
A zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADiscrete Fourier-Cosine Transform Chip
MARTIN VE7TERLI AND ADRIAAN LIGTENBERG zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract -An 8-point Fourier-cosine transform chip designed for a data

rate of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA100 Mbits/s is described. The top-down design is presented step by

step, including algorithm modification for VLSI suitability, architectural

choices, testing overhead, internal precision assignments, mask generation,,

and finally, verification of the layout. A high-level language (C) design tool

was developed concurrently with the layout. This tool allows mimicking

exactly the different representations of the algorithm: software, mask, and

chip. This provides an automatic cross-checking at all design stages. The

VLSI environment created by this tool, as well as existing powerful CAD

tools, made a fast design-time possible.

I. INTRODUCTION

H IGH-SPEED computation of the discrete cosine
transform (DCT) [l] is often required, typically in

transform image coding [2], polyphase filter banks [3], and
fast Fourier transform evaluation [4]. A VLSI chip realiz-
ing a small length DCT at very high speed is desirable,
both for image coding and for discrete Fourier transform
(DFT) evaluation. Implementations have been realized with
assemblages of MSI hardware [5], [6], but, to our knowl-
edge, VLSI implementations have only been proposed [7],
[8]. The realized design described in this paper is not only
different from the previously proposed ones, but its con-
cepts can be easily extended to larger transform sizes
and/or higher precision when finer mask design rules and
associated chip processing become accessible.

Implementation of an %point DCT chp working at 100
ns per data sample with 10-bit input and 12-bit output
precision is presented. It turned out that in the 2.5 pm
technology that was available at the time of the design, the
realized design was about the upper limit of what could be
fitted onto 35 mm2 of available silicon. Parallel arithmetic
is used to satisfy the high data rate. Since latency is usually
of no consequence in this type of computation, the chip is
fully pipelined.

The fast Fourier-cosine transform algorithm (FFCT) [4]
was chosen for its minimum number of multiplications.
The flowgraph was modified in order to obtain a simpler
structure and divided into pipeline stages. Each stage was
designed with input memory, a permutation network, and
an arithmetic unit which performs the required operations.
With the help of simulations, the precision of constants
and data was determined. A testing overhead was included

Manuscript received October 1, 1984; revised February 20, 1985.
M. Vetterli is with Ecole Polytechnique Federale de Lausanne, CH-1007

Lausanne. Switzerland. He is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAon leave at AT&T Bell Laboratories,
Holmdel, NJ 07733.

A. Ligtenberg is with AT&T Bell Laboratories, Holmdel. NJ 07733.
IEEE Log Number 8406180.

which allows the testing of stages independently on the

In parallel to the design of the actual chip, a software
image in a high-level language (C) was made. This image
allowed us to check all levels, e.g., algorithm modification,
finite precision effects, and also to automatically generate
test vectors, both for the layout and for the chip. A future
paper will describe this design tool for mapping digital
signal processing (DSP) algorithms into VLSI [9]. The
concept of t h s tool, called MOVAL, was developed and
partly implemented in parallel with the design of the actual
chip.

The above approach together with the use of the power-
ful symbolic layout system MULGA [lo] allowed a design
time of less than 3 months (which is short considering the
fact that we had no previous VLSI experience).

chip.

11. THE FFCT ALGORITHM

The discrete cosine transform of length N for a real
vector x(O), x(l), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . x(N - 1) is defined as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

DCT(k , N,x):= x(n)-cos(2s(2:i1)k),
N - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
n = O

For k = 0 there is an additional scaling constant of la.
The main features of the FFCT algorithm are that it

allows evaluation of both the DFT or the DCT and that
only real arithmetic is used. For sample point lengths
which are powers of 2, it achieves the lowest known
number of operations for the DCT, and for the DFT for
real, complex, or symmetric signals, as well [4], [ll]. Espe-
cially in the case of the DCT, it needs substantially fewer
multiplications than the algorithm of Chen zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAer al. [12]. This
is crucial.in the VLSI context, as will be pointed out.

The principle of the FFCT algorithm is briefly recalled
(details are found in [4]). As shown in Fig. 1, a DFT of
length N is mapped into a DFT of length N/2 and 2
DCT's of length N/4, and this at the cost of 3N/2- 2
additions. Fig. 2 shows that mapping of a DCT into a DFT
of the same length and output rotations. As an example,
the computation of a 32-point DFT with the FFCT al-
gorithm is given in Fig. 3. The important points are that
rotations represent the main computational load and that a
chip performing a DCT of length N can be used as a
building block for a processor performing a DFT of length
4 N.

0733-8716/86/0100-0049$01.00 01986 IEEE

50 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1. JANUARY 1986 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x1

x* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
X

3

X
4

x,

xa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
'5

DFT 32

I
I I I

Q DFT 16 Fmr DCTl DCTl

rn DFTl DCTZ DCTZ DFTl DFTl

OUT

m DFT4 DCT2 CTZ

Fig. 1. Computation of the DFT by means of a smaller DFT and Fig. 3. A 32-point DFT computed with the FFCT algorithm.

X
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x1
X

2

X
3

X
4

%

Xa

'5

DCT'i. DFT-N DFT of length N .
DCT-N DCT of length N (the inputs are obtained from sum and

ROT Rotation.
OUT Output recombination (sum and differences of outputs).

DFT N
differences).

DO

issues, to test automatically the layout (on switch-level
simulation as well as for timing consideration), and to

D verify the working of the produced chip. Even more, it
allows automatic generation of the layout of primitive

4 functions such as the multiplier. In short, it is a topdown
approach for structured VLSI design. These characteristics

D4 are realized by the creation of a software image for the
different description levels of the algorithm with MOVAL.

The highest level contains a description of the algorithm
using floating point arithmetic, whereas at the lowest level
an exact hardware description of the chip is formed. Dif- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

9 ferent levels can be compiled together in order to test
different parts of the hardware design. Every description
level is automatically cross-checked against the highest

2

@ :y\J2 level thus reducing the number of human errors to a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rn :Rotation minimum. For testing and simulation purposes, a data file
v

Fig. 2. Computation of the DCT with a DFT of same size and rotations

For two-dimensional DFT's or DCT's the most efficient
algorithm is based on polynomial transforms [13], [14]. But
for. simplicity of control, generally one uses a one-dimen-
sional transform in a row-column fashion. Thus, a chip
that computes a transform of length N is a useful building
block for an N X N transform.

111. A STRUCTURED TOOL TO IMPLEMENT DSP
ALGORITHMS INTO VLSI

The block diagram containing the architectural informa-
tion (see Section IV, Fig. 6) indicates that a number of
arithmetic units and register/permutation networks need
'to be designed. We had less than three months to work
together and concluded that, with this severe time limit, the
chip was too complex to be laid out and verified com-
pletely by hand. Therefore, a structured design tool became
not only desirable but absolutely necessary.

The design tool named MOVAL (modular versatile al-
'gorithmic language [lo]) allows us to analyze the precision

is created containing the input data: clock and control
signals, and the correct output data. The input data can be.
generated manually, but can also be obtained from real-
world data. The choice of real input data is important to
analyze the finite precision effects. For example, in the case
that a DCT chip is designed to code pictorial data, real
pictures can be used as input data to see the effect of finite
precision arithmetic in order to make a tradeoff between
available chip space and picture quality.

Iv. ALGORITHM MODIFICATION FOR VLSI SUITABILITY

A special-purpose machine allows a better match be-
tween required computational power and arithmetic units
than would a general-purpose computer. Boldly stated, the
philosophy is: put a processor whenever and wherever you
need one. The DCT chip design makes an attempt to place
computational elements only where they are required, thus
maximizing their use. On the other hand, if the DCT
algorithm runs on a general-purpose signal processor, some
of its computational elements will stay idle at certain stages
of the algorithm, thus making a bad use of time and/or
silicon area. A first estimate shows that a commercial

signal processor (TMS320) would require at least a factor
of twenty more times to solve the 8-point DCT transform
than does the DCT chip.

In general, a design reflects the interplay between the
algorithm and the outside-world constraints. For the DCT
chip, the constraints were a one-chip design and a mini-
mum data rate of 100 Mbit/s. The available technology
was 2.5 pm CMOS, and preliminary investigations showed
that putting an 8-point DCT on one chip would be zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa
reasonable goal. (The available surface was about zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA35 mm2.)
Yet another constraint was a short design time (less than 3
months), which also dictated some design choices.

In the flowgraph of an 8-point DCT computed with the
FFCT algorithm as shown in Fig. 4(a), a lack of regularity
is apparent. In the VLSI context, this mews that the
control and the routing will be complex thus costly in size
and time. Note as well that the output is not ordered,
which is not desirable in general. With a post permutation
one can obtain ordered output 'samples.

There are many possible flowgraph transformations that
can be applied to a flowgraph like the one in Fig. 4(a) and
that will retain the same arithmetic complexity. To our
knowledge, there are no flowgraph transformations that
will lower the operation count and no transform will result
in an in-place in-order algorithm. Therefore, the flowgraph
will be transformed in such a way that similar operations
appear grouped. Actually, an increase in the number of
operations is tolerated just for the sake of better structure.

The chosen solution moves on addition/subtraction op-
erator from stage 3 [Fig. 4(a)] to the last stage and merges
it with the scaling by la, thus producing a rotation [see
Fig. 4(b)]. Now there are 4 output rotations, and stage 3
has only 2 multipliers left. While this means an implicit
increase of the computational load by 1 multiplication and
1 addition, the regularity will pay off in implementation
simplicity.

The precision issue has to be addressed at a very early
state of the design. Floating point was out of the question
due to the high speed and chip area constraints. Since
image processing is a potential field of use for the chip, the
aim was a precision of at least 8 bits. Simulations showed
that multiplying constants having a bit length of 80 percent
of that of the input data could be used with negligible loss
of precision. Linked to word width is also the data growth
issue. Since overflow cannot be tolerated (for example, in
transform coding, it would mean that the relevant informa-
tion would get lost), one has either to provide guard bits, or
to truncate after each operation. The first method requires
absurdly large data paths (each addition means a growth of
1 bit, and each multiplication with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL- and M-bit inputs
has an output of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ M bits, where L and M are usually
of the same order). The second method results in the fact
that certain low-level input sequences simply disappear.

As might be expected, a compromise solution was cho-
sen. While a certain number of guard bits are provided, the
outputs of certain operations (like the multiplications) are

truncated so as to bound the data growth. Both for the
flowgraph manipulation and the data precision analysis, a
software image was very helpful. This software image was
written with floating point arithmetic for the flowgraph
emulating version, and with appropriate integer arithmetic
for the,data precision analysis version. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

i

V. ARCHITECTURAL ISSUES

Since the chip is basically a number cruncher, the choice
of two's complement number representation was an obvi-
ous one, Another early concern was what type of arith-
metic should be used. The two opposite solutions are serial
or parallel arithmetic. A mixing of both was excluded
because the design would become too complex. The ad-
vantage of serial arithmetic is its simplicity and its good
time/area performance when used appropriately. One of
the drawbacks is that the rounding problem cannot be
handled without a significant loss in performance (large
number of guard bits) and rounding overhead. Multiplica-
tions require 2L partial adding times [17], which makes
them slow. Therefore, high throughput requires many serial
operators in parallel, which involves a large control over-
head.

In contrast, parallel arithmetic allows high throughput
without overhead. The design of parallel arithmetic is
rather straightforward, and the rounding/truncating can
be handled easily. Problems may occur when the word
length is too large, resulting in a carry time that is not
acceptable. Then the solution is to use look-aheads or
pipelined arithmetic, but both represent a more involved
design.

As an example the computational requirements of stage
5 are analyzed. The specification for the processing time of
one sample is 100 ns. Four rotations containing 12 multi-
plications must be performed in 800 ns (8 samples). With a
multiplication time in the range of 100-200 ns, at least
three multipliers in parallel are necessary.

These considerations lead to the use of parallel arith-
metic. Furthermore, all the stages have to be pipelined in
order to achieve the desired performance (one rotation unit
is already necessary just to meet the throughput require-
ment of stage 5). Pipelining is a natural way to go, since
each stage has a specific computational task (e.g., plus and
minus operation, rotation) that can be met with a matchmg
arithmetic unit. The chip is, therefore, divided into 6
pipelined stages, where the first 5 realize the calculations
and the 6th one is used to reorder the data. Stage 1, 2, and
4 will have add-subtract units, stage 3 a multiply-by-con-
stant unit, and stage 5 a rotator unit. Once the two basic
choices have been made, namely parallel arithmetic and
pipelined computation, the design of the chp is set in a
manageable context.

The dataflow is examined next. Besides the multiply-
by-constant in stage 3 (which is a scaling) all other oper-

52 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL ON SELEC,TED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1986 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
XI

x2

x3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4

x5

x6 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x,

XI xox Y=Xg+X1 yo= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%+
--@- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY=X@

Yo= w a + X osa E

1 XI cosa-X ina

stage 1 stage 2 stage 3 stage 4 stage 5

XI

X
2

X
3

X
4

x5

x,

stage 1 stage 2 stage 3 stage 4 stage 5

y4

Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

Y
2

'6

y1

Y
7

Y
3

y5

X
Yo= q i n a + X osa E

y4

y2

y*

y1

Y
7

Y
3

y5

(b)

Fig. 4. Flowgraph of an 8-point DCT computed with the FFCT al-
gorithm. (a) Original flowgraph. (b) Flowgraph after modification for
VLSI suitability.

VETTERLI AND LIGTENBERG: DISCRETE FOURIER-COSINE TRANSFORM CHIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA53 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 - -

phi 2 I I 1 1 I I I 1 I I :! zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 100 200 300 400 500 600 700 800 900 1000 (nS)

(b?

Fig. 5. Architectural concept. (a) Data flow concept through the six
computational stages. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFs is the sampling rate of the data (10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAMHz). (b)
Basic control signals.

ations are “rotations” (sum and difference of 2 samples
can be regarded as a rotation by 45” followed by a scaling
by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. One interesting property of a rotation is that it
transforms 2 inputs into 2 outputs (in contrast to the more
common addition or multiply operation which transform 2
inputs into 1 output), and that, therefore, a 2L datapath is
quite natural when working with L-bit numbers. This
parallelism also allows the arithmetic units to work at half
the input data rate, which in the case of the general rotator
of stage 5 is very welcome (it would be difficult to design
parallel multipliers with a 100 ns multiply time, at least
without going to pipelining the multiplier itself).

Timing and control are examined next. The usual two-
phase nonoverlapping clocking scheme was cho’sen, which
is the most straightforward clocking scheme for a synchro-
nous design [15]. Phase 1 is used for data transmission, and
phase 2 for data evaluation. Since both input and output

were chosen bit parallel/sample serial, the first and last
stage work at the data rate for the input and output,
respectively. In between, the data rate is halved. Actually,
phase 2 is chosen to be longer than phase 1, since the
time-consuming part is the data evaluation in the parallel
arithmetic. Besides the clocks, a clear signal is used to
define the beginning of each new 8-samples sequence. Fig.
5 schematically shows the dataflow and data rate as well as
the clocks (phi11 and phi22 are the half-rate clocks).

The overall dataflow and timing, and the need to pipe-
line the computation, leads to the need to separate the
stages by registers. The registers also include the permuta-
tions required by the flowgraph. A first sketch of the
resulting design is shown in Fig. 6.

Note that this architecture is by no means the only
solution to the given initial problem of computing an
8-point DCT on one chip at a 100 Mbit/s data rate. But

IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. 1, JANUARY 1986 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 3 4 5 b

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 . Overall architecture of the DCT chip.

AU1 Adder and substractor.

AU2 multiply by l/&.
AU3 rotator.
ROM Read only memory with the constants for the rotator.
R&P Register and permutation.

one of its nice features is that it is trivial to change its
arithmetic precision, and that the same concept can be
applied to compute larger or other transforms (requiring
different arithmetic units). Furthermore, it will be seen that
registers provide a built-in testability feature that is quite
useful when testing the layout and/or the chip.

VI. BUILDING BLOCKS

In a dataflow concept with parallel arithmetic, it is
advantageous to store and process bits having the same
weight at the same physical location. Thus, the same bit
parallel concept is used in the storage and the processing.
Next, the main building blocks, registers, adders, subtrac-
tors, and multipliers are described.

Since the registers represent a substantial overhead in
the pipelined architecture of Fig. 6 , a compact design was
important. Note that the permutations in Fig. 4(b) are
rather complex, and that therefore, it was important to be
able to realize arbitrary permutations between stages (i.e.,
that the register design does not restrict the possible per-
mutations). Therefore, the registers were designed to func-
tion in three steps: 1) acquire the data from the previous
stage, 2) permute the samples arbitrarily, and 3) put out
the samples to the arithmetic units. Step 1 is realized with a
shift register having serial input and parallel output; Step 2
with an arbitrary permutation network; and Step 3 with a
shift register having parallel input and serial output. Note
that the shift registers are of length 4 or 8 depending on
which stage they are located, but that the. permutation
network always maps 8 input samples into 8 outputs (the
flowgraph being not completely separable into 2 parallel
paths). The 4-bit shift registers for steps 1 and 3 are
depicted in Fig. 7. To realize a full register/permutation
block (as required in Stage 2, for example), two such
registers are put on each side of a permutation network. A
copy signal (occurring every 800 ns) moves the content of
the first set, through the permutation network, to the

(4 (b)

Fig. 7. Shift registers. (a) A 4-bit shift register with serial input and
parallel output. (b) A 4-bit shift register with parallel input (which is
written through passgates with a copy signal) and serial output. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

: '1"
-7

P - SA
P/S

Of

Fig. 8. Registers of stages zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1-6.

S R Shift register, 4 bits.
S / P Serial in, parallel out.

%' copy signal to activate pass gate array.
Parallel in, serial out.

P Permutation.

second set as shown in Fig. 8 (where a one bit slice is
shown). The permutation network can be realized with
pass-gates (which are more flexible, since the permutation
can be programmed), but for simplicity and compactness, a
routing network was used in the chip.

Full adder designs are examined next. From the 3 inputs
a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb, and tin, (which can be interchanged), one devises s
and tout according to

s = a@b@c, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
C,"[= ab + bCin + ac,. (2)

The minimum gate CMOS implementation of the full

VETTERLI AND LIGTENBERG: DISCRETE FOURIER-COSINE TRANSFORM CHIP 55

Fig. 9. Symbolic layout of 1-bit strip in stage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFrom left to right; shift
registers, permutation, shift registers and 2 full adders.

adder provides zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC,,,, but, since it is easy to show that

- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
s=ii@b@c,

Gout = iib + bc, + iti" (3)
- -

one can cascade minimum full adders provided that every
other bit of the input is reversed.

This results in the fact that every second output is
reversed, but this can be accommodated in the next ,adder
stage. -Therefore, only the final and last arithmetic unit
needs inverters for every other bit. A minimum adder cell
was designed so that two of this type would match the
registers (one to compute the sum, the other the difference
of 2 samples). The blocks described so far complete basi-
cally l bit of the stages l, 2, and 4. A remark is appropriate
here. Stage 1 performs 4 addition/subtraction operations,
while stage 2 and 4 perform 3 and 2 addition/subtraction
operations, respectively. While in traditional complexity
terms, stage 2 and 4 are less complex than stage 1, in VLSI
it is just the opposite. Stage 1 has just an adder/subtractor
cell, while stage 2 and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 require additional routing and
passgates in order to bypass the operations at certain
times! In the FFCT, algorithm arithmetic complexity has
been traded off against regularity, and thus another al-
gorithm involving more operations can have a more regular
structure.

Fig. 9 shows the symbolic layout of a one bit slice in
stage 1. At left are the two 4-bit serial-in parallel-out shift
registers, followed by the permutation network, and the
two 4-bit parallel-in serial-out shift registers. At right are
the two full adder cells (the subtraction is acheved by
two's complementing the input to be subtracted, namely,
take the inverse of the bits and add 1 at the lowest carry
input). On top of the adders is the bypass.

Both the driving of the shift registers and the generation
of addresses for the ROM's require a set of control signals
which have to be devised from the three basic control
signals phil, phi2, and clear. Ths was realized with ring
counters and the appropriate logic (signals and their com-
plement being generated by complementary logic as well,
so as not to incorporate any unnecessary delay in the
control). The set of control signals is depicted in Fig. 10.

Another important building block is the multiplier. The
four multipliers used on the chip cover a large part of the
total chip area. Attention must be paid to the size of the
multiplier cells because a linear growth of the number of,
bits results in a quadratic growth of the multiplier.

A two's complement multiplier was developed by mod-
ifying the Baugh-Wooley algorithm [18]. The modification
consists of using a large number of different cells, as
depicted in Fig. 11. This results in a smaller overall area.
We could afford to have a large number of different cells
because an automatic multiplier generator was built. How-

56 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1986 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Cll zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI I I I I I I I
. o 100 200 300 400 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA500 600 700 800 900 ’ 1000 (nS)

Fig. 10. Control signals derived from plin, p2in, and d in . This is the
result of an analog simulation.

ever, the generator does not handle in a special way the
multiplication by a constant. Such a situation occurs in
stage 3, where a multiplication with a constant of 1 6 or
(0100100110) in 10 bit, two’s complement data representa-
tion is performed., By stripping the columns that corre-
spond to the zero’s in the constant, a smaller multiplier can
be obtained. The multiplication constants for stage zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 are
stored in ROM’s. These ROM’s are adjacent to the multi-
plier blocks.

The MULGA system, which was used for the design of
the cells, allows a hierarchy (by instancing cells or mod-
ules). Therefore, it is straightforward to assemble the above
described building blocks to create the stages and, finally,
the whole chip.

VIII. TESTABILITY

The principle is fairly simple. When the chip is in test
‘mode, one can put all regsters of a given stage in series,
and then write data into them from an input pin (and t h s
at an arbitrary slow speed). Once this is done, the chip can
run at full speed through a full cycle of computations (800
ns in fact). Then, the set of registers can be put in a series
and the result of the computation can be read out (again at
slow speed). In that fashion, each stage can be tested
individually. The principle is sketched in Fig. 12.

Again, the MOVAL tool is of great help because it can
automatically generate the test vectors and check the result,
both on the symbolic layout and on the chip. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. An Example: The Rotator Design

two inputs ‘ X , and X,, it evaluates the outputs as
The rotator is the most complex part of this chip. Given

With h g h c h p complexity, the testability issue has grow- Yo = cos a x , - sin a X ,
ing importance [18]. Thus it was decided to include built-in
test capabilities [19]. This is achieved by using the existing

Y, = sin: ax, +cos ax,. (4)

registers. Only a small overhead was necessary in order to A parallel arithmetic approach rather than .a CORDIC
be able to write or read data in any of the registers to load solution [20] was chosen, mainly because of design con-
test vectors or evaluate the computational results. sistency. .

VETTERLI AND LIGTENBERG: DISCRETE FOURIER-COSINE TRANSFORM CHIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA57 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

and I and I and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a n d h a l a n d h a 0 a n d h a l l l
a n d f a a n d f a a n d f a I 1
a n d f a l a n d f a l a n d f a

n a n d f a n a n d f a n a n d f a I 1
f a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 buf

and

a n d h a 0

a n d f a

-

a n d f a

n a n d f a

f a

buf

a n d

a n d h a 0

a n d f a

a n d f a

n a n d f a

fa

b u f rdd.

a n d

3 n d h a O

a n d f a

a n d f a "eo.

T a n d f a "ad.

h a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0

Fig. 11. Floor plan of a multiplier, where buf, andfa, andha0 and
andhal stand for buffer, AND with fulladder, AND with halfadder
with input carry zero, and AND with halfadder with input carry one,
respectively.

Instead of evaluating (3) which requires 4 multipliers
and 2 adders, we resort to the well-known complex multi-
ply algorithm [13], which requires only 3 multipliers and 3
adders. Equation (3) is evaluated as

z, = x,
z, = x, + x,
z2 = x, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2, = z,.cosa

Z,=Z,.(-cosa-sina) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Yo = 2, + z,
Y, = z, + z,. (5)

. Z, = Z,.(sina-cosa)

While this gain may seem futile in a software implementa-
tion, it pays off well in the VLSI context, since one
multiplier is traded for an adder. Actually, a glance at the
chip layout shows that the four-multiplier version would
simply not 'fit with the used technology.

In order to obtain maximum throughput, the computa-
tion of the rotation is again pipelined, and additional
registers are added at the end so that the latency of the
rotator is 1 ps. This allows the output to be again in phase
with the general 800 ns cycle. The architecture of the
rotator stage is given in Fig. 13.

A remark on bit precision is now appropriate. Since the
number of bits is small, the handling of truncation is
delicate. On the one hand, unnecessary truncation pro-
duces too few significant bits, but overflow must be ab-

R1

(a) (b)

Fig. 12. Testing overhead. (a) Normal mode. The registers (R) are
disconnected. (b) Test mode. The registers are put in series, and can be
written from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAti or read from to.

solutely avoided. On the other hand, truncation is neces-
sary in order to handle the data blow up. First, we note
that all constants have to be scaled to fit within
(- 0.5,. . .,OS). This means that the constants C, and C,
have to be divided by 4 (considering only shifting oper-

WEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1986

Fig. 13. Rotator block diagram. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
R&P Registers and permutations. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Ai Adder.
R Register.

Mi Multiplier.

sin(a)-cos(a),
respectively.

-cos(a)-sin(a), multiplicant constants

ations), but C, only by 2. But the input to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM, (multiplier)
is the result of an addition, and if we do not want M , to be
larger than M, or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM2, we have to take the L-most signifi-
cant bits of the addition (which is a division by 2). Then,
since C, is only divided by 2, all multiplier .outputs have
the same scaling. Moreover, it is easy to see that, unless the
constant is -0.5, the 2 most significant bits of the output
are always the same. Since we know that this worst case
never happens, we can disregard the most significant bit,
and have only a division by 2. When looking at the adders
A , and A, , and knowing that their input has L significant
bits, one might expect an L zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1 bit result. Interestingly,
this is not the case, because an input vector can have a
growth in its length of at most fi (for example, when
[-0.5, -0.51 is rotated by 45"), and since a division by 2
was already done, the result of A , + A , never produces a
carry. These remarks should stress that a careful analysis
allowed us to gain 2-3 bits of precision, which is non-
negligible when working with small-bit data sizes.

The final design of stage 5 used the same registers and
adders as in the previous stages, as well as 3 general
multipliers with ROMs containing the various constants.
Actually, a special-purpose 3-multiplier (made up of 3
interleaved multipliers) would better fit into the bit-parallel
philosophy, but no time was available for such a special-
ized design. The layout of the stage 5 is shown in Fig. 14.

This rather complex stage will be used to demonstrate
the use of MOVAL in handling its complexity. The rota-
tion unit, described in floating-point arithmetic, is shown
in Fig. 15. The multiplier constants are C,, C, and C,, in
and out are arrays containing the input and output samples
respectively, whereas the rest of the variables are used to
share the intermediate results. This part of the program is
used both to test the validity of the equations describing
the reduced rotation and to crosscheck successively more
detailed descriptions of the algorithm.

Fig. 1 4 . Symbolic layout of rotator (sta e 5) Note the ROMs which are
attached to the bottom ofeach multiplier.

The exact .software image of the rotator hardware is
found in Fig. 16. All the variables are expressed in a two's
complements bit-restricted data format. One can dis-
tinguish additions (add), registers (reg-2 phase), multiplex-
ing routines (multiplex-4), two's complement multipliers
(multi2c), and routing/masking networks (mask). Besides
the need for input and output data, the routines also
require control and timing information.

This description allows us to generate in a simple manner
a data file containing test vectors. The same data file can
be interfaced to different kinds of simulators or directly to
the chip.

IX. REALIZATION OF THE CHIP

Having realized the symbolic layout of the stages, results
from the compaction program that produces the mask
showed that 12-bit arithmetic would be the upper limit of

VETTERLI AND LIGTENBERG: DISCRETE FOURIER-COSINE TRANSFORM CHIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA59 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
t s = i n [~] + i n [I] ;

ml zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= in[O] * cO; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
m2 = ts * c l ;
m3 = i n [l] * c2;

out[o] = m 2 + m3;

o u t [l] = m l + m2;

For all variables, floating-point arithmetic is used.

Fig. 15. C program of the rotator in floating-point arithmetic.

what could fit ‘on a single chip using the technology de-
scribed earlier. Thus, the final implementation uses a 12-bit
data path and 10-bit constants.

It also became clear that a software image of the chip in
MOVAL was not only useful, but a requirement in order to
be able to test it. Because of the data permutations and the
bit reversals involved, it was just impossible to test the
layout by hand, not to speak of the physical chip.

Fig. 17(a) shows the floorplan with the cell outlines, and
Fig. 17(b) depicts the symbolic layout of the chip. Stages 3
and 5 are easily recognizable at the multipliers, and the
control is on top of stage 3.

Because of the complexity of the chip (34 000 tran-
sistors) and the fact that a lot of different cells are used,
the chip had to be assembled on the mask level (rather
than on the symbolic layout level). This assembly is con-
tinuing, and a final mask set is expected soon for submittal
on the next “silicon shuttle.” Initial actual chips are ex-
pected in mid-1985.

X. CONCLUSIONS

The realization of a one-chip 8-point DCT processor
with a data rate of 100 Mbits/s has been described. The
chip uses 2.5 pm CMOS technology ‘and contains about
34 000 transistors. It was shown how an efficient but rather
involved fast algorithm was mapped into a VLSI circuit.
Three factors were of great help in this design process: 1) a
powerful symbolic layout system (MULGA), 2) a struc-
tured top-down design tool (MOVAL) that realized a
software image of the chip being realized, and 3) a simple
and clear design concept (parallel arithmetic, pipelined
computational stages). We hope that this design example
will motivate even more “algorithm” people to actually
. “ siliconize” their ideas.

APPENDIX

Below, the linear code written in Pascal for an 8-point
DCT is given. It uses nine memories for its computation,
which is minimal. The operations are numbered zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(a7 = 7th

addition, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm 5 = 5th multiplication) and the constants are
given at the beginning. The output ordering is given at the
end. The linear code. for DCT’s and FFT’s for real input
data is available on request for small lengths.

multipler4(&onl, W, &bl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA&bZ, &b3,

mult2ddrrd1, h n l , b l) ;
cuunter-phl[it], counter-ph22[it]);

m k (& m l , h l , 9, 20);

multipler4(&mum, &4, W , 61b6, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6Ib7,

multZc(&rtsum. hnsum, b s u m) ;
mnter-phl [i t] , m~nta-pwit]) ;

v k (h m , 9, 20);

invcdd &ml, dmnl);
invoddQmsum zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdmwum);
i n v d d i &m2, 6mn2);

addl&ml. dmnsum. 1. &o. kdaddl):

Fig. 16. Exact software image of the rotator hardware.

Procedure DCT 8:
const PI = 3.141592654;

cld4 = cos(PI/4);
cld16 = cos(PI*1/16);
cpsldl6 = cos(PI*1/16)+ sin(PI*1/16);
smcldl6 = sin(PI*1/16) - cos(PI*1/16);
c2d16 = cos(PI*2/16);
cps2d16 = cos(PI*2/16)+ sin(P1*2/16);
smc2d16 = sin(PI*2/16) - cos(PI*2/16);
c3d16 = cos(PI*3/16);
cps3d16 = cos(PI*3/16)+ sin(PI*3/16);
smc3d16 = sin(PI*3/16) - cos(PI*3/16);

var x0, xl , x2, x3, x4, x5, x6, x7, x8 : real;

(* 1
(* 2
(* 3
(* 4
(* 5

(* 7
(* 8

(* 9
(* 10
(* 11
(* 12

(* 6 .

(* 13
(* 14
(* 15
(* 16
(* 17
(*18
(* 19
(* 20
(* 21

a1 *) x8
a2 *) x7
a3 *) x0
a4 *) x3
a5 *) x4
a6 *) x0
a7 *) x8
a8 *) x1
a9 *) x2
a10 *) x6
a l l *) x5
a12 *) x6
m l *) x6
a13 *) x8
a14 *) x2
m2 *) x2
a15 *) x1
a16 *) x5
a17 *) x4
a18 *) x6
a19 *) x7

:= x0 +
:= x0 -

:= x4 +
:= x4 -
:= x8 +
:= x8 -

:= x2 +
:= x2 -
:= x5 -

:= x5 +
:= x8 +
:= x8 -
:= x6 *
:= x1 +
:= x1 -
:= x2 *
:= x4 +
:= x4 -

:= x7 +
:= x7 -

:= x2 +

x7 ;
x7 ;
x3 ;
x3 ;
x0 ;
x0 ;
,x1 ;
x1 ;
x6 ;
x6 ;
x6 ;
x6 ;
cld4;
x2 ;
x2 ;
cld4;
x5 ;
x5 ;
x6 ;
x6 ;
x3 ;

60 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. SAC-4, NO. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1, JANUARY 1986 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

STAGE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 STAGE 2 STAGE 3 STAGE 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I

STAGE 5 STAGE 6

(b)

Fig. 17. DCT chip. (a) Cell layout of the chip. (b) Symbolic layout of
the chip.

VETTERLI AND LIGTENBERG: DISCRETE FOURIER-COSINE TRANSFORM CHIP zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
(* 22 a20 *) x3 := x2 - x3 ;
(* 23 m3 *) x5 := x5 * cld4;
(* 24 a21 *) x2 := x4 + x7 . ;
(* 25 m4 *) x2 := x2 * cld16;
(* 26 m5 *) x7 := x7 * cpsldl6;
(* 27 a22 *) x7 := x2 - x7 ;
(* 28 m6 *) x4 := x4 * smcldl6;
(* 29 a23 *) x4 := x2 + x4 ;
(* 30 a24 *) x2 := x0 + x8 ;
(* 31 m7 *) x2 := x2 * c2d16;
(* 32 m8 *) .x8 := x8 * cps2d16;
(* 33 a25 *) x8 := x2 - x8 ;
(* 34 m9 *) x0 := x0 * smc2d16;
(* 35 a26 *) x0 := x2 + x0 ;
(* 36 a27 *) x2 := x6 + x3 ;
(* 37 m10 *) x2 := x2 * c3d16;
(* 38 m l l *) x3 := .x3 * cps3d16;
(* 39 a28 *) x3 := x2 - x3 ;
(* 40 m12 *) x6 := x6 * smc3d16;
(* 41 a29 *) x6 := x2 + x6 ;
(* 42 m13 *) x1 := x1 * cld4;

(* ordering: 1 7 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA8 3 5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA6 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 *)

ACKNOWLEDGMENT

Without the help of a great many people, this project
would never have been possible. We especially acknowl-
edge the help of J. ONeill (whose patience and help was
infinite), B. Haskell (who made the project possible and
carefully reread the manuscript), B. Ackland (for his
encouragement on the MOVAL approach), and B. Ninke
for his counseling during moments of frustration. Many
thanks go to S. Fernandez for typing the manuscript. Very
special thanks also to Swanica, R. Ligtenberg, and M. L.
Renevey.

REFERENCES

[l] N. Ahmed, T. Natarajan, and K. R. Rao, “Discrete cosine trans-

[2] W. H. Chen and W. K. Pratt, “Scene adaptive coder,” IEEE Trans.
form,” IEEE Trans. Comput., vol. C-23, pp. 88-93, Jan. 1974.

[3] M. J. Narasimha and A. M. Peterson, Design of a 24-channel
Commun., vol. COM-32, no. 3, pp. 225-222.

vol. ASSP-27, no. 6, pp. 752-762.
transmultiplexer,” IEEE Trans. Acourt., Speech, Signal Processing,

[4] M. Vetterli and H. J. Nussbaumer, “Simple FFT and DCT
algorithms with reduced number of operations,” Signal Processing,

[5] A. Jalai and K. R. Rao, “A high-speed ‘FDCT processor for
vol. 6, no. 4, pp. 267-278.

real-time processing of NTSC color TV signals,” IEEE Trans.

. [6] G. Bertocci et al., “An,,approach to the implementation of a
Electromagn. Compat., vol. EMC-24, no. 2, pp. 270-286.

discrete cosine transform, IEEE Trans. Commun., vol. COM-30,
no. 4, pp. 635-641.

61

E. Arnould and J. P. Dugre, “Real-time discrete cosine transform:
An original architecture,” in Proc. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI d . Conf. ASSP, ICASSP-84,
San Diego, CA, Mar. 1984.

Proc. Intl. Conf. Commun., ICC-84, Amsterdam, The Netherlands,
S. C. Knauer, “Distributed VLSI processors for picture coding,” in

June 1984, pp. 718-723.
A. Ligtenberg, M. Vetterli, and J. O’Neill, “MOVAL: A structured
top-down design tool for mapping DSP algorithms into VLSI,” to
b e published.
N. Weste, “MULGA-An interactive symbolic layout system for
the design of integrated circuits,” Bell Syst. Tech. J. , vol. 60, no. 6,

~~ ~

pp. 823-857.“
M. Vetterli. FFT’s of sienal with svmmetries and amlications.”
submitted to MELECON-15, Madrid; Spain.
W. H. Chen et al., “A fast computational algorithm for the discrete
cosine transform,” IEEE Trans. Commun., vol. COM-25, pp.
1004-1009, Sept. 1977.
H. J. Nussbaumer, Fast Fourier Transform and Convolution
Algorithms. Berlin, Germany: Springer Verlag, 1982.
M. Vetterli, “Fast 2-D cosine transform algorithm,” in Proc. Intl.
Conf. ASSP, ICASSP-85, Tampa, FL, Mar. 1985.
C. Mead and L. Conway, Introduction to VLSI Systems. Reading,
MA: Addison-Wesley, 1980.
C. R. Baugh and B. A. Wooley, “A two’s complement parallel array
multiplication algorithm,” IEEE Trans. Comput., vol. C-22, no. 12,

_ _

pp. 1045-1097.
K. Hwang, Computer Arithmetic, Principles, Architecture, and
Desien. New York: Wilev. 1979.
Fred”Guter1, “Tes..ing,” IEEE Spectrum, vol. 21, no. 9, pp. 40-46.
J. A. Abraham, Design for testability,” in Proc. 1983 Cusiom
Integrated Circuits Conf., CICC-83, Rochester, NY, May 1983.
H. Ahmed, J-H. Delosme, and M. Morf, “HI ly concurrent com-
puting structures for matrix arithmetic an zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP signal processing,”
Computer, pp. 65-82, Jan. 1982.

Martin Vetterli was born in Switzerland. He
received the B.A. degree at Neuchatel. In 1981,
he received the Engineering Diploma from the
Eidgenossische Technische Hoshschule de
Zuriche (ETHZ), Zurich, Switzerland, and in
1982, the M.Sc. degree in electrical engineering
from Stanford University, Stanford, CA. He then
returned to Switzerland and received the Ph.D.
degree from the Ecole Polytechnique Federale de
Lausanne, for work on the efficient implementa-
tion of filter banks.

During 1984, he trained in VLSI conception at Bell Laboratories in

He is a member of the European Association of Signal Processing
Holmdel, NJ.

(EURASIP).

