,1 1
1, ππ pC =

() () njpCC
jjj ,...,21,1, 1,1 =+= − πππ

() () mkpkCkC k ,...,21,, ,11 1
=+−=

π
ππ

() () (){ } mknjpkCkCkC kjjj j
,...,2;,...,21,,,max, ,1 ==+−= − ππππ

Then makespan can be defined as

() ().,max mCC nππ = (1)

So, the PFSP with the makespan criterion is to find a permutation
*π in the set of all permutations ∏ such that

() () .,*
max ∏∈∀≤ πππ mCC n

For the computational complexity of the PFSP with makespan
objectives, Rinnooy Kan [2] proved to be NP-complete.
Therefore, efforts have been devoted to finding high-quality or
near-optimal solutions in a reasonable computational time by
heuristic optimization techniques instead of finding an optimal
solution. Heuristics for the makespan minimization problem have
been proposed by Palmer [3], Campbell et al. [4], Dannenbring
[5], Nawaz et al. [6], Taillard [7], Framinan et al. [8] and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’07, July 7–11, 2007, London, England, United Kingdom.
Copyright 2007 ACM 978-1-59593-697-4/07/0007...$5.00.
.

126

Framinan and Leisten [9]. To achieve a better solution quality,
modern meta-heuristics have been presented for the PFSP with
makespan minimization such as Ant Colony Optimization in [10,
11], Genetic Algorithm in [12, 13, 14], Iterated Local Search in
[15], Simulated Annealing in [16, 17], Tabu Search in [18, 19, 20].
Iterated Greedy Algorithm in [21]. An excellent review of
flowshop heuristics and metaheuristics can be found in [22]. In
order to test the performance of these heuristics, the 120
benchmark instances presented by Taillard [23] are generally used
in these modern heuristic algorithms.

Differential evolution (DE) is one of the latest evolutionary
optimization methods proposed by Storn & Price [24]. Like other
evolutionary-type algorithms, DE is a population-based and
stochastic global optimizer. In a DE algorithm, candidate
solutions are represented by chromosomes based on floating-point
numbers. In the mutation process of a DE algorithm, the
weighted difference between two randomly selected population
members is added to a third member to generate a mutated
solution. Then, a crossover operator follows to combine the
mutated solution with the target solution so as to generate a trial
solution. Thereafter, a selection operator is applied to compare
the fitness function value of both competing solutions, namely,
target and trial solutions to determine who can survive for the
next generation. Since DE was first introduced to solve the
Chebychev polynomial fitting problem by Storn & Price [24], it
has been successfully applied in a variety of applications that can
be found in Price et al. [25] and Babu & Onwubolu [26].
Regarding the applications of differential evolution algorithm to
scheduling problems, related literature can be found in [32, 33, 34,
35].

The applications of DE on combinatorial optimization problems
are still limited, but the past experience of successfully applying
DE algorithms to combinatorial problems in the literature [27] has
proved the promising of DE on some scheduling problems. For
this reason, this research presents a discrete differential evolution
(DDE) algorithm to solve the permutation flowshop scheduling
problem with the makespan criterion.

The remaining paper is organized as follows. Section 2 introduces
the discrete differential evolution (DDE) algorithm.
Computational results are discussed in Section 3. Finally, Section
4 summarizes the concluding remarks.

2. DDE ALGORITHM
Currently, there exist several mutation variations of DE. The
DE/rand/1/bin scheme of Storn & Price [24] is presented below.
The DE algorithm starts with initializing the initial target
population []NPi ππππ ,..,, 21= with the size of NP. Each
individual has an n-dimentional vector with parameter values
determined randomly and uniformly between predefined search
range. To generate a mutant individual, DE mutates vectors from
the target population by adding the weighted difference between
two randomly selected target population members to a third
member at iteration t as follows:

()111 −−− −+= t
cj

t
bj

t
aj

t
ij Fv πππ (2)

where a , b , and c are three randomly chosen individuals from
the target population such that ()()NPcba ,..,1∈≠≠ and

nj ,..,1= . 0>F is a mutation scale factor which affects the
differential variation between two individuals. Following the
mutation phase, the crossover operator is applied to obtain the
trial individual such that:

⎪⎩

⎪
⎨
⎧ =≤

=
− otherwise

DjorCRrifv
u

t
ij

j
t

ij
t
ijt

ij 1π
 (3)

where the jD refers to a randomly chosen dimension ()nj ,..,1= ,
which is used to ensure that at least one parameter of each trial
individual t

iju differs from its counterpart in the previous

generation 1−t
iju . CR is a user-defined crossover constant in the

range [0, 1], and t
ijr is a uniform random number between 0 and

1. In other words, the trial individual is made up with some
parameters of mutant individual, or at least one of the parameters
randomly selected, and some other parameters of the target
individual.

To decide whether or not the trial individual t
iu should be a

member of the target population for the next generation, it is
compared to its counterpart target individual 1−t

iπ at the previous
generation. The selection is based on the survival of the fitness
among the trial population and target population such that:

() ()
⎪⎩

⎪
⎨
⎧ ≤

=
−

−

otherwise

fufifu
t
i

t
i

t
i

t
it

i 1

1

π

π
π (4)

Again note that standard DE equations cannot be used to generate
discrete/binary values since positions are real-valued. Instead we
propose a new and novel DDE algorithm whose solutions are
based on discrete/binary values, which can be applied to all types
of combinatorial optimization problems. In the DDE algorithm,
the target population is constructed based on permutation of jobs
as represented by []NPi ππππ ,..,, 21= . For the mutant population
the following equations can be used:

()1−⊕= t
ikm

t
i FPV π (5)

()1−⊕= t
akm

t
i FPV π (6)

()1−⊕= t
gkm

t
i FPV π (7)

Where 1−t
iπ is the ith individual from the target population at

iteration t-1; 1−t
aπ is a randomly chosen individual from the target

population at iteration t-1; 1−t
gπ is the global best solution at

iteration t-1; mP is the mutation probability; and kF is the
mutation operator with the mutation strength of k. Suppose that
the equation (7) is employed as a mutation operator. A uniform
random number r is generated between [0, 1]. If r is less than mP
then the mutation operator is applied to generate the mutant
individual ()1−= t

gk
t

i FV π at current iteration t, otherwise the

global best solution is kept as 1−= t
g

t
iV π . In the mutation

equation, k represents the mutation strength. The lower the value
of mutation strength k is, the lower the possibility that the
algorithm would avoid getting stuck at the local minima. On the

127

other hand, the higher the value of mutation strength k is, the
higher the possibility that the algorithm would possess excessive
randomness. So care must be taken in the choice of the value of
the mutation strength. It should be noted that we employed the
destruction and construction procedure of the iterated greedy
algorithms in the mutation phase of the DDE algorithm.
Following the mutation phase, the trial individual is obtained such
that:

()t
i

t
ic

t
i VCRPU ,1−⊕= π (8)

where CR is the crossover operator, and cP is the crossover
probability. In other words, the ith individual is recombined with
its corresponding mutant individual using the crossover operator
CR to generate the trial individual if a uniform random number r
is less than the crossover probability cP , then the crossover
operator is applied to generate the trial individual

()t
i

t
i

t
i VCRU ,1−= π . Otherwise the trial individual is chosen as

t
i

t
i VU = . By doing so, the trial individual is made up either from

the outcome of mutation operator or the crossover operator.
Finally, the selection is based on the survival of the fitness among
the trial individual at the current iteration t and target individual at
the previous iteration t-1 such that:

() ()
⎪⎩

⎪
⎨
⎧ ≤

= −

−

otherwise
fUfifU

t
i

t
i

t
i

t
it

i 1

1

π
π

π (9)

2.1 Solution Representation
In order to handle the PFSP properly, particles are represented by
the permutation of jobs in n dimensions. Solution representation
is given in Figure 1 where ijπ denotes the jth dimension/job of the
ith particle.

j 1 2 3 . . n
ijπ 1iπ 2iπ 3iπ . . inπ

Figure.1. Solution Representation.

Then, the fitness function of the particle is the makespan and
given by

() ().,max mCCF nii ππ == (10)

For simplicity, we omit the index i of particle iπ from the
representation from now on.

2.2 NEH Heuristic
The NEH heuristic of Nawaz et al. [6] has two phases which can
be explained as follows:

1. In the first phase, jobs are ordered in descending sums of
their processing times such that

∑
=

=
m

k
jkj pP

1

, nj ,..,1=

2. In the second phase, the first two jobs are chosen so that their
two possible sequences will be evaluated to establish the partial

schedule. Next, a job permutation is established by evaluating the
partial schedules based on the initial order of the first phase.
Suppose a current permutation is already determined for the first
π jobs, 1+π partial permutations are constructed by inserting
job 1+π in 1+π possible slots of the current permutation.
Among these 1+π permutations, the best one generating the
minimum makespan is kept as the current permutation for the next
iteration. Then job 2+π from the first phase is considered and so
on until all jobs have been sequenced.
The computational complexity of the NEH heuristic is ()mnO 3 ,
which can consume considerable CPU time for large instances.
However, Taillard [7] introduced a speed-up method which
reduces the complexity of NEH to ()mnO 2 . This speed-up
method is one of the key factors to success of most algorithms
presented for permutation flowshop scheduling problem in the
literature. For this reason, we also employ it in our any
implementation of the NEH heuristic as well as in the
construction phase of the IG algorithm embedded in the DDE
algorithm proposed.

2.3 Iterated Greedy Algorithm
Iterated greedy (IG) algorithm has been successfully applied to
the Set Covering problem (SCP) in Jacobs and Brusco [28], and
Marchiory and Steenbeek [29], and the permutation flowshop
scheduling problem in Ruiz and Stützle [21]. In an IG algorithm,
solutions are simply generated in an iterated greedy (IG)
algorithm using the main idea of destruction and construction.
Destruction phase is concerned with removing some solution
components from a previously constructed solution whereas
construction phase is related to the reconstruction of a complete
solution by using a greedy heuristic. An acceptance criterion is
then used to decide whether or not the reconstructed solution will
replace the incumbent solution. These simple steps are iterated
until a predetermined termination criterion is met [21].

The key procedures in any IG algorithm are the destruction and
construction phases applied to the DDE individual. d jobs from
the individual are chosen randomly to be removed so that the
partial permutation of the particle with dn − jobs will be
established, which is denoted as Dπ as well as the set of d jobs,
which is denoted as Rπ to be reinserted onto Dπ . The
construction phase requires a heuristic procedure to reinsert the

Rπ jobs in a greedy manner. In other words, the first job in the
set Rπ is reinserted into all possible 1+− dn slots in the partial
permutation Dπ . Among these 1+− dn insertions, the best one
with minimum makespan is chosen as the current partial
permutation for the next insertion. Then the second job in the set

Rπ is considered and so on until Rπ is empty. The destruction
and construction procedure is illustrated in the following example
with 5 jobs with the destruction size of d=2.

CURRENT PERMUTATION
j 1 2 3 4 5

jπ 3 1 4 5 2

128

DESTRUCTION PHASE
Step 1.a. Choose 2=d jobs, randomly.

j 1 2 3 4 5
jπ 3 1 4 5 2

Step 1.b. Establish { }2,4,3=Dπ , { }5,1=Rπ .
d 1 2 3 r 1 2

Dπ 3 4 2 Rπ 1 5

CONSTRUCTION PHASE
Step2.a. After the best insertion of the job 11, =Rπ in 3+1
possible slots.
d 1 2 3 4 r 2

Dπ 3 4 1 2 Rπ 5

Step2.b. After the best insertion of the job 52, =Rπ in 4+1
possible slots.
j 1 2 3 4 5

jπ 5 3 4 1 2

2.4 Two-Cut PTL Crossover
Two-cut PTL crossover operator presented in [30] is used to
update the particles of the DPSO algorithm. Two-cut PTL
crossover operator is able to produce a pair of distinct offspring
even from two identical parents. An illustration of two-cut PTL
crossover operator is shown in Figure 2.

Two-Cut PTL Crossover Two-Cut PTL Crossover

P1 5 1 4 2 3 P1 5 1 4 2 3

P2 3 5 4 2 1 P2 5 1 4 2 3

O1 3 5 2 1 4 O1 5 2 3 1 4

O2 1 4 3 5 2 O2 1 4 5 2 3

Figure 2. An Example of the PTL Crossover Operator.

In the PTL crossover, a block of jobs from the first parent is
determined by two cut points randomly. This block is either
moved to the right or left corner of the permutation. Then the
offspring permutation is filled out with the remaining jobs from
the second parent. This procedure will always produce two
distinctive offspring even from the same two parents as shown in
Figure 2. In this paper, one of these two unique offspring is
chosen randomly with an equal probability of 0.5.

2.5 Referenced Local Search
The local search what we call it referenced local search (RLS) is
inspired from the job index based insertion scheme (JIBIS) of
Rajendran [31]. Instead of using the job index of the current
permutation, the RLS uses the reference permutation πR taken
from the search procedure such as the bestsofar solution, NEH
solution, JIBIS solution or the best solution in the initial
population. After constructing the initial population, we establish
a sequence where the jobs are arranged in descending sum of their
processing times. Then we apply the Referenced Insertion
Scheme (RIS) to the global best solution of the initial population.
The solution returned by the RIS is set to the reference

permutation and used as a reference throughout the algorithm.
The basic idea behind it is to take reference of positions of the
jobs from a good permutation and insert them in different
positions in the incumbent permutation to find a better
permutation. It should be noted that we apply the local search to
the global best solution πt

g at each iteration t. The referenced
local search and the referenced insertion procedure are shown in
Figure 3 and 4, respectively.

Procedure RLS(πg)
π:=DestructConstruct(πg);
π1:=RIS(π)
If Cmax(π1)<Cmax(π) then
 π:=π1;
Else
 If (random<exp(-(Cmax(π)-Cmax(π1)/T))) then
 π:=π1;
 Endif
Return π

End.

Fig. 3. Referenced Local Search.

Procedure RIS(π)
π* := πR
Set h:=1;
Set i:=1;
while(i<n) do
 h:=(h mod n);
 Remove the job πd from π, which corresponds to the job π*

h.
 π1:=the best permutation obtained by inserting job πd in any
 possible position of π.
 If Cmax(π1)< Cmax(π) then
 π:=π1;
 i:=1;
 else
 i:=i+1;
 endif
 h:=h+1;
 end while
 return π
end.

Figure 4. Referenced Insertion Scheme.

A constant temperature is used in the simulated annealing type of
acceptance criterion in the DDE algorithm as suggested by Osman
and Potts [17]:

τ×
××

=
∑ ∑= =

10
1 1

mn

p
T

n

j

m

k jk
 (11)

where 4.0=τ . In this way, the global best solution is diversified
by giving chances to some inferior solutions during the search to
escape from the local minima. The pseudo code of the DDE
algorithm for the PFSP is given in Figure 5.

129

Procedure DDE
initialize parameters
initialize target population
evaluate target population
πR=sequence that jobs are arranged in descending sum of their
processing times
πR :=RIS(πg).
while (not termination) do

obtain mutant population
obtain trial population
evaluate trial population
make selection
apply local search RLS(πg)

 endwhile
 return globalbest
end

Figure 5. DDE Algorithm for the PFSP.
The DDE algorithm with the referenced local search will be
denoted as DDERLS from now on throughout the paper.

3. COMPUTATIONAL RESULTS
The basic objective of this study is to compare the performance of
the DDERLS algorithm with the IG_RSLS algorithm recently
presented in Ruiz & Stutzle [21]. Even though we obtained the
IG_RSLS code through personal communication, we have
developed our own IG_RSLS code to run both algorithms in the
same machine environment.
To give a brief and sound explanation about the DDERLS
algorithm presented, the destruction and construction heuristic
with destruction size of 4 (d=4) is used to generate the mutant
population. In the construction phase, the NEH heuristic with the
speed-up method of Taillard is utilized. No such effort has been
devoted to adjusting the parameters of the DDERLS algorithm due
to the following facts:
1. Ruiz & Stutzle [21] have already conducted a detailed design

of experiments for parameter setting of the destruction size
and the temperature parameter of the acceptance criterion.
For these reasons, we just simply took the destruction size
and temperature parameter as d=4 and τ=0.4, respectively as
in Ruiz & Stutzle [21]. Two-cut PTL crossover is used in the
update equation (15);

2. Regarding the other parameters of the DDERLS algorithms,
population size is set to NP =20, mutation probability to

mP =0.2, and the crossover probability to cP =0.8. The
reason for which the low mutation and population size were
taken was to give more chances to the RLS local search
algorithm since it is well-known that the performance of
evolutionary algorithms without a good local search is not
satisfactory to solve the discrete optimization problems.
However, we again show that the hybridization of an
evolutionary algorithm with a good local search enhances its
performance significantly.

DDERLS and IG_RSLS algorithms for the PFSP problem were
coded in Visual C++ and run on an Intel P IV 3.0 GHz PC with
512MB memory. Both algorithms were applied to the 120
benchmark instances of Taillard [23] ranging from 20 jobs with 5
machines to 500 jobs with 20 machines. Termination criterion is
set to () tmn ×× 2/ where t is taken as 30, 60 and 90
milliseconds as in Ruiz & Stutzle [21].

R=5 runs were conducted for each problem instance consistent
with Ruiz & Stutzle [21]. The average relative percentage
deviation (ARPD) and the average CPU time to the best
makespan, i.e., the time that the makespan does not change after
that point of time, in each replication averaged over R runs were
given as statistics for performance measures. The average relative
percentage deviation was computed as follows:

()
R

M
MM

ARPD
R

i REF

REFi /
100

1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
= (12)

where iM was the makespan by the DDERLS or IG_RSLS
algorithms in each run whereas REFM was the optimal or the
lowest known upper bound for Taillard’s instances as of April
2004, and R was the number of runs.
Computational results are given in Tables 1-6. We only compare
the DDERLS algorithm to the IG_RSLS algorithm since the
IG_RSLS algorithm has already been shown to be superior to 12
best performing algorithms compared in [21]. There exist several
other sophisticated algorithms in the literature such as TSAB [18],
RY [13], TSGW [20]. However, our main goal is to present the
superior performance of both the IG_RSLS and DDERLS
algorithms.
As seen in Table 1-6, the performance of the IG_RSLS algorithm
was better than the results in Ruiz and Stutzle [21] even for t=30.
It might be because of different machine environments used.
When comparing the DDERLS algorithm to the IG_RSLS, the
DDERLS generated slightly better results for all t=30, t=60 and
t=90. However, the success was due to the use of the referenced
local search in the DDE algorithm.
We did not report the results for both algorithms without the local
search versions. However, when no local search was employed,
the performance of the IG_RS algorithm was superior to the DDE
algorithm. One reason might be the fact that we have employed a
very low mutation probability (0.2) indicating that the destruction
and construction procedure is not so much effectively used in the
DDE algorithm. When we increase the mutation probability to
higher levels such as 0.8, the performance of the DDE algorithm
becomes very competitive to IG_RS algorithm at the expense of
limiting the performance of the DDERLS algorithm.
To sum up, the performance of the DDERLS algorithm was slightly
better than our implementation of IG_RSLS algorithm. However,
the pure performance of the IG_RS algorithm was superior to the
DDE algorithm. This could be compensated by increasing the
mutation probability at the expense of reducing the impact of the
RLS local search on the solution quality.

Table 1. IG_RSLS Results for t=30
 ARPD Time to Best Makespan
Problem Avg Min Max Std Avg Min Max Std
20/5 0.03 0.00 0.04 0.02 0.04 0.00 0.11 0.04
20/10 0.01 0.00 0.03 0.01 0.35 0.09 0.73 0.27
20x20 0.02 0.00 0.05 0.02 1.21 0.20 2.62 0.97
50x5 0.00 0.00 0.01 0.00 0.25 0.03 0.59 0.24
50x10 0.48 0.37 0.63 0.11 2.33 0.40 4.81 1.81
50x20 0.75 0.51 0.95 0.18 8.97 4.56 12.56 3.31
100x5 0.01 0.00 0.01 0.00 0.77 0.09 1.78 0.67
100x10 0.23 0.16 0.29 0.05 4.05 1.30 7.51 2.53
100x20 1.04 0.76 1.27 0.23 17.26 8.74 26.46 7.19
200x10 0.15 0.06 0.25 0.10 9.61 1.66 19.68 8.08
200x20 1.13 0.92 1.34 0.17 33.09 12.66 52.07 16.68
500x20 0.67 0.55 0.81 0.10 90.93 36.92 135.02 42.38
Mean 0.38 0.28 0.47 0.08 14.07 5.55 21.99 7.01

130

Table 2. DDERLS Results for t=30
 ARPD Time to Best Makespan
Problem Avg Min Max Std Avg Min Max Std
20/5 0.04 0.04 0.04 0.00 0.06 0.02 0.17 0.06
20/10 0.02 0.00 0.04 0.02 0.39 0.08 0.81 0.31
20x20 0.03 0.00 0.08 0.04 1.17 0.11 2.45 1.01
50x5 0.00 0.00 0.01 0.01 0.54 0.06 1.15 0.47
50x10 0.49 0.29 0.67 0.17 2.72 1.02 5.02 1.76
50x20 0.74 0.45 1.01 0.22 9.27 4.39 12.94 3.48
100x5 0.00 0.00 0.00 0.00 0.34 0.08 0.80 0.30
100x10 0.15 0.06 0.22 0.08 4.82 1.12 9.36 3.59
100x20 1.11 0.81 1.42 0.26 18.56 10.50 27.27 6.90
200x10 0.06 0.05 0.09 0.02 9.54 3.82 18.83 6.37
200x20 0.99 0.70 1.19 0.21 39.87 21.88 57.11 15.57
500x20 0.50 0.41 0.57 0.07 105.89 54.73 143.34 36.84
Mean 0.35 0.23 0.45 0.09 16.10 8.15 23.27 6.39

Table 3. IG_RSLS Results for t=60
 ARPD Time to Best Makespan
Problem Avg Min Max Std Avg Min Max Std
20/5 0.02 0.00 0.04 0.02 0.09 0.00 0.31 0.13
20/10 0.00 0.00 0.00 0.00 0.41 0.09 1.03 0.39
20x20 0.02 0.00 0.04 0.02 1.90 0.20 4.37 1.82
50x5 0.00 0.00 0.01 0.00 0.34 0.03 0.76 0.30
50x10 0.42 0.30 0.53 0.10 4.15 1.27 9.03 3.18
50x20 0.59 0.39 0.78 0.16 17.24 8.45 25.44 7.30
100x5 0.01 0.00 0.01 0.00 0.77 0.10 1.79 0.67
100x10 0.19 0.12 0.25 0.06 8.65 3.34 15.84 5.39
100x20 0.92 0.65 1.22 0.24 33.45 14.86 53.69 16.49
200x10 0.09 0.06 0.16 0.04 20.74 3.05 43.44 17.05
200x20 1.02 0.82 1.18 0.15 72.46 34.31 107.58 31.26
500x20 0.62 0.50 0.71 0.09 194.87 87.64 270.37 75.99
Mean 0.33 0.24 0.41 0.07 29.59 12.78 44.47 13.33

Table 4. DDERLS Results for t=60
 ARPD Time to Best Makespan
Problem Avg Min Max Std Avg Min Max Std
20/5 0.03 0.00 0.04 0.02 0.14 0.03 0.33 0.15
20/10 0.02 0.00 0.03 0.02 0.48 0.10 1.07 0.39
20x20 0.02 0.00 0.05 0.02 1.99 0.37 5.05 1.98
50x5 0.00 0.00 0.01 0.00 0.63 0.16 1.21 0.44
50x10 0.39 0.29 0.59 0.13 4.77 1.52 8.70 3.17
50x20 0.60 0.33 0.85 0.21 17.38 8.35 26.05 7.36
100x5 0.00 0.00 0.00 0.00 0.34 0.08 0.81 0.30
100x10 0.12 0.05 0.22 0.08 8.40 1.32 17.24 6.68
100x20 0.98 0.70 1.29 0.26 38.81 16.65 55.90 17.06
200x10 0.06 0.03 0.09 0.03 14.13 3.81 34.40 12.98
200x20 0.82 0.57 1.01 0.20 75.89 40.40 113.43 29.96
500x20 0.45 0.37 0.52 0.06 181.56 93.80 265.50 69.15
Mean 0.29 0.20 0.39 0.09 28.71 13.88 44.14 12.47

Table 5. IG_RSLS Results for t=90
 ARPD Time to Best Makespan
Problem Avg Min Max Std Avg Min Max Std
20/5 0.02 0.00 0.04 0.02 0.09 0.00 0.31 0.13
20/10 0.00 0.00 0.00 0.00 0.41 0.09 1.03 0.39
20x20 0.02 0.00 0.04 0.02 2.09 0.20 5.17 2.14
50x5 0.00 0.00 0.01 0.00 0.33 0.03 0.76 0.30
50x10 0.41 0.30 0.53 0.10 5.39 1.27 11.53 4.28
50x20 0.54 0.32 0.72 0.16 1.90 9.69 34.11 9.81
100x5 0.00 0.00 0.01 0.00 1.12 0.09 3.50 1.43
100x10 0.17 0.08 0.24 0.07 12.24 3.50 26.70 9.56
100x20 0.84 0.62 1.03 0.18 49.14 22.12 78.15 23.53
200x10 0.07 0.05 0.10 0.02 29.28 3.99 60.02 23.72
200x20 0.93 0.72 1.12 0.16 118.72 42.58 171.79 54.92
500x20 0.58 0.44 0.69 0.10 273.61 100.92 405.69 127.78
Mean 0.30 0.21 0.38 0.07 42.86 15.37 66.56 21.50

Table 6. DDERLS Results for t=90
 ARPD Time to Best Makespan
Problem Avg Min Max Std Avg Min Max Std
20/5 0.03 0.00 0.04 0.02 0.14 0.03 0.33 0.15
20/10 0.01 0.00 0.03 0.02 0.61 0.10 1.46 0.57
20x20 0.02 0.00 0.04 0.02 2.92 0.38 7.82 3.18
50x5 0.00 0.00 0.01 0.00 0.81 0.16 1.84 0.67
50x10 0.34 0.29 0.40 0.05 8.10 2.07 14.75 5.28
50x20 0.55 0.32 0.76 0.18 22.99 11.31 35.54 10.02
100x5 0.00 0.00 0.00 0.00 0.34 0.08 0.80 0.30
100x10 0.08 0.05 0.14 0.05 13.86 3.86 30.76 11.33
100x20 0.83 0.54 1.06 0.22 57.98 24.42 82.78 24.19
200x10 0.05 0.03 0.06 0.01 20.11 3.92 56.16 21.43
200x20 0.77 0.55 0.98 0.20 106.84 52.20 168.26 49.22
500x20 0.42 0.35 0.50 0.07 262.95 104.43 407.39 127.63
Mean 0.26 0.18 0.34 0.07 41.47 16.91 67.32 21.16

During these runs (DDERLS runs), we were able to improve some
best known solutions. New best known solutions for Taillard’s
benchmark instances are given below:

New best solution for ta051:
N=50, m=20, Cmax=3847
Permutation=
20 31 39 27 43 15 44
11 8 45 35 37 6 17
34 28 7 14 42 33 40
24 5 29 10 2 18 47
48 21 46 1 16 49 23
12 22 36 32 38 19 9
26 13 4 41 30 25 50
3

New best solution for ta054:
N=50, m=20, Cmax=3719
Permutation=
5 21 11 14 36 30 13
24 12 7 45 19 35 20
31 25 37 3 44 33 32
50 48 43 49 29 46 23
10 40 15 38 9 17 42
22 6 39 26 47 4 27
18 8 2 41 34 1 16
28

New best solution for ta056:
N=50, m=20, Cmax= 3680
Permutation=
14 37 3 18 8 33 11
21 42 5 13 49 50 20
28 45 43 41 46 15 24
44 40 36 39 4 16 47
17 27 1 26 10 19 32
25 30 7 2 31 6 23
48 22 29 34 9 35 38
12

131

New best solution for ta059:
N=50, m=20, Cmax= 3741
Permutation=
3 14 8 37 22 32 12
46 16 9 41 30 38 24
10 1 18 17 34 50 28
36 40 29 26 47 6 7
13 27 33 39 23 11 49
45 4 5 43 48 21 31
42 19 25 2 20 15 44
35

4. CONCLUSIONS
DE is a recent evolutionary optimization method. Besides the
standard versions, we presented a new and novel discrete version
denoted as DDE algorithm in this paper. Unlike the standard DE,
the DDE algorithm is a novel algorithm employing a permutation
representation for the problem on hand and works on a discrete
domain. It indicates that it can be applied to all types of discrete
combinatorial optimization problems in the literature.
Furthermore, the DDE algorithm is hybridized with the referenced
local search to further improve the solution quality.

The IG_RS and DDE algorithms were applied to the well-
known benchmark problems of Taillard. The computational
results show that the DDELS algorithm generated slightly better
results than the IG_RSLS algorithm. Ultimately, four instances are
further improved for the well-known benchmarks of Taillard.
However, the pure performance of the DPSO algorithm was not
competitive to the pure IG_RS algorithm when no local search is
employed in both algorithms.

As the future work, the authors have already solved the PFSP
with a novel discrete particle swarm optimization algorithm.
Extensive evaluation of DDE, DPSO and IG_RS with and without
local search will be presented in the literature in the near future.

5. ACKNOWLEDGMENTS
We are grateful to Dr. Thomas Stützle for his generosity in
providing the IG code. Even though we developed our own IG
version in Visual C++, it was substantially helpful in grasping the
IG algorithm in a great detail. We also appreciate his invaluable
suggestions whenever needed.

6. REFERENCES
[1] Johnson, S. M. Optimal two-and three-stage production

schedules. Naval Research Logistics Quarterly, 1 (1954), 61-
68.

[2] Rinnooy Kan, A. H. G. Machine Scheduling Problems:
Classification, Complexity, and Computations. Nijhoff, The
Hague, 1976.

[3] Palmer, D. S. Sequencing jobs through a multistage process
in the minimum total time: A quick method of obtaining a
near-optimum. Operational Research Quarterly, 16 (1965),
101-107.

[4] Campbell, H. G., Dudek, R. A., and Smith, M. L. A heuristic
algorithm for the n job, m machine sequencing problem.
Management Science, 16, 10 (1970), B630-B637.

[5] Dannenbring, D. G. An evaluation of flow shop sequencing
heuristics. Management Science, 23, 11 (1977), 1174-1182.

[6] Nawaz, M., Enscore Jr., E. E., and Ham, I. A heuristic
algorithm for the m-machine, n-job flow shop sequencing
problem. OMEGA, 11, 1 (1983), 91-95.

[7] Taillard, E. Some efficient heuristic methods for the
flowshop sequencing problems. European Journal of
Operational Research, 47 (1990), 65-74.

[8] Framinan, J. M., Leisten, R., and Ruiz-Usano, R. Efficient
heuristics for flowshop sequencing with the objectives of
makespan and flowtime minimization. European Journal of
Operational Research, 141 (2002), 559-569.

[9] Framinan, J. M., and Leisten, R. An efficient constructive
heuristic for flowtime minimisation in permutation flow
shops. OMEGA, 31 (2003), 311-317.

[10] Rajendran, C., and Ziegler, H. Ant-colony algorithms for
permutation flowshop scheduling to minimize
makespan/total flowtime of jobs. European Journal of
Operational Research, 155, 2 (2004), 426-438.

[11] Stützle, T. An ant approach to the flowshop problem. In
Proceedings of the 6th European Congress on Intelligent
Techniques and Soft Cmputing (EUFIT’98), Verlag Mainz,
Aachen, Germany, 1998, 1560-1564.

[12] Reeves, C. A genetic algorithm for flowshop sequencing.
Computers and Operations Research, 22, 1 (1995), 5-13.

[13] Reeves, C., and Yamada, T. Genetic algorithms, path
relinking and the flowshop sequencing problem.
Evolutionary Computation, 6 (1998), 45-60.

[14] Ruiz, R., Maroto, C., Alcaraz, J., 2006. Two new robust
genetic algorithms for the flowshop scheduling problem.
OMEGA, the International Journal of Management Science
34, 461–476.

[15] Stützle, T. Applying iterated local search to the permutation
flowshop problem.Technical Report, AIDA-98-04, Darmstad
University of Technology, Computer Science Department,
Intellctics Group, Darmstad, Germany, 1998.

[16] Ogbu, F., and Smith, D. The application of the simulated
annealing algorithm to the solution of the n/m/Cmax
flowshop problem. Computers and Operations Research, 17,
3 (1990), 243-253.

[17] Osman, I., and Potts, C. Simulated annealing for permutation
flow shop scheduling. OMEGA, 17, 6 (1989), 551-557.

[18] Nowicki, E., and Smutnicki, C. A fast tabu search algorithm
for the permutation flowshop problem. European Journal of
Operational Research, 91 (1996), 160-175.

[19] Watson, J. P., Barbulescu, L., Whitley, L. D., and Howe, A.
E. Contrasting structured and random permutation flowshop
scheduling problems: search space topology and algorithm
performance. ORSA Journal of Computing, 14, 2 (2002), 98-
123.

[20] Grabowski, J., and Wodecki, M. A very fast tabu search
algorithm for the permutation flowshop problem with
makespan criterion. Computers and Operations Research, 31,
11 (2004), 1891-1909.

132

[21] Ruiz, R., and Stützle, T. A simple and effective iterated
greedy algorithm for the permutation flowshop scheduling
problem. European Journal of Operational Research, 177
(2007), 2033-2049.

[22] Ruiz, R., Maroto, C., 2005. A comprehensive review and
evaluation of permutation flowshop heuristics. European
Journal of Operational Research 165, 479–494.

[23] Taillard, E. Benchmarks for basic scheduling problems.
European Journal of Operational Research, 64 (1993), 278-
285.

[24] Storn, R., and Price, K. Differential evolution - a simple and
efficient heuristic for global optimization over continuous
space. Journal of Global Optimization, 11 (1997), 341-359.

[25] Price, K., Storn, R., and Lampinen, J. Differential Evolution
– A Practical Approach to Global Optimization. Springer-
Verlag, 2006.

[26] Babu, B. V., and Onwubolu, G. C. (eds.) New Optimization
Techniques in Engineering. Springer-Verlag, 2004.

[27] Al-Anzi, F. S., and Allahverdi, A. A self adaptive differential
evolution heuristic for two-stage assembly scheduling
problem to minimize maximum lateness with setup times.
European Journal of Operational Research, in press.

[28] Jacobs, L. W., and Brusco, M. J. A local search heuristic for
large set-covering problems. Naval Research Logistics
Quarterly, 42, 7 (1995), 1129-1140.

[29] Marchiori, E., Steenbeek, A. An evolutionary algorithm for
large set covering problems with applications to airline crew
scheduling. In Real-World Applications of Evolutionary
Computing, EvoWorkshops 2000, Lecture Notes in Computer
Science, 1803, Springer-Verlag, Berlin, 2000, 367-381.

[30] Pan Q-K, Tasgetiren M. F, Liang Y-C, A Discrete Particle
Swarm Optimization Algorithm for the No-Wait Flowshop
Scheduling Problem with Makespan and Total Flowtime
Criteria, Accepted to Bio-inspired metaheuristics for
combinatorial optimization problems, Special issue of
Computers & Operations Research, 2005.

[31] Rajendran, C. Heuristic algorithm for scheduling in a
flowshop to minimize total flowtime. International Journal
of Production Economics, 29 (1993), 65-73.

[32] Tasgetiren M. F., Yun-Chia Liang, Sevkli M., Gencyilmaz
G, 2004, Differential evolution algorithm for permutation
flowshop sequencing problem with makespan criterion 4th
International Symposium on Intelligent Manufacturing
Systems, IMS2004, pp.442-452, September 5-8, 2004
,Sakarya,Turkey

[33] Tasgetiren M. F., Yun-Chia Liang, Sevkli M., Gencyilmaz
G, 2004, Particle swarm optimization and differential
evolution for the single machine total weighted tardiness
problem., International Journal of Production Research,
Vol. 44, No. 22/15, pp. 4737-4754, 2006

[34] Andreas C. Nearchou, Sotiris L. Omirou, Differential
evolution for sequencing and scheduling optimization,
Journal of Heuristics, Vol. 12, Issue 6, pp. 395-411, 2006

[35] Onwubolu Godfrey, Davendra Donald, Scheduling flow
shops using differential evolution algorithm, European
Journal of Operational Research, Vol. 171, No. 2, pp. 674-
692

133

