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(2014); Greco and Cuomo (2014a); Luongo and Zulli (2013); Pideri and Seppecher

(2006); Steigmann and Faulkner (1993)— or a finite sequence of rotations —in a discrete

formulation Jawed et al. (2018); Bergou et al. (2008); Turco (2018)— is required.

Regrettably, the set of variables parametrizing the tensor representation of rotations is not

minimal. Therefore, one has to deal with a number of degrees of freedom greater than

what would be strictly necessary. On the other hand, a representation based on Euler-like

angles∗ allows the use of only three variables to describe rotations. Despite that, also

representations based on Euler-like angles involve some issues that might be complex to

address, especially in the case of dynamical problems. In particular, they suffer from the

so called gimbal lock (Brezov et al. 2013). Also, it is difficult to combine two rotations,

as well as Euler-like angels do not vary continuously along arbitrarily large motions (Pai

2011).

An alternative way to describe rotations is the angle/axis representation. However, in

this case, there are disadvantages too. Apart from being a non-minimal representation

(four degrees of freedom instead of three), such a representation is also singular when no

rotation is considered. Besides, there might be a lack of continuity along the motion, and

not be possible to combine conveniently several rotations.

A possible solution to the issues mentioned above is the use of quaternions. They

are a generalization of complex numbers that involves no trigonometric functions and

are characterized by four scalar parameters. Therefore this encoding is not minimal.

In fact, a quaternion represents a rotation only if the constraint of unitary amplitude is

considered. As the orientation changes, the quaternion elements vary continuously over

the unit sphere in R4, and it is convenient to combine two or more rotations using the

quaternion product. Nevertheless, this representation is not unique. Indeed quaternions

with opposite sign represent the same rotation. To sum up, this representation is quite

complicated, and it is often troublesome to employ the four parameters required by such

encoding directly, without using the matrix representation of the rotation.

In this paper, a novel discrete formulation is proposed which specifies the orientation

of the cross-sections of the rod utilizing a set of auxiliary points. These last define the

material directions of the principal axes of the cross-sections. The rationale behind this

approach is to overcome the difficulties previously mentioned, and especially the lack

of continuity along the motion path, without resorting to the complicated quaternion

representation.

The problem here presented is set in a discrete framework by following the Hencky

bar-chain approach (Turco et al. 2016; Wang et al. 2015; Zhang et al. 2016a,b). Although

the great majority of literature concern the planar case, there are works generalizing the

Hencky model also for three-dimensional motions (Turco 2018). Therefore, following

the general idea employed in Turco (2018) and generalizing the formulation presented

in Baroudi et al. (2019), an articulated system of bars is considered herein, each

experiencing only stretching deformation. In particular, elastic lumped joints connect

∗It is possible to define different sets of Euler angles. Actually there exist twelve of them, depending on the

particular adopted sequence of rotation axes.
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adjacent segments. The definition of the elastic behavior of the connections is closely

related with the three discrete curvatures describing the change in the orientation of two

consecutive material triads of unit vectors, which define the positioning of cross-sections

of the beam and are rigidly bonded on the corresponding segment in the articulated chain

of bars.

An elastic model of rod: geometrical exact formulation

Following the hypotheses of Kirchhoff and Clebsch (Coleman et al. 1993), an elastic rod

characterized by stretching, bending, and twisting deformations is considered. This one-

dimensional system is kinematically represented by its centerline and by a vector field

of orthogonal triads describing the orientation of the cross-sections of the elastic rod.

Moreover, in the case of a very slender rod (i.e., when the diameter† of cross-sections is

very small compared with its length), it is commonly accepted to assume that one vector

of the triad is parallel to the tangent to the centerline (i.e., shear deformation negligible).

In these circumstances, the kinematics of the rod B, in the framework of a material

formulation, can be defined by the following map

χ : B ×R→ E × V (1)

where E is the three-dimensional Euclidean space and V is the translational space of E ,

and more specifically

χ : (S, t) 7→ (x,v) (2)

according to which each point of the rod labeled by S ∈ [0, L], i.e., the abscissa along the

centerline of length L, and any given time t ∈ R are mapped into a place x ∈ E which

describes the current position of the centerline and a vector v ∈ V which represents the

orientation of one principal axis of the cross-section. The vector v should be such that its

length is constant (‖v‖ = d1) and it remains orthogonal to the tangent to the centerline

during all the motion (v · x′ = 0‡). Of course, the other principal axis of the cross-section

is automatically given in the considered hypotheses, because it is orthogonal to x′ and v.

In other words, the vector v defines a specific point, not necessarily a material point, on

the principal axis considered, i.e.

y = x+ v (3)

With these definitions, the kinematics of the rod can be fully described by the two fields

(x(S, t),y(S, t)) (4)

which must be complemented by the following constraints

‖y − x‖ = d1

(y − x) · x′ = 0 (5)

†Here ‘diameter’ means the maximum among all distances between pairs of points in the cross-section.
‡The prime denotes differentiation with respect to S.
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Naturally, one may solve these constrained equations (5) and proceed by the usual

way, reducing the introduced extra-variables. However, given the nonlinearity of these

equations, the problem could be tough to handle. The method of Lagrange multipliers

provides an alternative and convenient way to manage this matter. In the case of

continuous bodies, particular care should be taken, though. Indeed, the anew introduced

variables, i.e. the Lagrange multipliers, must belong to a proper functional space endowed

with a suitable inner product. Such a functional space should be defined consistently with

the energy functional into play to describe the behavior of the system (see for more details

Bersani et al. (2019); dell’Isola and Di Cosmo (2018)).

Using the variables x and y, it is easy to evaluate the unit vectors of the triads which

assign the orientation of the cross-sections of the rod

e =

∥

∥

∥

∥

∂x

∂S

∥

∥

∥

∥

−1
∂x

∂S
, m =

y − x

‖y − x‖
, n = e×m (6)

where e is the unit tangent vector to the centerline, and m and n are the two directions

of the principal axes of the cross-sections.

Among the placements χ, one of them is selected as a reference configuration and

introducing the notation (X(S),Y (S)) for it being S the natural parameter of X , the

reference directors (E(S),M(S),N(S)) can be also evaluated using the relations (6).

The strain measure along the axial direction ε(S, t) is defined as

ε =

∥

∥

∥

∥

∂x

∂S

∥

∥

∥

∥

−

∥

∥

∥

∥

∂X

∂S

∥

∥

∥

∥

=

∥

∥

∥

∥

∂x

∂S

∥

∥

∥

∥

− 1 (7)

The unit vectors of the triads define the rotation tensor R

R : (D1,D2,D3) 7→ (e,m,n) (8)

which maps the unit vectors of the observational frame of reference R(O,D1,D2,D3)
into the directors which represent the current orientation of the cross-sections. Therefore,

the second order curvature tensor W expressed in terms of rotations is

W = R⊤R ′ (9)

from which it is possible to evaluate the curvatures related to the change of orientation of

the triad (e,m,n) along the centerline as the abscissa S varies in the following way:

k1 = −
∂n

∂S
·m, k2 =

∂e

∂S
· n, k3 = −

∂m

∂S
· e (10)

Although the curvatures (10) are appropriate for an ample amount of applications, in

some cases, when considerable stretching is involved (dell’Isola et al. 2016, 2019), it

is preferable a definition for them, which takes into account the current elongation.

Therefore, keeping in mind those applications, a slightly different definition of the
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curvatures is introduced to take into account the change of length of the rod. In formulae

κ1 = −

∥

∥

∥

∥

∂x

∂S

∥

∥

∥

∥

∂n

∂S
·m, κ2 =

∥

∥

∥

∥

∂x

∂S

∥

∥

∥

∥

∂e

∂S
· n, κ3 = −

∥

∥

∥

∥

∂x

∂S

∥

∥

∥

∥

∂m

∂S
· e (11)

The same expressions are considered for the references curvatures

K1 = −
∂N

∂S
·M , K2 =

∂E

∂S
·N , K3 = −

∂M

∂S
·E (12)

From the above definitions, the measures related to torsion (τ ) and the bending with

respect to the directions m (β2) and n (β3) become

τ = κ1 −K1, β2 = κ2 −K2, β3 = κ3 −K3 (13)

The strain energy density is a convex function of the strain measures above-mentioned

Ψ = Ψ(ε, τ, β2, β3) (14)

Finally, denoting with dot the differentiation with respect to the time, the material

angular velocity can be expressed by a second order skew tensor

Ω = R⊤Ṙ (15)

or equivalently by the components of the axial vector of Ω, i.e.§

ω1 = −
∂n

∂t
·m = ω · e, ω2 =

∂n

∂t
· e = ω ·m, ω3 = −

∂m

∂t
· e = ω · n (16)

where ω is the angular velocity vector of the triad referred to the observational frame of

reference R. Thus, the kinetic energy density is a function of the velocity of the points

of mass centers laying on the centerline and the angular velocity of the cross-sections

assumed as rigid bodies, i.e.

K (ẋ,ω) =
1

2

∫ L

0

[

̺ ẋ · ẋ+ a (ω · e)2 + b (ω ·m)2 + c (ω · n)2
]

dS (17)

whose explicit form is obtained applying König’s theorem. The material parameters are

the mass density per unit line, ̺, and the moments of inertia, a, b, and c per unit line

around the current axes, e, m, and n, respectively.

The discrete formulation

To discretize the map χ of Eq. (1), the two sequences (xn)n∈{1,2,...Ne} and

(yn)n∈{1,2,...Ne} of finite length Ne are introduced, associating to them the discrete

§Here the Poisson’s formulae have been used: ṅ = ω × n, ṁ = ω ×m
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Figure 1. Kinematical description of a discrete rod: reference, C∗, and current, Ct,

configuration.

sequence Sn in which the abscissa S has been sampled, as follows

xn(t) = x(Sn, t), yn(t) = y(Sn−1, t) (18)

They describe the current positions of Ne points on the centerline of the rod and the points

taken on the principal axis of the cross-sections. For the sake of simplicity, a uniform

discretization Sn − Sn−1 = η is assumed ∀ n ∈ {1, 2, . . . Ne}, where S0 and SNe
are 0

and L, respectively. Moreover, the initial point of the sequence of the centerline x0 is

identified with its location in the reference configuration X0 and simultaneously with

the origin of the observational frame of reference O, i.e., x0 = X0 = O (see Fig. 1).

In a discrete context, the unit vectors of the triads related to the kinematics of the rod

are evaluated as

ei(t) =
xi(t)− xi−1(t)

‖xi(t)− xi−1(t)‖
, mi(t) =

yi(t)− xi−1(t)

‖yi(t)− xi−1(t)‖
, ni(t) = ei(t)×mi(t)

(19)

The analogous expressions for the positions (Xi,Y i) and the unit vectors (Ei,M i,N i)
in the reference configuration should be taken into consideration as well.

The constraints (5), once the necessary changes for the discrete formulation have been

made, become

G1i(xi,yi) = ‖yi(t)− xi−1(t)‖ − d1 = 0 (20a)

G2i(xi,yi) = ei(t) ·mi(t) = 0 (20b)

for i ∈ {1, 2, . . . Ne}.
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The discrete counterpart of the strain measure along the axial direction (7) is

εi(t) = ‖xi(t)− xi−1(t)‖ − η (21)

as a matter of fact, is the difference between the current distance of two adjacent points

and the corresponding one into the reference configuration.

The curvatures associated to the relative positions of two adjacent triads are evaluated

by

κ1i(t) = −
1

η
‖xi(t)− xi−1(t)‖

{

1

η
[ni(t)− ni−1(t)] ·mi−1(t)

}

(22)

κ2i(t) =
1

η
‖xi(t)− xi−1(t)‖

{

1

η
[ei(t)− ei−1(t)] · ni−1(t)

}

(23)

κ3i(t) = −
1

η
‖xi(t)− xi−1(t)‖

{

1

η
[mi(t)−mi−1(t)] · ei−1(t)

}

(24)

in accordance with the Eqs. (11), for i ∈ {2, . . . Ne}, while for i = 1 they are specified

by

κ11(t) = −
1

η
‖xi(t)‖

{

1

η
[n1(t)−D3] ·D2

}

(25)

κ21(t) =
1

η
‖xi(t)‖

{

1

η
[e1(t)−D1] ·D3

}

(26)

κ31(t) = −
1

η
‖xi(t)‖

{

1

η
[m1(t)−D2] ·D1

}

(27)

Plainly, one can evaluate the differentiation with a higher order of accuracy, but this is

beyond the purpose of the paper; thus, this kind of calculation is omitted.

Therefore, since the curvatures are the derivatives of the relative angular distortions

between cross-sections, these last angles can be evaluated by numerically integrating the

curvatures with the same order of the accuracy of before, in the following way

ϑi(t) = η κ1i(t), ϕ2i(t) = η κ2i(t), ϕ3i(t) = η κ3i(t) (28)

Figure 2 provides a simple explanation of the geometrical meaning of the relative

angular distortions for the elemental cases of pure rotations made with respect to the

current unit vectors (highlighted in dark red) without taking into account any extension

of the rod.

Of course, the same is valid for the reference configuration; thus one obtains

K1i = −
1

η
[N i −N i−1] ·M i−1 (29)

K2i =
1

η
[Ei −Ei−1] ·N i−1 (30)

K3i = −
1

η
[M i −M i−1] ·Ei−1 (31)
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(a) ϑi+1 (b) ϕ2i+1 (c) ϕ3i+1

Figure 2. Discrete definition of the relative angular distortions.

for i ∈ {2, . . . Ne} and

K11 = −
1

η
[N1 −D3] ·D2 (32)

K21 =
1

η
[E1 −D1] ·D3 (33)

K31 = −
1

η
[M1 −D2] ·D1 (34)

for i = 1. The reference angular distortions are

Θi = η K1i, Φ2i = η K2i, Φ3i = η K3i (35)

Eventually, the measures of deformations related to torsion, and bending along the

axes mi and ni are

τi(t) = ϑi(t)−Θi, β2i(t) = ϕ2i(t)− Φ2i, β3i(t) = ϕ3i(t)− Φ3i (36)

respectively.

The elastic energy is

Ψel =
1

2

Ne
∑

i=1

[

Ai(εi)
2 +Bi(τi)

2 + Ci(β2i)
2 +Di(β3i)

2
]

(37)

where the coefficients Ai, Bi, Ci, Di are positive constants given by

Ai =
YmAcsi

η
, Bi =

GmJpi

η qti

, Ci =
YmJmi

η
, Di =

YmJni

η
(38)

for i ∈ {2, . . . Ne}. Ym and Gm are the Young and the shear moduli of the material of the

rod, respectively. Acsi is the area of the cross-section, Jpi
, Jmi

and Jni
are the torsional,

and the flexural inertial moments related to the directions mi and ni of the cross-section,



Giorgio 9

respectively. The quantity qti is the shear factor of the cross-section. Its values for i = 1
define the stiffnesses of the constrains that link the rod to the ground. In the case of a

clamp, it is possible to set

A1 = 2
YmAcs1

η
, B1 = 2

GmJp1

η qt1

, C1 = 2
YmJm1

η
, D1 = 2

YmJn1

η
(39)

The rationale behind this assumption can be explained considering to evaluate the lumped

stiffnesses in each fictitious discrete joint Xi as related to half part of the previous

segment between the cross-sections Si−1 and Si and half part to the following one

between Si and Si+1. Therefore, for the interior points, this concentrated stiffness results

from an arch-length equal to the length of an entire segment, η. Diversely the stiffnesses

related to the end parts of the entire rod correspond to half part of the segment, thus η/2.

In the case of a hinge, C1 or D1 is zero depending on how the hinge axis is arranged.

Indeed, the rod does not perceive any bending moment respect to the axis of the hinge.

Since the rod under consideration is very compliant, the external action due to the

weight is not negligible at all. Therefore, the gravitational potential must be introduced

and is

Ψwg =

Ne
∑

i=1

g mi xi ·D3 (40)

where the mass coefficients are given by mi = mtot/Ne for i ∈ {1, 2, . . . Ne − 1} and

mNe = mtot/(2Ne) in terms of the total mass of the rod, mtot, for a uniform distribution

of the mass. In other words, the mass of a discrete piece of beam between two adjacent

points xi−1 and xi is divided into two and placed at the same points. In the case

examined, this assumption is equivalent to put a mass of mtot/Ne in the locations of

mass centers of each finite slab of the rod within the abscissae Si−1 and Si.

If each finite segment of the rod with uniform distribution of the mass within the

abscissae Si−1 and Si is assumed to be a rigid body, as in the original formulation of

Hencky, the kinetic energy becomes

K =
1

2

Ne
∑

i=1

[

mi ẋi · ẋi + ai(ωi · ei)
2 + bi(ωi ·mi)

2 + ci(ωi · ni)
2
]

(41)

in which ai, bi, and ci are the moments of inertia around the principal axes of each slab,

i.e., ei, mi, and ni. Specifically, by making explicit the expressions of the components

of the angular velocities as a function of the unit vectors along the principal directions

and their time derivatives, the Eq. (41) takes the form

K =
1

2

Ne
∑

i=1

[

mi ẋi · ẋi + ai(−ṅi ·mi)
2 + bi(ṅi · ei)

2 + ci(−ṁi · ei)
2
]

(42)

A little digression about the kinetic energy shall be done to shed light on some

important numerical aspects. The kinematical variables used here, namely yi, are quite
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efficient in representing the kinetic energy of the cross-sections. However, as far as the

elastic energy is concerned, a fascinating choice, in the discrete framework, is to consider

the relative rotations between two close triads (ei, mi, ni) as, e.g., done by using the

incremental rotations in Simo (1985); Simo and Vu-Quoc (1986, 1988). Because of the

small value of these other variables, all the issues related to the lack of continuity along

the motion trajectories lose importance. In spite of this, to evaluate the kinetic energy,

the rigid rotation of each cross-section seen from the perspective of the observational

frame of reference should be incrementally obtained by multiplying the relative rotation

from the beginning of rod to the position of each of the cross-sections. This considerable

chain of multiplications involves a computational burden in calculating the kinetic energy

which is massive.

The structural dissipation of the rod is modeled by introducing a Rayleigh dissipation

function as follows

D =
1

2

Ne
∑

i=1

[

Avi(ε̇i)
2 +Bvi(τ̇i)

2 + Cvi(β̇2i)
2 +Dvi(β̇3i)

2

]

(43)

which depends on the time derivatives of the previously defined measures of

deformations (see, e.g., Altenbach and Eremeyev (2015)). The coefficients Avi, Bvi,

Cvi, and Dvi are positive material parameters (see for the identification of this kind of

parameters Lekszycki et al. (1992); Abali et al. (2016)).

For the considered rod, the Lagrangian is assumed to be

L (r, ṙ) = K (r, ṙ)−
(

Ψel(r) + Ψwg(r)
)

(44)

where r = {x1, . . . ,xNe,y1, . . . ,yNe}.

By using the method of Lagrange multipliers combined with the generalized

Hamilton’s principle, the equations of motion are given by

d

dt

(

∂L

∂ṙi

)

−
∂L

∂ri
+

∂D

∂ṙi
=

Ne
∑

k=1

λ1k(t)
∂G1k

∂ri
+

Ne
∑

k=1

λ2k(t)
∂G2k

∂ri
for i = 1, . . . 6Ne

G1k(r1, . . . , r6Ne) = 0 for k = 1, . . . Ne

G2k(r1, . . . , r6Ne) = 0 for k = 1, . . . Ne

(45)

together with the initial conditions for the variable r and its derivative ṙ. Equations (45)

are numerically solved by the technical computing system Wolfram Mathematica

with a differential-algebraic system of equations (DAEs) solver implemented with the

NDSolve routine.

A generalization to an orthotropic rod with Poisson’s effect

The previous formulation lends itself easily to be generalized to an orthotropic rod

accounting for Poisson’s effect. This kind of generalization is particularly suited for

timber or composite beams subject to extensive displacements and rotations.
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The idea, here, is to introduce a new degree of freedom, d2i(t), as specified below

zi(t) = xi−1(t) + d2i(t)ni(t) (46)

adding further auxiliary points zi(t) (see fig. 3) as well as to relax the constrained (20a).

With these assumptions the further measures of deformations can be defined in this form:

ε1i(t) = ‖yi(t)− xi−1(t)‖ − d1i(t) (47a)

ε2i(t) = ‖zi(t)− xi−1(t)‖ − d2i(t) (47b)

to take into account an average macroscopic stretching deformation of the cross-sections

along the two principal axes. Thus, the strain energy becomes

Ψel =
1

2

Ne
∑

i=1

[

Ai(εi)
2 +A1i(ε1i)

2 +A2i(ε2i)
2 +H1iεi ε1i +H2iεi ε2i+

Bi(τi)
2 + Ci(β2i)

2 +Di(β3i)
2
]

(48)

where the coupling terms εi ε1i and εi ε2i are responsible for Poisson’s effect. The newly

introduced material constants A1i, A2i, H1i, and H2i affect the deformation of the cross-

section. The constraint (20b) still can be employed with the Lagrange multipliers or

substituted with an equivalent term in the energy (48), involving the change of the angle

between ei and mi respect to π/2, like this: 1

2

∑Ne

i=1
Fi[arcsin(ei ·mi)]

2.

Figure 3. Unit cell for a generalized orthotropic rod with Poisson’s effect.

It is worthy to remark that many other kinds of generalization may be done; for

example, one can think about generalized beam theory (GBT) (Ferrarotti et al. 2017;

Eugster 2015; Piccardo et al. 2014).

Numerical simulations

Standard static examples

A preliminary study is carried out to show the level of accuracy of the presented discrete

formulation in approximating the corresponding continuous Kirchhoff theory. To this
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purpose, some standard cases are investigated using a soft rod. Herein, with ‘soft’ rod

is intended a beam whose stiffnesses are such that the load due to the own weight

involves large deformations and rotations. The sample considered is 0.8 m long and

is characterized by a uniform rectangular cross-section of sizes (3× 0.5) mm. The

material parameters are the Young modulus, Ym, equal to 78 GPa and the mass density

of 2700 kg/m3. It is worthy specifying that the deformed equilibrium configurations

displayed in all figures of this subsection are obtained by a code made with Mathematica

solving a constrained minimum problem for the potential energy of the system using the

FindMinimum routine.

In the first example, a straight beam clamped at one end, and subjected to a

concentrated, counterclockwise moment M at the other end, is considered. It is known

that in these circumstances, neglecting the effect of the weight, the equilibrium shapes

are circular arcs (see the snapshots in fig. 4). When the end moment is taken to be

M0 = 2πYmJm/L the beam bends into a circle. Figure 5 reports a convergence plot

in which the size of the elements η is plotted versus the tip error, i.e., the norm of the

distance between the numerical and the analytical solution of the tip displacement of the

cantilever beam for the closed circle subjected to M0. The straight trend in the log–log

graph is characterized by a slope of 2.036.

Figure 4. Cantilever beam subjected to an end moment (simulations performed with 30

elements). Configurations for M = 0, M = 1/5M0, M = 2/5M0, M = 3/5M0,

M = 4/5M0, and M = M0.

After this standard benchmark problem, a cantilever beam and a simply-supported

beam under the gravity load are taken into account and numerically examined. For
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Figure 5. Convergence plot of the cantilever beam subjected to the end moment M0.

these two new cases, the equilibrium shapes are evaluated and compared with those

obtained with the commercial software Comsol Multiphysics, which allows the study

of large deformations and large rotations. For the case of the simply-supported beam

the cross-section is set to be (10× 0.2) mm. Figures 6a and 8a display the comparison

between the proposed formulation and the results of Comsol Multiphysics, while Figs.

6b and 8b indicate the amplitude of the deviation in the equilibrium shapes obtained

with the two different approaches. The numerical simulations are performed considering

a discretization of the rod with 30 elements. The deviation between the two discrete

methods is about 3-4 mm. Indeed, one can achieve the wanted accuracy just considering

a proper number of elements. On the other hand, figures 7 and 9 clearly show that the

discrete approach proposed reached already an acceptable convergence starting from

about 30 elements. This is evident examining both the graphs of the maximum deviation

from the configuration prior to the deformation and of the total energy of the rod as the

number of elements varies.

Dynamic examples

The case of biaxial bending with torsion The reference configuration is characterized

by a straight centerline of the rod, while the cross-sections are linearly twisted from 0

to π/4 in the undeformed state. This particular shape for the rod is selected because

all the main kinds of deformation are activated under the gravity load, namely a biaxial

bending, i.e., the simultaneous bending about both principal axes of the cross-sections

and the torsion. In particular, the case analyzed concerns a rod whose length is 0.8 m

and with a constant rectangular cross-section thick 0.5 mm and wide 3 mm. The Young
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Figure 6. Case of a cantilever beam: comparison between COMSOL Multiphysics and the

discrete formulation presented with 30 elements.
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Figure 7. Case of a cantilever beam: convergence plots.

modulus is 78 GPa, the shear modulus is 30 GPa, and the mass density is 2700 kg/m3.

The viscous coefficients are assumed to be Avi = 2.34× 105 N s/m, Bvi = 0.00168 N

s/m, Cvi = 0.00122 N s/m, and Dvi = 0.0439 N s/m. The moments of inertia around the

principal axes of each slab are ai = 6.24× 10−11 kg m2, bi = 2.70× 10−9 kg m2, and

ci = 2.76× 10−9 kg m2.

To illustrate the performance of the proposed formulation, the mechanical problem of

a cantilever beam, which is accelerated toward the vertical direction D3, is solved with

a discretization of 40 elements. Precisely, the initial conditions are the main equilibrium

configuration (see Della Corte et al. (2017) for details about other possible equilibrium
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Figure 8. Case of a simply-supported beam: comparison between COMSOL Multiphysics

and the discrete formulation presented with 30 elements.
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Figure 9. Case of a simply-supported beam: convergence plots.

shapes) due to the weight of the rod; and zero velocity. At the clamped left end, the

following displacement y(t) is imposed:
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y(t) =











































0 for t < 0;

Ay

[

126

(

t

Ts

)5

− 420

(

t

Ts

)6

+

540

(

t

Ts

)7

− 315

(

t

Ts

)8

+ 70

(

t

Ts

)9
] for t ∈ [0, Ts];

Ay for t > 0;

(49)

characterized by an amplitude of the seismic oscillation Ay = 0.5 m, and a time interval

of Ts = 0.25 s. This displacement, in the non-inertial reference frame fixed to the left

end results in an inertial force which is proportional to the acceleration ÿ(t), shown in

fig. 12. In this non-inertial reference frame, as displayed in the following figures, the

motion of the beam takes account only of the deformation since, naturally, the prescribed

movement to the same reference frame has been filtered apart.
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Figure 10. Reference configuration in the undeformed state.

Figures 13 and 14 exhibit the motion of the rod. In fig. 13, the stroboscopic movement

on the x1x2 and x1x3 planes is shown along with the initial configuration, highlighted

in red, and an intermediate configuration highly deformed, which is instead underlined

with a yellow solid line. Fig. 14 reports the plots of the coordinate of all the points of the

centerline as a function of the time. It is worthy to remark that using the Euler angles,

it is impossible to describe such a motion simply because the considered trajectory goes

beyond the limits that guarantee the continuity of the Euler angels along the motion path.

The nonlinear character of the motion in the initial transient can be easily detected

from the fig. 15, where the phase space trajectories of the free extremity coordinates

of the rod are plotted. Similarly, the nonlinear effect can be seen from the measures of
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Figure 12. Acceleration due to the motion of the relative frame.

deformations, namely, the torsion κ1i and the curvatures κ2i, and κ3i along mi and ni

as displayed in fig. 16 at a particular time instant, 0.258 s.

The case of a quick flick of a highly flexible rod from a circular to the equilibrium

configuration In this Section, the generalization previously proposed concerning the

introduction of Poisson’s ratio is tested with an example. A cantilever beam with the same

geometry and material constants of the preceding case is the testing sample. Besides the
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Figure 13. Stroboscopic motion from 0 to 1.15 s, which correspond approximately to the first

largest cycle of the oscillation. The initial configuration is the red solid line. The intermediate

configuration at time 0.258 s is highlighted in yellow.

material constants accountable for the deformation of the cross-sections are assumed to

be A1i = A2i = 58.5 N/m, H1i = 29.25 N/m, and H2i = 20.475 N/m.

The initial conditions are as far as concerning the shape of the rod centerline, a

folded configuration in a circle (see fig. 17a for the directions of the principal axes

of cross-sections), and zero velocity ṙ. Figure 18 shows the temporal evolution of the
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Figure 14. Motion of the rod centerline by coordinates.

significant coordinates of the beam axis line. Figure 19 shows in a single image, with

a stroboscopic technique, the progression of the configurations represented in different

instants corresponding to equal time intervals from 0 to 0.72 s, namely, the first cycle of

oscillation.
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Figure 17. Discrete visualization of the rod at the beginning of the motion and the equilibrium

shape toward which the movement tends with 40 elements.

The nonlinear behavior of the motion is also evident in this case if figs. 20, 21, and

22 are observed. Specifically, in figure 20, the intricate and complex trajectories in the

phase space of the tip coordinates of the rod are plotted. While figs. 21 and 22 report for

two generic instants the measures of deformations of the curvature κ2i along mi and the

elongations εi, ε1i and ε2i, respectively. Moreover, from fig. 22, Poisson’s effect relative

to the deformation of the cross-sections is clearly shown.

Conclusions: Present and Future Challenges

Nowadays, a great deal of research on new materials focuses on so-called metamaterials.

They are artificial materials whose macroscopic behavior depends mainly on a

microstructure which is designed with the aim of fulfilling a given behavior. Among

the panoply of these metamaterials, many of them are characterized by a microstructure

made up of small beams arranged in a periodic or quasi-periodic patterns (Barchiesi

et al. 2019b; dell’Isola et al. 2015; Avella et al. 1996; Karathanasopoulos et al. 2017;

Nejadsadeghi et al. 2019b; Reda et al. 2018; Vangelatos et al. 2019; Spagnuolo et al.

2019). To properly analyze and design these new materials, hence, efficient and easy-

to-use formulations of beam elements, like the one proposed here, become particularly

attractive. In this respect, the pantographic beam model proposed in Alibert et al. (2003);

Barchiesi et al. (2019a); Placidi et al. (2020) is owing to its potentialities in real-world

applications, quite remarkable. For the sake of completeness, also the one-dimensional

architectured materials in Barchiesi and Khakalo (2019); Berezovski et al. (2018);
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Figure 18. Motion of the rod centerline by coordinates.

Laudato and Barchiesi (2019); Nejadsadeghi et al. (2019a); Niiranen et al. (2019);

Solyaev et al. (2019) are worthy of being mentioned.

Again with regard to metamaterials, a very fruitful application of the proposed

approach concerns piezo-electro-mechanical beams (Alessandroni et al. 2002; Andreaus

et al. 2004; dell’Isola et al. 2003; Lossouarn et al. 2015, 2016). In such ‘smart’ materials,

piezoelectric patches bonded on the host beam are simply a way to draw off mechanical

energy towards an electric network. The exchanged energy can then be utilized in

different ways: conceiving energy harvesting devices, dissipating the energy into the

electric network aiming at damping the vibrations of the mechanical system, etc. It is

well-known that the best possible way to exchange energy between the two systems, i.e.,

mechanical and electrical, is that they share the same behavior, or in other words, the

same governing equations. Because of the discrete nature of the equations describing

of the electric lumped parameter network, an equivalent discrete formulation for the

mechanical system would be obviously very desirable.

Numerical developments in the framework of isogeometric FEM are also enticing,

because they allow to obtain even more efficient computing procedures further decreasing

the degrees of freedom with the same level of accuracy (see, e.g., for beams in static
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problems Cazzani et al. (2014, 2015); Greco and Cuomo (2013, 2014b, 2016); Greco

et al. (2017) and for dynamics ones Weeger et al. (2013); Yaghoubi et al. (2018)).

Regarding generalizations and future developments, the proposed formulation can

easily be adapted for Timoshenko beams (Cazzani et al. 2016; Balobanov and Niiranen

2018) and Cosserat rods (Altenbach et al. 2012, 2013).

The nonlinear nature of the analyzed mechanical system implies that many features

that are difficult to be tackled (see, e.g., in the context of nonlinear vibrations Battisti

et al. (2017); Chróścielewski et al. (2019); Deü et al. (2008); Lazarus et al. (2012);

Thomas et al. (2016), nonlinear motions Boyer et al. (2002); Boyer and Primault (2004)

as well as in dynamic stability of mechanical systems Luongo and D’Annibale (2013,

2017); Luongo et al. (2016, 2015); Spagnuolo and Andreaus (2019)). Therefore, having

a formulation which is as simple as possible is always an opportunity to pursue.
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Figure 21. Curvature κ2i along mi.
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Thomas O, Sénéchal A and Deü JF (2016) Hardening/softening behavior and reduced order

modeling of nonlinear vibrations of rotating cantilever beams. Nonlinear Dynamics 86(2):

1293–1318.

http://dx.doi.org/10.1007/BF00042633
http://dx.doi.org/10.1007/BF00042633


30

Turco E (2018) Discrete is it enough? the revival of Piola–Hencky keynotes to analyze

three-dimensional Elastica. Continuum Mechanics and Thermodynamics 30(5): 1039–

1057. DOI:10.1007/s00161-018-0656-4. URL http://dx.doi.org/10.1007/

s00161-018-0656-4.

Turco E, dell’Isola F, Cazzani A and Rizzi NL (2016) Hencky-type discrete model for pantographic

structures: numerical comparison with second gradient continuum models. Zeitschrift für

angewandte Mathematik und Physik 67(4): 85.

Vangelatos Z, Komvopoulos K and Grigoropoulos CP (2019) Vacancies for controlling the

behavior of microstructured three-dimensional mechanical metamaterials. Mathematics and

Mechanics of Solids 24(2): 511–524.

Wang CM, Zhang H, Gao RP, Duan WH and Challamel N (2015) Hencky bar-chain model for

buckling and vibration of beams with elastic end restraints. International Journal of Structural

Stability and Dynamics 15(07): 1540007.

Weeger O, Wever U and Simeon B (2013) Isogeometric analysis of nonlinear Euler–Bernoulli

beam vibrations. Nonlinear Dynamics 72(4): 813–835.

Yaghoubi ST, Balobanov V, Mousavi SM and Niiranen J (2018) Variational formulations and

isogeometric analysis for the dynamics of anisotropic gradient-elastic euler-bernoulli and

shear-deformable beams. European Journal of Mechanics-A/Solids 69: 113–123.

Zhang H, Wang CM and Challamel N (2016a) Buckling and vibration of Hencky bar-chain with

internal elastic springs. International Journal of Mechanical Sciences 119: 383–395.

Zhang H, Wang CM, Ruocco E and Challamel N (2016b) Hencky bar-chain model for buckling

and vibration analyses of non-uniform beams on variable elastic foundation. Engineering

Structures 126: 252–263.

http://dx.doi.org/10.1007/s00161-018-0656-4
http://dx.doi.org/10.1007/s00161-018-0656-4



