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Abstract -An 8-point  Fourier-cosine  transform  chip  designed for a  data 

rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 Mbits/s is described.  The  top-down  design is presented step by 

step, including  algorithm  modification for VLSI suitability,  architectural 

choices, testing overhead,  internal  precision  assignments,  mask generation,, 

and finally, verification of the  layout.  A  high-level  language (C) design  tool 

was  developed  concurrently  with  the  layout. This tool  allows  mimicking 

exactly the different representations of the  algorithm:  software,  mask,  and 

chip. This provides an  automatic  cross-checking  at  all  design stages. The 

VLSI environment  created by this  tool, as well as existing powerful CAD 

tools, made  a fast design-time  possible. 

I. INTRODUCTION 

H IGH-SPEED computation of the discrete cosine 
transform  (DCT) [l] is often required, typically in 

transform image coding [2], polyphase filter banks [3], and 
fast  Fourier transform evaluation [4]. A VLSI  chip  realiz- 
ing  a small length DCT  at very  high  speed  is desirable, 
both for image coding and for discrete Fourier transform 
(DFT) evaluation. Implementations have  been  realized  with 
assemblages of MSI hardware [5],  [6], but, to our knowl- 
edge, VLSI implementations have only been proposed [7], 
[8]. The realized design described in this paper is not only 
different  from  the previously proposed ones, but its con- 
cepts  can be easily extended to larger transform sizes 
and/or higher precision  when finer mask  design rules and 
associated chip processing become  accessible. 

Implementation of an %point DCT chp  working at 100 
ns per data sample with 10-bit input  and 12-bit output 
precision is presented. It turned out that in the 2.5 pm 
technology that was available at the  time of the design, the 
realized design was about the upper limit of what could be 
fitted onto 35 mm2 of available silicon. Parallel arithmetic 
is used to satisfy the high data rate. Since latency is usually 
of no consequence in this type of computation, the chip is 
fully pipelined. 

The fast Fourier-cosine transform algorithm (FFCT) [4] 
was chosen for  its minimum number of multiplications. 
The flowgraph was  modified in order to  obtain  a simpler 
structure  and divided into pipeline stages. Each stage was 
designed with input memory, a permutation network, and 
an arithmetic  unit which performs the required operations. 
With  the help of simulations, the precision of constants 
and  data was determined. A testing overhead was included 
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which allows the testing of stages independently on the 

In parallel  to the design of the actual chip, a software 
image in a high-level language (C) was  made. This image 
allowed us to check  all  levels, e.g., algorithm modification, 
finite precision effects, and also to automatically generate 
test vectors, both for the layout and  for the chip. A  future 
paper will describe this  design tool for mapping digital 
signal processing (DSP) algorithms into VLSI  [9]. The 
concept of t h s  tool, called MOVAL, was developed and 
partly implemented in parallel with the design of the actual 
chip. 

The above approach together with the use of the power- 
ful symbolic layout system MULGA [lo] allowed a design 
time of less than 3 months (which  is short considering the 
fact  that we had no previous  VLSI  experience). 

chip. 

11. THE FFCT ALGORITHM 

The discrete cosine transform of length N for a real 
vector x(O), x(l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . x(N - 1) is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DCT(k ,  N,x):=  x(n)-cos( 2s(2:i1)k), 
N - 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = O  

For k = 0 there is an additional scaling constant of la. 
The main features of the FFCT algorithm are that  it 

allows evaluation of both the DFT or the DCT  and  that 
only real arithmetic is  used. For sample point lengths 
which are powers of  2, it achieves the lowest known 
number of operations for the DCT, and for the DFT for 
real, complex, or symmetric  signals,  as well [4], [ll]. Espe- 
cially in  the case of the DCT, it needs substantially fewer 
multiplications  than the algorithm of Chen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer al. [12]. This 
is  crucial.in  the VLSI context, as will be pointed out. 

The principle of the FFCT algorithm is  briefly  recalled 
(details are found in [4]).  As  shown in Fig. 1, a DFT of 
length  N is mapped into  a  DFT of length N/2 and  2 
DCT's of length N/4, and this at the cost of 3N/2- 2 
additions. Fig. 2 shows that mapping of a  DCT  into  a DFT 
of the same length and  output rotations. As an example, 
the  computation of a 32-point DFT with the FFCT al- 
gorithm  is given in Fig. 3. The important points are that 
rotations represent the main computational load and  that  a 
chip performing a  DCT of length N can be used as a 
building block for  a processor performing a DFT of length 
4 N. 
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Fig. 1. Computation of the DFT by means of a smaller DFT and Fig. 3. A 32-point DFT computed with the FFCT algorithm. 
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issues, to test automatically the layout (on switch-level 
simulation  as well as for timing consideration), and  to 

D verify the working of the produced chip. Even more, it 
allows automatic generation of the layout of primitive 

4 functions  such  as the multiplier. In short,  it is a topdown 
approach  for structured VLSI design. These characteristics 

D4 are realized by the creation of a software image for the 
different  description levels of the algorithm with MOVAL. 

The highest level contains a description of the algorithm 
using floating  point arithmetic, whereas at the lowest  level 
an exact hardware description of the chip is formed. Dif- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 ferent levels can  be compiled together in order to test 
different  parts of the hardware design. Every description 
level is automatically cross-checked against the highest 

2 

@ :y\J2 level thus reducing the number of human errors to  a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rn :Rotation minimum. For testing and simulation purposes, a  data file 
v 

Fig. 2. Computation of the DCT with a DFT of same size and  rotations 

For two-dimensional DFT's or DCT's the most efficient 
algorithm  is based on polynomial transforms [13], [14]. But 
for. simplicity of control, generally one uses a one-dimen- 
sional  transform in a row-column fashion. Thus, a chip 
that  computes  a transform of length N is a useful building 
block for an N X N transform. 

111. A STRUCTURED TOOL TO IMPLEMENT DSP 
ALGORITHMS INTO VLSI 

The block diagram containing the architectural informa- 
tion (see Section IV, Fig. 6 )  indicates that  a number of 
arithmetic  units  and register/permutation networks need 
'to be designed. We had less than three months to work 
together and concluded that, with this severe time limit, the 
chip was too complex to be laid out  and verified com- 
pletely by hand. Therefore, a structured design tool became 
not only desirable  but absolutely necessary. 

The design tool named MOVAL (modular versatile al- 
'gorithmic language [lo]) allows us to analyze the precision 

is  created  containing the input data: clock and  control 
signals, and the correct output  data.  The  input  data can be. 
generated manually, but can also be obtained from real- 
world data.  The choice of real input  data is important  to 
analyze  the  finite precision effects. For example, in the case 
that a DCT chip is  designed to code pictorial data, real 
pictures  can be used  as input  data  to see the effect of finite 
precision arithmetic in order to make a tradeoff between 
available chip space and picture quality. 

Iv. ALGORITHM  MODIFICATION FOR VLSI SUITABILITY 

A special-purpose machine allows a  better match be- 
tween required computational power and arithmetic units 
than would a general-purpose computer. Boldly stated,  the 
philosophy is: put  a processor whenever and wherever  you 
need one. The  DCT chip design makes an  attempt  to place 
computational elements only  where  they are required, thus 
maximizing their use. On the other hand, if the DCT 
algorithm  runs on a general-purpose signal processor, some 
of its computational elements will stay idle at certain stages 
of the  algorithm, thus making a bad use of time and/or 
silicon area. A first estimate shows that  a commercial 



signal processor (TMS320)  would require at least a factor 
of twenty more times to solve the 8-point DCT transform 
than does  the DCT chip. 

In general, a design  reflects the interplay between the 
algorithm  and  the outside-world constraints. For the DCT 
chip,  the  constraints were a one-chip design and a mini- 
mum  data  rate of 100 Mbit/s. The available technology 
was 2.5 pm CMOS, and preliminary investigations showed 
that  putting  an 8-point DCT on  one chip would be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa 
reasonable goal. (The available surface was about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35 mm2.) 
Yet another  constraint was a short design  time  (less than 3 
months), which also dictated some design  choices. 

In the flowgraph of an 8-point DCT computed with the 
FFCT algorithm as  shown in Fig. 4(a), a lack of regularity 
is apparent.  In the VLSI context, this mews that the 
control  and  the routing will be complex thus costly in size 
and time. Note as well that the output is not ordered, 
which is not desirable in  general. With a post permutation 
one  can  obtain ordered output 'samples. 

There  are many possible flowgraph transformations that 
can  be applied to a flowgraph like the one  in Fig.  4(a) and 
that will retain the same arithmetic complexity. To our 
knowledge, there are  no flowgraph transformations that 
will  lower the operation count and no transform will result 
in an in-place in-order algorithm. Therefore, the flowgraph 
will be transformed in such a way that similar operations 
appear grouped. Actually, an increase in the number of 
operations  is tolerated just for the sake of better structure. 

The chosen solution moves on addition/subtraction op- 
erator from stage 3 [Fig. 4(a)] to the last stage and merges 
it with the scaling by la, thus producing a rotation [see 
Fig. 4(b)]. Now there are 4 output rotations, and stage 3 
has only 2 multipliers left. While  this means an implicit 
increase of the computational load by 1 multiplication and 
1 addition,  the regularity will pay off in implementation 
simplicity. 

The precision issue has to be addressed at a very early 
state of the design. Floating point was out of the question 
due to  the high  speed and chip area constraints. Since 
image processing is a potential field of use for the chip, the 
aim was a precision of at least 8 bits. Simulations showed 
that multiplying constants having a bit length of 80 percent 
of that of the  input  data could be used  with  negligible  loss 
of precision. Linked to word width is also the data growth 
issue. Since overflow cannot be tolerated (for example, in 
transform coding, it would  mean that  the relevant informa- 
tion would get lost), one has either to provide guard bits, or 
to truncate  after each operation. The first method requires 
absurdly large data  paths (each addition means a growth of 
1 bit,  and each multiplication with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL- and M-bit inputs 
has an  output of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ M bits, where L and M are usually 
of the same order). The second method results in the fact 
that  certain low-level input sequences  simply disappear. 

As might be expected, a compromise solution was cho- 
sen. While a certain number of guard bits  are provided, the 
outputs of certain operations (like the multiplications) are 

truncated so as  to bound the data growth. Both for the 
flowgraph manipulation  and the data precision analysis, a 
software  image was  very helpful. This software image was 
written with floating point arithmetic for the flowgraph 
emulating version, and with appropriate integer arithmetic 
for  the,data precision analysis version. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i 

V. ARCHITECTURAL ISSUES 

Since the chip is basically a number cruncher, the choice 
of two's complement number representation was an obvi- 
ous  one,  Another early concern was  what type of arith- 
metic should be used. The two opposite solutions are serial 
or parallel arithmetic. A mixing of both was  excluded 
because the design would  become too complex. The ad- 
vantage of serial arithmetic is its simplicity and  its good 
time/area performance when  used appropriately. One of 
the  drawbacks  is  that  the rounding problem cannot  be 
handled without a significant loss in performance (large 
number of guard bits) and rounding overhead. Multiplica- 
tions  require 2L partial adding times  [17],  which makes 
them slow. Therefore, high throughput requires many serial 
operators  in parallel, which  involves a large control over- 
head. 

In contrast, parallel arithmetic allows  high throughput 
without overhead. The design of parallel arithmetic is 
rather straightforward, and  the rounding/truncating can 
be handled easily. Problems may occur when  the  word 
length is too large, resulting in a carry time that is not 
acceptable. Then the solution is to use look-aheads or 
pipelined arithmetic, but  both represent a more involved 
design. 

As an example the computational requirements of stage 
5 are analyzed. The specification for the processing time of 
one sample  is 100 ns. Four rotations containing 12 multi- 
plications must  be performed in 800 ns (8  samples). With a 
multiplication time in the range of 100-200 ns, at least 
three multipliers in parallel are necessary. 

These considerations lead to  the use of parallel arith- 
metic. Furthermore, all the stages  have to  be pipelined in 
order  to achieve the desired performance (one rotation unit 
is already necessary just  to meet the throughput require- 
ment of stage 5). Pipelining is a natural way to go, since 
each stage has a specific computational task (e.g., plus and 
minus  operation,  rotation)  that can be met  with a matchmg 
arithmetic unit. The chip is, therefore, divided into 6 
pipelined stages, where the first 5 realize the calculations 
and  the  6th  one is  used to reorder the data. Stage 1, 2, and 
4 will have add-subtract units, stage 3 a multiply-by-con- 
stant unit,  and stage 5 a rotator unit. Once the two basic 
choices have been made, namely parallel arithmetic and 
pipelined computation, the design of the chp  is set in a 
manageable context. 

The dataflow is  examined  next.  Besides the multiply- 
by-constant in stage 3 (which is a scaling) all other oper- 
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Fig. 4. Flowgraph of an 8-point DCT computed  with  the FFCT al- 
gorithm. (a) Original  flowgraph.  (b)  Flowgraph  after modification for 
VLSI suitability. 
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Fig. 5. Architectural concept. (a) Data flow concept through  the six 
computational stages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFs is the sampling rate of the data (10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz). (b) 
Basic control signals. 

ations  are  “rotations” (sum and difference of 2 samples 
can  be  regarded as a rotation by 45” followed  by a scaling 
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. One interesting property of a rotation is that  it 
transforms 2 inputs  into 2 outputs (in contrast to the more 
common  addition or multiply operation which transform 2 
inputs  into 1 output),  and  that, therefore, a 2L datapath is 
quite  natural when  working  with L-bit numbers.  This 
parallelism also allows the arithmetic units to work at half 
the  input  data rate, which in the case of the general rotator 
of stage 5 is very  welcome (it would be difficult to design 
parallel multipliers with a 100 ns multiply time, at least 
without  going to pipelining the multiplier itself). 

Timing and control are examined  next. The usual two- 
phase  nonoverlapping clocking  scheme  was  cho’sen,  which 
is the most straightforward clocking  scheme for a synchro- 
nous design [15]. Phase 1 is used for data transmission, and 
phase 2 for data evaluation. Since both  input  and  output 

were  chosen  bit parallel/sample serial, the first and last 
stage work at the data rate for the input  and  output, 
respectively. In between, the data rate is  halved. Actually, 
phase 2 is chosen to  be longer than  phase 1, since the 
time-consuming  part is the data evaluation in the parallel 
arithmetic. Besides the clocks, a clear  signal  is  used to 
define the beginning of each new 8-samples  sequence.  Fig. 
5 schematically shows the dataflow and data  rate as well  as 
the clocks (phi11 and phi22 are the half-rate clocks). 

The overall dataflow  and timing, and the need  to pipe- 
line the computation, leads to the need to separate the 
stages by registers. The registers  also include the permuta- 
tions required by the flowgraph. A first sketch of the 
resulting design is  shown in Fig. 6. 

Note  that this architecture is  by no means the only 
solution  to  the given initial problem of computing  an 
8-point DCT on one chip at a  100  Mbit/s data rate. But 
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one of its nice features is that  it is  trivial to change its 
arithmetic precision, and that the same  concept  can be 
applied to compute larger or other transforms (requiring 
different arithmetic units). Furthermore,  it will  be  seen that 
registers provide  a built-in testability feature that is quite 
useful when testing the layout and/or the chip. 

VI. BUILDING BLOCKS 

In a  dataflow  concept with parallel arithmetic, it is 
advantageous to store and process bits having the same 
weight at  the  same physical location. Thus, the same bit 
parallel concept is  used in the storage and the processing. 
Next,  the  main building blocks,  registers, adders, subtrac- 
tors,  and multipliers are described. 

Since the registers represent a substantial overhead in 
the pipelined architecture of Fig. 6 ,  a  compact design  was 
important.  Note  that the permutations  in Fig.  4(b) are 
rather  complex,  and  that therefore, it was important to be 
able  to realize arbitrary permutations between  stages  (i.e., 
that  the register design  does not restrict the possible per- 
mutations). Therefore, the registers  were  designed to func- 
tion in three steps: 1) acquire the data from the previous 
stage, 2) permute the samples arbitrarily, and 3) put out 
the  samples to the arithmetic units. Step 1 is  realized  with a 
shift register having serial input  and parallel output; Step 2 
with an  arbitrary  permutation  network;  and Step 3 with a 
shift register having parallel input  and serial output. Note 
that the shift registers are of length 4 or 8 depending  on 
which stage they are located, but  that  the.  permutation 
network  always  maps 8 input samples into 8 outputs  (the 
flowgraph  being not completely separable into 2 parallel 
paths).  The 4-bit shift  registers  for steps 1 and 3 are 
depicted  in Fig. 7. To realize a full register/permutation 
block (as required in Stage 2, for example),  two such 
registers are  put  on each side of a  permutation network. A 
copy signal (occurring every 800 ns)  moves the content of 
the first set, through the permutation  network, to the 

( 4  (b) 

Fig. 7. Shift  registers.  (a) A 4-bit shift register  with  serial  input  and 
parallel output. (b) A 4-bit shift  register  with  parallel  input  (which is 
written through passgates with a copy signal)  and  serial output. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

: '1" 
-7 

P -  SA 
P/S 

Of 

Fig. 8. Registers of  stages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-6. 
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P Permutation. 

second set as shown in Fig. 8 (where a  one bit  slice  is 
shown). The permutation network can be  realized  with 
pass-gates (which are more  flexible,  since the permutation 
can be  programmed), but for simplicity and  compactness,  a 
routing  network was  used in the chip. 

Full  adder designs are examined  next. From the 3 inputs 
a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, and tin, (which can be interchanged), one devises s 
and tout according to 

s = a@b@c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C,"[ = ab + bCin + ac,. ( 2 )  

The minimum gate CMOS implementation of the full 
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Fig. 9. Symbolic layout of 1-bit strip  in  stage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFrom left to  right;  shift 
registers,  permutation,  shift  registers  and 2 full  adders. 

adder provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,,,, but, since it is  easy to show that 

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s=ii@b@c, 

Gout = iib + bc, + iti" (3) 
- -  

one can  cascade minimum  full adders  provided that every 
other  bit of the input is  reversed. 

This results in the fact that every  second output is 
reversed, but this can  be  accommodated in the next ,adder 
stage. -Therefore, only the final and last arithmetic unit 
needs inverters for every other bit. A minimum adder cell 
was designed so that two of this type would match the 
registers (one to compute the sum, the other the difference 
of 2 samples). The blocks  described so far complete basi- 
cally l bit of the stages l, 2, and 4. A remark  is appropriate 
here. Stage 1 performs  4 addition/subtraction operations, 
while stage 2 and  4 perform 3 and 2 addition/subtraction 
operations, respectively.  While in traditional complexity 
terms, stage 2 and  4 are less  complex than stage 1, in VLSI 
it is just the opposite. Stage 1 has  just  an  adder/subtractor 
cell, while stage 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 require additional routing and 
passgates in order to bypass the operations at certain 
times! In  the  FFCT, algorithm arithmetic complexity has 
been  traded off against regularity, and thus another al- 
gorithm involving more operations can have a more regular 
structure. 

Fig. 9 shows the symbolic layout of a one bit slice in 
stage 1. At left are the two 4-bit serial-in parallel-out shift 
registers, followed  by the permutation network, and the 
two 4-bit parallel-in serial-out  shift  registers. At right are 
the  two full adder cells (the subtraction is acheved by 
two's complementing the input to be subtracted, namely, 
take  the inverse of the bits and  add 1 at the lowest carry 
input).  On  top of the adders is the bypass. 

Both the driving of the shift  registers and the generation 
of addresses for the ROM's require a set of control signals 
which  have to  be devised from the three basic control 
signals phil, phi2, and clear. Ths  was  realized  with  ring 
counters  and  the appropriate logic  (signals and their  com- 
plement  being generated by complementary logic  as  well, 
so as  not  to incorporate any unnecessary  delay in the 
control).  The set of control signals  is depicted in Fig. 10. 

Another  important building  block is the multiplier. The 
four multipliers used on the chip cover a large part of the 
total chip area. Attention must be  paid to the size  of the 
multiplier cells because a linear growth of the number of, 
bits results in a quadratic growth of the multiplier. 

A two's complement multiplier was  developed  by mod- 
ifying the Baugh-Wooley algorithm [18]. The modification 
consists of using a large number of different cells, as 
depicted in Fig. 11. This results in a smaller  overall area. 
We  could afford to have a large number of different cells 
because an automatic multiplier generator was built. How- 
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Fig. 10. Control signals derived from plin, p2in, and d in .  This is the 
result of an analog simulation. 

ever, the  generator does not handle  in  a special way the 
multiplication by a constant. Such a situation occurs in 
stage 3, where a multiplication with a constant of 1 6  or 
(0100100110) in 10 bit, two’s complement data representa- 
tion is performed., By stripping the columns that corre- 
spond  to  the zero’s in the constant, a smaller multiplier can 
be obtained.  The multiplication constants  for stage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are 
stored  in ROM’s. These ROM’s are adjacent to  the multi- 
plier blocks. 

The  MULGA system,  which  was  used for the design of 
the cells, allows a hierarchy (by instancing cells or mod- 
ules). Therefore,  it is straightforward to assemble the above 
described  building blocks to create the stages and, finally, 
the whole chip. 

VIII. TESTABILITY 

The principle is fairly simple. When the chip is in test 
‘mode, one  can  put all regsters of a given stage in series, 
and then write data  into them from an  input pin (and t h s  
at  an  arbitrary slow  speed). Once this  is done, the  chip  can 
run  at full speed through a full cycle of computations (800 
ns  in fact). Then, the set of registers can be put in a series 
and  the result of the computation can be read out (again at 
slow speed). In that fashion, each stage can be tested 
individually. The principle is sketched in Fig. 12. 

Again, the MOVAL tool is of great help because it can 
automatically generate the test vectors and check the result, 
both on  the symbolic layout and  on the chip. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A.  An Example: The Rotator Design 

two  inputs ‘ X ,  and X,, it evaluates the outputs as 
The  rotator is the most  complex part of this chip. Given 

With h g h   c h p  complexity, the testability issue has grow- Yo = cos a x ,  - sin a X ,  
ing  importance [18]. Thus it was decided to include built-in 
test capabilities [19]. This is  achieved  by  using the existing 

Y, = sin: ax, +cos ax,. (4) 

registers. Only  a small overhead was  necessary in order to A  parallel  arithmetic approach rather  than .a  CORDIC 
be able to write  or read data in any of the registers to load solution [20] was chosen, mainly because of design con- 
test vectors or evaluate the computational results. sistency. . 
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and  I and  I and  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a n d h a l   a n d h a 0   a n d h a l  l l  
a n d f a   a n d f a   a n d f a  I 1  
a n d f a   l a n d f a   l a n d f a  

n a n d f a   n a n d f a   n a n d f a  I 1  
f a  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 buf 

and 

a n d h a 0  

a n d f  a 

- 

a n d f  a 

n a n d f a  

f a  

buf 

a n d  

a n d h a 0  

a n d f  a 

a n d f  a 

n a n d f  a 

fa 

b u f rdd.  

a n d 

3 n d h a O  

a n d f a 

a n d f  a "eo.  

T a n d f  a "ad. 

h a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Fig.  11. Floor plan of a multiplier, where buf,  andfa,  andha0 and 
andhal  stand for buffer, AND with fulladder, AND with halfadder 
with input carry zero, and AND with halfadder with input carry one, 
respectively. 

Instead of evaluating (3) which requires 4 multipliers 
and 2 adders, we resort to the well-known  complex multi- 
ply algorithm [13], which requires only 3 multipliers and 3 
adders.  Equation (3) is evaluated as 

z, = x, 
z, = x, + x, 
z2 = x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2, = z,.cosa 

Z,=Z,.(-cosa-sina) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Yo = 2, + z, 
Y, = z, + z,. ( 5 )  

. Z, = Z,.(sina-cosa) 

While this gain may  seem futile in a software implementa- 
tion,  it pays off well in the VLSI context, since one 
multiplier is  traded for an adder. Actually, a glance at the 
chip  layout shows that the four-multiplier version  would 
simply not 'fit with the used technology. 

In order to obtain maximum throughput, the computa- 
tion of the  rotation is again pipelined, and additional 
registers are  added  at the end so that the latency of the 
rotator is 1 ps. This allows the output to be again in phase 
with the general 800 ns cycle. The architecture of the 
rotator stage is given in Fig. 13. 

A remark on bit precision  is  now appropriate. Since the 
number of bits  is small, the handling of truncation is 
delicate. On  the one hand, unnecessary truncation pro- 
duces  too few significant bits, but overflow must be  ab- 

R1 

(a) (b) 

Fig. 12.  Testing overhead. (a) Normal mode. The registers (R) are 
disconnected.  (b) Test mode. The registers are put in series, and can be 
written  from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti or read from to. 

solutely avoided. On the other hand, truncation is  neces- 
sary in  order to handle the data blow  up. First, we note 
that all constants have to be scaled to fit within 
(- 0.5,. . .,OS). This means that  the  constants C, and C, 
have to  be divided by 4 (considering only shifting oper- 
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Fig. 13. Rotator block  diagram. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R&P Registers  and  permutations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ai Adder. 
R Register. 

Mi Multiplier. 

sin(a)-cos(a), 
respectively. 

-cos(a)-sin(a), multiplicant constants 

ations),  but C, only by  2.  But the input to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM,  (multiplier) 
is the result of an addition, and if  we do not  want M ,  to be 
larger than M, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM2, we have to take the L-most signifi- 
cant  bits of the addition (which  is a division  by 2). Then, 
since C,  is only divided  by 2, all multiplier .outputs  have 
the same scaling. Moreover, it is  easy to see that, unless the 
constant is -0.5, the 2 most significant bits of the output 
are always  the  same. Since we  know that this worst case 
never  happens, we can disregard the most significant bit, 
and have  only a division by 2. When looking at the adders 
A ,  and A, ,  and knowing that their input has L significant 
bits,  one  might expect an L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 bit result. Interestingly, 
this is not  the case, because an  input vector can  have  a 
growth  in its length of at most fi (for example,  when 
[ -0.5, -0.51 is rotated by 45"), and since a division by 2 
was  already  done, the result of A ,  + A ,  never produces  a 
carry.  These  remarks  should stress that  a careful analysis 
allowed us to gain 2-3 bits of precision, which  is non- 
negligible when working  with small-bit data sizes. 

The final design of stage 5 used the same registers and 
adders  as  in the previous  stages, as well as 3 general 
multipliers with ROMs containing the various constants. 
Actually, a special-purpose 3-multiplier (made  up of 3 
interleaved multipliers) would better fit into  the bit-parallel 
philosophy, but  no time was available for such a special- 
ized design. The layout of the stage 5 is  shown in Fig.  14. 

This rather complex stage will be used to demonstrate 
the use of MOVAL in handling  its complexity. The  rota- 
tion  unit, described in floating-point arithmetic, is  shown 
in Fig. 15. The multiplier constants are C,, C,  and C,, in 
and  out  are  arrays containing the input  and  output  samples 
respectively, whereas the rest of the variables are used to 
share  the  intermediate results. This  part of the  program is 
used both  to test the validity of the equations describing 
the reduced  rotation  and to crosscheck  successively more 
detailed descriptions of the algorithm. 

Fig. 1 4 .  Symbolic layout of rotator (sta e 5) Note the ROMs which  are 
attached to the bottom ofeach multiplier. 

The exact .software image of the rotator hardware is 
found  in Fig. 16.  All the variables are expressed  in a two's 
complements bit-restricted data format. One  can dis- 
tinguish additions (add), registers  (reg-2 phase), multiplex- 
ing  routines (multiplex-4),  two's complement multipliers 
(multi2c), and routing/masking  networks (mask).  Besides 
the need for input and  output  data, the routines also 
require  control  and timing information. 

This description allows  us  to generate in a simple manner 
a data file containing test vectors. The same data file can 
be interfaced to different kinds of simulators or directly to 
the  chip. 

IX. REALIZATION OF THE CHIP 

Having realized the symbolic layout of the stages, results 
from  the compaction  program  that  produces the mask 
showed that  12-bit arithmetic would be the upper limit of 
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t s = i n [ ~ ] + i n [ I ] ;  

ml zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= in[O] * cO; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m2 = ts * c l ;  
m3 = i n [ l ]  * c2;  

out[o] = m 2 +  m3; 

o u t [ l ]  = m l +  m2; 

For all variables, floating-point arithmetic is used. 

Fig. 15. C program of the rotator in floating-point arithmetic. 

what  could  fit ‘on a single  chip  using the technology de- 
scribed earlier. Thus, the final implementation uses a 12-bit 
data  path  and 10-bit constants. 

It also became clear that a software image of the chip in 
MOVAL was not only  useful, but a requirement in order to 
be  able to test it. Because of the data  permutations  and the 
bit reversals involved, it was just impossible to test the 
layout by hand, not to speak of the physical chip. 

Fig. 17(a) shows the floorplan with the cell outlines, and 
Fig. 17(b) depicts the symbolic layout of the chip.  Stages 3 
and 5 are easily  recognizable at the multipliers, and the 
control is on  top of stage 3. 

Because of the complexity of the chip (34 000 tran- 
sistors) and  the fact that a lot of different cells are used, 
the  chip  had  to  be assembled on the mask  level (rather 
than  on  the symbolic layout level). This assembly  is  con- 
tinuing, and a final mask  set  is  expected  soon for submittal 
on  the next “silicon shuttle.” Initial actual chips are ex- 
pected in mid-1985. 

X. CONCLUSIONS 

The realization of a one-chip 8-point DCT processor 
with a data  rate of 100 Mbits/s has been  described. The 
chip uses 2.5 pm CMOS technology  ‘and contains about 
34 000 transistors. It was  shown  how an efficient but rather 
involved fast algorithm was mapped  into a VLSI circuit. 
Three factors were of great  help in this design  process: 1) a 
powerful  symbolic layout system (MULGA), 2) a struc- 
tured top-down design  tool  (MOVAL) that realized a 
software image of the chip  being  realized, and 3) a simple 
and clear design concept (parallel arithmetic, pipelined 
computational stages).  We hope  that this design  example 
will motivate even  more “algorithm”  people to actually 
. “ siliconize” their ideas. 

APPENDIX 

Below, the linear code written in Pascal for an 8-point 
DCT is given. It uses nine memories  for its computation, 
which is minimal.  The operations are numbered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a7 = 7th 

addition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 5  = 5th multiplication) and the constants are 
given at the beginning. The  output ordering is given at the 
end.  The linear code. for DCT’s and FFT’s for real input 
data is available on request for small  lengths. 

multipler4(&onl, W, &bl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&bZ, &b3, 

mult2ddrrd1, h n l ,  b l ) ;  
cuunter-phl[it],  counter-ph22[it]); 

m k ( & m l ,  h l ,  9, 20); 

multipler4(&mum, &4, W ,  61b6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6Ib7, 

multZc(&rtsum. hnsum, b s u m ) ;  
mnter-phl [ i t ] ,   m~nta-pwit ] ) ;  

v k ( h m ,  9, 20); 

invcdd &ml, dmnl); 
invoddQmsum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdmwum); 
i n v d d  i &m2, 6mn2); 

addl&ml. dmnsum. 1. &o. kdaddl): 

Fig. 16. Exact software image of the rotator hardware. 

Procedure DCT 8: 
const PI = 3.141592654; 

cld4 = cos(PI/4); 
cld16 = cos(PI*1/16); 
cpsldl6 = cos(PI*1/16)+ sin(PI*1/16); 
smcldl6 = sin(PI*1/16) - cos(PI*1/16); 
c2d16 = cos(PI*2/16); 
cps2d16 = cos(PI*2/16)+ sin(P1*2/16); 
smc2d16 = sin(PI*2/16) - cos(PI*2/16); 
c3d16 = cos(PI*3/16); 
cps3d16 = cos(PI*3/16)+ sin(PI*3/16); 
smc3d16 = sin(PI*3/16) - cos(PI*3/16); 

var x0, xl ,  x2,  x3,  x4,  x5,  x6,  x7, x8 : real; 

( *  1 
(*  2 
( *  3 
(* 4 
(*  5 

( *  7 
( *  8 

(* 9 
(*  10 
( *  11 
( *  12 

( *  6 .  

( *  13 
(* 14 
(*  15 
( *  16 
( *  17 
(*18 
(* 19 
( *  20 
(* 21 

a1 *) x8 
a2 *) x7 
a3 *) x0 
a4 *) x3 
a5 *) x4 
a6 *) x0 
a7 *) x8 
a8 *) x1 
a9 *) x2 
a10 *) x6 
a l l  *) x5 
a12 *) x6 
m l  *) x6 
a13 *) x8 
a14 *) x2 
m2 *) x2 
a15 *) x1 
a16 *) x5 
a17 *) x4 
a18 *) x6 
a19 *) x7 

:= x0 + 
:= x0 - 

:= x4 + 
:= x4 - 
:= x8 + 
:= x8 - 

:= x2 + 
:= x2 - 
:= x5 - 

:= x5 + 
:= x8 + 
:= x8 - 
:= x6 * 
:= x1 + 
:= x1 - 
:= x2 * 
:= x4 + 
:= x4 - 

:= x7 + 
:= x7 - 

:= x2 + 

x7 ; 
x7 ; 
x3 ; 
x3 ; 
x0 ; 
x0 ; 
,x1 ; 
x1 ; 
x6 ; 
x6 ; 
x6 ; 
x6 ; 
cld4; 
x2 ; 
x2 ; 
cld4; 
x5 ; 
x5 ; 
x6 ; 
x6 ; 
x3 ; 
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STAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 STAGE 2 STAGE 3 STAGE 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I 

STAGE 5 STAGE 6 

(b) 

Fig. 17. DCT chip. (a)  Cell  layout of the chip. (b)  Symbolic  layout of 
the chip. 
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(*  22 a20 *) x3 := x2 - x3 ; 
( *  23 m3 *) x5 := x5 * cld4; 
(*  24 a21 *) x2 := x4 + x7 . ; 
( *  25 m4 *) x2 := x2 * cld16; 
( *  26 m5 *) x7 := x7 * cpsldl6; 
(* 27 a22 *) x7 := x2 - x7 ; 
( *  28 m6 *) x4 := x4 * smcldl6; 
(* 29 a23 *) x4 := x2 + x4 ; 
( *  30 a24 *) x2 := x0 + x8 ; 
( *  31 m7 *) x2 := x2 * c2d16; 
( *  32 m8 *) .x8 := x8 * cps2d16; 
( *  33 a25 *) x8 := x2 - x8 ; 
(*  34 m9 *) x0 := x0 * smc2d16; 
( *  35 a26 *) x0 := x2 + x0 ; 
( *  36 a27 *) x2 := x6 + x3 ; 
( *  37 m10 *) x2 := x2 * c3d16; 
( *  38 m l l  *) x3 := .x3 * cps3d16; 
(*  39 a28 *) x3 := x2 - x3 ; 
( *  40 m12 *) x6 := x6 * smc3d16; 
( *  41 a29 *) x6 := x2 + x6 ; 
( *  42 m13 *) x1 := x1 * cld4; 

( *  ordering: 1 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 3 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 *) 
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