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ABSTRACT 
In this paper, a novel discrete differential evolution (DDE) 
algorithm is presented to solve the permutation flowhop 
scheduling problem with the makespan criterion. The DDE 
algorithm is simple in nature such that it first mutates a target 
population to produce the mutant population. Then the target 
population is recombined with the mutant population in order to 
generate a trial population. Finally, a selection operator is applied 
to both target and trial populations to determine who will survive 
for the next generation based on fitness evaluations. As a 
mutation operator in the discrete differential evolution algorithm, 
a destruction and construction procedure is employed to generate 
the mutant population. We propose a referenced local search, 
which is embedded in the discrete differential evolution algorithm 
to further improve the solution quality. Computational results 
show that the proposed DDE algorithm with the referenced local 
search is very competitive to the iterated greedy algorithm which 
is one of the best performing algorithms for the permutation 
flowshop scheduling problem in the literature.   

Categories and Subject Descriptors 
I.2.8 [Computing Methodology]: Problem Solving, Control 
Methods, and Search – heuristic methods, scheduling 

General Terms 
Algorithms 

Keywords 
Scheduling; Particle swarm optimization; Permutation flowshop; 
Makespan; Discrete differential evolution. 

1. INTRODUCTION 
The Permutation Flowshop Sequencing Problem (PFSP) basically 
deals with finding a permutation of jobs on machines such that 

certain performance measures will be minimized and the same job 
permutation applies to each machine.  Flowshop problems have 
attracted the attention of researchers since the proposal of the 
problem by Johnson [1]. Among the practical performance 
measures, the minimization of makespan are known to lead to the 
minimization of total production run, stable utilization of 
resources, rapid turn-around of jobs, and the minimization of 
work-in-process (WIP) inventory.  

The formulation of the PFSP can be given as follows:  Given the 
processing times jkp  for job j and machine k, and a job 

permutation { }nππππ ,...,, 21=  where n jobs ( )nj ,...,2,1=  will 
be sequenced through m machines ( )mk ,...,2,1= , then the 
problem is to find the best permutation of jobs to be valid for each 
machine. For max/// CPmn  problem, ( )mC j ,π  denotes the 

completion time of the job jπ  on the machine m. Given the job 

permutation { }nππππ ,...,, 21= , the calculation of completion 
time for the n-job, m-machine problem is given as follows:  

( ) 1,1 1
1, ππ pC =  

( ) ( ) njpCC
jjj ,...,21,1, 1,1 =+= − πππ  

( ) ( ) mkpkCkC k ,...,21,, ,11 1
=+−=

π
ππ  

( ) ( ) ( ){ } mknjpkCkCkC kjjj j
,...,2;,...,21,,,max, ,1 ==+−= − ππππ

Then makespan can be defined as 

( ) ( ).,max mCC nππ =          (1) 

So, the PFSP with the makespan criterion is to find a permutation 
*π  in the set of all permutations ∏  such that 

( ) ( ) .,*
max ∏∈∀≤ πππ mCC n  

For the computational complexity of the PFSP with makespan 
objectives, Rinnooy Kan [2] proved to be NP-complete.  
Therefore, efforts have been devoted to finding high-quality or 
near-optimal solutions in a reasonable computational time by 
heuristic optimization techniques instead of finding an optimal 
solution.  Heuristics for the makespan minimization problem have 
been proposed by Palmer [3], Campbell et al. [4], Dannenbring 
[5], Nawaz et al. [6], Taillard [7], Framinan et al. [8] and 
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Framinan and Leisten [9].  To achieve a better solution quality, 
modern meta-heuristics have been presented for the PFSP with 
makespan minimization such as Ant Colony Optimization in [10, 
11], Genetic Algorithm in [12, 13, 14], Iterated Local Search in 
[15], Simulated Annealing in [16, 17], Tabu Search in [18, 19, 20].  
Iterated Greedy Algorithm in [21]. An excellent review of 
flowshop heuristics and metaheuristics can be found in [22]. In 
order to test the performance of these heuristics, the 120 
benchmark instances presented by Taillard [23] are generally used 
in these modern heuristic algorithms.   

Differential evolution (DE) is one of the latest evolutionary 
optimization methods proposed by Storn & Price [24]. Like other 
evolutionary-type algorithms, DE is a population-based and 
stochastic global optimizer. In a DE algorithm, candidate 
solutions are represented by chromosomes based on floating-point 
numbers.  In the mutation process of a DE algorithm, the 
weighted difference between two randomly selected population 
members is added to a third member to generate a mutated 
solution. Then, a crossover operator follows to combine the 
mutated solution with the target solution so as to generate a trial 
solution.  Thereafter, a selection operator is applied to compare 
the fitness function value of both competing solutions, namely, 
target and trial solutions to determine who can survive for the 
next generation. Since DE was first introduced to solve the 
Chebychev polynomial fitting problem by Storn & Price [24], it 
has been successfully applied in a variety of applications that can 
be found in Price et al. [25] and Babu & Onwubolu [26]. 
Regarding the applications of differential evolution algorithm to 
scheduling problems, related literature can be found in [32, 33, 34, 
35]. 

The applications of DE on combinatorial optimization problems 
are still limited, but the past experience of successfully applying 
DE algorithms to combinatorial problems in the literature [27] has 
proved the promising of DE on some scheduling problems. For 
this reason, this research presents a discrete differential evolution 
(DDE) algorithm to solve the permutation flowshop scheduling 
problem with the makespan criterion.  

The remaining paper is organized as follows. Section 2 introduces 
the discrete differential evolution (DDE) algorithm. 
Computational results are discussed in Section 3. Finally, Section 
4 summarizes the concluding remarks. 

2. DDE ALGORITHM 
Currently, there exist several mutation variations of DE. The 
DE/rand/1/bin scheme of Storn & Price [24] is presented below. 
The DE algorithm starts with initializing the initial target 
population [ ]NPi ππππ ,..,, 21=  with the size of NP. Each 
individual has an n-dimentional vector with parameter values 
determined randomly and uniformly between predefined search 
range. To generate a mutant individual, DE mutates vectors from 
the target population by adding the weighted difference between 
two randomly selected target population members to a third 
member at iteration t as follows: 

( )111 −−− −+= t
cj

t
bj

t
aj

t
ij Fv πππ     (2) 

where a , b , and c  are three randomly chosen individuals from 
the target population such that ( )( )NPcba ,..,1∈≠≠  and 

nj ,..,1= . 0>F  is a mutation scale factor which affects the 
differential variation between two individuals. Following the 
mutation phase, the crossover operator is applied to obtain the 
trial individual such that:  

⎪⎩

⎪
⎨
⎧ =≤

=
− otherwise

DjorCRrifv
u

t
ij

j
t

ij
t
ijt

ij 1π
   (3) 

where the jD  refers to a randomly chosen dimension ( )nj ,..,1= , 
which is used to ensure that at least one parameter of each trial 
individual t

iju  differs from its counterpart in the previous 

generation 1−t
iju . CR is a user-defined crossover constant in the 

range [0, 1], and t
ijr  is a uniform random number between 0 and 

1. In other words, the trial individual is made up with some 
parameters of mutant individual, or at least one of the parameters 
randomly selected, and some other parameters of the target 
individual. 

To decide whether or not the trial individual t
iu  should be a 

member of the target population for the next generation, it is 
compared to its counterpart target individual 1−t

iπ  at the previous 
generation. The selection is based on the survival of the fitness 
among the trial population and target population such that: 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤

=
−

−

otherwise

fufifu
t
i

t
i

t
i

t
it

i 1

1

π

π
π     (4) 

Again note that standard DE equations cannot be used to generate 
discrete/binary values since positions are real-valued. Instead we 
propose a new and novel DDE algorithm whose solutions are 
based on discrete/binary values, which can be applied to all types 
of combinatorial optimization problems. In the DDE algorithm, 
the target population is constructed based on permutation of jobs 
as represented by [ ]NPi ππππ ,..,, 21= . For the mutant population 
the following equations can be used: 

( )1−⊕= t
ikm

t
i FPV π     (5) 

( )1−⊕= t
akm

t
i FPV π     (6) 

( )1−⊕= t
gkm

t
i FPV π     (7) 

Where 1−t
iπ  is the ith individual from the target population at 

iteration t-1; 1−t
aπ  is a randomly chosen individual from the target 

population at iteration t-1; 1−t
gπ is the global best solution at 

iteration t-1; mP  is the mutation probability; and kF  is the 
mutation operator with the mutation strength of k. Suppose that 
the equation (7) is employed as a mutation operator. A uniform 
random number r is generated between [0, 1]. If r is less than mP  
then the mutation operator is applied to generate the mutant 
individual ( )1−= t

gk
t

i FV π  at current iteration t, otherwise the 

global best solution is kept as 1−= t
g

t
iV π . In the mutation 

equation, k represents the mutation strength. The lower the value 
of mutation strength k is, the lower the possibility that the 
algorithm would avoid getting stuck at the local minima. On the 
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other hand, the higher the value of mutation strength k is, the 
higher the possibility that the algorithm would possess excessive 
randomness. So care must be taken in the choice of the value of 
the mutation strength. It should be noted that we employed the 
destruction and construction procedure of the iterated greedy 
algorithms in the mutation phase of the DDE algorithm. 
Following the mutation phase, the trial individual is obtained such 
that:  

( )t
i

t
ic

t
i VCRPU ,1−⊕= π     (8) 

where CR  is the crossover operator, and cP  is the crossover 
probability. In other words, the ith individual is recombined with 
its corresponding mutant individual using the crossover operator 
CR  to generate the trial individual if a uniform random number r 
is less than the crossover probability cP , then the crossover 
operator is applied to generate the trial individual 

( )t
i

t
i

t
i VCRU ,1−= π . Otherwise the trial individual is chosen as  

t
i

t
i VU = . By doing so, the trial individual is made up either from 

the outcome of mutation operator or the crossover operator.  
Finally, the selection is based on the survival of the fitness among 
the trial individual at the current iteration t and target individual at 
the previous iteration t-1 such that: 

( ) ( )
⎪⎩

⎪
⎨
⎧ ≤

= −

−

otherwise
fUfifU

t
i

t
i

t
i

t
it

i 1

1

π
π

π    (9) 

2.1 Solution Representation 
In order to handle the PFSP properly, particles are represented by 
the permutation of jobs in n dimensions. Solution representation 
is given in Figure 1 where ijπ denotes the jth dimension/job of the 
ith particle.  

j 1 2 3 . . n 
ijπ  1iπ  2iπ  3iπ  . . inπ  

Figure.1. Solution Representation. 

Then, the fitness function of the particle is the makespan and 
given by 

( ) ( ).,max mCCF nii ππ ==     (10) 

For simplicity, we omit the index i  of particle iπ  from the 
representation from now on.  

2.2 NEH Heuristic 
The NEH heuristic of Nawaz et al. [6] has two phases which can 
be explained as follows: 

1. In the first phase, jobs are ordered in descending sums of 
their processing times such that  

∑
=

=
m

k
jkj pP

1

, nj ,..,1=   

2. In the second phase, the first two jobs are chosen so that their 
two possible sequences will be evaluated to establish the partial 

schedule. Next, a job permutation is established by evaluating the 
partial schedules based on the initial order of the first phase. 
Suppose a current permutation is already determined for the first 
π  jobs, 1+π  partial permutations are constructed by inserting 
job 1+π  in 1+π  possible slots of the current permutation. 
Among these 1+π  permutations, the best one generating the 
minimum makespan is kept as the current permutation for the next 
iteration. Then job 2+π  from the first phase is considered and so 
on until all jobs have been sequenced.  
The computational complexity of the NEH heuristic is ( )mnO 3 , 
which can consume considerable CPU time for large instances. 
However, Taillard [7] introduced a speed-up method which 
reduces the complexity of NEH to ( )mnO 2 . This speed-up 
method is one of the key factors to success of most algorithms 
presented for permutation flowshop scheduling problem in the 
literature. For this reason, we also employ it in our any 
implementation of the NEH heuristic as well as in the 
construction phase of the IG algorithm embedded in the DDE 
algorithm proposed. 

2.3 Iterated Greedy Algorithm 
Iterated greedy (IG) algorithm has been successfully applied to 
the Set Covering problem (SCP) in Jacobs and Brusco [28], and 
Marchiory and Steenbeek [29], and the permutation flowshop 
scheduling problem in Ruiz and Stützle [21]. In an IG algorithm, 
solutions are simply generated in an iterated greedy (IG) 
algorithm using the main idea of destruction and construction. 
Destruction phase is concerned with removing some solution 
components from a previously constructed solution whereas 
construction phase is related to the reconstruction of a complete 
solution by using a greedy heuristic. An acceptance criterion is 
then used to decide whether or not the reconstructed solution will 
replace the incumbent solution. These simple steps are iterated 
until a predetermined termination criterion is met [21].  

The key procedures in any IG algorithm are the destruction and 
construction phases applied to the DDE individual. d  jobs from 
the individual are chosen randomly to be removed so that the 
partial permutation of the particle with dn −  jobs will be 
established, which is denoted as Dπ  as well as the set of d  jobs, 
which is denoted as Rπ to be reinserted onto Dπ . The 
construction phase requires a heuristic procedure to reinsert the 

Rπ  jobs in a greedy manner. In other words, the first job in the 
set Rπ  is reinserted into all possible 1+− dn slots in the partial 
permutation Dπ . Among these 1+− dn insertions, the best one 
with minimum makespan is chosen as the current partial 
permutation for the next insertion. Then the second job in the set 

Rπ  is considered and so on until Rπ  is empty. The destruction 
and construction procedure is illustrated in the following example 
with 5 jobs with the destruction size of d=2.  

 

CURRENT PERMUTATION 
j 1 2 3 4 5 

jπ  3 1 4 5 2 
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DESTRUCTION PHASE 
Step 1.a. Choose 2=d  jobs, randomly. 

j 1 2 3 4 5 
jπ  3 1 4 5 2 

 
Step 1.b. Establish { }2,4,3=Dπ , { }5,1=Rπ .  
d 1 2 3 r 1 2 

Dπ  3 4 2 Rπ  1 5 
 

CONSTRUCTION PHASE 
Step2.a. After the best insertion of the job 11, =Rπ  in 3+1 
possible slots. 
d 1 2 3 4 r 2 

Dπ  3 4 1 2 Rπ  5 
 
Step2.b. After the best insertion of the job 52, =Rπ  in 4+1 
possible slots. 
j 1 2 3 4 5 

jπ  5 3 4 1 2 

2.4 Two-Cut PTL Crossover 
Two-cut PTL crossover operator presented in [30] is used to 
update the particles of the DPSO algorithm. Two-cut PTL 
crossover operator is able to produce a pair of distinct offspring 
even from two identical parents. An illustration of two-cut PTL 
crossover operator is shown in Figure 2. 

Two-Cut PTL Crossover Two-Cut PTL Crossover 

P1 5 1 4 2 3 P1 5 1 4 2 3 

P2 3 5 4 2 1 P2 5 1 4 2 3 

O1 3 5 2 1 4 O1 5 2 3 1 4 

O2 1 4 3 5 2 O2 1 4 5 2 3 

Figure 2. An Example of the PTL Crossover Operator. 

In the PTL crossover, a block of jobs from the first parent is 
determined by two cut points randomly. This block is either 
moved to the right or left corner of the permutation. Then the 
offspring permutation is filled out with the remaining jobs from 
the second parent. This procedure will always produce two 
distinctive offspring even from the same two parents as shown in 
Figure 2. In this paper, one of these two unique offspring is 
chosen randomly with an equal probability of 0.5.  

2.5 Referenced Local Search 
The local search what we call it referenced local search (RLS) is 
inspired from the job index based insertion scheme (JIBIS) of 
Rajendran [31]. Instead of using the job index of the current 
permutation, the RLS uses the reference permutation πR taken 
from the search procedure such as the bestsofar solution, NEH 
solution, JIBIS solution or the best solution in the initial 
population. After constructing the initial population, we establish 
a sequence where the jobs are arranged in descending sum of their 
processing times. Then we apply the Referenced Insertion 
Scheme (RIS) to the global best solution of the initial population. 
The solution returned by the RIS is set to the reference 

permutation and used as a reference throughout the algorithm. 
The basic idea behind it is to take reference of positions of the 
jobs from a good permutation and insert them in different 
positions in the incumbent permutation to find a better 
permutation. It should be noted that we apply the local search to 
the global best solution πt

g at each iteration t. The referenced 
local search and the referenced insertion procedure are shown in 
Figure 3 and 4, respectively. 

Procedure RLS(πg) 
π:=DestructConstruct(πg); 
π1:=RIS(π) 
If Cmax(π1)<Cmax(π) then 
  π:=π1; 
Else 
   If (random<exp(-(Cmax(π)-Cmax(π1)/T))) then 
      π:=π1; 
   Endif 
Return π 

End. 

Fig. 3. Referenced Local Search. 

 
Procedure RIS(π) 
π* := πR  
Set h:=1; 
Set i:=1; 
while(i<n) do 
   h:=(h mod n); 
   Remove the job πd from π, which corresponds to the job π*

h. 
   π1:=the best permutation obtained by inserting job πd in any 
    possible position of π. 
    If Cmax(π1)< Cmax(π) then 
         π:=π1; 
          i:=1; 
     else 
          i:=i+1; 
     endif 
           h:=h+1; 
    end while 
    return π 
end.  

Figure 4. Referenced Insertion Scheme. 

 
A constant temperature is used in the simulated annealing type of 
acceptance criterion in the DDE algorithm as suggested by Osman 
and Potts [17]:  

τ×
××

=
∑ ∑= =

10
1 1

mn

p
T

n

j

m

k jk
     (11) 

where 4.0=τ . In this way, the global best solution is diversified 
by giving chances to some inferior solutions during the search to 
escape from the local minima. The pseudo code of the DDE 
algorithm for the PFSP is given in Figure 5. 
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Procedure DDE 
initialize parameters 
initialize target population 
evaluate target population 
πR=sequence that jobs are arranged in descending sum of their 
processing times 
πR :=RIS(πg).  
while (not termination) do  

obtain mutant population 
obtain trial population  
evaluate trial population 
make selection 
apply local search RLS(πg) 

    endwhile 
    return globalbest  
end 

Figure 5. DDE Algorithm for the PFSP. 
The DDE algorithm with the referenced local search will be 
denoted as DDERLS from now on throughout the paper. 

3. COMPUTATIONAL RESULTS 
The basic objective of this study is to compare the performance of 
the DDERLS algorithm with the IG_RSLS algorithm recently 
presented in Ruiz & Stutzle [21]. Even though we obtained the 
IG_RSLS code through personal communication, we have 
developed our own IG_RSLS code to run both algorithms in the 
same machine environment.  
To give a brief and sound explanation about the DDERLS 
algorithm presented, the destruction and construction heuristic 
with destruction size of 4 (d=4) is used to generate the mutant 
population. In the construction phase, the NEH heuristic with the 
speed-up method of Taillard is utilized. No such effort has been 
devoted to adjusting the parameters of the DDERLS algorithm due 
to the following facts:  
1. Ruiz & Stutzle [21] have already conducted a detailed design 

of experiments for parameter setting of the destruction size 
and the temperature parameter of the acceptance criterion. 
For these reasons, we just simply took the destruction size 
and temperature parameter as d=4 and τ=0.4, respectively as 
in Ruiz & Stutzle [21]. Two-cut PTL crossover is used in the 
update equation (15);  

2. Regarding the other parameters of the DDERLS algorithms, 
population size is set to NP =20, mutation probability to 

mP =0.2, and the crossover probability to cP =0.8. The 
reason for which the low mutation and population size were 
taken was to give more chances to the RLS local search 
algorithm since it is well-known that the performance of 
evolutionary algorithms without a good local search is not 
satisfactory to solve the discrete optimization problems. 
However, we again show that the hybridization of an 
evolutionary algorithm with a good local search enhances its 
performance significantly.  

DDERLS and IG_RSLS algorithms for the PFSP problem were 
coded in Visual C++ and run on an Intel P IV 3.0 GHz PC with 
512MB memory. Both algorithms were applied to the 120 
benchmark instances of Taillard [23] ranging from 20 jobs with 5 
machines to 500 jobs with 20 machines. Termination criterion is 
set to ( ) tmn ×× 2/  where t  is taken as 30, 60 and 90 
milliseconds as in Ruiz & Stutzle [21]. 

R=5 runs were conducted for each problem instance consistent 
with Ruiz & Stutzle [21]. The average relative percentage 
deviation (ARPD) and the average CPU time to the best 
makespan, i.e., the time that the makespan does not change after 
that point of time, in each replication averaged over R runs were 
given as statistics for performance measures. The average relative 
percentage deviation was computed as follows: 

( )
R

M
MM

ARPD
R

i REF

REFi /
100

1
∑
=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ ×−
=   (12) 

where iM  was the makespan by the DDERLS or IG_RSLS 
algorithms in each run whereas REFM  was the optimal or the 
lowest known upper bound for Taillard’s instances as of April 
2004, and R was the number of runs.  
Computational results are given in Tables 1-6. We only compare 
the DDERLS algorithm to the IG_RSLS algorithm since the 
IG_RSLS algorithm has already been shown to be superior to 12 
best performing algorithms compared in [21]. There exist several 
other sophisticated algorithms in the literature such as TSAB [18], 
RY [13], TSGW [20]. However, our main goal is to present the 
superior performance of both the IG_RSLS and DDERLS 
algorithms.  
As seen in Table 1-6, the performance of the IG_RSLS algorithm 
was better than the results in Ruiz and Stutzle [21] even for t=30. 
It might be because of different machine environments used. 
When comparing the DDERLS algorithm to the IG_RSLS, the 
DDERLS generated slightly better results for all t=30, t=60 and 
t=90. However, the success was due to the use of the referenced 
local search in the DDE algorithm.  
We did not report the results for both algorithms without the local 
search versions. However, when no local search was employed, 
the performance of the IG_RS algorithm was superior to the DDE 
algorithm. One reason might be the fact that we have employed a 
very low mutation probability (0.2) indicating that the destruction 
and construction procedure is not so much effectively used in the 
DDE algorithm. When we increase the mutation probability to 
higher levels such as 0.8, the performance of the DDE algorithm 
becomes very competitive to IG_RS algorithm at the expense of 
limiting the performance of the DDERLS algorithm. 
To sum up, the performance of the DDERLS algorithm was slightly 
better than our implementation of IG_RSLS algorithm. However, 
the pure performance of the IG_RS algorithm was superior to the 
DDE algorithm. This could be compensated by increasing the 
mutation probability at the expense of reducing the impact of the 
RLS local search on the solution quality. 

Table 1. IG_RSLS Results for t=30 
 ARPD Time to Best Makespan 
Problem Avg Min Max Std Avg Min Max Std 
20/5 0.03 0.00 0.04 0.02 0.04 0.00 0.11 0.04 
20/10 0.01 0.00 0.03 0.01 0.35 0.09 0.73 0.27 
20x20 0.02 0.00 0.05 0.02 1.21 0.20 2.62 0.97 
50x5 0.00 0.00 0.01 0.00 0.25 0.03 0.59 0.24 
50x10 0.48 0.37 0.63 0.11 2.33 0.40 4.81 1.81 
50x20 0.75 0.51 0.95 0.18 8.97 4.56 12.56 3.31 
100x5 0.01 0.00 0.01 0.00 0.77 0.09 1.78 0.67 
100x10 0.23 0.16 0.29 0.05 4.05 1.30 7.51 2.53 
100x20 1.04 0.76 1.27 0.23 17.26 8.74 26.46 7.19 
200x10 0.15 0.06 0.25 0.10 9.61 1.66 19.68 8.08 
200x20 1.13 0.92 1.34 0.17 33.09 12.66 52.07 16.68 
500x20 0.67 0.55 0.81 0.10 90.93 36.92 135.02 42.38 
Mean 0.38 0.28 0.47 0.08 14.07 5.55 21.99 7.01 
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Table 2. DDERLS Results for t=30 
 ARPD Time to Best Makespan 
Problem Avg Min Max Std Avg Min Max Std 
20/5 0.04  0.04  0.04  0.00  0.06  0.02  0.17  0.06 
20/10  0.02  0.00  0.04  0.02  0.39  0.08  0.81  0.31 
20x20  0.03  0.00  0.08  0.04  1.17  0.11  2.45  1.01 
50x5  0.00  0.00  0.01  0.01  0.54  0.06  1.15  0.47 
50x10  0.49  0.29  0.67  0.17  2.72  1.02  5.02  1.76 
50x20  0.74  0.45  1.01  0.22  9.27  4.39 12.94  3.48 
100x5  0.00  0.00  0.00  0.00  0.34  0.08  0.80  0.30 
100x10  0.15  0.06  0.22  0.08  4.82  1.12  9.36  3.59 
100x20  1.11  0.81  1.42  0.26 18.56 10.50 27.27  6.90 
200x10  0.06  0.05  0.09  0.02  9.54  3.82 18.83  6.37 
200x20  0.99  0.70  1.19  0.21 39.87 21.88 57.11 15.57 
500x20  0.50  0.41  0.57  0.07 105.89 54.73 143.34 36.84 
Mean 0.35 0.23 0.45 0.09 16.10 8.15 23.27 6.39 

Table 3. IG_RSLS Results for t=60 
 ARPD Time to Best Makespan 
Problem Avg Min Max Std Avg Min Max Std 
20/5 0.02 0.00 0.04 0.02 0.09 0.00  0.31 0.13 
20/10 0.00 0.00 0.00 0.00 0.41 0.09 1.03 0.39 
20x20 0.02 0.00 0.04 0.02 1.90 0.20 4.37 1.82 
50x5 0.00 0.00 0.01 0.00 0.34 0.03 0.76 0.30 
50x10 0.42 0.30 0.53 0.10 4.15 1.27 9.03 3.18 
50x20 0.59 0.39 0.78 0.16 17.24 8.45 25.44 7.30 
100x5 0.01 0.00 0.01 0.00 0.77 0.10 1.79 0.67 
100x10 0.19 0.12 0.25 0.06 8.65 3.34 15.84 5.39 
100x20 0.92 0.65 1.22 0.24 33.45 14.86 53.69 16.49 
200x10 0.09 0.06 0.16 0.04 20.74  3.05 43.44 17.05 
200x20 1.02 0.82 1.18 0.15 72.46 34.31 107.58 31.26 
500x20 0.62 0.50 0.71 0.09 194.87 87.64 270.37 75.99 
Mean 0.33 0.24 0.41 0.07 29.59 12.78 44.47 13.33 

Table 4. DDERLS Results for t=60 
 ARPD Time to Best Makespan 
Problem Avg Min Max Std Avg Min Max Std 
20/5 0.03 0.00 0.04 0.02  0.14  0.03  0.33  0.15 
20/10 0.02 0.00 0.03 0.02  0.48  0.10  1.07  0.39 
20x20 0.02 0.00 0.05 0.02  1.99  0.37  5.05  1.98 
50x5 0.00 0.00 0.01 0.00  0.63  0.16  1.21  0.44 
50x10 0.39 0.29 0.59 0.13  4.77  1.52  8.70  3.17 
50x20 0.60 0.33 0.85 0.21 17.38  8.35 26.05  7.36 
100x5 0.00 0.00 0.00 0.00  0.34  0.08  0.81  0.30 
100x10 0.12 0.05 0.22 0.08  8.40  1.32 17.24  6.68 
100x20 0.98 0.70 1.29 0.26 38.81 16.65 55.90 17.06 
200x10 0.06 0.03 0.09 0.03 14.13  3.81 34.40 12.98 
200x20 0.82 0.57 1.01 0.20 75.89 40.40 113.43 29.96 
500x20 0.45 0.37 0.52 0.06 181.56 93.80 265.50 69.15 
Mean 0.29 0.20 0.39 0.09 28.71 13.88 44.14 12.47 
 

Table 5. IG_RSLS Results for t=90 
 ARPD Time to Best Makespan 
Problem Avg Min Max Std Avg Min Max Std 
20/5 0.02 0.00 0.04 0.02 0.09 0.00 0.31 0.13 
20/10 0.00 0.00 0.00 0.00 0.41 0.09 1.03 0.39 
20x20 0.02 0.00 0.04 0.02 2.09 0.20 5.17 2.14 
50x5 0.00 0.00 0.01 0.00 0.33 0.03 0.76 0.30 
50x10 0.41 0.30 0.53 0.10 5.39 1.27 11.53 4.28 
50x20 0.54 0.32 0.72 0.16 1.90 9.69 34.11 9.81 
100x5 0.00 0.00 0.01 0.00 1.12 0.09 3.50 1.43 
100x10 0.17 0.08 0.24 0.07 12.24 3.50 26.70 9.56 
100x20 0.84 0.62 1.03 0.18 49.14 22.12 78.15 23.53 
200x10 0.07 0.05 0.10 0.02 29.28 3.99 60.02 23.72 
200x20 0.93 0.72 1.12 0.16 118.72 42.58 171.79 54.92 
500x20 0.58 0.44 0.69 0.10 273.61 100.92 405.69 127.78 
Mean 0.30 0.21 0.38 0.07 42.86 15.37 66.56 21.50 

 

Table 6. DDERLS Results for t=90 
 ARPD Time to Best Makespan 
Problem Avg Min Max Std Avg Min Max Std 
20/5 0.03 0.00 0.04 0.02 0.14  0.03  0.33  0.15 
20/10 0.01 0.00 0.03 0.02 0.61  0.10  1.46  0.57 
20x20 0.02 0.00 0.04 0.02 2.92  0.38  7.82  3.18 
50x5 0.00 0.00 0.01 0.00 0.81  0.16  1.84  0.67 
50x10 0.34 0.29 0.40 0.05 8.10  2.07 14.75  5.28 
50x20 0.55 0.32 0.76 0.18 22.99 11.31 35.54 10.02 
100x5 0.00 0.00 0.00 0.00 0.34  0.08  0.80  0.30 
100x10 0.08 0.05 0.14 0.05 13.86  3.86 30.76 11.33 
100x20 0.83 0.54 1.06 0.22 57.98 24.42 82.78 24.19 
200x10 0.05 0.03 0.06 0.01 20.11  3.92 56.16 21.43 
200x20 0.77 0.55 0.98 0.20 106.84 52.20 168.26 49.22 
500x20 0.42 0.35 0.50 0.07 262.95 104.43 407.39 127.63 
Mean 0.26 0.18 0.34 0.07 41.47 16.91 67.32 21.16 
 

During these runs (DDERLS runs), we were able to improve some 
best known solutions. New best known solutions for Taillard’s 
benchmark instances are given below: 
 

New best solution for ta051: 
N=50, m=20, Cmax=3847 
Permutation=  
20 31 39 27 43 15 44 
11 8 45 35 37 6 17 
34 28 7 14 42 33 40 
24 5 29 10 2 18 47 
48 21 46 1 16 49 23 
12 22 36 32 38 19 9 
26 13 4 41 30 25 50 
3 
 

New best solution for ta054: 
N=50, m=20, Cmax=3719 
Permutation= 
5 21 11 14 36 30 13 
24 12 7 45 19 35 20 
31 25 37 3 44 33 32 
50 48 43 49 29 46 23 
10 40 15 38 9 17 42 
22 6 39 26 47 4 27 
18 8 2 41 34 1 16 
28 
 

New best solution for ta056: 
N=50, m=20, Cmax= 3680 
Permutation= 
14 37 3 18 8 33 11 
21 42 5 13 49 50 20 
28 45 43 41 46 15 24 
44 40 36 39 4 16 47 
17 27 1 26 10 19 32 
25 30 7 2 31 6 23 
48 22 29 34 9 35 38 
12 
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New best solution for ta059: 
N=50, m=20, Cmax= 3741 
Permutation= 
3 14 8 37 22 32 12 
46 16 9 41 30 38 24 
10 1 18 17 34 50 28 
36 40 29 26 47 6 7 
13 27 33 39 23 11 49 
45 4 5 43 48 21 31 
42 19 25 2 20 15 44 
35 
 

4. CONCLUSIONS 
DE is a recent evolutionary optimization method. Besides the 
standard versions, we presented a new and novel discrete version 
denoted as DDE algorithm in this paper. Unlike the standard DE, 
the DDE algorithm is a novel algorithm employing a permutation 
representation for the problem on hand and works on a discrete 
domain. It indicates that it can be applied to all types of discrete 
combinatorial optimization problems in the literature. 
Furthermore, the DDE algorithm is hybridized with the referenced 
local search to further improve the solution quality.  

The IG_RS and DDE algorithms were applied to the well-
known benchmark problems of Taillard. The computational 
results show that the DDELS algorithm generated slightly better 
results than the IG_RSLS algorithm. Ultimately, four instances are 
further improved for the well-known benchmarks of Taillard. 
However, the pure performance of the DPSO algorithm was not 
competitive to the pure IG_RS algorithm when no local search is 
employed in both algorithms. 

As the future work, the authors have already solved the PFSP 
with a novel discrete particle swarm optimization algorithm. 
Extensive evaluation of DDE, DPSO and IG_RS with and without 
local search will be presented in the literature in the near future. 
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