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Abstract. The engineering and control of devices at the quantum mechanical level—such as those
consisting of small numbers of atoms and photons—is a delicate business. The fundamen-
tal uncertainty that is inherently present at this scale manifests itself in the unavoidable
presence of noise, making this a novel field of application for stochastic estimation and
control theory. In this expository paper we demonstrate estimation and feedback control
of quantum mechanical systems in what is essentially a noncommutative version of the
binomial model that is popular in mathematical finance. The model is extremely rich
and allows a full development of the theory while remaining completely within the set-
ting of finite-dimensional Hilbert spaces (thus avoiding the technical complications of the
continuous theory). We introduce discretized models of an atom in interaction with the
electromagnetic field, obtain filtering equations for photon counting and homodyne detec-
tion, and solve a stochastic control problem using dynamic programming and Lyapunov
function methods.
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1. Introduction. Control theory, and in particular feedback control, is an im-
portant aspect of modern engineering. It provides a set of tools for the design of
technology with reliable performance and has been applied with overwhelming suc-
cess in the design of many of the devices that we use on a daily basis. In this article
we will explore the following question: rather than controlling, say, a jet engine, can
we use feedback to control an object as small as a single atom?

Though it is not directly visible in our everyday lives, the technology to manipu-
late matter at the level of single atoms and photons is well in place and is progressing
at a fast rate. Nobel prize–winning technologies such as laser cooling and trapping
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Fig. 1.1 A laboratory experiment in quantum feedback control, implementing the setup reported in
[38]. The metal boxes in the foreground are diode lasers, whose output light is manipulated
using a large number of optical elements. In the background on the left is a magnetically
shielded chamber containing magnetic coils and a cell with laser cooled Cesium atoms. A
schematic of the experiment is shown on the right. (Photograph courtesy of John Stockton.)

of atoms, which were state of the art only a decade ago, are now routine procedures
which are being applied in physics laboratories around the world. The generation of
highly coherent light and the detection of single photons has been refined since the
development of the laser. Given the availability of this unprecedented level of control
over the microscopic world, the question of control design seems a timely one—one
could wonder whether we can “close the loop” and make the atoms do useful work
for us. This is the domain of quantum feedback control.

“Quantum,” of course, refers to the theory of quantum mechanics, which comes
in necessarily at this level of description. The feedback which we will use to control
a quantum system is a function of observations obtained from that system, and ob-
servations in quantum mechanics are inherently random. This makes the theory both
challenging and interesting from the points of view of fundamental physics and control
theory. As we will demonstrate, the theory of quantum feedback control resembles
closely, and follows directly in many parts, the classical theory of stochastic control
(here and below, classical means non–quantum mechanical).

Several promising applications of quantum feedback control have been proposed
and are now starting to be investigated in a laboratory setting. One class of such
applications falls under the general heading of precision metrology: can we utilize the
sensitivity of small numbers of atoms to external perturbations to design ultrafast,
precise sensors, when the desired accuracy is on the order of the intrinsic quantum un-
certainty of the sensor? Concrete applications include, e.g., precision magnetometry
[77, 78], which was recently investigated in a laboratory experiment [38] (see Figure
1.1), and atomic clocks [2]. A second class of examples involves the design of optical
communication systems where each bit is encoded in a pulse containing only a small
number of photons [28, 37]; see [3] for a related experimental demonstration. As a
third application, we mention the use of feedback for cooling of atoms or nanome-
chanical devices [30, 46, 76]; see [23] for a laboratory demonstration (the availability
of efficient cooling techniques is important in experimental physics).

As both the theory and applications are still in their infancy, it is far from clear at
this time what the ultimate impact of quantum feedback control will be; it is clearly
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unlikely that future generations of washing machines or airplanes will be powered by
quantum control, but other application areas, such as those mentioned above, might
well benefit from the availability of such technology. At the very least, however, the
questions that arise in the subject prompt us to explore the fundamental limits on the
control and engineering of physical systems, and a fruitful interplay between control
theory and experimental physics enables the exploration of these limits using real-life
experiments such as the one displayed in Figure 1.1. In this article we demonstrate
the underlying theory using a simple but rich toy model; we hope that the reader is
sufficiently intrigued to come along for the ride!

The study of quantum feedback control was pioneered by V.P. Belavkin in a 1983
paper [9], long before the experimental realization of such a setup was realistically
feasible. Belavkin realized that due to the unavoidable presence of uncertainty in
quantum measurements, the theory of filtering—the extraction of information from
noisy observations—plays a fundamental role in quantum feedback control, exactly
as in the theory of stochastic control with partial observations [13]. In [9] feedback
control was explored in discrete time using the operational formalism of Davies [27],
which is the precursor of quantum filtering theory. Belavkin developed further the
theory of quantum filtering in a series of articles [8, 10, 12], and in [10] the use of
dynamic programming for feedback control in continuous time was sketched. We refer
the reader to [20] for a modern introduction to quantum filtering theory.

Independently from Belavkin’s work, the equations of quantum nonlinear filtering
were developed in the physics literature by Carmichael [24], based on the work of
Davies [27], under the name of “quantum trajectory theory.” Though the connection
to filtering theory was not realized until much later, Carmichael’s work nonetheless
spawned an investigation on the use of feedback control in the physics literature (see,
e.g., [31] and the references therein). It is here that most of the practical applications,
such as the ones cited above, were proposed and developed.

Like its classical counterpart, the mathematical theory of quantum filtering and
stochastic control in continuous time can be quite technical, requiring a heavy analytic
machinery to obtain the necessary results in a rigorous way. On the other hand, we
believe that the methods in the field can be understood perfectly well without being
obscured by analytic complications. What we are going to do in this paper is to give a
complete development of the basic theory of quantum filtering and feedback control in
a simple toy model, which requires essentially no analytic machinery. We assume only
some background in linear algebra and familiarity with elementary probability theory
with martingales, roughly at the level of the inspiring textbook by D. Williams [83].

The model we will investigate probably has a familiar ring to those readers who
are familiar with mathematical finance. It is in fact little more than a noncommutative
version of the binomial model which has enjoyed wide popularity since its introduction
by Cox, Ross, and Rubinstein [26]. The model is widely used in the teaching of
mathematical finance [75] and even on Wall Street as a flexible computational tool
for the pricing of financial derivatives. The model has three key features, all of
which are shared by its noncommutative counterpart, which make its investigation
particularly appealing: (i) on the one hand, the model is as simple as it can possibly
be, consisting of a finite number of two-state random variables (coin flips)—hence
analytical complications are avoided; (ii) on the other hand, many of the mathematical
tools that are indispensable in the continuous context can be developed within the
framework of this model and admit simple proofs; in particular, change of measure
techniques, the martingale representation theorem, discrete stochastic integrals, and
even a (trivial) stochastic calculus can all be demonstrated in this context; and (iii)
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the model is in fact an approximation of the usual continuous time models in the
sense that these are recovered when the limit as the time step tends to zero is taken
in a suitable sense. For these reasons, we believe that such models are ideally suited
as a first introduction to quantum filtering and feedback control.

The noncommutative model has an independent history in the quantum proba-
bility literature. In his book [68], P.-A. Meyer uses the building blocks of the model
we use in this article to demonstrate the basic features of the Fock space, which un-
derlies the continuous quantum stochastic calculus of Hudson–Parthasarathy [49], in
a discrete setting (he calls this model, which he attributes to Journé [68, page 18],
the “toy Fock space”). Repeated interaction models of a similar type were consid-
ered by Kümmerer [61] and by Lindsay and Parthasarathy [63], and the similarities
between discrete and continuous stochastic calculus were further explored by Attal
[5] and by Pautrat [72]. Various authors have considered the continuous limit of such
models [63, 5, 6, 41] and have demonstrated convergence of the associated discretized
evolution equations to (Hudson–Parthasarathy) quantum stochastic differential equa-
tions that are routinely used for the description of realistic physical systems [36].
The description of measurements (in essence, filtering) in this discrete framework was
deduced from basic physical arguments in Brun [22] and Gough and Sobolev [43].

In this paper we will not take the simplest and most straightforward route in
treating these discrete models; similar equations can often be deduced by more ele-
mentary means [22, 43]. Rather, we will exploit the richness of the model to mimic
as closely as possible the development of quantum filtering and feedback control in
the continuous setting, where simple arguments based on linear algebra are useless.
Indeed, the introduction of a “trivial” stochastic calculus, martingale representation,
etc., may seem to be overkill in the context of this model, but these become powerful
and indispensable tools in the treatment of the more general (and physically relevant)
framework of continuous time evolution and observations. We hope to provide in
this way a (relatively) gentle introduction to the full technical theory, where all the
necessary ingredients make their appearance in a more accessible setting.

Organization of the Paper. Despite our best efforts, this paper has become a
lengthy one. In order to help the reader navigate through the material, we now provide
a brief road map of coming attractions.

The paper consists of three parts. The first part aims to provide an introduction
to quantum probability theory and to build simple discrete counterparts of quantum
stochastic models and quantum stochastic calculus. The second part is devoted to
developing nonlinear filtering theory in the quantum setting. The third part of the
paper is devoted to the application of these ideas to quantum stochastic control.

The first part of the paper consists of sections 2–4. In section 2 we introduce
the basic notions of quantum probability and develop in detail the quantum binomial
model which will be employed throughout the paper. The latter is a physical model,
and the following two sections develop some mathematical techniques which we will
use to manipulate it. Section 3 introduces conditional expectations in the quantum
context and sets up the filtering problem which will be studied in the second part. In
section 4 we develop a discrete stochastic calculus and use it to express the model of
section 2 in the form of a difference equation.

The second part of the paper consists of sections 5 and 6. Section 5 treats filtering
using martingale methods, while section 6 uses change of measure techniques. Both of
these techniques are of significant interest in the filtering problem, but they give rise
to the same equations. The reader is encouraged to skip section 6 on first reading, as
it is not needed in the remainder of the paper.
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The third part of the paper consists of sections 7–9. In section 7 we show how
to incorporate feedback into the model of section 2. The question that remains to
be answered is how to design a suitable feedback strategy, given a particular control
goal. There are various ways of doing this, and two possibilities are given in the
following sections. In section 8 we develop optimal feedback controls using dynamic
programming techniques, while section 9 explores an alternative control design method
using Lyapunov functions. Sections 8 and 9 can be read independently.

Finally, we conclude in section 10 with extensive suggestions for further reading.

Notation. We use the following conventions. In general, Hilbert spaces are de-
noted by the symbol H and are endowed with the inner product 〈·, ·〉. We will assume
all Hilbert spaces are complex and finite-dimensional. Recall that the adjoint of
a linear operator X : H → H is defined as the unique operator X∗ that satisfies
〈X∗x, y〉 = 〈x,Xy〉 ∀x, y ∈ H, and that X is called self-adjoint if X = X∗. We denote
by I the identity operator. The commutator between two linear operators is denoted
as [X,Y ] = XY − Y X . Calligraphic letters will be used for various purposes, such as
classical σ-algebras (e.g., Y) or functionals on an algebra (e.g., L(X)). Control sets
and related quantities are denoted by gothic type (e.g., U). ∗-algebras (to be defined
below) will be denoted by script type A , and states on such an algebra are often
denoted by blackboard bold type (e.g., P), though ρ and φ will also be used. The
generic classical probability space will be denoted as (Ω,F ,P), EP denotes the expec-
tation with respect to the measure P, and ℓ∞(F) denotes the space of F -measurable
(bounded, but trivially so when Ω is a finite set) random variables.

As is unavoidable in an article of this length, there is much notation that is in-
troduced throughout the article and that is constantly reused. To help the reader
to keep track of the various quantities, we have provided below a list of commonly
used objects, a brief description, and the page number on which the object is defined.

A(l), A∗(l),Λ(l), t(l) Discrete noises 251
J(µ) Control cost function 296
L1,2,3 Interaction operators 254
M(l) Single time step interaction 255
Mµ(l, u) Controlled single time step interaction 290
M◦,+,−,± Coefficients in difference equation for U(l) 265
Ml Single time step interaction, time reversed 255
Ml(u) Controlled single time step interaction, time reversed 289
U(l) Interaction unitary 255
U(l,u) Interaction unitary with open loop control 289
Uµ(l) Interaction unitary with feedback control 290
V (l) Change of state operator for reference measure 282
Vl(ρ) Value function of dynamic programming 299
Wl(µ, ρ) Cost-to-go 298
Y (l) Observation process 256
Y µ(l) Observations process for control strategy µ 292
Z(l) Field process with Y (l) = U(l)∗Z(l)U(l) 256
∆L(l) L(l)− L(l− 1) 263
Φ Vacuum vector in C2 248
ι ∗-isomorphism between observables and random variables 247
λ2 Length of each time slice 250
P Standard state on the atom-field algebra M ⊗ Wk 254
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J (X) J -coefficient of the filtering equations 273
L(X) Discrete Lindblad generator 265
T (X) T -coefficient of the filtering equations 286
Yl Classical observation filtration 256
K Set of admissible controls 290
KS Set of admissible separated controls 295
U Control set 289
ǔl Control process fl(∆Z(1), . . . ,∆Z(l − 1)) 291
ul Control signal fl(∆Y (1), . . . ,∆Y (l − 1)) 290
Bl Filtration in M ⊗ Wk 263
Cl Filtration of Z 256
M Two-level system algebra 248
Ml Field algebra of time slice l 250
Wk Field algebra 250
Yl Observation filtration 256
µ, µ∗, µ̄ Control strategies 290
φ Vacuum state on M 251
πl(X) Conditional state (filtered estimate of X) 262
σ±, σz Pauli matrices in M 248
σl(X) Unnormalized conditional state 283
Ỹ (l) Innovations process 270
fl(· · · ) Feedback function 290
gl(ρ) Separated feedback function 295
jl(X) Time evolution of X 255
jul (X) Time evolution with open loop control 289
jµl (X) Time evolution with feedback control 290
k Number of time slices 250
uµl Classical feedback signal for control strategy µ 294
yµl Classical observations process for control strategy µ 294
yl Classical observation process 256

2. The Quantum Binomial Model. In this section we introduce the basic model
that we will be dealing with throughout the paper: a discretized approximation of the
interaction between an atom and the electromagnetic field. First, however, we need
to demonstrate how probability theory fits into the framework of quantum mechanics.

2.1. Random Variables in Quantum Mechanics. The basic setting of quantum
mechanics, as one would find it in most textbooks, is something like this. We start
with a Hilbert space H and fix some “state vector” ψ ∈ H. An “observable,” the
physicist’s word for random variable, is described by a self-adjoint operator X on H,
and the expectation of X is given by 〈ψ,Xψ〉. The set of values that X can take
in a single measurement is its set of eigenvalues, and the probability of observing
the eigenvalue λi is given by 〈ψ, Piψ〉, where Pi is the projection operator onto the
eigenspace corresponding to λi. This is quite unlike the sort of description we are
used to from classical probability theory—or is it?

In fact, the two theories are not as dissimilar as they may seem, and it is fruitful
to formalize this idea (we will do so in the next section). The key result that we need
is the following elementary fact from linear algebra. This is just the statement that a
set of commuting normal ([X,X∗] = 0) matrices can be simultaneously diagonalized;
see, e.g., [47, sect. 2.5] or [44, sect. 84].
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Theorem 2.1 (spectral theorem). Let H be an n-dimensional Hilbert space,
n < ∞. Let C be a set of linear transformations from H → H that is closed under
the adjoint (i.e., if C ∈ C , then also C∗ ∈ C ) and such that all the elements of C

commute (i.e., [C,D] = 0 ∀C,D ∈ C ). Then there exists an orthonormal basis of H

such that every C ∈ C is represented by a diagonal matrix with respect to this basis.
Let us demonstrate how this works in the simplest case. Let dimH = 2, fix some

ψ ∈ H, and let X = X∗ be a self-adjoint operator on H. The set C = {X} satisfies
the conditions of the spectral theorem, so we can find an orthonormal basis in H such
that we can express X and ψ in this basis as

X =

(
x1 0
0 x2

)

, ψ =

(
ψ1

ψ2

)

.

We can now interpret X as a random variable on some probability space. Introduce
Ω = {1, 2}, the map x : Ω → R, x(i) = xi, and the probability measure P({i}) = |ψi|2
(i = 1, 2). Evidently 〈ψ,Xψ〉 = EP(x), i.e., the random variable x has the same
expectation under P as we obtain from X and ψ using the usual quantum mechanical
formalism. We can also easily calculate P(x = xi) = |ψi|2, which is again consistent
with the rules of quantum mechanics. As the spectral theorem works for more general
sets C , we can follow the same procedure to represent a set of commuting observables
on a classical probability space and to calculate the joint statistics.

Up to this point we have done nothing particularly exciting: all we have done is to
express the quantum “rules” listed in the first paragraph of this section in a convenient
basis, and we have attached an interpretation in terms of classical probability theory.
Conceptually, however, this is an important point: commuting observables are random
variables on a classical probability space, and should be thought of in that way.
Formalizing the way we can pass back and forth between the two descriptions will
allow us to utilize classical probabilistic techniques in the quantum mechanical setting.

What the spectral theorem does not allow us to do is to simultaneously interpret
two noncommuting observables as random variables on a single probability space.
This is not a shortcoming of the theory, but has an important physical meaning. Ob-
servables that do not commute cannot be observed in the same realization: their joint
probability distribution is a meaningless quantity (hence they are called incompati-
ble). Strange as this may seem, this idea is a cornerstone of quantum theory and all
the empirical evidence supports the conclusion that this is how nature works. We will
accept as a physical principle that in a single realization we can choose to measure
at most a commuting set of observables. However, we will see later that we can still
estimate the statistics of observables which we did not choose to measure, even if they
do not commute with each other, provided they commute with the measurements we
did choose to perform. These ideas will be clarified in due course.

2.2. Quantum Probability Spaces. In this section we introduce and motivate
the notion of a (finite-dimensional) quantum probability space. The definitions may
not seem completely natural at first sight, but their use will be amply illustrated in
the remainder of the article.

In the example of the previous section, we saw how to construct a set of quan-
tum observables as maps on the sample space Ω. To turn this into a probability
space we need to add a σ-algebra and a probability measure. As we are considering
a particular set of random variables X1, . . . , Xk it is natural to choose the σ-algebra
σ(X1, . . . , Xk), i.e., the smallest σ-algebra with respect to which X1, . . . , Xk are mea-
surable (the σ-algebra generated by X1, . . . , Xk), and the quantum state induces a
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probability measure on this σ-algebra. We would like to be able to specify the σ-
algebra directly, however, without having to select some “preferred” set of random
variables X1, . . . , Xk—the values taken by these random variables are irrelevant, as
we are only interested in the generated σ-algebra.

The definition we will give is motivated by the following observation. On a clas-
sical sample space Ω, consider the set ℓ∞(F) of all random variables measurable with
respect to the σ-algebra F . If one is given such a set, then F can be reconstructed
as F = σ{ℓ∞(F)}. Conversely, however, we can easily construct ℓ∞(F) if we are
given F . Hence these two structures carry the same information; by considering all
measurable random variables at the same time we are no longer giving preference to
a particular set X1, . . . , Xk. In quantum probability, it will be more convenient to
characterize a σ-algebra by its ℓ∞-space—the quantum analogue of this object is a
set of observables A , which can be used directly as input for the spectral theorem.
To complete the picture we need a way to characterize sets of observables A which
are mapped by the spectral theorem to a space of the form ℓ∞(F).

Definition 2.2. A ∗-algebra A is a set of linear transformations H → H such
that I, αA+βB,AB,A∗ ∈ A for any A,B ∈ A , α, β ∈ C. A is called commutative if
AB = BA for any A,B ∈ A . A linear map ρ : A → C which is positive ρ(A∗A) ≥ 0
∀A ∈ A and normalized ρ(I) = 1 is called a state on A .

Definition 2.3. A ∗-isomorphism between a commutative ∗-algebra A and a set
of functions A on some space Ω is a linear bijection ι : A → A such that ι(A∗) =
ι(A)∗ (ι(A)∗(i) is the complex conjugate of ι(A)(i) ∀i ∈ Ω) and ι(AB) = ι(A)ι(B)
((ι(A)ι(B))(i) = ι(A)(i)ι(B)(i) ∀i ∈ Ω) for every A,B ∈ A .

The reason we want ∗-isomorphisms is to ensure that we can manipulate observ-
ables and classical random variables in the same way. That is, ifX1, X2 are commuting
self-adjoint operators that correspond to the random variables x1, x2, then X1 +X2

must correspond to x1 + x2 and X1X2 must correspond to x1x2. The notion of a
∗-algebra implements exactly the question posed above: every commutative ∗-algebra
can be mapped to a set of random variables of the form ℓ∞(F) for some σ-algebra F
by using the spectral theorem and the following lemma. The fact that sets of mea-
surable functions can be characterized by algebras is well known; in fact, Lemma 2.4
is just a “trivial” version of the monotone class theorem [73, Chap. I, Thm. 8].

Lemma 2.4. Let Ω = {1, . . . , n}. Then there is a one-to-one correspondence
between (commutative) ∗-algebras of n× n diagonal matrices and ℓ∞(F)-spaces.

Proof. We need two simple facts. First, let X1, . . . , Xk be elements of a ∗-algebra
of diagonal matrices. Then f(X1, . . . , Xk) is also an element of the ∗-algebra for any
function f . Clearly this is true if f is any (complex) polynomial. But this is sufficient,
because given a finite number of points x1, . . . , xn ∈ Ck we can always find for any
function f a polynomial f̂ that coincides with f on x1, . . . , xn. Second, we claim that
for any F there exists a finite set of disjoint sets S1, . . . , Sk ∈ F such that

⋃

k Sk = Ω
and such that any x ∈ ℓ∞(F) can be written as x =

∑

i xiχSi
(χS is the indicator

function on S, xi ∈ C). To see this, note that there is only a finite possible number
of disjoint partitions {Ti} of Ω, the latter being a finite set. {Si} is then the (unique)
finest such partition that is a subset of F . To show uniqueness, if {Si}, {S′

i} ⊂ F were
two such partitions, then {Si∩S′

j} ⊂ F would be a finer partition unless {Si} = {S′
i}.

Let us now prove the lemma. For a diagonal matrix X we define the map x(i) =
ι(X)(i) = Xii, and similarly for a map x : Ω → C define the diagonal matrix Xii =
ι−1(x)ii = x(i). This gives a ∗-isomorphism ι between the set A of all diagonal
matrices and the set ℓ∞(Ω) of all maps on Ω. The claim of the lemma is that ι
maps any ∗-subalgebra C ⊂ A to ℓ∞(F) for some σ-algebra F , and conversely that
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ι−1(ℓ∞(F)) is a ∗-algebra for any F . The latter is a straightforward consequence
of the definitions, so let us prove the former statement. Fix the ∗-algebra C and
define C = ι(C ). Let F = σ{C}, and introduce the smallest Ω-partition {Si} ⊂ F as
above. If χSi

∈ C for every i, then we must have C = ℓ∞(F): C is an algebra and
hence contains all random variables of the form

∑

i xiχSi
. Let us thus assume that

there is some i such that χSi
�∈ C; as F = σ{C}, however, we must be able to find

functions x(1), . . . , x(n) ∈ C such that x−1
(1)(x1) ∩ · · · ∩ x−1

(n)(xn) = Si. But if we choose

f(y1, . . . , yn) = χ{y1=x1,...,yn=xn}(y1, . . . , yn), then f(x(1), . . . , x(n)) = χSi
∈ C. Hence

we have a contradiction, and the lemma is proved.
We are now ready to introduce the basic mathematical object studied in this

article: a generalized or quantum probability space. Applying the spectral theorem to
this structure gives a fundamental result which we will use over and over.

Definition 2.5 (quantum probability space). The pair (A , ρ), where A is a
∗-algebra of operators on a finite-dimensional Hilbert space H and ρ is a state on A ,
is called a (finite-dimensional) quantum probability space.

Theorem 2.6 (spectral theorem for quantum probability spaces). Let (C , ρ) be
a commutative quantum probability space. Then there is a probability space (Ω,F ,P)
and a ∗-isomorphism ι : C → ℓ∞(F) such that ρ(X) = EP(ι(X)) ∀X ∈ C .

What is so general about a generalized or quantum probability space? It is the
existence of many commutative subalgebras within (A , ρ). Theorem 2.6 does not
apply directly to (A , ρ), as usually such a space will not be commutative. On the
other hand, in a single realization we can choose to observe at most a commutative set
of observables, which generate a commutative subalgebra C ⊂ A . The probability
space (C , ρ|C ) is commutative and is thus exactly equivalent to a classical probability
space by Theorem 2.6. The noncommutative probability space (A , ρ) describes the
statistics of all possible experiments—it is a collection of many incompatible classical
probability models, each of which coincides with a commutative subalgebra of A .
The experiment we choose to perform in one single realization determines which com-
mutative subalgebra of A , i.e., which classical probability space, is needed to describe
the random outcomes of that experiment.

Remark 2.7. In section 2.1 we determined the probability measure P using a
state vector ψ ∈ H; here we have replaced this notion by the state ρ : C → C. This
is in fact a generalization: the vector ψ corresponds to the state ρ(X) = 〈ψ,Xψ〉.
In general we can always characterize a state ρ by a density matrix ρ̃ as follows:
ρ(X) = Tr[ρ̃X ]. This follows directly from linearity of ρ. Positivity and normalization
impose the additional conditions ρ ≥ 0 and Tr ρ = 1. A state of the form ρ(X) =
〈ψ,Xψ〉 = Tr[(ψψ∗)X ] is known as a pure or vector state, whereas any other state is
known as a mixed state. Both state vectors and density matrices are commonly used
in the physics literature, while ρ : C → C is usual in quantum probability.

We will often speak of the ∗-algebra generated by a set of observables X1, . . . , Xk.
By this we mean the smallest ∗-algebra alg{X1, . . . , Xk} of operators on H that con-
tains X1, . . . , Xk. This notion plays exactly the same role as the σ-algebra generated
by a set of random variables—indeed, it is straightforward to verify that if X1, . . . , Xk
commute, then ι(alg{X1, . . . , Xk}) = ℓ∞(σ{ι(X1), . . . , ι(Xk)}).

In the following we will need to construct quantum probability spaces from a
number of independent smaller probability spaces. The analogous classical notion can
be illustrated as follows: Suppose (Ωi,Fi,Pi), i = 1, 2, are two independent copies
of the probability space of a coin flip. Then (Ω1 × Ω2,F1 ×F2,P1 × P2) is the joint
probability space for the two independent coin flips, on which any random variable
f(ω1, ω2) = f(ω1), which depends only on the first coin, and g(ω1, ω2) = g(ω2),
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which depends only on the second coin, are independent (under the product measure
P1 × P2).

The analogous construction for quantum probability spaces uses the tensor prod-
uct; that is, given quantum probability spaces (Ai, ρi) defined on the Hilbert spaces
Hi, we construct the joint space (A1 ⊗ A2, ρ1 ⊗ ρ2) on the Hilbert space H1 ⊗ H2.
Here H1 ⊗H2 and A1 ⊗A2 denote the usual vector and matrix tensor products, while
ρ1⊗ρ2 is defined by (ρ1⊗ρ2)(A⊗B) = ρ1(A)ρ2(B) and is extended to all of A1⊗A2

by linearity. It is not difficult to verify also that construction is consistent with the
classical case, as ℓ∞(F1 × F2) = ℓ∞(F1) ⊗ ℓ∞(F2); the ∗-isomorphism ι obtained
through the spectral theorem then maps observables of the form A ⊗ I to random
variables of the form f(ω1, ω2) = f(ω1), and vice versa.

For the time being this is all the general theory that we need. We now turn to
the construction of the class of models that we will consider throughout the paper.

2.3. Two-Level Systems. In this article all quantum systems will be built up (by
means of tensor products) from two-level systems, i.e., quantum probability spaces
with dimH = 2. Any observable of a two-level system is at most a two-state random
variable, which makes the theory particularly simple. Nonetheless we will find a
surprisingly rich structure in the resulting models. Moreover, it turns out that such
models can approximate closely the behavior of realistic physical systems; see section
10. The classical counterpart of such models, i.e., the approximation of a continuous
system by a sequence of coin flips, is well known, e.g., in mathematical finance [26, 75].

We already encountered a two-level system in section 2.1. As we will use these
systems so often, however, it will be useful to fix some notation and to introduce some
standard vectors and operators which we will use throughout the paper.

Let M denote the ∗-algebra of all 2 × 2 complex matrices acting on the Hilbert
space H = C2. This algebra, together with suitable choices of states, will be the
building block in our model of an atom in interaction with an electromagnetic field:
the atom will be built on M (see Example 2.8), while the field will be modeled by a
tensor product of M ’s (see section 2.5).

The canonical two-level system is described by the quantum probability space
(M , ρ), where ρ is some state on M . Implicit in this description is the choice of a
standard basis (hence the name canonical) which allows us to represent linear opera-
tors by the more convenient matrices; there is no loss of generality in doing this, and
it will make our life much easier. We introduce the following standard definitions:

(2.1) σ− =

(
0 0
1 0

)

, σ+ = σ∗
− =

(
0 1
0 0

)

, Φ =

(
0
1

)

.

Φ is called the vacuum vector or ground state vector for reasons which will become
clear shortly. Note that σ−Φ = 0, σ2

− = 0, and σ−σ+ + σ+σ− = I. σ+ and σ− are
convenient operators, as any matrix M ∈ M can be written as a linear combination
of σ+σ−, σ+, σ−, I. We will also sometimes use the Pauli matrix

(2.2) σz = σ+σ− − σ−σ+ =

(
1 0
0 −1

)

.

Example 2.8 (two-level atom). In this example we are going to interpret the
quantum probability space (M , ρ) as the set of observables describing a single atom.
Introduce the self-adjoint operator H ∈ M by

(2.3) H =
�ω0

2
σz =

(
�ω0

2 0

0 −�ω0

2

)

,



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A DISCRETE INVITATION TO QUANTUM FILTERING AND FEEDBACK CONTROL 249

where � is Planck’s constant (a fundamental constant of nature), ω0 is a parameter
representing a frequency (the so-called atomic frequency), and σz is the Pauli matrix
given by (2.2). As an observable, the Hamiltonian H is interpreted as the energy of
the atom (indeed, �ω0 has units of energy). If an experiment is done to measure it,
then from (2.3) it is clear that the outcome is a random variable taking either the
value �ω0/2 or −�ω0/2 (note that H is already diagonal in the given basis).

The fact that the atomic energy takes discrete values is a fundamental result in
quantum mechanics to which the theory owes its name. No actual atom has only
two energy levels, but in some cases atomic physics is well approximated by such
a description. Other physical observables, such as the intrinsic angular momentum
(spin) of an electron, are exactly described by a two-level system. Throughout this
article we will use the two-level system as a prototypical example of an atom.

We have not yet discussed the state ρ; the state depends on the way the atom was
prepared (e.g., is the atom at room temperature, has it been cooled to absolute zero,
or was it perhaps excited by a laser?). A particularly interesting state, the ground
state, is the one in which the energy takes its lowest possible value −�ω0/2 with
unit probability. This situation describes an atom that has been cooled to absolute
zero temperature (a good approximation for laser-cooled atoms). It is not difficult to
verify that the ground state is defined by ρ(X) = 〈Φ, XΦ〉, where Φ is the ground
state vector. In general we can choose any state for the atom, i.e., we set

ρ(X) = Tr[ρ̃X ] with ρ̃ =

(
ρ11 ρ12

ρ21 ρ22

)

, X ∈ M ,

where ρ̃ is a density matrix (ρ̃ ≥ 0, Tr ρ̃ = 1). Then measurement of H yields the
outcome −�ω0/2 with probability ρ22 and �ω0/2 with probability ρ11. Note that the
expectation value of the energy H is given by ρ(H) = Tr[ρ̃H ] = 1

2�ω0(ρ11 − ρ22).
Apart from the energy H the two-level atom may possess an electric dipole mo-

ment, described by the vector observable µ. Its three components are given by

µa = αaσ− + α∗
aσ+ =

(
0 α∗

a

αa 0

)

, a ∈ {x, y, z},

where αx, αy, and αz are complex parameters (depending on which specific atom we
are considering). Note that µa, a ∈ {x, y, z}, does not commute with H . Therefore µa
and H cannot be simultaneously diagonalized by the spectral theorem; that is, they
cannot be represented on the same probability space. It is impossible to devise an
experiment that measures both observables simultaneously. Note further that µx,y,z
do not commute with each other unless αx,y,z have the same phase, i.e., it is in general
not even possible to measure all three components of µ in one realization.

2.4. The Discrete Field. Having obtained a simple model for an atom, we pro-
ceed by introducing a simple model for the electromagnetic field, e.g., light emitted
from a laser. In the next section we will couple the atom and the field, which will
allow us to describe measurements of light emitted from or scattered by the atom.
Before we can do this, however, we must model the field in the absence of the atom.

The model we have in mind is illustrated in Figure 2.1. Imagine a laser beam
which we are measuring with a photodetector. The beam propagates toward the pho-
todetector at the speed of light, so at each time t we will measure a different part of
the beam. We wish to describe the measurements made by the photodetector at each
time t. To simplify matters we will discretize time into slices. If these slices are suffi-
ciently small (as compared to the intensity of the laser), then to good approximation
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Fig. 2.1 Illustration of a discretized model for the electromagnetic field. The field (e.g., a laser
beam) propagates to the left until it hits a photodetector. When we discretize time with
sufficiently small ∆t = λ2, then to good approximation the photodetector will detect either
zero or one photon in each time step, and moreover the number of photons detected in
each time interval are independent random variables. The observable ∆Λ(i) represents the
number of photons detected in the time interval i. A possible sample path for the stochastic
process ι(∆Λ(i)) is displayed in red.

the photodetector will measure no more than one photon in each slice. Moreover,
the measurement in each slice will be independent from the other slices, as we are
measuring independent parts of the field at each time step. Hence we will model
the photodetection of the field by a collection of independent {0, 1}-valued random
variables, one for each time slice, corresponding to whether a photon was (1) or was
not (0) detected in each slice.

The model being a quantum mechanical model, the above description is not suf-
ficient. The events detected by a photodetector are classical events, corresponding to
an entire sample path of observations measured in a single realization, and hence are
necessarily described by a commutative algebra. Other observations of the field are
possible, using a different detection setup, which are incompatible with direct pho-
todetection (we will encounter an example below). Hence we need a noncommutative
model. Still, the considerations above are very suggestive; we will build our model
from a collection of independent two-level systems, one for each time slice.

Fix an integer k and finite time interval [0, T ], T > 0. Define λ =
√

T/k, i.e., the
interval [0, T ] is divided into k parts of equal length λ2. To every time slice 1, . . . , k we
want to associate an independent copy of the canonical two-level system (M , ρ). But
we have already seen how to do this: we must use tensor products, i.e., we introduce
the quantum probability space

(Wk, ρk) = (M⊗k, ρ⊗k) = (M ⊗ · · · ⊗ M
︸ ︷︷ ︸

k times

, ρ⊗ · · · ⊗ ρ
︸ ︷︷ ︸

k times

).

For any X ∈ M and integer 1 ≤ i ≤ k, we define an element Xi ∈ Wk by

Xi = I⊗(i−1) ⊗X ⊗ I⊗(k−i).

Xi is the observable X in the time slice i. Note the fundamental property [Xi, Yj ] = 0
∀X,Y ∈ M , i �= j: measurements on different slices of the field are always compatible.
For future reference, we also define the algebra Mi of observables in time slice i:

Mi = alg{Xi : X ∈ M }.
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Discrete Noises. For 1 ≤ i ≤ k we define the standard increments

∆A(i) = λ(σ−)i, ∆Λ(i) = (σ+σ−)i,

∆A∗(i) = λ(σ+)i, ∆t(i) = λ2I,
(2.4)

and consequently we introduce the discrete noise processes A, A∗, Λ and the discrete
time process t (with the convention A(0) = A∗(0) = Λ(0) = t(0) = 0) as follows:

A(l) =

l∑

i=1

∆A(i), Λ(l) =

l∑

i=1

∆Λ(i),

A∗(l) =

l∑

i=1

∆A∗(i), t(l) =

l∑

i=1

∆t(i).

The particular scaling of these expressions with λ has been selected so that the def-
initions make sense in the continuous limit λ → 0; see section 10. For now, let us
furnish these objects with a suitable interpretation. t(l) = lλ2I is the easiest: this
observable takes the value lλ2 with probability 1. We interpret t(l) as the time that
has elapsed after time slice l. Next, let us investigate Λ(l).

Photon Counting. For the observable σ+σ− ∈ M , it is easily verified that the
spectral theorem maps to a random variable ι(σ+σ−) that takes the value zero or one;
indeed, the matrix corresponding to σ+σ− (calculated using (2.1)) is given by

σ+σ− =

(
1 0
0 0

)

,

which is already in diagonal form. ∆Λ(i), i = 1, . . . , k, is a set of independent ob-
servables taking the value zero or one. We interpret ∆Λ(i) as the number of photons
observed by a photodetector in the time slice i (as illustrated in Figure 2.1).

The probability of observing a photon in the time slice i depends on the state
ρ; in the presence of a light source (a laser or a light bulb) this probability will be
nonzero. If we turn off the light source, or if there was no light source in the first
place, then the probability of measuring a photon will be zero in every time slice.
As we discussed in the context of a two-level atom, this situation is described by the
state φ(X) = 〈Φ, XΦ〉 (i.e., ρk = φ⊗k)—it is for this reason that this state is called
the vacuum state. Even in the absence of an external light source an atom can still
interact with the vacuum; e.g., an excited atom can spontaneously emit a photon into
the vacuum, an event which we will want to measure using our photodetector. For
concreteness, in what follows we will always work with the vacuum state φ⊗k.

Now recall that ∆Λ(i), i = 1, . . . , k, all commute with each other, and hence
generate a commutative ∗-algebra Ck. The spectral theorem maps Ck to a classical
space (Ωk,Fk), which is simply the probability space corresponding to k independent
coin flips (a “binomial model” in the terminology of [75]). The classical stochas-
tic process yl = ι(∆Λ(l)) is then precisely the signal we observe coming from the
photodetector. By applying the spectral theorem to the commutative subalgebras
Cl = alg{∆Λ(i) : i = 1, . . . , l}, Cl ⊂ Cl+1 ⊂ · · · ⊂ Ck, we obtain an increasing family
of σ-algebras Fl ⊂ Fl+1 ⊂ · · · ⊂ Fk, the filtration generated by the stochastic process
yl. As in the classical theory, the quantum filtration {Cl} allows us to keep track of
what information is available based on observations up to and including time slice l.

It remains to consider Λ(l) ∈ Cl; it is evident from the definition that this ob-
servable represents the number of photons observed up to and including time slice l.
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Hence the number process {Λ(l)}l=1,...,k, which is clearly commutative as Λ(l) ∈ Ck

∀l, maps to a classical counting process ι(Λ(l)). All of this is not so interesting when
we are working under the measure Pk induced by the vacuum φ⊗k on (Ωk,Fk): under
this measure any sample path of ι(Λ(l)) that is not identically zero has zero proba-
bility. Once we have introduced the interaction with an atom, however, the number
process will allow us to count the number of photons emitted by the atom.

Homodyne Detection. The processes A(l) and A∗(l) are not self-adjoint, but
Xϕ(l) = eiϕA(l) + e−iϕA∗(l) is an observable for any phase ϕ ∈ [0, π). Moreover,
{Xϕ(l)}l=1,...,k is a commutative process for fixed ϕ: to see this, note that ∆Xϕ(l) =
Xϕ(l)−Xϕ(l − 1) = λ(eiϕσ− + e−iϕσ+)l commute with each other for different l, so
the same must hold for Xϕ(l). Hence, as above, we can use the spectral theorem to
map C

ϕ
k = alg{Xϕ(l) : l = 1, . . . , k} to a classical space (Ωϕk ,F

ϕ
k ), and similarly we

obtain the filtration {Fϕl }l=1,...,k. Beware, however: {Xϕ} does not commute with
{Λ}, nor does it commute with {Xϕ′} for ϕ′ �= ϕ. To observe each of these processes
we need fundamentally different detectors, so that in any given realization at most
one of these processes is available to us.

An optical detector that measures one of the processes Xϕ(l) is known as a ho-
modyne detection setup, a term borrowed from radio engineering. What is measured
in such a setup is usually interpreted by considering the electromagnetic field to be a
wave at a certain frequency, as in classical electromagnetism. The homodyne detector
then measures the component of this wave that is in phase with a certain reference
wave, known as the local oscillator, and the parameter ϕ determines the phase of the
local oscillator with respect to an external reference. The interpretation of the light
in terms of waves (homodyne) or particles (photodetection) are not at odds, because
the corresponding measurements {Xϕ} and {Λ} do not commute. We will not dwell
further on the physical interpretation of these detection schemes; suffice it to say that
both homodyne detection and photodetection are extremely common techniques, ei-
ther of which might be more convenient in any particular situation. The interested
reader is referred to the quantum optics literature [81] for further information (see
also [7] for a more mathematical perspective).

For concreteness we will always consider the case ϕ = 0 whenever we discuss
homodyne detection in what follows, i.e., we will consider the observation process
X(l) = A(l) + A∗(l). Let us investigate this process a little more closely. First,
consider the two-level system observable σ+ + σ−:

σ+ + σ− =

(
0 1
1 0

)

=

(
1
2

1
2

1
2

1
2

)

−
(

1
2 − 1

2
− 1

2
1
2

)

= P1 − P−1.

P±1 are projections, so we can see that σ+ + σ− has eigenvalues ±1. Moreover, note
that 〈Φ, P±1Φ〉 = 1/2. Hence the spectral theorem evidently maps σ+ + σ− to a ran-
dom variable taking the values ±1 each with probability 1/2 in the vacuum. It follows
immediately that ι(∆X(l)), l = 1, . . . , k, are independent random variables taking val-
ues ±λ with equal probability. Unlike in the case of photodetection, the homodyne
detector gives a noisy signal even in the vacuum, a manifestation of vacuum fluctua-
tions, as this is called in quantum optics. The process ι(X(l)) =

∑l
i=1 ι(∆X(i)), the

integrated photocurrent, is evidently a symmetric random walk on the grid λZ. It is
not difficult to see that ι(X(⌊t/λ2⌋)) converges in law to a Wiener process as λ → 0
(recall t(l) = lλ2, so l(t) ∼ ⌊t/λ2⌋); see section 10.

Remark 2.9. The reader might wonder at this point why we have chosen the
notation ι(∆Λ(l)) or ι(∆X(l)) for the observations—why not dispose of the ∆’s? The
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Fig. 2.2 Illustration of the discretized atom-field interaction. In each time step i, the atom and the
field at time slice i interact through a unitary transformation Mi. The time slice of the
field is subsequently measured (using a photodetector or homodyne detection), which gives
rise to the observation ∆Y (i). The field then propagates to the left by one time slice, and
the procedure repeats.

reason is that neither ∆X(⌊t/λ2⌋) nor ∆Λ(⌊t/λ2⌋) have well-defined limits as λ→ 0;
for example, ι(∆X(⌊t/λ2⌋)) would have to converge to white noise, which is not a
mathematically well-defined object (at least in the sense of stochastic processes). The
Wiener process, on the other hand, has a rigorous definition. We use the convention
that processes such as X(⌊t/λ2⌋) have well-defined limits, whereas ∆X(⌊t/λ2⌋) will
“converge” to dXt, which is meaningful only under the integral sign.

Remark 2.10. It should be emphasized that the model we have introduced here is
rather crude; certainly it was not derived from physical principles! Its main physical
justification is that it converges in the limit λ→ 0 to a model which is obtained from
physical principles, so that for small λ we can consider it to be a good approximation—
see the references in section 10. The same disclaimer holds for what we will discuss
in the remainder of section 2.

2.5. Repeated Interaction. Now that we have descriptions of an atom and of the
electromagnetic field, it is time to describe how these objects interact with each other.
The atom can emit photons into the vacuum, which we subsequently detect using a
photodetector; alternatively, using a homodyne detection setup we can measure how
the presence of the atom perturbs the usual vacuum fluctuations. The remainder of the
article is centered around the following theme: how can we put such measurements to
good use? The development of filtering theory allows us to estimate atomic observables
based on the measurements in the field, and we can subsequently use this information
to control the atom by means of feedback control.

The way the interaction works is illustrated in Figure 2.2. As before, the field
propagates toward the detector, which measures sequentially time slices of the field.
Now, however, we place the atom right in front of the detector, so that the current
time slice interacts with the atom prior to being detected. This sort of model is called
a repeated interaction: the atom is fixed, and interacts identically with each time slice
of the field exactly once before it is detected. Before we can describe the repeated
interaction in detail, we first have to describe how a single interaction is modeled
in quantum mechanics. Though this article is mostly about quantum probability, we
need a little bit of quantum dynamics in order to model physical systems.

Interactions in Quantum Mechanics. Suppose we have two independent two-
level atoms, i.e., we are working on the quantum probability space (M ⊗ M , ρ⊗ ρ).
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Then, for example, the observable µ1
x = µx ⊗ I corresponds to the electric dipole

moment of the first atom, and is independent from any observable I⊗X of the second
atom. If the two atoms subsequently interact, however, then the dipole moment of
the first atom would likely change; i.e., the dipole moment after the interaction is
described by a different observable µ1,after

x than before the interaction, and will likely
be correlated with some observable of the second atom (I ⊗X)after.

In quantum mechanics, every interaction is described by a unitary operator. In the
previous example, the interaction between the two atoms corresponds to a suitably
chosen unitary map U : C2 ⊗ C2 → C2 ⊗ C2. This means that any observable
X ∈ M ⊗ M transforms to U∗XU ∈ M ⊗ M after the two atoms have interacted.
In particular, µ1,after

x = U∗µ1
xU will generally be different from µ1

x, and is likely to be
correlated with U∗(I ⊗X)U for some X . Note that unitary rotation does not change
the spectrum of an observable; i.e., ι(µ1

x) and ι(µ1,after
x ) take the same values, but

they are defined on different probability spaces with different probability measures.
Recall that any unitary matrix U can be written as U = e−iB for some self-adjoint

matrix B. Hence we can express any unitary transformation of M ⊗ M by

U = exp (−i {L1 ⊗ σ+σ− + L2 ⊗ σ+ + L∗
2 ⊗ σ− + L3 ⊗ I}) ,

where L1,2,3 ∈ M and L1, L3 are self-adjoint.
Remark 2.11. We have described interactions by changing the observables cor-

responding to a particular physical quantity. This is how dynamics is usually repre-
sented in probability theory. For example, the classical discrete time Markov chain
Xn = f(Xn−1, ξn), where ξn is i.i.d. noise, is precisely of this form: the random
variables Xn and Xn−1 represent the same physical quantity X , but the interaction
with the noise ξ means we have to represent X by different random variables Xn at
different times. In quantum mechanics, this is called the Heisenberg picture. In the
Schrödinger picture, any physical quantity is always represented by the same observ-
able, but the underlying state is changed by the interaction. The two pictures are in
some sense dual to each other, as is discussed in any quantum mechanics textbook
(e.g., [67]). However, the Schrödinger picture is somewhat unnatural if one wants to
work with (quantum) stochastic processes. In this article we will always work in the
Heisenberg picture.

Atom-Field Interaction. We now consider the case that a two-level atom is cou-
pled to the vacuum electromagnetic field, that is, we work on the quantum probability
space (M ⊗Wk,P) with P = ρ⊗ φ⊗k. The subspace (M , ρ) ⊂ (M ⊗Wk,P) is known
as the initial system (ρ is called the initial state), because observables of the form
X⊗I in M ⊗Wk represent the atom’s physical quantities at the initial time l = 0, i.e.,
before the atom has interacted with the field. The interaction requires us to modify
these observables at each time l > 0, as we will now describe.

Let us begin by considering what happens to the system after one time step. At
this time (l = 1) the atom has interacted only with the first time slice of the field, i.e.,
any atomic observable X⊗ I at time l = 0 will evolve to j1(X) =M(1)∗(X⊗ I)M(1),
where M(1) is the unitary interaction of the form

M(1) = e−i{L1∆Λ(1)+L2∆A
∗(1)+L∗

2∆A(1)+L3⊗∆t(1)}.

In the next time step, we want the atom to interact in an identical fashion with the
second time slice, so we will define j2(X) =M(2)∗j1(X)M(2) with

M(2) = e−i{j1(L1)∆Λ(2)+j1(L2)∆A
∗(2)+j1(L∗

2)∆A(2)+j1(L3)∆t(2)}.
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Note that not only do we need to change the time slice that we are interacting with,
but we also need to propagate the atomic observables that define the interaction.

Remark 2.12. Once again it is useful to bear in mind the example of the classical
Markov chain Xn = f(Xn−1, ξn). Suppose Xn takes values in Rk; if we are looking,
e.g., at the first component X1

n, then X
1
n = f(X1

n−1, X
2
n−1, . . . , X

k
n−1, ξn). Hence the

transformation f(·, X2
n−1, . . . , X

k
n−1, ξn) of X

1
n−1 depends not only on the noise “time

slice” ξn, but also on other “observables” of the system X2
n−1, . . . , X

k
n−1 which must

be evaluated at time n−1. Similarly our quantum mechanical interactionM depends
at each time step l on the lth time slice in the field as well as on the atomic observables
in the previous time step l − 1.

Proceeding in a similar fashion, we find that any atomic observable X ∈ M has
evolved to the observable jl(X) = U(l)∗(X ⊗ I)U(l) ∈ M ⊗ Wk at time l, where

(2.5) U(l) =
−→∏
l
i=1M(i) = M(1)M(2) · · ·M(l), U(0) = I,

is a repeated interaction with the one time step interaction

(2.6) M(l) = e−i{jl−1(L1)∆Λ(l)+jl−1(L2)∆A
∗(l)+jl−1(L∗

2)∆A(l)+jl−1(L3)∆t(l)}.

The map jl(·) defines the time evolution or flow of the atomic observables. The
connection with dynamical systems theory can be made explicit: if we define U(i, l) =
M(i + 1)M(i + 2) · · ·M(l), i < l, and Ji,l(X) = U(i, l)∗XU(i, l) for X ∈ M ⊗ Wk,
then Ji,l(·) is a two-parameter group of transformations of the algebra M ⊗ Wk (i.e.,
for i < l < r, Jl,r(Ji,l(·)) = Ji,r(·), Ji,r(J−1

i,l (·)) = Jl,r(·), etc.); thus we have truly
defined a discrete time dynamical system in the dynamical systems sense. We will
not need this in what follows, however.

There is a different representation of the repeated interaction unitary U(l) which
is often more convenient. Introduce the unitaries

(2.7) Ml = e−i{L1∆Λ(l)+L2∆A
∗(l)+L∗

2∆A(l)+L3∆t(l)},

which, in contrast to M(l), depend on the initial observables L1,2,3 rather than the
time-evolved observable jl−1(L1,2,3). From jl−1(L1,2,3) = U(l−1)∗(L1,2,3⊗I)U(l−1),
it follows immediately that M(l) = U(l− 1)∗MlU(l − 1). But then

U(l) = U(l − 1)M(l) = U(l − 1)U(l − 1)∗MlU(l − 1) =MlU(l − 1),

so we obtain the expression

U(l) =
←−∏
l
i=1Mi =MlMl−1 · · ·M2M1.

Hence we can use the Ml’s rather than M(l)’s if we reverse the time ordering in the
definition of U(l). This is often convenient because Ml is a function only of the initial
system and of the lth time slice, whereas M(l) depends on the entire history of the
field up to time slice l.

The choice of L1,2,3 ∈ M determines the nature of the physical interaction be-
tween the atom and the field. For different atoms or for different experimental scenar-
ios this interaction can take very different forms; nonetheless the theory that we are
about to develop can be set up in quite a general way for a large class of interactions.
In section 2.6 we will introduce two specific examples of physical interactions which
we will use throughout to illustrate the general theory.
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Observations. Up to this point we have concentrated on the time evolution jl(X)
of an atomic observableX⊗I; however, the observables corresponding to time slices of
the field are also modified by the interaction with the atom in a completely analogous
way. Recall, for example, that before the interaction the number of photons in time
slice l is represented by the observable I ⊗∆Λ(l). After the interaction this quantity
is represented by ∆Y Λ(l) = U(l)∗(I ⊗ ∆Λ(l))U(l), so that ι(∆Y Λ(l)) is precisely
what we observe at time l if a photodetector is used to measure the field. Similarly,
homodyne detection measures ∆Y X(l) = U(l)∗(I ⊗∆A(l) + I ⊗∆A∗(l))U(l) at time
l. We will use the generic notation ∆Y (l) = U(l)∗∆Z(l)U(l), where ∆Y = ∆Y Λ if
∆Z = I ⊗∆Λ and ∆Y = ∆Y X if ∆Z = I ⊗ (∆A+∆A∗).

The first question we should ask ourselves is, does this procedure make sense?
After all, in the laboratory we measure classical stochastic processes, so that in order
for our theory to be consistent the random variables ι(∆Y (l)), l = 1, . . . , k, must
define a classical stochastic process on some fixed probability space (Ωk,Fk,Pk)—in
other words, Yk = alg{∆Y (l) : l = 1, . . . , k} must be a commutative algebra. Let
us verify that this is indeed the case. The basic insight we need is the following
observation: [Ml,∆Z(i)] = 0 for l > i (this is easily verified by inspection), so that
for j > l,

U(j)∗∆Z(l)U(j) =

(−→∏
j
i=1M

∗
i

)

∆Z(l)

(←−∏
j
i=1Mi

)

=

(−→∏
l
i=1M

∗
i

)

∆Z(l)

(←−∏
l
i=1Mi

)

= U(l)∗∆Z(l)U(l).

This is not unexpected: it is simply a statement of the fact that the lth time slice of
the field interacts exactly once with the atom, viz., at the lth time step (note that
U(j)∗∆Z(l)U(j) = ∆Z(l) for j < l), for any l. But then for j > l,

[∆Y (l),∆Y (j)] = [U(l)∗∆Z(l)U(l), U(j)∗∆Z(j)U(j)]

= [U(j)∗∆Z(l)U(j), U(j)∗∆Z(j)U(j)] = U(j)∗[∆Z(l),∆Z(j)]U(j) = 0,

so that clearly Yk is commutative. This self-nondemolition property guarantees that
the observations can indeed be interpreted as a classical stochastic process through the
spectral theorem, a crucial requirement for the physical interpretation of the theory.

Previously we introduced the filtration Cl = alg{∆Z(i) : i = 1, . . . , l}, l =
1, . . . , k, corresponding to the photodetection or homodyne detection of the field in
the absence of interaction with the atom. Similarly we now define the filtration
Yl = alg{∆Y (i) : i = 1, . . . , l}, l = 1, . . . , k, which represents the information con-
tained in observations of the field (after it has interacted with the atom) up to the
lth time step. Applying the spectral theorem to Yk, we obtain a classical probabil-
ity space with the corresponding observation process ∆yl = ι(∆Y (l)) and filtration
ι(Yl) = ℓ∞(Yl) (note that we then have Yl = σ{∆y1, . . . ,∆yl}). The following fact
will be useful later on:

Yl = U(j)∗ClU(j) = {U(j)∗XU(j) : X ∈ Cl} ∀ j ≥ l.

The proof is identical to the proof of the self-nondemolition property.
We conclude this section with the demonstration of an important property of the

models under investigation, the nondemolition property, to which we have already
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alluded in section 2.1. Choose any X ∈ M . Then for any l ≤ i,

[∆Y (l), ji(X)] = [U(l)∗∆Z(l)U(l), U(i)∗(X ⊗ I)U(i)]

= [U(i)∗∆Z(l)U(i), U(i)∗(X ⊗ I)U(i)] = U(i)∗[∆Z(l), X ⊗ I]U(i) = 0.

Evidently any atomic observable in time step i commutes with the entire history of
observations up to that time. Thus in principle we could decide at any time to stop
observing the field and we would still be able to measure any atomic observable: the
joint distribution of ∆Y (1), . . . ,∆Y (l) and jl(X) is defined for any self-adjointX ∈ M

as alg{∆Y (1), . . . ,∆Y (l), jl(X)} is a commutative ∗-algebra, despite the fact that
jl(X1) and jl(X2) need not commute for X1 �= X2. This enables us to meaningfully
define the conditional expectation of jl(X) with respect to the observations ∆Y (i), i =
1, . . . , l, for any X ∈ M , which we will do in section 3. The nondemolition property
provides us with a sensible way of estimating a whole set of observables, despite
the fact that they do not commute with each other, as every observable in this set
separately commutes with the observation history on which we are basing the estimate.
If the latter were not the case, the estimates would have no physical relevance; one
would not be able to devise an experiment, even in principle, which could verify the
predictions of such an estimator. Similarly, it would be meaningless to try to control
atomic observables which do not commute with the observations on which we have
based our feedback control law. The nondemolition property avoids such problems
and is thus of fundamental importance for quantum filtering and feedback control.

2.6. Examples. The interaction matrices L1,2,3 determine the nature of the phys-
ical interaction between the atom and the field. Though we will set up the theory in
the following sections for arbitrary L1,2,3, we will repeatedly demonstrate the theory
using the following two examples. The examples illustrate two common experimental
scenarios—spontaneous emission and dispersive interaction—and we will be able to
study these examples explicitly through numerical simulations.

Spontaneous Emission. The spontaneous emission scenario is obtained when an
atom sits undisturbed in the vacuum at zero temperature. If the energy of the atom
is minimal, P(H) = −�ω0/2, then it will remain this way for all time. Otherwise, the
energy of the atom decays to its minimal value. A photodetector measuring the field
would see exactly one emitted photon at some randomly distributed time: hence the
name “spontaneous emission.” We will reproduce this behavior through numerical
simulations once we have introduced the corresponding filtering equations.

The spontaneous emission model is characterized by the interaction matrices

L1 = L3 = 0, L2 = i
√
2κσ−,

where κ is the spontaneous emission rate. For simplicity, we will always set 2κ = 1.
This is a discretized version of the well-known Wigner–Weisskopf model.

Remark 2.13. In principle, we could already calculate the possible observation
sample paths and their probabilities at this point. After all, we would only need
to simultaneously diagonalize the matrices ∆Y (i), i = 1, . . . , k, obtained using this
explicit choice for L1,2,3. We will have a much more efficient way of calculating such
sample paths, however, once we have introduced the filtering equations: these will
allow us to simulate typical sample paths using a Monte Carlo method. Hence we
postpone numerical investigation of our examples until then.
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Dispersive Interaction. In the spontaneous emission scenario, the atom radiates
its excess energy by emitting a photon with energy �ω0 (i.e., with frequency ω0)—
this is precisely the difference between the two values that the energy H can take.
It is possible to suppress the spontaneous emission significantly by “discouraging”
the atom from emitting photons with frequency ω0; for example, we can place the
atom in an optical cavity whose resonant frequency is far detuned from ω0. In this
dispersive regime, the (effective) interaction between the atom and the field is rather
different in nature. An atom which has energy +�ω0/2 will shift the phase of the
output light by a small amount in one direction, while an atom with energy −�ω0/2
will shift the phase by the same amount in the other direction. Such phase shifts can
be observed using a homodyne detection setup, and the resulting photocurrent thus
carries information on the energy of the atom.

The dispersive interaction model is characterized by the interaction matrices

L1 = L3 = 0, L2 = i
√
g σz ,

where g is the interaction strength. For simplicity, we will always set g = 1.

3. Conditional Expectations and the Filtering Problem. Within the context
of the repeated interaction models introduced in the previous section, we have estab-
lished that the observation history up to time step l is compatible with any atomic
observable at time step l. In this section we will show how to estimate atomic ob-
servables based on the observation history. Because only commuting observables are
involved, the corresponding theory can simply be “lifted” from classical probability
theory using the spectral theorem. This is precisely what we will do.

3.1. A Brief Reminder. We begin by briefly recalling how classical conditioning
works. Let (Ω,F ,P) be a probability space and let P,Q ∈ F be a pair of events. The
conditional probability of P given Q is given by

P(P |Q) =
P(P ∩Q)

P(Q)
,

provided P(Q) �= 0. One could roughly interpret this quantity as follows: generate a
large number of samples distributed according to the measure P, but discard those
samples for which the event Q is false. Then P(P |Q) is the fraction of the remaining
samples for which the event P is true.

Now suppose f : Ω → {f1, . . . , fm} and g : Ω → {g1, . . . , gn} are measurable
random variables that take a finite number of values. The conditional expectation of
f given g is the random variable defined by

(3.1) EP(f |g)(ω) =
n∑

j=1

χg−1(gj)(ω)

m∑

i=1

fiP(f−1(fi)|g−1(gj)), ω ∈ Ω.

In fact, we can consider EP(f |g)(ω) to be a function of g:

EP(f |g)(ω) = F (g(ω)), F : gj  →
m∑

i=1

fiP(f−1(fi)|g−1(gj)).

To interpret this quantity, again we generate a large number of samples but now we
divide these up into disjoint subsets corresponding to the value taken by g. Now
average f over each of these subsets. Then F (gj) is the average of f over the subset
of samples on which g takes the value gj, so that EP(f |g) = F (g) is simply the
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Table 3.1 Elementary properties of the conditional expectation in classical (and quantum) proba-
bility; see, e.g., [83]. Equalities are always in the sense of versions, e.g., EP(f1|G) +
EP(f2|G) = EP(f1 + f2|G) means that any version of EP(f1|G) +EP(f2|G) is a version
of EP(f1 + f2|G).

Property Description

Linearity αEP(f1|G) + β EP(f2|G) = EP(αf1 + βf2|G).

Positivity If f ≥ 0, then EP(f |G) ≥ 0 a.s.

Invariance of expectation EP(EP(f |G)) = EP(f).

Module property If g is G-measurable, EP(fg|G) = g EP(f |G) a.s.

In particular, EP(g|G) = g EP(1|G) = g a.s.

Tower property If H ⊂ G, EP(EP(f |G)|H) = EP(f |H).

Independence If σ{f,H} is independent of G, EP(f |σ{H,G}) = EP(f |H) a.s.

expectation of f given that we know g. Note that we did not define the quantity
P(P |Q) for the case P(Q) = 0; hence the expressions above for P(P |Q) are properly
defined everywhere on Ω except on Ω0 =

⋃

j:P(g−1(gj))=0 g
−1(gj) ∈ F . We allow

EP(f |g) to take arbitrary values on Ω0 and call any such random variable a version
of the conditional expectation of f with respect to g. There is no loss in doing this:
all versions of the conditional expectation coincide with unit probability.

The use of these expressions is rather limited, as they do not extend beyond ran-
dom variables g that take a finite number of values. One of Kolmogorov’s fundamental
insights in the axiomatization of probability theory was his abstract definition of the
conditional expectation, which works in the most general settings. In this article we
only use finite state random variables, but even so we find it significantly easier to
use the abstract definition than these clumsy explicit expressions. Let us thus briefly
recall the general setting, as can be found in any probability textbook (e.g., [83]).

Let G ⊂ F be a σ-algebra on which we want to condition; i.e., these are the events
which we know to be true or false due to our observations. Let f be an F -measurable
random variable. Then any G-measurable random variable f̂ that satisfies

(3.2) EP(f̂ g) = EP(fg) ∀G-measurable (bounded) g

is a version of the conditional expectation f̂ = EP(f |G). The conditional expectation
is by construction a function of what we have observed (it is G-measurable), as it
should be. It is easily verified that the explicit expression (3.1) satisfies the abstract
definition with G = σ{g}. In fact, in the case where Ω takes a finite number of
values we can always express EP(f |G) as in (3.1) by constructing g specifically so
that it generates G; expressing g in terms of the smallest measurable partition of Ω
as in the proof of Lemma 2.4, we only need to make sure that g takes a different
value on each set in that partition. Hence there always exists an f̂ that satisfies the
abstract definition, and it is not difficult to prove that all versions coincide with unit
probability—the proof of the latter is the same as the one given below in the quantum
case. Elementary properties of the conditional expectation are listed in Table 3.1.

We conclude by recalling the geometric interpretation of the conditional expec-
tation. For simplicity, take Ω = {1, . . . , N} and fix the σ-algebra G ⊂ F . Clearly
ℓ∞(F) is a finite-dimensional linear space and ℓ∞(G) ⊂ ℓ∞(F) is a linear subspace.
Moreover, 〈f, g〉P = EP(f

∗g) is a pre–inner product: it satisfies all the conditions
of the inner product, except 〈f, f〉P = 0 iff f = 0 P-a.s. rather than iff f(ω) = 0
∀ω ∈ Ω. Hence under 〈·, ·〉P, ℓ∞(F) is a pre–inner product space. With this inter-
pretation, it is evident from (3.2) that EP(f |G) is simply the orthogonal projection
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of f ∈ ℓ∞(F) onto ℓ∞(G). It follows from the projection theorem that EP(f |G) is

the a.s. unique random variable f̂ ∈ ℓ∞(G) that minimizes the mean-square error

〈f − f̂ , f − f̂〉P = EP(|f − f̂ |2). This gives the conditional expectation, in addition to
the probabilistic interpretation above, a firm statistical interpretation as the estimator
that minimizes the mean-square error.

3.2. Quantum Conditional Expectation. Let (B,P) be a commutative quan-
tum probability space; by the spectral theorem, it is equivalent to some classical
probability space (Ω,F ,P). Moreover, the ∗-subalgebra C ⊂ B defines through the
spectral theorem a σ-subalgebra G ⊂ F (as ι(C ) = ℓ∞(G) ⊂ ℓ∞(F)). Because the
classical and quantum probability models are completely equivalent, we can simply
lift the definition of the conditional expectation to the algebraic level:

P(X |C ) = ι−1(EP(ι(X)|G)) ∀X ∈ B.

This is nothing but a reexpression of the conditional expectation EP(f |G) in the
language of ∗-algebras. In fact, we can go one step further and directly trans-
late the abstract definition (3.2) into algebraic language: any X̂ ∈ C that satisfies
P(XC) = P(X̂C) ∀C ∈ C is a version of P(X |C ). We emphasize again that by the
spectral theorem, observables X ∈ B are just random variables and P(X |C ) is just
the ordinary conditional expectation. The spectral theorem is a powerful tool indeed!

Usually we do not start with a commutative quantum probability space. Rather,
we begin with a noncommutative space (A ,P) and choose a commutative subalgebra
C ⊂ A corresponding to the observations—keep in mind the example of the space
(M ⊗Wk, ρ⊗φ⊗k) with the observations Yl ⊂ M ⊗Wk at time step l. As we have seen,
there could be many elements X ∈ A that commute with every element in C , but
that do not commute with each other. The set C ′ = {A ∈ A : [A,C] = 0 ∀C ∈ C } is
called the commutant of C in A . It is easily verified that C ′ is always a ∗-algebra, but
generally C ′ is not commutative. Nonetheless we can naturally extend our previous
definition of P(·|C ) from the commutative algebra B to the case B = C ′.

Definition 3.1 (quantum conditional expectation). Let (A ,P) be a quan-
tum probability space, and let C be a commutative subalgebra of A . Then the map
P(·|C ) : C ′ → C is called a version of the conditional expectation from C ′ onto C if
P(P(A|C )C) = P(AC) ∀A ∈ C ′, C ∈ C .

How should we interpret this definition? Let A = A∗ ∈ C ′ be an observable,
and suppose we are interested in P(A|C ). The definition of P(A|C ) only involves the
operators A and C ∈ C , so for the purposes of evaluating P(A|C ) we don’t need
the entire algebra C ′; we might as well confine ourselves to CA = alg{A,C : C ∈
C } ⊂ C ′—but CA is commutative! Hence for any A = A∗ ∈ C ′, Definition 3.1 simply
reduces to the commutative definition we gave before. For A �= A∗, we can always
write A = P + iQ, where P = (A + A∗)/2 and Q = −i(A − A∗)/2 are self-adjoint,
and we define P(A|C ) = P(P |C ) + iP(Q|C ). We do this mostly for computational
convenience (e.g., to ensure that the conditional expectation is linear); at the end of
the day, only conditional expectations of observables have a meaningful interpretation.

By now it should not come as a surprise that the conditional expectation can only
be defined on the commutant C ′. In section 3.1 we gave an “experimental procedure”
for calculating the conditional expectation of a random variable f : generate a large
number of samples from the joint distribution of f and the observations which we
are conditioning on, separate the samples into subsets corresponding to the different
observations, and average f within each of these subsets. But quantum mechanics
tells us that it is fundamentally impossible to devise such an experiment when the
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observable A which we want to condition is incompatible with the observations! The
commutant C ′ is thus precisely the right notion for a meaningful definition of the
quantum conditional expectation.1

Having introduced an abstract definition, let’s do a little ground work.
Lemma 3.2. P(A|C ), A ∈ C ′ exists and is unique with probability 1; i.e., any

two versions P and Q of P(A|C ) satisfy P((P −Q)∗(P −Q)) = 0.
Proof. We first introduce some notation. 〈F,G〉P = P(F ∗G) defines a pre–inner

product on C ′, thus turning it into a pre–inner product space. The associated semi-
norm is denoted by ‖F‖P = (〈F, F 〉P)1/2.

Existence. For any self-adjoint A = A∗ ∈ C ′, define CA = alg{A,C : C ∈
C }. The spectral theorem then provides a probability space (ΩA,FA,PA) and a ∗-
isomorphism ιA : CA → ℓ∞(FA), and we write ιA(C ) = ℓ∞(GA). For every such
A, define P(A|C ) = ι−1

A (a), where a is some version of PA(ιA(A)|GA). For non–
self-adjoint A ∈ C ′, define P(A|C ) = P(P |C ) + iP(Q|C ) with P = (A + A∗)/2 and
Q = −i(A−A∗)/2. It is easily verified that the map P(·|C ) thus constructed satisfies
Definition 3.1.

Uniqueness with probability 1. Let P and Q be two versions of P(A|C ). From
Definition 3.1, it follows that 〈C,P − Q〉P = 0 for all C ∈ C . But P − Q ∈ C , so
〈P −Q,P −Q〉P = ‖P −Q‖2

P = 0.
Let us prove that the conditional expectation is the least mean-square estimate.
Lemma 3.3. P(A|C ) is the least mean-square estimate of A given C ; i.e., for

any C ∈ C we have ‖A− P(A|C )‖P ≤ ‖A− C‖P.
Proof. For any C ∈ C we have ‖A− C‖2

P = ‖A− P(A|C ) + P(A|C )− C‖2
P. Now

note that, by Definition 3.1, we have 〈C,A−P(A|C )〉P = P(C∗A)−P(C∗P(A|C )) = 0
for all C ∈ C , A ∈ C ′, i.e., A−P(A|C ) is orthogonal to C . In particular, A−P(A|C )
is orthogonal to P(A|C ) − C ∈ C , and we obtain ‖A − C‖2

P = ‖A − P(A|C )‖2
P +

‖P(A|C )− C‖2
P. The result follows immediately.

The elementary properties listed in Table 3.1 and their proofs carry over directly
to the quantum case. For example, let us prove linearity. It suffices to show that
Z = αP(A|C ) + β P(B|C ) satisfies the definition of P(αA + βB|C ), i.e., P(ZC) =
P((αA + βB)C) for all C ∈ C . But this is immediate from the linearity of P and
Definition 3.1. We encourage the reader to verify the remaining properties.

In section 6 we will need to relate conditional expectations with respect to different
states to each other. This is done by the following Bayes-type formula.

Lemma 3.4 (Bayes formula). Let (A ,P) be a quantum probability space, and let
C be a commutative subalgebra of A . Let V be an element in C ′ such that V ∗V > 0
and P(V ∗V ) = 1. We can define a new state Q on C ′ by Q(X) = P(V ∗XV ), and

Q(X |C ) =
P(V ∗XV |C )

P(V ∗V |C )
∀X ∈ C

′.

Proof. Let K be an element of C . For any X ∈ C ′ we can write

P(P(V ∗XV |C )K) = P(V ∗XKV ) = Q(XK) = Q(Q(X |C )K)

= P(V ∗VQ(X |C )K) = P(P(V ∗VQ(X |C )K|C )) = P(P(V ∗V |C )Q(X |C )K),

and the result follows directly.

1That is not to say that this is the only definition used in the quantum probability literature; in
fact, a more general definition, of which our definition is a special case, is very common [79]. Such
a definition is very different in spirit, however, and is not motivated by the probabilistic/statistical
point of view needed for filtering and feedback control.
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3.3. Statement of the Filtering Problem. Let us return to the two-level system
coupled to the discretized electromagnetic field, as described in section 2.5. Recall that
we observe the commutative process ∆Y (l), with either Y = Y Λ or Y X depending
on what detector we choose to use, and that this process generates the commutative
filtration Yl. Suppose we have been observing Y up to and including time l. What
can we infer about the atom?

The nondemolition condition allows us to make sense of this question. In the
language of this section, nondemolition simply means that jl(X) ∈ Y ′

l for any l =
0, . . . , k, X ∈ M . Hence the conditional expectations

πl(X) = P(jl(X)|Yl), 0 ≤ l ≤ k, X ∈ M ,

are well defined, and we could, e.g., interpret πl(X) as the least mean-square estimate
of an atomic observable X at time step l given the observation history.

Though it is evident that the conditional expectations πl(X) are well defined, it
is quite another matter to calculate them explicitly. In principle we have a recipe
which we could follow to perform this calculation: find a basis in which jl(X) and
∆Y (i), i = 1, . . . , l, are simultaneously diagonalized, apply an expression similar to
(3.1), and then reexpress the result in the original basis. Such a procedure would be
extremely unpleasant, to say the least; clearly we are in need of a better way of doing
this. Finding a useful explicit representation of the conditional expectations πl(·) is
known as the filtering problem.

Sections 5 and 6 are dedicated to the solution of the filtering problem, which we
will do in two different ways (and obtain two different expressions!). Both methods
give rise to recursive equations; that is, we will find filtering equations of the form
πl(·) = f(πl−1(·),∆Y (l)). This is very convenient computationally as we don’t need
to remember the history of observations: to calculate the current estimates πl(·), all
we need to know are the corresponding estimates in the previous time step πl−1(·)
and our observation in the current time step ∆Y (l). In other words, we can update
our estimates in real time using only the current observation in each time step.

3.4. A Brief Look Ahead. The filtering problem is very interesting in itself; its
solution provides us with an efficient way of estimating atomic observables from the
observation data. We have an ulterior motive, however, for putting such emphasis
on this problem—filtering is a fundamental part of stochastic control with partial
observations, and hence plays a central role in quantum feedback control. This is
the subject of sections 7–9, and we postpone a detailed discussion until then. Let us
briefly sketch, however, why we might expect filtering to enter the picture.

In order to design a controller, we first have to specify the goal we are trying to
achieve. Control goals are generally expressed in terms of expectations over atomic
observables. For example, we might want to maximize the expected x-dipole moment
P(jk(µx)) at the terminal time t(k) = T , or we might try to steer the dipole moment
to a specific value α (e.g., by minimizing P(jk((µx − α)2))). If we are not sure that
we are going to finish running the control through time T , perhaps we would prefer
to maximize the time-average expected dipole moment 1

k

∑k
l=1 P(jl(µx)), etc. The

problem is that our control can depend on the entire observation history; the optimal
control can have quite a complicated dependence on the observation history!

The key observation we need is that by an elementary property of the conditional
expectation, P(jl(X)) = P(πl(X)). Rather than expressing our control goal directly
in terms of the quantum model, we are free to express the same goal in terms of the
filter only, as though it were the filter we wanted to control rather than the atom



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A DISCRETE INVITATION TO QUANTUM FILTERING AND FEEDBACK CONTROL 263

itself. It will turn out that optimal controls have a very simple dependence on the
filter: the control in time step l can be expressed as some (deterministic) function of
the filter at time l − 1. The filter πl(·) is called an information state for the control
problem, as πl(·) contains all the information we need to compute the feedback law.
This is discussed in detail in section 8.2.

The fact that optimal controls separate into a filtering step and a simple feed-
back step is known as the separation principle. The complicated dependence of the
control on the observation history is completely absorbed by the filter (which is by
construction only a function of the observations). By solving the filtering problem in a
recursive manner, we obtain an efficient way of calculating the optimal controls. This
amply motivates, beside its intrinsic interest, our interest in the filtering problem.

4. Discrete Quantum Stochastic Calculus. In the previous sections we have
provided an introduction to quantum probability, introduced a toy model for the
interaction of an atom with the electromagnetic field, and introduced conditional
expectations and the filtering problem in the quantum setting. At this point we change
gears and concentrate on developing machinery that will help us to actually solve
the filtering problem (in two different ways) and ultimately treat control problems
associated with our model.

We begin in this section by rewriting the repeated interactions of section 2.5 as
difference equations, and we develop a “stochastic calculus” to manipulate such equa-
tions. In the discrete setting this calculus is not a very deep result: it is merely a
matrix multiplication table, as can be seen from the proof below. In continuous time,
however, difference equations become (quantum stochastic) differential equations and
the stochastic calculus is an indispensable tool. While in continuous time linear alge-
bra is replaced by the much more difficult functional analysis, the quantum stochastic
calculus nonetheless enables one to deal with the corresponding objects using simple
algebraic manipulations. Bearing in mind our goal to mirror as closely as possible the
continuous theory, we will consistently use the discrete calculus in what follows. (For
a similar point of view and further connections to the continuous setting, see [5, 72].)

4.1. The Discrete Quantum Itô Calculus. Let us fix once and for all the quan-
tum probability space (M ⊗Wk,P) with P = ρ⊗φ⊗k, which models an atom together
with the electromagnetic field as in section 2.5. The algebra M ⊗ Wk has a natural
noncommutative filtration {Bl}l=1,...,k defined by

B0 = M ⊗ I⊗k ⊂ B1 = M ⊗ M ⊗ I⊗(k−1) ⊂ · · · ⊂ Bk = M ⊗ Wk.

The noncommutative algebra Bl contains all observables that are a function of the
atom and the time slices of the field up to and including slice l.

A quantum process is a map from {0, 1, . . . , k} to M⊗Wk. A quantum process L is
called adapted if L(i) ∈ Bi for every 0 ≤ i ≤ k. It is called predictable if L(i) ∈ Bi−1

for every 1 ≤ i ≤ k. For a quantum process L we define ∆L as ∆L(i) = L(i)−L(i−1)
for 1 ≤ i ≤ k. These definitions are similar to those used in classical probability [83].

Definition 4.1 (discrete quantum stochastic integral). Let L be a predictable
quantum process and let M be one of the processes A, A∗, Λ, or t. The transform of
M by L, denoted L ·M , is the adapted quantum process defined by

L ·M(l) =

l∑

i=1

L(i)∆M(i), 1 ≤ l ≤ k, L ·M(0) = 0.

L ·M is also called the discrete quantum stochastic integral of L with respect to M .
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Note that for any discrete quantum stochastic integral as above, we can equiva-
lently write X = L ·M ⇐⇒ ∆X = L∆M . Note also that L(i) and ∆M(i) commute
by construction, so that we can always exchange the order of the (predictable) in-
tegrands and the increments ∆Λ, ∆A, ∆A∗, and ∆t. We can now state the main
theorem of our “stochastic calculus.”

Theorem 4.2 (discrete quantum Itô rule). Let L1 and L2 be predictable quantum
processes, M1,M2 ∈ {A,A∗,Λ, t}, and let X and Y be the transforms L1 ·M1 and
L2 ·M2, respectively. Then

∆(XY )(l) = X(l − 1)∆Y (l) + ∆X(l)Y (l − 1) + ∆X(l)∆Y (l),

where ∆X(l)∆Y (l) should be evaluated according to the following discrete quantum
Itô table:

∆X\∆Y ∆A ∆Λ ∆A∗ ∆t

∆A 0 ∆A ∆t− λ2∆Λ λ2∆A
∆Λ 0 ∆Λ ∆A∗ λ2∆Λ
∆A∗ λ2∆Λ 0 0 λ2∆A∗

∆t λ2∆A λ2∆Λ λ2∆A∗ λ2∆t

For example, if M1 = A and M2 = A∗, then ∆X∆Y = L1L2∆t− λ2L1L2∆Λ.
Proof. The quantum Itô rule follows from writing out the definition of ∆(XY ):

∆(XY )(l) = X(l)Y (l)−X(l− 1)Y (l − 1)

= (X(l − 1) + ∆X(l))(Y (l − 1) + ∆Y (l))−X(l − 1)Y (l − 1)

= X(l − 1)∆Y (l) + ∆X(l)Y (l − 1) + ∆X(l)∆Y (l).

The Itô table follows directly from the definition of the increments ∆Λ,∆A,∆A∗,∆t
in section 2.4 by explicit matrix multiplication.

The following lemma shows that transforms of A, A∗, and Λ have zero expectation.
It is a fancy way of saying that φ(σ−) = φ(σ+) = φ(σ+σ−) = 0 and φ(I) = 1.

Lemma 4.3. For all predictable processes L we have P(L(l)∆t(l)) = P(L(l))λ2

and P(L(l)∆A(l)) = P(L(l)∆A∗(l)) = P(L(l)∆Λ(l)) = 0 for any 1 ≤ l ≤ k.
Proof. Note that φ(σ−) = φ(σ+) = φ(σ+σ−) = 0 and φ(I) = 1. Since L is

predictable, L(i) and ∆A(i) are independent under P and we have, for 0 ≤ i ≤ k,

P(L(i)∆A(i)) = λP(L(i))φ(σ−) = 0.

Similar reasoning holds for A∗, Λ, and t.

4.2. Quantum Stochastic Difference Equations. We are now going to rewrite
the repeated interactions of section 2.5 as difference equations. Clearly we have

∆U(l) = U(l)− U(l − 1) = (Ml − I)U(l − 1), U(0) = I.

We will need to convert this expression into a more convenient form, however, in order
for it to be of use in calculations.

Recall that Ml, and hence also Ml − I, is a function only of the initial system
and of the lth time slice of the field; indeed, this is easily seen from (2.7). But any
operator X ∈ M ⊗ M can be written in a unique way as

X = X± ⊗ σ+σ− +X+ ⊗ σ+ +X− ⊗ σ− +X◦ ⊗ I, X◦,+,−,± ∈ M ,
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as σ+σ−, σ+, σ−, I is a linearly independent basis for M . By the same reasoning we
find that we can write, without loss of generality,

Ml − I =M± ∆Λ(l) +M+ ∆A∗(l) +M− ∆A(l) +M◦ ∆t(l),

so that M◦,+,−,± ∈ B0 are uniquely determined by L1,2,3 and λ. The functional
dependence ofM◦,+,−,± on L1,2,3 and λ is complicated and we will not attempt to give
a general expression; in the examples which we consider later it will be straightforward
to calculate these matrices explicitly.

Remark 4.4. It should be emphasized that whereas L1,2,3 ∈ B0 do not depend on
the time step size λ, M◦,+,−,± are in fact functions of λ. As usual, we have chosen the
scaling of the various parameters with λ so that the limit as λ → 0 gives meaningful
results; in this case, it can be shown that the matrix elements of M◦,+,−,± converge
to finite values as λ → 0, and the limiting matrices can be expressed explicitly in
terms of L1,2,3 (see [41] and other references in section 10).

We now obtain the following quantum stochastic difference equation:

(4.1) ∆U(l) =
{
M± ∆Λ(l) +M+ ∆A∗(l) +M− ∆A(l) +M◦ ∆t(l)

}
U(l − 1),

with U(0) = I. It is this form of the equation that will be the most useful to us, as
we can apply stochastic calculus techniques to manipulate it. We could equivalently
express it in terms of discrete quantum stochastic integrals:

U(l) = I + (M±U−) · Λ(l) + (M+U−) ·A∗(l) + (M−U−) · A(l) + (M◦U−) · t(l),

where U−(l) = U(l − 1). This is the way that (quantum) stochastic differential
equations are defined in continuous time.

To get some familiarity with calculations using the quantum Itô rule and Lemma
4.3, let us calculate the time evolution of the expectation P(jl(X)) for an atomic
observableX ∈ B0. By linearity of the state we clearly have ∆P(jl(X)) = P(∆jl(X)),
so we are going to calculate ∆jl(X) = ∆(U(l)∗XU(l)) using the quantum Itô rule
and then calculate the expectation of the resulting expression. First, note that

∆U(l)∗ = U(l − 1)∗
{
M±∗∆Λ(l) +M+∗∆A(l) +M−∗ ∆A∗(l) +M◦∗∆t(l)

}
.

Then we calculate, using the quantum Itô rule,

(4.2) ∆(U(l)∗XU(l)) = (· · · )∆Λ(l) + (· · · )∆A∗(l) + (· · · )∆A(l)
+ U(l − 1)∗

{
M+∗XM+ + λ2M◦∗XM◦ +M◦∗X +XM◦

}
U(l − 1)∆t(l).

We didn’t bother to calculate the ∆Λ,∆A,∆A∗ terms; by Lemma 4.3 these vanish
anyway when we take the expectation with respect to P, so we only need the ∆t term.
Hence we obtain, for any X ∈ B0,

(4.3)
∆P(jl(X))

∆t
= P(jl−1(L(X))),

where the discrete Lindblad generator L(·) is defined by

(4.4) L(X) = M+∗XM+ + λ2 M◦∗XM◦ +M◦∗X +XM◦.
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Remark 4.5. Let Xt be a classical, continuous time Markov diffusion, and de-
fine the semigroup Pt(f) = Ef(Xt). Then (under sufficient regularity conditions)
dPt(f)/dt = Pt(Lf), where L is the infinitesimal generator of the Markov diffusion.
Equation (4.3) is strongly reminiscent of this formula, and indeed the continuous time
version of the formula plays an equivalent role in quantum probability. In fact, the
semigroup property (expressed in “differential” form (4.3)) suggests that we should
interpret our repeated interaction model as a “quantum Markov process,” which can
be given a precise meaning [61], but we will not do so here.

Note that we are not allowed to choose M±,+,−,◦ arbitrarily: these matrices
must be chosen in such a way that the solution U(l) of the corresponding difference
equation is unitary. Obtaining M±,+,−,◦ directly from L1,2,3, as we will do in the
examples below, ensures that this is the case. One could establish general conditions
onM±,+,−,◦ to ensure that U(l) is unitary, but we will not need these in what follows.
There is one particular necessary condition, however, that we will often use.

Lemma 4.6. For any repeated interaction model, L(I) = 0.
Proof. As U(l) is unitary, jl(I) = U(l)∗U(l) = I for any l. By (4.3) we have

0 =
P(j1(I)− j0(I))

∆t
= P(j0(L(I))) = ρ(L(I)).

But this must hold for any initial state ρ, so L(I) = 0 identically.

4.3. Examples. Let us now return to the examples of section 2.6. We will calcu-
late the difference equations for the unitary evolution U(l) explicitly.

Spontaneous Emission. Recall that in this case (with 2κ = 1)

Ml = exp (σ− ∆A∗(l)− σ+ ∆A(l)) .

As Ml is of the form P ⊗ I⊗l−1 ⊗ Q ⊗ I⊗k−l, we can read off the form of Ml by
calculating the matrix exponential of

σ− ⊗ λσ+ − σ+ ⊗ λσ− =







0 0 0 0
0 0 λ 0
0 −λ 0 0
0 0 0 0






.

Performing this calculation explicitly, we get

eσ−⊗λσ+−σ+⊗λσ− =







1 0 0 0
0 cosλ sinλ 0
0 − sinλ cosλ 0
0 0 0 1







=

(
1 0
0 cosλ

)

⊗ σ+σ− + sinλσ− ⊗ σ+ − sinλσ+ ⊗ σ− +

(
cosλ 0
0 1

)

⊗ σ−σ+

= (1− cosλ)σz ⊗ σ+σ− + sinλσ− ⊗ σ+ − sinλσ+ ⊗ σ− +

(
cosλ 0
0 1

)

⊗ I,

where we have used σ−σ+ = I − σ+σ−. Hence we obtain

Ml = (1− cosλ)σz ∆Λ(l)+
sinλ

λ
(σ− ∆A∗(l)−σ+ ∆A(l))+

cosλ− 1

λ2
σ+σ− ∆t(l)+ I.
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We can now immediately find the coefficients in the quantum stochastic difference
equation for the spontaneous emission model:

M± = (1− cosλ)σz , M+ =
sinλ

λ
σ−,

M− = − sinλ

λ
σ+, M◦ =

cosλ− 1

λ2
σ+σ−.

(4.5)

Dispersive Interaction. Recall that in this case (with g = 1)

Ml = exp (σz(∆A
∗(l)−∆A(l))) .

We proceed as in the case of spontaneous emission. Starting from

σz ⊗ λ (σ+ − σ−) =







0 0 λ 0
0 0 0 −λ
−λ 0 0 0
0 λ 0 0






,

we calculate the matrix exponential

eσz⊗λ (σ+−σ−) =







cosλ 0 sinλ 0
0 cosλ 0 − sinλ

− sinλ 0 cosλ 0
0 sinλ 0 cosλ







= cosλ I + sinλσz ⊗ (σ+ − σ−).

Hence we obtain

Ml =
sinλ

λ
σz (∆A

∗(l)−∆A(l)) +
cosλ− 1

λ2
∆t(l) + I.

We can now immediately see the coefficients in the quantum stochastic difference
equation for the dispersive interaction model:

(4.6) M± = 0, M+ = −M− =
sinλ

λ
σz , M◦ =

cosλ− 1

λ2
I.

A First Simulation. To get some idea for the mean behavior of our two examples,
let us calculate the expectation of the energy observable P(jl(H)) as a function of time.
The expectation of any atomic observable is given by (4.3). To simulate (4.3) directly,
we can use a standard technique which will be used several times in what follows. Note
that P(jl(X)) is a linear function of X . Hence we can always find a 2 × 2 matrix τl
such that Tr[τlX ] = P(jl(X)) for every X . Substituting this expression into (4.3), we
obtain explicitly a recursive equation for τl:

∆τl
∆t

= M+τl−1M
+∗ + λ2M◦τl−1M

◦∗ +M◦τl−1 + τl−1M
◦∗,

where τ0 is the density matrix corresponding to the initial state ρ: ρ(X) = Tr[τ0X ] for
everyX . This equation is called the (discrete) master equation and plays a similar role
to the forward Kolmogorov (or Fokker–Planck) equation in classical diffusion theory.
The recursion is easily implemented in a computer program, and the solution allows
us to calculate P(jl(X)) for any X . For the spontaneous emission case, the expected
energy P(jl(H)) = Tr[τlH ] is plotted in Figure 4.1.
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Fig. 4.1 The expectation of the energy of a spontaneously-emitting atom as a function of time. The
initial state ρ is chosen in such a way that the atomic energy takes its maximal value
+�ω0/2 with unit probability at t = 0, i.e., ρ(x) = Tr[σ+σ−X]. The expected energy
decays exponentially until it reaches its minimum value −�ω0/2. The time scale used for
the calculation is λ−2 = 300.

We have used this opportunity as an excuse to introduce the master equation; in
this simple case, however, we can obtain the result of Figure 4.1 much more directly.
Let us calculate L(H) = (�ω0/2)L(σz) in the case of spontaneous emission:

L(σz) = −2 sin2 λ

λ2
σ+σ− = − sin2 λ

λ2
(σz + I).

Hence we have

P(jl(σz)) + 1 = ∆P(jl(σz)) + P(jl−1(σz)) + 1 = cos2 λ (P(jl−1(σz)) + 1).

Recursing this relation, we find that the expected energy decays geometrically:

P(jl(H)) = −�ω0

2
+

(

ρ(H) +
�ω0

2

)

(cos2 λ)l.

This expression coincides exactly with the plot in Figure 4.1.
In the dispersive case, the time dependence of the mean energy is trivial; it is not

difficult to check that in this case L(H) = 0. This is not too surprising, as we have
suppressed the atom’s ability to radiate its excess energy by placing it in an optical
cavity. In fact, using Ml = exp(σz(∆A

∗(l)−∆A(l))) we find that

jl(H) =M∗
1 · · ·M∗

l−1M
∗
l HMlMl−1 · · ·M1 = H.

Evidently not only the expected energy, but even the energy as a random variable, is
conserved in the dispersive case.

5. The Martingale Method. In this section we will provide a solution to the fil-
tering problem using martingale methods. The key tools we need are minor variations
on two classical theorems. First, there is a theorem of Doob which states that any
adapted process can be decomposed as the sum of a predictable process and a martin-
gale; we extend this theorem slightly to a class of nondemolition processes. Applying
this theorem to the conditional expectation πl(X), we can immediately identify the
corresponding predictable part. Next, the martingale representation theorem tells us
that any martingale can be written as a stochastic integral of some predictable pro-
cess. Consequently, we can also identify the martingale part of πl(X) in terms of a
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stochastic integral. The recursive nature of the solution is the motivation behind this
procedure: the predictable parts will exactly turn out to be functions of the filter in
the previous time step, whereas the increment in the discrete stochastic integral will
be directly related to the observation increment.

For excellent introductions to the use of martingale methods in classical filtering
theory we refer to [29, 59]; definitive treatments can be found in [64, 55]. Martingale
methods for quantum filtering were introduced in [12] and used in [19, 20]. The
treatment below is a discretized version of the latter.

5.1. The Classic Theorems. Recall that {Yl} is the commutative filtration gen-
erated by the observations.

Definition 5.1. A quantum process X is called nondemolished (by the observa-
tions Y ) if X(l) is in the commutant of Yl for 0 ≤ l ≤ k. A nondemolished quantum
process H is called an nd-martingale (with respect to the filtration Y0≤l≤k) if

P(H(l)|Ym) = P(H(m)|Ym) ∀ 0 ≤ m ≤ l ≤ k.

A quantum process A is called Y -predictable if A(l) is in Yl−1 for 1 ≤ l ≤ k, and A is
called Y -adapted if A(l) is in Yl for 1 ≤ l ≤ k. An nd-martingale that is additionally
Y -adapted is called a Y -martingale or simply a martingale.

The nondemolition requirement ensures that the conditional expectations in the
definition of an nd-martingale are well defined: Ym ⊂ Yl implies Y ′

m ⊃ Y ′
l , so

H(l) ∈ Y ′
l implies H(l) ∈ Y ′

m. Note also that, by construction, any Y -predictable or
Y -adapted process is a function of the observations and is hence commutative.

Remark 5.2. The concept of a Y -martingale, being Y -adapted and hence a
classical process, coincides with the classical notion of a martingale. An nd-martingale
(“nd” for nondemolition) is used in a slightly broader sense; we will encounter an
example below of a commutative nd-martingale that is not a martingale. It will be
convenient to use this terminology, as we will use the following theorem.

Theorem 5.3 (Doob decomposition). Let X be a quantum process nondemolished
by the observations Y . Then X has the following Doob decomposition:

X(l) = X(0) +A(l) +H(l), l = 1, . . . , k,

where H is an nd-martingale (w.r.t. Y0≤l≤k) null at 0 and A is a Y -predictable process
null at 0. Moreover, the decomposition is unique modulo indistinguishability.

The proof is very similar to its classical counterpart [83].
Proof. Suppose X has a Doob decomposition as in the theorem. Then

(5.1) P(X(l)−X(l − 1)|Yl−1)

= P(H(l)−H(l − 1)|Yl−1) + P(A(l)−A(l − 1)|Yl−1) = A(l)−A(l − 1),

where we have used that H is an nd-martingale and that A is predictable. Hence

(5.2) A(l) =
l∑

m=1

P(X(m)−X(m− 1)|Ym−1), A(0) = 0.

For any nondemolished process X , define the predictable process A(l) as in (5.2), and
define H(l) = X(l)−X(0)−A(l). Then it is easily verified thatH is an nd-martingale,
hence we have explicitly constructed a Doob decomposition.
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To prove uniqueness, suppose that X(l) = X(0) + Ã(l) + H̃(l) is another Doob
decomposition. Then A(l)− Ã(l) = H(l)− H̃(l) for 1 ≤ l ≤ k, and hence

(5.3) A(l)− Ã(l) = P(A(l)− Ã(l)|Yl−1)

= P(H(l)− H̃(l)|Yl−1) = P(H(l − 1)− H̃(l − 1)|Yl−1)

= P(A(l − 1)− Ã(l − 1)|Yl−1) = A(l − 1)− Ã(l − 1),

where we have used predictability of A, Ã and the nd-martingale property of H, H̃ .
But as A(0) = Ã(0) = 0, we obtain by induction 0 = A(l) − Ã(l) = H(l) − H̃(l)
for 1 ≤ l ≤ k. Hence A = Ã and H = H̃ with probability 1 (as the conditional
expectations in (5.3) are only defined up to a choice of version).

Remark 5.4. It should be noted that the Doob decomposition depends crucially
on the choice of filtration Y , which is demonstrated by the following trivial example.
Consider the (commutative) filtration {Il} with Il = alg{I} for any l. As Il contains
only multiples of the identity, the commutant is the entire algebra I ′ = M ⊗ Wk.
Hence any process X is nondemolished by I , and as P(X(l)|Im) = P(X(l)) for any
l,m, any process with constant expectation P(X(l)) = P(X(m)) is an nd-martingale
with respect to {Il} (but not necessarily an I -martingale!). Using I as the filtration,
we obtain the Doob decomposition A(l) = P(X(l)−X(0)) and H(l) = X(l)−X(0)−
P(X(l) − X(0)) for any process X . Clearly this decomposition is different than the
Doob decomposition with respect to Y , but note that H(l) is not an nd-martingale
with respect to {Yl}, so uniqueness is not violated. The moral of the story is that
we have to be careful to specify the filtration with respect to which we decompose
a process. In the following, this will always be the filtration {Yl} generated by the
observations.

Let X ∈ B0. Applying the Doob decomposition to πl(X) and Y (l) gives

πl(X) = ρ(X) +B(l) +H(l), i.e., ∆πl(X) = ∆B(l) + ∆H(l),

Y (l) = Y (0) + C(l) + Ỹ (l), i.e., ∆Y (l) = ∆C(l) + ∆Ỹ (l),
(5.4)

where B and C are predictable processes null at 0 and Ỹ andH are Y -martingales null
at 0. The process Ỹ is called the innovating martingale. In the next two subsections
we will investigate the processes C and Ỹ in more detail for both the counting and
homodyne detection cases.

Lemma 5.5. The predictable process B in the decomposition of πl(X) is given by

∆B(l) = πl−1(L(X))∆t(l), 1 ≤ l ≤ k,

where L is the discrete Lindblad generator of (4.4).
Proof. By (5.1), we have ∆B(l) = P(∆πl(X)|Yl−1) = P(∆jl(X)|Yl−1). To calcu-

late the latter, let K be an element in Yl−1. Using (4.2), we obtain

P(K∆jl(X)) = P(K jl−1(L(X))∆t(l)) = P(K πl−1(L(X))∆t(l)).

As this holds for any K ∈ Yl−1, and as πl−1(L(X)) ∈ Yl−1, the statement of the
lemma follows from the definition of the conditional expectation.

At this point, we have the expression

∆πl(X) = πl−1(L(X))∆t(l) + ∆H(l).
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This is almost a recursive equation; what we would like to do is write something like
∆H(l) = f(πl−1(·))∆Y (l), as in that case we could use this equation to calculate
πl(·) using only πl−1(·) and ∆Y (l). The problem is that f(πl−1(·))∆Y (l) does not
define a martingale, but f(πl−1(·))∆Ỹ (l) does! This suggests that we should try to
represent H as a discrete stochastic integral with respect to the innovating martingale
Ỹ (l). The martingale representation theorem shows that this is always possible.

Theorem 5.6 (martingale representation). Let Ỹ be the innovating martingale
and let H be a Y -martingale null at 0. Then there exists a Y -predictable process Ξ
such that ∆H(l) = Ξ(l)∆Ỹ (l), l = 1, . . . , k, modulo indistinguishability.

The following proof is reminiscent of [83, pp. 154–155], but the details of the
argument are a little more delicate in our case.

Proof. As all the observables in the theorem are contained in the full observation
algebra Yk, which is commutative, this is essentially a classical problem. It will be
convenient for the proof to treat it as such, i.e., applying the spectral theorem to
(Yk,P) gives the classical probability space (Ω,F ,P), the filtration {Yl} gives rise
to the classical filtration {Yl}, and we will write yl = ι(Y (l)), ỹl = ι(Ỹ (l)), and
hl = ι(H(l)). It will be convenient to write ωl = ι(∆Y (l)) = yl − yl−1.

We will make fundamental use of the following fact: ωl takes one of two values
{ω+, ω−} for every l = 1, . . . , k. To see this, recall that ∆Y (l) = U(l)∗∆Z(l)U(l),
where ∆Z(l) is one of ∆A(l) + ∆A∗(l) or ∆Λ(l) (in fact, any observable ∆Z(l) of
the form (Z)l ∈ Wk, Z ∈ M , would do, provided Z is not a multiple of the identity).
Hence ∆Z(l) has two distinct eigenvalues, and as unitary rotation leaves the spectrum
of an operator invariant, so does ∆Y (l). It follows that ι(∆Y (l)) is a two-state random
variable. We will write p±l = P(ωl = ω±|Yl−1) for the conditional probability that
ωl = ω± given that we have observed ω1, . . . , ωl−1.

Now recall that Yl is the algebra generated by ∆Y (i), i = 1, . . . , l. Hence every
Yl-measurable random variable can be written as a function of ωi, i = 1, . . . , l. In
particular, ỹl = ỹl(ω1, . . . , ωl) and hl = hl(ω1, . . . , ωl). We would like to find a
ξl(ω1, . . . , ωl−1) (independent of ωl, hence predictable) that satisfies

(5.5) ∆hl(ω1, . . . , ωl) = ξl(ω1, . . . , ωl−1)∆ỹl(ω1, . . . , ωl).

To proceed, we split Ω into three disjoint subsets Ω1,2,3 and define the random variable
ξl separately on each set.

Case 1: Ω1 = {ω ∈ Ω : ∆ỹl(ω1, . . . , ωl−1, ω
±) �= 0}. Let us suppose that ξl exists.

Then evidently on Ω1,

ξl(ω1, . . . , ωl−1) =
∆hl(ω1, . . . , ωl)

∆ỹl(ω1, . . . , ωl)
.

Existence of ξl is thus verified by construction if we can show that the right-hand side
is independent of ωl. To this end, we express the martingale property of hl as

∆hl(ω1, . . . , ωl−1, ω
+) p+

l (ω1, . . . , ωl−1) + ∆hl(ω1, . . . , ωl−1, ω
−) p−l (ω1, . . . , ωl−1) = 0

a.s., where the left-hand side is simply the expression for EP(∆hl|Yl−1). Similarly,

∆ỹl(ω1, . . . , ωl−1, ω
+) p+

l (ω1, . . . , ωl−1) + ∆ỹl(ω1, . . . , ωl−1, ω
−) p−l (ω1, . . . , ωl−1) = 0
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a.s., as ỹl is a martingale. Note that necessarily p±l �= 0 a.s. on Ω1. Hence we obtain

∆hl(ω1, . . . , ωl−1, ω
+) = −∆hl(ω1, . . . , ωl−1, ω

−)
p−l (ω1, . . . , ωl−1)

p+
l (ω1, . . . , ωl−1)

,

∆ỹl(ω1, . . . , ωl−1, ω
+) = −∆ỹl(ω1, . . . , ωl−1, ω

−)
p−l (ω1, . . . , ωl−1)

p+
l (ω1, . . . , ωl−1)

.

Dividing the first by the second expression, the independence of ξl from ωl follows.
Case 2: Ω2 = {ω ∈ Ω : p+

l ∈ {0, 1}}. Using the martingale property of hl and
ỹl as above, we conclude that on Ω2 we have ∆hl = ∆ỹl = 0 a.s. Hence (5.5) holds
regardless of the value we assign to ξl.

Case 3: Ω3 = Ω\(Ω1 ∪ Ω2). We will show that P(Ω3) = 0, so that we do not
need to worry about defining ξl on this set. Since on Ω3 we have p±l �= 0 but one
of ∆ỹl(ω1, . . . , ωl−1, ω

±) = 0, using the martingale property as above allows us to
conclude that ∆ỹl = 0 a.s. on Ω3. Recall that ωl = ∆yl = ∆cl + ∆ỹl, where ∆cl
is predictable. Then ωl = ∆cl(ω1, . . . , ωl−1) a.s. on Ω3. But this would imply that
ωl = EP(ωl|Yl−1) = ω+p+

l + ω−p−l , and as p±l �= 0 we could conclude that ωl �= ω±.
Hence we have a contradiction.

We have now shown how to define ξl that satisfies (5.5) except possibly on a set
of measure zero. Setting Ξ(l) = ι−1(ξl), the theorem is proved.

Though the proof of the discrete martingale representation theorem is in princi-
ple constructive, it is not advisable to follow this complicated procedure in order to
calculate the predictable process Ξ. Instead we will calculate Ξ using a standard trick
of filtering theory, and it will turn out to depend only on the conditional expectations
in the previous time step. Putting everything together, we obtain a recursive relation
with which we can update our conditional expectations of atomic operators given the
conditional expectations at the previous time step and the observation result at the
present time step. This recursion is called the discrete quantum filtering equation.
As the predictable processes C and Ξ depend on the nature of the observations, we
consider separately the homodyne and photon-counting cases.

5.2. Homodyne Detection. Let us first consider a homodyne detection setup,
i.e., an experimental setup that allows us to observe

Y X(l) = U(l)∗(A(l) +A∗(l))U(l), 0 ≤ l ≤ k.

We begin by finding the predictable process C in the Doob decomposition of Y X .
Lemma 5.7. The predictable process C in the decomposition of Y X is given by

∆C(l) = πl−1(M
+ +M+∗ + λ2M◦∗M+ + λ2M+∗M◦)∆t(l), 1 ≤ l ≤ k.

Proof. By (5.1), we have ∆C(l) = P(∆Y X(l)|Yl−1). To calculate the latter, let
K be an element in Yl−1; we would like to find an expression for P(K∆Y X(l)). To
this end, we calculate using the discrete quantum Itô rules that

(5.6) ∆((A(l) +A∗(l))U(l)) = (· · · )∆Λ(l) + (· · · )∆A(l)
+
{
I + (A(l − 1) +A∗(l − 1))M+ + λ2M◦

}
U(l − 1)∆A∗(l)

+
{
(A(l − 1) + A∗(l − 1))M◦ +M+

}
U(l − 1)∆t(l),
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where we have retained the relevant terms. Consequently, we calculate

∆(U(l)∗(A(l) +A∗(l))U(l)) = (· · · )∆Λ(l) + (· · · )∆A∗(l) + (· · · )∆A(l)
+ U(l − 1)∗L(I)(A(l − 1) +A∗(l − 1))U(l − 1)∆t(l)

+ jl−1(M
+ +M+∗ + λ2M◦∗M+ + λ2M+∗M◦)∆t(l),

where L(X) is the discrete Lindblad generator. But L(I) vanishes by Lemma 4.6.
Hence we obtain

P(K∆Y X(l)) = P(K jl−1(M
+ +M+∗ + λ2M◦∗M+ + λ2M+∗M◦)∆t(l))

using Lemma 4.3, or equivalently (using K ∈ Yl−1)

P(K∆Y X(l)) = P(K πl−1(M
+ +M+∗ + λ2M◦∗M+ + λ2M+∗M◦)∆t(l)).

As this holds for any K ∈ Yl−1, and as πl−1(· · · ) ∈ Yl−1, the statement of the lemma
follows from the definition of the conditional expectation.

From Theorem 5.6 we know that ∆H = Ξ∆Ỹ for some predictable process Ξ. It
remains to determine Ξ; we approach this problem using a standard technique. Since
P(jl(X)Y (l)|Yl) = πl(X)Y (l), the uniqueness of the Doob decomposition ensures
that jl(X)Y (l) and πl(X)Y (l) have equal predictable parts. We write D and E for
the predictable processes in the Doob decomposition of jl(X)Y (l) and πl(X)Y (l),
respectively. Solving the equation ∆D = ∆E will then allow us to determine Ξ.

Lemma 5.8. For any X ∈ B0, define

J (X) = XM+ +M+∗X + λ2M◦∗XM+ + λ2M+∗XM◦,

so that ∆C(l) = πl−1(J (I))∆t(l). Then we can write

Ξ(l) =
πl−1(J (X))− πl−1(X + λ2L(X))πl−1(J (I))

I − λ2πl−1(J (I))2
.

Proof. We begin by evaluating ∆D. For any K ∈ Yl−1 we want to calculate
P(∆(jl(X)Y (l))K) = P(∆(U(l)∗X(A(l) + A∗(l))U(l))K). We proceed exactly as in
the proof of Lemma 5.7. Using (5.6) and the quantum Itô rules, we obtain

∆(U(l)∗X(A(l) +A∗(l))U(l)) = (· · · )∆Λ(l) + (· · · )∆A∗(l) + (· · · )∆A(l)
+ U(l− 1)∗L(X)(A(l − 1) +A∗(l − 1))U(l − 1)∆t(l)

+ jl−1(XM
+ +M+∗X + λ2M◦∗XM+ + λ2M+∗XM◦)∆t(l).

It follows in the usual way that

∆D(l) = πl−1(L(X))Y (l − 1)∆t(l)

+ πl−1(XM
+ +M+∗X + λ2M◦∗XM+ + λ2M+∗XM◦)∆t(l).

We now turn our attention to ∆E. First note that the Itô rule gives

∆(πl(X)Y (l)) = (∆πl(X))Y (l − 1) + πl−1(X)∆Y (l) + ∆πl(X)∆Y (l).

By uniqueness of the Doob decomposition, ∆E is the sum of the predictable parts
∆E1,2,3 of the three terms on the right-hand side. Let us investigate each of these
individually. The first term can be written as

(∆πl(X))Y (l − 1) = πl−1(L(X))Y (l − 1)∆t(l) + Y (l − 1)∆H(l).
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It is easily verified, however, that
∑

l Y (l− 1)∆H(l) inherits the martingale property
from H . Hence, by uniqueness of the Doob decomposition, we obtain ∆E1(l) =
πl−1(L(X))Y (l − 1)∆t(l). Moving on to the second term, we write

πl−1(X)∆Y (l) = πl−1(X)∆C(l) + πl−1(X)∆Ỹ (l).

Similarly to above we find that
∑

l πl−1(X)∆Ỹ (l) inherits the martingale property

from Ỹ , so that evidently ∆E2(l) = πl−1(X)∆C(l) (where ∆C(l) is given explicitly
in Lemma 5.7). It remains to deal with the third term. To this end, let us write

∆πl(X)∆Y (l) =
{

πl−1(L(X))∆t(l) + Ξ(l)∆Ỹ (l)
}

(∆C(l) + ∆Ỹ (l)).

As before, processes of the form
∑

lX(l)∆Ỹ (l) with Y -predictable X inherit the

martingale property from Ỹ . Thus we only need to retain the predictable terms:

∆πl(X)∆Y (l) = (· · · )∆Ỹ (l) + πl−1(L(X))∆t(l)∆C(l) + Ξ(l) (∆Ỹ (l))2.

Similarly, we expand (∆Ỹ (l))2 as

(∆Ỹ (l))2 = (· · · )∆Ỹ (l) + (∆Y (l))2 − (∆C(l))2,

where we have used ∆Y (l) = ∆C(l) + ∆Ỹ (l). But using the Itô rules we calculate
(∆Y (l))2 = U(l)∗(∆A(l) + ∆A∗(l))2U(l) = ∆t(l). Hence we can read off

∆E3(l) = πl−1(L(X))∆t(l)∆C(l) + Ξ(l) (∆t(l)− (∆C(l))2).

But recall that jl(X)Y (l) and πl(X)Y (l) have equal predictable parts. Hence setting
∆D(l) = ∆E1(l) + ∆E2(l) + ∆E3(l) and solving for Ξ(l), the lemma follows.

Putting everything together we get the following discrete quantum filtering equa-
tion for homodyne detection:

∆πl(X) = πl−1(L(X))∆t(l)

+
πl−1(J (X))− πl−1(X + λ2L(X))πl−1(J (I))

I − λ2πl−1(J (I))2
(∆Y (l)− πl−1(J (I))∆t(l)).

5.3. Photodetection. We now turn our attention to a setup where we are count-
ing photons in the field, i.e., we are observing

Y Λ(l) = U(l)∗Λ(l)U(l), 0 ≤ l ≤ k.

The procedure here is much the same as in the homodyne detection case.
Lemma 5.9. The predictable process C in the decomposition of Y Λ is given by

∆C(l) = πl−1(M
+∗M+)∆t(l), 1 ≤ l ≤ k.

Proof. By (5.1), we have ∆C(l) = P(∆Y Λ(l)|Yl−1). To calculate the latter, let
K be an element in Yl−1; we would like find an expression for P(K∆Y Λ(l)). To this
end, we calculate using the discrete quantum Itô rules that

(5.7) ∆(Λ(l)U(l)) = (· · · )∆Λ(l) + (· · · )∆A(l)
+ (I + Λ(l− 1))M+U(l − 1)∆A∗(l) + Λ(l − 1)M◦U(l − 1)∆t(l),
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where we have retained the relevant terms. Consequently, we calculate

∆(U(l)∗Λ(l)U(l)) = (· · · )∆Λ(l) + (· · · )∆A∗(l) + (· · · )∆A(l)
+ U(l − 1)∗L(I)Λ(l − 1)U(l − 1)∆t(l) + jl−1(M

+∗M+)∆t(l),

where L(X) is the discrete Lindblad generator. But L(I) vanishes, and the lemma
follows by the usual argument.

Next, we determine the predictable process Ξ(l) such that ∆H(l) = Ξ(l)∆Ỹ (l).
Lemma 5.10. The process Ξ(l) is given by

Ξ(l) = (I − λ2πl−1(M
+∗M+))−1

[
πl−1(M

+∗XM+)

πl−1(M+∗M+)
− πl−1(X + λ2L(X))

]

.

Proof. We begin by finding the predictable process ∆D in the Doob decompo-
sition of jl(X)Y (l). For any K ∈ Yl−1 we want to calculate P(∆(jl(X)Y (l))K) =
P(∆(U(l)∗XΛ(l)U(l))K). Using (5.7) and the quantum Itô rules, we obtain

∆(U(l)∗XΛ(l)U(l)) = (· · · )∆Λ(l) + (· · · )∆A∗(l) + (· · · )∆A(l)
+ U(l − 1)∗L(X)Λ(l − 1)U(l − 1)∆t(l) + jl−1(M

+∗XM+)∆t(l).

It follows in the usual way that

∆D(l) = πl−1(L(X))Y (l − 1)∆t(l) + πl−1(M
+∗XM+)∆t(l).

We now turn our attention to the predictable process ∆E in the Doob decomposition
of πl(X)Yl. First note that the Itô rule gives

∆(πl(X)Y (l)) = (∆πl(X))Y (l − 1) + πl−1(X)∆Y (l) + ∆πl(X)∆Y (l).

By uniqueness of the Doob decomposition, ∆E is the sum of the predictable parts
∆E1,2,3 of the three terms on the right-hand side. As in the proof of Lemma 5.8, we
find that ∆E1(l) = πl−1(L(X))Y (l − 1)∆t(l) and ∆E2(l) = πl−1(X)∆C(l) (where
∆C(l) is given explicitly in Lemma 5.9). To deal with the third term, we write

∆πl(X)∆Y (l) =
{

πl−1(L(X))∆t(l) + Ξ(l)∆Ỹ (l)
}

(∆C(l) + ∆Ỹ (l)).

As before, processes of the form
∑

lX(l)∆Ỹ (l) with Y -predictable X inherit the

martingale property from Ỹ . Thus we only need to retain the predictable terms:

∆πl(X)∆Y (l) = (· · · )∆Ỹ (l) + πl−1(L(X))∆t(l)∆C(l) + Ξ(l) (∆Ỹ (l))2.

Similarly, we expand (∆Ỹ (l))2 as

(∆Ỹ (l))2 = (· · · )∆Ỹ (l) + (∆Y (l))2 − (∆C(l))2,

where we have used ∆Y (l) = ∆C(l) + ∆Ỹ (l). But using the Itô rules we calculate
(∆Y (l))2 = U(l)∗∆Λ(l)2U(l) = ∆Y (l). Hence

(∆Ỹ (l))2 = (· · · )∆Ỹ (l) + ∆C(l)− (∆C(l))2,

and we can see that

∆E3(l) = πl−1(L(X))∆t(l)∆C(l) + Ξ(l) (I −∆C(l))∆C(l).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

276 LUC BOUTEN, RAMON VAN HANDEL, AND MATTHEW R. JAMES

But recall that jl(X)Y (l) and πl(X)Y (l) have equal predictable parts. Hence setting
∆D(l) = ∆E1(l) + ∆E2(l) + ∆E3(l) and solving for Ξ(l), the lemma follows.

Putting everything together we obtain the following discrete quantum filtering
equation for photon counting:

∆πl(X) = πl−1(L(X))∆t(l) + (I − λ2πl−1(M
+∗M+))−1

×
[
πl−1(M

+∗XM+)

πl−1(M+∗M+)
− πl−1(X + λ2L(X))

]

(∆Y (l)− πl−1(M
+∗M+)∆t(l)).

5.4. How to Use the Filtering Equations. The filtering equations of sections
5.2 and 5.3 may seem a little abstract at this point; πl(X) is some observable in
the algebra M ⊗ Wk, and it appears that we would need to know πl−1(Z) for every
Z ∈ B0, in addition to the observation increment ∆Y (l), in order to be able to
calculate πl(X) for arbitrary X . The equations are much less abstract than they
might appear, however. First of all, recall that both πl(X) and ∆Y (l) are elements of
the (commutative) observation algebra Yk; in fact, the filtering equations live entirely
within this algebra. Hence these are just classical equations in disguise (as they should
be!); we could write explicitly, e.g., in the homodyne detection case,

(5.8) ∆ι(πl(X)) = ι(πl−1(L(X)))λ2 + (ι(∆Y (l))− ι(πl−1(J (I)))λ2)

× ι(πl−1(J (X)))− ι(πl−1(X + λ2L(X))) ι(πl−1(J (I)))

1− λ2 ι(πl−1(J (I)))2

using the ∗-isomorphism ι obtained by applying the spectral theorem to (Yk,P). For
any 0 ≤ l ≤ k and X ∈ M , ι(πl(X)) is a random variable that is a function of the
random process ι(∆Y (i)) up to and including time l. But an elementary property of
the conditional expectation is that πl(X) is linear in X ; hence ι(πl(X)) is also linear
in X . This means we can always write ι(πl(X)) = Tr[ρlX ], where ρl is a (random)
2× 2 matrix (as M is two-dimensional). We obtain the following recursion for ρl:

(5.9) ∆ρl = L(ρl−1)λ
2 +

J (ρl−1)− Tr[J (ρl−1)] (ρl−1 + λ2L(ρl−1))

1− λ2 Tr[J (ρl−1)]2

× (ι(∆Y (l))− Tr[J (ρl−1)]λ
2),

where we have written

L(ρ) = M+ρM+∗ + λ2 M◦ρM◦∗ +M◦ρ+ ρM◦∗,

J (ρ) = M+ρ+ ρM+∗ + λ2M+ρM◦∗ + λ2M◦ρM+∗.

ρ0 is simply the density matrix corresponding to the initial state ρ(·), i.e., ρ(X) =
Tr[ρ0X ] for every X ∈ M . The matrix ρl is called the conditional density matrix and
contains all the information needed to calculate πl(X) for everyX ∈ M . Furthermore,
(5.9) is a simple nonlinear recursion for 2 × 2 matrices. At any time step l we only
need to remember the 2 × 2 matrix ρl; when the (l + 1)th observation ι(∆Y (l + 1))
becomes available, which takes one of the values ±λ, we simply plug this value into
(5.9) and obtain the updated matrix ρl+1. Such a recursion is very efficient and, if
necessary, would be easily implemented on a digital signal processor.

As filtering equations are entirely classical, there is no real need to make the
explicit distinction between their representation in terms of classical random variables
on a probability space vs. elements of the observation algebra. We urge the reader



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

A DISCRETE INVITATION TO QUANTUM FILTERING AND FEEDBACK CONTROL 277

to always think of sets of commuting observables as random variables; this is implied
by the spectral theorem, and is at the heart of quantum mechanics! Equation (5.8) is
notationally tedious and completely unnecessary, as it does not add anything to the
filtering equation as we have already written it in section 5.2. In some cases, e.g., in
the proof of the martingale representation theorem, it is convenient to use explicitly
the structure of the underlying probability space, but in much of this article we will
not make an explicit distinction between random variables and observables.

A similar story holds for the photodetection case; we leave it up to the reader to
calculate the associated recursion for the conditional density matrix.

5.5. The Markov Property and Monte Carlo Simulations. The filtering equa-
tions that we have developed take as input the observation process obtained from
the system. Though this is precisely how it should be, one would think that further
investigation of the filters could not proceed without the availability of typical sample
paths of the observations from some other source, be it an actual physical system or
a direct computer simulation of the underlying repeated interaction model. It is thus
somewhat surprising that we can actually simulate such sample paths using the filter-
ing equation only, without any auxiliary input. This is due to the Markov property of
the filter, which we will demonstrate shortly. We can use this property of the filtering
equations to perform Monte Carlo simulations of both the sample paths of the obser-
vation process and sample paths of the filter itself (called “quantum trajectories” in
the physics literature). In addition, the Markov property is key for the development
of feedback controls, as we will see in sections 7–9.

We will consider below the homodyne detection case, but the photodetection case
proceeds identically. Set ∆yl = ι(∆Y (l)). Recall that the homodyne detection signal
∆yl takes one of two values ±λ for every l. Suppose we have observed yi up to and
including time l− 1; we would like to be able to calculate the probability distribution
of ∆yl using this information. This calculation is carried out in the following lemma.

Lemma 5.11. We have

(5.10) P[∆yl = ±λ | Yl−1] = p(∆yl = ±λ; ρl−1),

where

(5.11) p(∆y = ±λ; ρ) = 1

2
± λ

2
Tr[J (ρ)]

depends only on the filter in the previous time step.
Proof. Let p+

l = P[∆yl = ±λ | Yl−1] be the probability that the observation in
the next time step ∆yl takes the value +λ. Using the Doob decomposition we have

∆Y (l) = ∆C(l) + ∆Ỹ (l) = πl−1(J (I))∆t(l) + ∆Ỹ (l),

where ∆Ỹ (l) is a martingale increment, so that

λ p+
l − λ(1 − p+

l ) = ι(P(∆Y (l)|Yl−1)) = ι(πl−1(J (I)))λ2.

Thus

p+
l =

1

2
+
λ

2
Tr[ρl−1J (I)] =

1

2
+
λ

2
Tr[J (ρl−1)]

depends only on the filter in the previous time step.
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With this distribution in hand, we can also calculate the statistics of the filter in
the next time step, and we can prove the Markov property by recursing this procedure.

Lemma 5.12. The filter ρl satisfies the following Markov property:

EP(g(ρj)|σ{ρ0, . . . , ρl}) = EP(g(ρj)|σ{ρl}) ∀ l ≤ j ≤ k.

Proof. Using the recursion (5.9), ρj can be written as a deterministic function
f(ρj−1,∆yj) of ρj−1 and ∆yj . By the martingale property of the innovation process,

P(∆yj = ±λ|σ{y1, . . . , yj−1}) =
1

2
± λ

2
Tr[J (ρj−1)],

which is only a function of ρj−1. As σ{ρ0, . . . , ρj−1} ⊂ σ{y1, . . . , yj−1}, we obtain

P(∆yj = ±λ|σ{ρ0, . . . , ρj−1}) =
1

2
± λ

2
Tr[J (ρj−1)].

Hence for any function g

EP(g(ρj)|σ{ρ0, . . . , ρj−1}) = EP(g
′(ρj−1,∆yj)|σ{ρ0, . . . , ρj−1})

=
∑

a∈{−1,1}

g′(ρj−1, aλ)

[
1

2
+ a

λ

2
Tr[J (ρj−1)]

]

,

where we have written g′(ρ, w) = g(f(ρ, w)) for the function g composed with the
one-step filter recursion. As the right-hand side is a function of ρj−1 only, we have

EP(g(ρj)|σ{ρ0, . . . , ρj−1}) = EP(EP(g(ρj)|σ{ρ0, . . . , ρj−1}) |σ{ρj−1}),

from which we conclude that

EP(g(ρj)|σ{ρ0, . . . , ρj−1}) = EP(g(ρj)|σ{ρj−1}).

But setting EP(g(ρj)|σ{ρ0, . . . , ρj−1}) = h(ρj−1), we can repeat the argument giving

EP(h(ρj−1)|σ{ρ0, . . . , ρj−2}) = EP(h(ρj−1)|σ{ρj−2}).

From the definition of h(·) we immediately obtain

EP(g(ρj)|σ{ρ0, . . . , ρj−2}) = EP(g(ρj)|σ{ρj−2}).

Recursing the argument gives the Markov property.
It is now straightforward to turn this procedure into a Monte Carlo algorithm.

The following pseudocode generates random sample paths of the observations ∆yl
and filter ρl, sampled faithfully from the probability measure induced by the repeated
interaction model on the space of observation paths.

1. Initialize ρ0.
2. l ← 0.
3. Repeat

(a) Calculate p+
l+1(ρl).

(b) Sample ξ ∼ Uniform[0, 1].
(c) If ξ < p+

l+1: ∆yl+1 ← +λ; Else: ∆yl+1 ← −λ.
(d) ρl+1 ← ρl +∆ρl+1(ρl,∆yl+1).
(e) l ← l + 1.

4. Until l = k.
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Fig. 5.1 (Spontaneous emission.) Three typical sample paths of the conditional expectation πl(H)
of the atomic energy (top plot) with respect to the integrated photodetection signal Y (l)
(bottom plot). The atom spontaneously emits exactly one photon at a random time, after
which it attains its lowest energy and remains there. The initial state chosen was ρ(x) =
Tr[X]/2; in this state H = ±�ω0/2 have equal probability. The time scale used for the
calculation is λ−2 = 300.

5.6. Examples. Using the Monte Carlo method developed in the previous section,
we can now simulate the observation and filter sample paths for our usual examples.
In the simulations we have used the initial state ρ(X) = Tr[X ]/2, under which the
probabilities of the energy attaining its maximal or minimal values are equal.

Spontaneous Emission. In Figure 5.1, photodetection of a spontaneously emit-
ting atom is simulated. The observation process takes a very simple form: if the atom
initially attained its maximal energy (which it does with probability 1

2 under the state
ρ), it emits a single photon at a random time. If the atom was already at its lowest
energy (also with probability 1

2 ), the atom never emits a photon. The conditional
expectation of the energy attains its minimal value immediately after the observation
of a photon, as at this point we know that the atom has attained its lowest energy.
Before the observation of a photon, the conditional expectation decays: the longer
we fail to observe a photon, the higher the (conditional) probability that the atom
started out with minimal energy to begin with.

Note that the higher the initial expectation of the energy of the atom, the slower
the decay of πl(H); after all, if the probability of the atom starting out at its minimal
energy is very small, then we should fail to observe a photon for a very long time
before concluding that the atom, against all odds, did start off with minimal energy.
In the extreme case of unit initial probability that the atom has maximal energy
(ρ(X) = Tr[σ+σ−X ]), the conditional expectation of the energy is a step function.
The latter can be verified directly using the filtering equation for photodetection,
which shows that ∆πl(H) = 0 as long as ∆Y (l) = 0 and πl−1(H) = �ω0/2.

Figure 5.2 shows a simulation of the same system, but now observed using a
homodyne detection setup. Evidently the way in which information on the atomic
energy is encoded in the homodyne observations is very different than in the photo-
detection case; rather than the sudden gain of information when a photon is observed,
homodyne detection allows us to gradually infer the atomic energy from the noisy
measurements. The observation process itself is not very revealing to the naked eye,
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Fig. 5.2 (Spontaneous emission.) Three typical sample paths of the conditional expectation πl(H)
of the atomic energy (top plot) with respect to the integrated homodyne photocurrent Y (l)
(bottom plot). It is difficult to infer much about the atomic energy from the observation
process using the naked eye, but nonetheless the conditional expectation is revealing (e.g.,
in the case of the blue sample path, the atom initially possessed maximal energy with unit
probability). The initial state chosen was ρ(x) = Tr[X]/2, and the time scale used for the
calculation is λ−2 = 300.

but the filter manages to make sense of it. In the case of the blue curve, for example,
we infer that the atom almost certainly attained its maximal energy value before time
t ∼ 0.5, whereas after time t ∼ 1.5 all three paths indicate that most likely the atom
has attained its lowest energy.

Dispersive Interaction. The dispersive interaction case is quite different than the
spontaneous emission case. Recall that in this case the energy observable jl(H) = H
is constant in time. This does not mean, however, that the conditional expectation
πl(H) is constant. Whether the energy attains its maximal or minimal value in a
particular realization determines the mean direction of the phase shift of the outgoing
light, which can be measured using a homodyne detection setup. As we gain informa-
tion on the atomic energy, the conditional expectation is gradually attracted to the
value actually taken by the energy H in that realization.

This behavior is demonstrated in the simulation of Figure 5.3. Each of the filter
sample paths πl(H) is attracted to either +�ω0/2 or −�ω0/2. As the probabilities of
maximal and minimal atomic energy are equal under the initial state ρ(X) = Tr[X ]/2,
the sample paths of πl(H) are attracted to ±�ω0/2 with equal probability. It would
be presumptuous to conclude this from the simulation of only three sample paths,
but if we are willing to believe that πl(H) → ±�ω0/2 with unit probability, then the
result is evident: after all, P(πl(H)) = P(jl(H)) = ρ(H) = 0 for all l, so we can
only have πl(H) → ±�ω0/2 if the two possibilities occur with equal probability (the
probabilities change accordingly if we choose a different initial state ρ). The fact that
πl(H) → ±�ω0/2 with unit probability can also be rigorously proved, but we will
postpone this discussion until section 9.

Note that the behavior of the filter can already be seen by inspecting the observa-
tion process using the naked eye: though the observation processes are still random,
the integrated observations have an upward or downward trend depending on the
value of the atomic energy. This indicates that the actual observation process ∆Y (l)
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Fig. 5.3 (Dispersive interaction.) Three typical sample paths of the conditional expectation πl(H)
of the atomic energy (top plot) with respect to the integrated homodyne photocurrent Y (l)
(bottom plot). Though the energy observable is constant in time, the observations contain
information on the atomic energy so that the conditional expectation converges to the
actual value of the energy. The initial state chosen was ρ(x) = Tr[X]/2, and the time scale
used is λ−2 = 300.

is positive (negative) on average if the atomic energy is positive (negative), i.e., posi-
tive atomic energy leads to an average positive phase shift on the output light, whereas
negative atomic energy gives rise to a negative average phase shift.

We have not shown a simulation of the dispersively interacting atom under photo-
detection. Though many photons can be observed, a photodetector gives no informa-
tion on the phase of the output light. Hence no information is gained about the atomic
energy, and the conditional expectation of the atomic energy is constant. Evidently
the type of detector used makes a big difference in this case.

6. The Reference Probability Approach. In the previous section we obtained
explicit nonlinear recursive equations for the conditional expectations πl(X). In this
section we start from scratch and solve the filtering problem in an entirely different
way. The key idea here is that the Bayes Lemma 3.4 allows us to express the filtering
problem in terms of an arbitrary (reference) state; by choosing the “Radon–Nikodým”
operator V conveniently, we can reduce the calculation to a manageable form. This
gives rise to a linear recursion for the numerator in the Bayes formula, which we
denote by σl(X). πl(X) is then calculated as σl(X)/σl(I).

The reference probability method is widely used in classical filtering theory follow-
ing the work of Duncan [32], Mortensen [70], Zakai [88], and Kallianpur and Striebel
[56, 57]. See, e.g., [34] for a systematic exposition of reference probability methods
in filtering and control. The corresponding approach in quantum filtering theory,
adapted below to the discrete setting, was developed in [17].

6.1. The Strategy. Let us begin by outlining what we are going to do. We are
looking for a way to calculate πl(X) = P(jl(X)|Yl). In classical filtering theory it
has proved advantageous to express the problem, using the Bayes formula, in terms
of a measure under which the signal (here the atomic observable jl(X)) and the
observations (here Yl) are independent. We will aim to do the same in the quantum
case. Unlike in classical probability, however, we do not have a suitable quantum
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version of Girsanov’s theorem to help us find such a change of measure. We need to
use a little intuition to obtain the required change-of-state operator V .

The following simple lemma will make this task a little easier.
Lemma 6.1. Let (A ,P) be a quantum probability space, C ⊂ A a commutative

subalgebra, and let U ∈ A be unitary. Define the rotated state Q(X) = P(U∗XU) on
A . Then P(U∗XU |U∗CU) = U∗Q(X |C )U for any X ∈ C ′.

Proof. This is a simple consequence of the definition of conditional expectations.
Let K ∈ U∗CU . Then P(U∗Q(X |C )UK) = Q(Q(X |C )UKU∗) = Q(XUKU∗) =
P(U∗XUK). But as this holds for any K ∈ U∗CU and as U∗Q(X |C )U ∈ U∗CU , the
lemma follows from the definition of the conditional expectation.

How does this help us in our usual setting (M ⊗ Wk,P)? Recall from section 2.5
that Cl = alg{∆Z(i) : i = 1, . . . , l} (Z = I⊗Λ or Z = I⊗ (A+A∗) for photodetection
or homodyne detection, respectively) and Yl = U(l)∗ClU(l). For the time being, let
us fix a time step l and define the state Ql(X) = P(U(l)∗XU(l)). Then by Lemma
6.1, we can write πl(X) = U(l)∗Ql(X |Cl)U(l). Now note that X ∈ B0 is of the
form X ⊗ I in M ⊗ Wk, whereas every element of Cl is of the form I ⊗ C. But we
already know a state under which the initial system and the field are independent:
this is simply the state P! Hence if we could write Ql(X) = P(V (l)∗XV (l)) for some
V (l) ∈ C ′

l , then we would obtain using the Bayes Lemma 3.4

(6.1) πl(X) = U(l)∗ Ql(X |Cl)U(l) =
U(l)∗ P(V (l)∗XV (l)|Cl)U(l)

U(l)∗ P(V (l)∗V (l)|Cl)U(l)
∀X ∈ B0.

Note that we already have by construction Ql(X) = P(U(l)∗XU(l)), but U(l) �∈ C ′
l .

Hence V (l) = U(l) in the Bayes formula does not work. As we will demonstrate below,
however, there is a simple trick which we can use to “push” U(l) into the commutant
C ′
l without changing the state Ql. This gives the desired change of state V (l).

We emphasize that Lemma 6.1 is not an essential part of the procedure; we could
try to find a new reference state S(V ∗XV ) = P(X) and apply the Bayes lemma
directly to P(jl(X)|Yl) (in fact, the state S can be deduced from (6.1) by applying
Lemma 6.1 in the reverse direction). The state P is a very convenient reference state,
however, as it allows us to use the natural tensor splitting M ⊗ Wk and properties
of the vacuum state φ⊗k to determine the necessary V (l) with minimal effort. It is
possible that this procedure could be streamlined in a more general theory for changes
of state (in the spirit of the techniques widely used in classical probability theory),
but such a theory is not currently available in quantum probability.

6.2. Homodyne Detection. We first consider the homodyne detection case, i.e.,
Z(l) = A(l) + A∗(l). To use (6.1), we are looking for V (l) ∈ C ′

l such that Ql(X) =
P(V (l)∗XV (l)). The following trick [45] allows us to find such a V (l) simply by
modifying the quantum stochastic difference equation for U(l); see (4.1).

Lemma 6.2. Let V be the solution of the following difference equation:

∆V (l) =
{
M+ (∆A(l) + ∆A∗(l)) +M◦∆t(l)

}
V (l − 1), V (0) = I.

Then V (l) ∈ C ′
l and P(V (l)∗XV (l)) = P(U(l)∗XU(l)) for any X ∈ M ⊗ Wk.

Proof. The proof relies on the fact that P = ρ⊗φ⊗k. For simplicity, let us assume
that ρ is a vector state, i.e., ρ(X) = 〈v,Xv〉 for some v ∈ C2 (we will relax this
requirement later on). Then P(X) = 〈v ⊗ Φ⊗k, X v ⊗ Φ⊗k〉, where Φ is the vacuum
vector. The essential property we need is that ∆A(l)Φ⊗k = ∆Λ(l)Φ⊗k = 0; this
follows immediately from their definitions (as ∆A(l)Φ⊗k = Φ⊗l−1⊗σ−Φ⊗Φ⊗k−l = 0,
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and similarly for ∆Λ). Hence using the fact that U(l − 1) ∈ Bl−1 commutes with
∆A(l) and ∆Λ(l), (4.1) gives

∆U(l) v ⊗ Φ⊗k =
{
M+ ∆A∗(l) +M◦ ∆t(l)

}
U(l − 1) v ⊗ Φ⊗k.

Similarly, any difference equation of the form

∆V (l) =
{
N± ∆Λ(l) +M+ ∆A∗(l) +N− ∆A(l) +M◦∆t(l)

}
V (l − 1)

satisfies

∆V (l) v ⊗ Φ⊗k =
{
M+ ∆A∗(l) +M◦ ∆t(l)

}
V (l − 1) v ⊗ Φ⊗k.

Hence if V (l− 1) v⊗Φ⊗k = U(l− 1) v⊗Φ⊗k, then V (l) v⊗Φ⊗k = U(l) v⊗Φ⊗k. By
induction, V (l) v ⊗ Φ⊗k = U(l) v ⊗ Φ⊗k for any l if V (0) = U(0) = I. Thus

P(U(l)∗XU(l)) = 〈U(l) v ⊗ Φ⊗k, X U(l) v ⊗ Φ⊗k〉
= 〈V (l) v ⊗ Φ⊗k, X V (l) v ⊗ Φ⊗k〉 = P(V (l)∗XV (l)),

regardless of what we choose for N± and N−.
We are now free to choose N± and N− so that V (l) satisfies the remaining

requirement V (l) ∈ C ′
l . But if we choose N± = 0 and N− =M+ as in the statement

of the lemma, it follows that V (l) ∈ M ⊗ Cl ⊂ C ′
l for every l. Indeed, suppose that

V (l− 1) ∈ M ⊗Cl−1. Then V (l) is defined by the recursion as a function of V (l− 1),
∆Z(l) = ∆A(l) + ∆A∗(l) ∈ Cl, and M+,M◦ ∈ M , which is obviously contained in
M ⊗ Cl. The result then follows by induction, and the lemma is proved.

It remains for us to consider the case that ρ is not a vector state. By linearity we
can always write ρ = Tr[ρ̃X ] for some 2× 2 density matrix ρ̃. But any density matrix
can be diagonalized (as it is a positive matrix), so that we can write without loss of
generality ρ̃ = λ1 v1v

∗
1 + λ2 v2v

∗
2 , where v1 is the (normalized) eigenvector of ρ̃ with

eigenvalue λ2 and v2 is the eigenvector with eigenvalue λ2. As the lemma holds for
each of the vector states ρ1,2(X) = 〈v1,2, Xv1,2〉, it must hold for arbitrary ρ.

The solution of the filtering problem is now remarkably straightforward.
Definition 6.3. For any atomic observable X ∈ B0, the unnormalized condi-

tional expectation σl(X) ∈ Yl is defined as

σl(X) = U(l)∗ P(V (l)∗XV (l)|Cl)U(l).

Theorem 6.4. The unnormalized conditional expectation σl(X) satisfies the
following linear filtering equation for homodyne detection:

∆σl(X) = σl−1(L(X))∆t(l) + σl−1(J (X))∆Y (l), σ0(X) = ρ(X),

where L(X) is the discrete Lindblad generator and J (X) was defined in Lemma 5.8.
Furthermore, the noncommutative Kallianpur–Striebel formula holds:

πl(X) =
σl(X)

σl(I)
∀X ∈ B0.

Proof. The Kallianpur–Striebel formula is simply (6.1). To obtain the linear
recursion, we calculate using the discrete Itô rules that

∆(V (l)∗XV (l)) = V (l − 1)∗L(X)V (l − 1)∆t(l)

+ V (l − 1)∗J (X)V (l − 1) (∆A(l) + ∆A∗(l)).
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Calculating the conditional expectation with respect to Cl, we obtain

∆P(V (l)∗XV (l)|Cl) = P(V (l − 1)∗L(X)V (l − 1)|Cl)∆t(l)
+ P(V (l − 1)∗J (X)V (l − 1)|Cl) (∆A(l) + ∆A∗(l))

using ∆A(l)+∆A∗(l) ∈ Cl. But note that Cl = Cl−1⊗alg{∆A(l)+∆A∗(l)} and that
∆A(l) + ∆A∗(l) is independent of M ⊗ Cl−1 under P. Hence by the independence
property of the conditional expectation (cf. the last property listed in Table 3.1) and
the fact that V (l − 1)∗XV (l − 1) ∈ M ⊗ Cl−1 for any X ∈ B0, we obtain

∆P(V (l)∗XV (l)|Cl) = P(V (l − 1)∗L(X)V (l − 1)|Cl−1)∆t(l)

+ P(V (l − 1)∗J (X)V (l − 1)|Cl−1) (∆A(l) + ∆A∗(l)).

Now multiply from the left by U(l)∗ and from the right by U(l). Note that

U(l)∗∆P(V (l)∗XV (l)|Cl)U(l) = ∆(U(l)∗ P(V (l)∗XV (l)|Cl)U(l)),

because U(l)∗CU(l) = U(l − 1)∗CU(l − 1) for any C ∈ Cl−1 (see section 2.5). Fur-
thermore, U(l)∗(∆A(l) + ∆A∗(l))U(l) = ∆Y (l), and the theorem follows.

Notice how much simpler the linear recursion is compared to the nonlinear recur-
sion obtained through the martingale method; for example, this could make digital
implementation of the linear recursion more straightforward. Nonetheless the two
methods should give the same answer, as they are both ultimately expressions for the
same quantity πl(X). Let us verify this explicitly. Note that

∆πl(X) = ∆

[
σl(X)

σl(I)

]

=
σl(X)

σl(I)
− σl−1(X)

σl−1(I)
=

∆σl(X)

σl−1(I)
−σl(X) (σl−1(I)

−1 −σl(I)−1).

The first term on the right is easily evaluated as

∆σl(X)

σl−1(I)
= πl−1(L(X))∆t(l) + πl−1(J (X))∆Y (l),

whereas we obtain for the second term (using L(I) = 0)

σl(X) (σl−1(I)
−1 − σl(I)

−1) = σl(X)
∆σl(I)

σl(I)σl−1(I)
= πl(X)πl−1(J (I))∆Y (l).

Hence we obtain

∆πl(X) = πl−1(L(X))∆t(l) + {πl−1(J (X))− πl(X)πl−1(J (I))}∆Y (l).

Writing πl(X) = πl−1(X) + ∆πl(X) and solving for ∆πl(X) gives precisely the non-
linear recursion obtained in section 5.2, taking into account the identity

(I + πl−1(J (I))∆Y (l))−1 =
I − πl−1(J (I))∆Y (l)

I − λ2πl−1(J (I))2
,

where we have used (∆Y (l))2 = ∆t(l). This sheds some light on the seemingly
complicated structure of the discrete nonlinear filtering equation.
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6.3. Photodetection. If we naively try to follow the procedure above in the
photodetection case Z(l) = Λ(l), we run into problems. Let us see what goes wrong.
Following the steps in the proof of Lemma 6.2, we reach the point where we have to
choose N± and N− so that V (l) ∈ C ′

l . But this is impossible2 because we cannot get
rid of the ∆A∗ term (as ∆A∗(l)Φ⊗k �= 0), and ∆A∗(l) does not commute with ∆Λ(l).

We are not restricted, however, to using Lemma 6.1 with U = U(l). To deal
with the photodetection case, suppose that R(l) is some unitary operator of the form
I ⊗ R in M ⊗ Wk (i.e., it acts only on the field, not on the atom). Define the state
Ql(X) = P(U(l)∗R(l)∗XR(l)U(l)) and the algebra Rl = R(l)ClR(l)∗. Suppose that
there is some V (l) ∈ R′

l such that Ql(X) = P(V (l)∗XV (l)). Then by Lemma 6.1 and
the Bayes formula, we have for any X ∈ B0 (using R(l)∗XR(l) = XR(l)∗R(l) = X)

πl(X) = U(l)∗R(l)∗ Ql(X |Rl)R(l)U(l) =
U(l)∗R(l)∗ P(V (l)∗XV (l)|Rl)R(l)U(l)

U(l)∗R(l)∗ P(V (l)∗V (l)|Rl)R(l)U(l)
.

This is precisely as before, except that we have inserted an additional rotation R(l).
The idea is that if we choose R(l) appropriately, then R(l) (∆Λ(l))R(l)∗ contains
a ∆A∗ term so that we can proceed as in the previous section to find a suitable
V (l) ∈ R′

l . A possible choice of R(l) is given in the following lemma.
Lemma 6.5. Define R(l) = exp(A(l)−A∗(l)), l = 1, . . . , k. Then R(l) is unitary,

∆R(l) =

{
sin(λ)

λ
(∆A(l)−∆A∗(l)) +

cos(λ)− 1

λ2
∆t(l)

}

R(l − 1),

and we obtain the expression

R(l)∆Λ(l)R(l)∗ = (cos2 λ−sin2 λ)∆Λ(l)+
sinλ cosλ

λ
(∆A(l)+∆A∗(l))+

sin2 λ

λ2
∆t(l).

Proof. Unitarity of R(l) is immediate. To obtain the difference equation, note
that R(l) = exp(∆A(l) − ∆A∗(l))R(l − 1), so that we essentially need to calculate
exp(∆A(l)−∆A∗(l)) = (exp(λσ−−λσ+))l. But it is not difficult to evaluate explicitly
the matrix exponential of the 2× 2 matrix λ(σ− − σ+):

exp(λ(σ− − σ+)) = exp

[(
0 −λ
λ 0

)]

=

(
cosλ − sinλ
sinλ cosλ

)

= cosλ I + sinλ (σ− − σ+).

The expression for ∆R(l) follows directly. To obtain the remaining expression, note
that R(l − 1) commutes with ∆Λ(l); hence

R(l) (∆Λ(l))R(l)∗ = e∆A(l)−∆A∗(l) ∆Λ(l) e∆A
∗(l)−∆A(l)

=

((
cosλ − sinλ
sinλ cosλ

)(
1 0
0 0

)(
cosλ sinλ
− sinλ cosλ

))

l

=

((
cos2 λ sinλ cosλ

sinλ cosλ sin2 λ

))

l

,

from which the result follows immediately.

2This is not surprising for the following reason. Applying the spectral theorem to the commuta-
tive algebra Cl, we obtain a classical measure space (Ω,F) on which Ql and P induce different proba-
bility measures Q and P, respectively. Suppose there exists a V ∈ C ′

l
such that Ql(X) = P(V ∗XV ).

Then it is not difficult to verify that Q ≪ P with dQ/dP = ι(P(V ∗V |Cl)). But note that ι(∆Λ(l))
is distributed under Q in the same way as the observation increment ∆Y (l) under P, whereas
ι(∆Λ(l)) = 0 P-a.s. This contradicts Q ≪ P and hence the existence of V .
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For brevity, let us call R(l) (∆Λ(l))R(l)∗ = ∆Z(l). We are now in a position to
repeat Lemma 6.2 for the photodetection case.

Lemma 6.6. Let V be the solution to the following difference equation:

∆V (l) =

{(
λ

sinλ
M+ − λ2

cosλ
M◦ − 1

cosλ

)(

∆Z(l)− sin2 λ

λ2
∆t(l)

)

+

(
sinλ

λ
M+ + cosλM◦ +

cosλ− 1

λ2

)

∆t(l)

}

V (l − 1), V (0) = I.

Then V (l) ∈ R′
l and P(V (l)∗XV (l)) = P(U(l)∗R(l)∗XR(l)U(l)) ∀X ∈ M ⊗ Wk.

Proof. Using the quantum Itô rules, it is not difficult to calculate

∆(R(l)U(l)) =

{

(· · · )∆Λ(l) +

(

cosλM+ − λ sinλM◦ − sinλ

λ

)

∆A∗(l)

+ (· · · )∆A(l) +
(
sinλ

λ
M+ + cosλM◦ +

cosλ− 1

λ2

)

∆t(l)

}

R(l− 1)U(l − 1).

We can now follow exactly the procedure in the proof of Lemma 6.2, and using the
expression for ∆Z obtained in Lemma 6.5 the result follows.

We can now obtain the linear filter for photodetection as before.
Theorem 6.7. The unnormalized conditional expectation

σl(X) = U(l)∗R(l)∗ P(V (l)∗XV (l)|Rl)R(l)U(l), X ∈ B0,

satisfies the linear filtering equation for photodetection,

∆σl(X) = σl−1(L(X))∆t(l)+σl−1(T (X))

(

∆Y (l)− sin2 λ

λ2
∆t(l)

)

, σ0(X) = ρ(X),

where L(X) is the discrete Lindblad generator and T (X) is given by

T (X) =
1

cos2 λ

(
λ2

sin2 λ
M+∗XM+ −X − λ2L(X)

)

.

Furthermore, the noncommutative Kallianpur–Striebel formula holds:

πl(X) =
σl(X)

σl(I)
∀X ∈ B0.

Proof. We begin by calculating ∆(V (l)∗XV (l)) using the Itô rules; this is a
tedious but straightforward calculation, and we will not repeat it here. The result is

∆(V (l)∗XV (l)) = V (l − 1)∗L(X)V (l − 1)∆t(l)

+ V (l − 1)∗T (X)V (l − 1)

(

∆Z(l)− sin2 λ

λ2
∆t(l)

)

,

where T (X) is given by the expression

T (X) =
λ2

sin2 λ
M+∗XM+ − λ4

cos2 λ
M◦∗XM◦ − λ2

cos2 λ
(XM◦ +M◦∗X)− 1

cos2 λ
X.

Using the expression for L(X), the latter is easily transformed into the form given in
the theorem. The remainder of the proof is the same as that of Theorem 6.4.
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The presence of the sinλ and cosλ terms in the linear filter for photodetection is
an artefact of our choice of R(l). In fact, this choice is not unique: many R(l) would
work and give rise to different linear filters! However, the Kallianpur–Striebel formula
guarantees that all these linear filters coincide when normalized with the nonlinear
filter of section 5.3. To complete our discussion of linear filters, let us show explicitly
how normalization of the linear filter of Theorem 6.7 gives back, through a series of
miraculous cancellations, the nonlinear filter for photodetection which we obtained
earlier through martingale methods. We begin by writing, as in section 6.2,

∆πl(X) =
∆σl(X)

σl−1(I)
− πl(X)

∆σl(I)

σl−1(I)
.

Using the fact that πl(X) = ∆πl(X) + πl−1(X), this gives explicitly

∆πl(X)
[
I + πl−1(T (I)) (∆Y (l)− sin2 λ)

]

= πl−1(L(X))∆t(l)− sin2 λ

λ2
[πl−1(T (X))− πl−1(X)πl−1(T (I))] ∆t(l)

+ [πl−1(T (X))− πl−1(X)πl−1(T (I))] ∆Y (l).

Using the expression for T (X) and L(I) = 0, we calculate

πl−1(T (X))− πl−1(X)πl−1(T (I)) = − λ2

cos2 λ
πl−1(L(X))

+
λ2

sin2 λ cos2 λ

[
πl−1(M

+∗XM+)− πl−1(X)πl−1(M
+∗M+)

]
.

Hence we obtain

∆πl(X)
[
I + πl−1(T (I)) (∆Y (l)− sin2 λ)

]

=
1

cos2 λ

[
πl−1(L(X)) − πl−1(M

+∗XM+) + πl−1(X)πl−1(M
+∗M+)

]
∆t(l)

+ [πl−1(T (X))− πl−1(X)πl−1(T (I))] ∆Y (l).

Next, we claim that

[
I + πl−1(T (I)) (∆Y (l)− sin2 λ)

]−1

=
[
I + cos2 λπl−1(T (I))

]−1
∆Y (l) +

[
I − sin2 λπl−1(T (I))

]−1
(I −∆Y (l)).

The easiest way to see this is to consider πl−1(T (I)) and ∆Y (l) to be classical random
variables through the spectral theorem; as (∆Y (l))2 = ∆Y (l) we conclude that ∆Y (l)
is a {0, 1}-valued random variable, and the statement follows directly. Using the
explicit expression for T (X), we find that

[
I − sin2 λπl−1(T (I))

]−1
=

cos2 λ

I − λ2 πl−1(M+∗M+)

and that

[
I + cos2 λπl−1(T (I))

]−1
=

sin2 λ

λ2 πl−1(M+∗M+)
.

Using these expressions, the remainder of the calculation is a straightforward exercise
and indeed we obtain the expression for ∆πl(X) as in section 5.3.
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7. Feedback Control. Everything we have done up to this point has been devoid
of human intervention. An atom sits in free space, emits radiation at its leisure, and
all we have allowed ourselves to do is to observe the output radiation and to interpret
it statistically (filtering). In this section we will allow ourselves to manipulate the
atom in real time; this provides an opportunity for feedback control, which we will
approach using optimal control theory (section 8) and Lyapunov methods (section 9).

In this section we carefully introduce the concepts required for feedback con-
trol. As we shall see, some subtleties arise which we explain and address using the
framework developed in [17], suitably adapted to our discrete setting. Early work on
quantum feedback control appears in [9, 10], and a large number of applications have
been discussed (albeit not in a mathematically rigorous way) in the physics literature;
see, e.g., [31] and the references therein.

In order to understand feedback, we need to consider how the atomic dynamics
can be influenced by control actions, and what information is available to determine
the control actions. We develop these ideas in the following two subsections. In
section 7.1 we describe how a controller can influence the atomic dynamics. This will
allow us to apply open loop controls, that is, we can apply a deterministic function to
the control inputs of the system. Though this is not our ultimate goal, it is a helpful
first step; in section 7.2 we will show how to replace this deterministic input by some
function of the observation history (feedback). This is likely to be advantageous: the
more information we have, the better we can control!

Remark 7.1. We take a moment at this point to discuss the usage of the term
“quantum control” in the literature. Often this term is used to refer to open loop
control, rather than feedback control. Such control problems can be reduced to de-
terministic control problems, as we will show in section 7.1. The classical analogue of
this concept would be deterministic control design for the Fokker–Planck equation.

Our main goal here is to discuss quantum feedback control, where the feedback
is based on an observations process obtained from the system to be controlled. This
corresponds to the classical idea of a control system as consisting of a system to
be controlled (the plant); a sensor which gives rise to an observations process; an
actuator which allows one to modify the dynamics of the system in real time; and a
controller, which is a signal processing device that takes the observations as its input
and produces an actuation signal as its output.

Sometimes the term “quantum feedback control” is used in a somewhat broader
context. One could consider the setup described above in the absence of the sensor
component. In this case the controller must be treated as being itself a physical
system, rather than a signal processing device, and the pursuit of this idea leads to
rather different theory and applications (see, e.g., [85, 87, 52]). This type of feedback
is usually called coherent feedback or all-optical feedback (in the context of quantum
optics), to distinguish it from observation-based feedback, which we consider here.

7.1. Open Loop Control (No Feedback). To add a control input to our model,
recall from section 2.5 that the time evolution of an observable X is given by jl(X) =
U(l)∗XU(l) with repeated interaction unitary

U(l) =
−→∏
l
i=1M(i) = M(1)M(2) · · ·M(l), U(0) = I.

The interaction in every time slice was given by

M(l) = e−i{jl−1(L1)∆Λ(l)+jl−1(L2)∆A
∗(l)+jl−1(L∗

2)∆A(l)+jl−1(L3)∆t(l)},
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where L1, L2, L3 ∈ B0 are atomic operators. To add a control input, we simply allow
ourselves a choice of differentM(l)’s in every time step. To be precise, let us introduce
a control set U (i.e., these are the values the control can take), and for each u ∈ U

we define a set of atomic operators L1(u), L2(u), L3(u) ∈ B0. An open loop control
strategy is a k-tuple u = {u1, . . . , uk}, where ui ∈ U for all i, and the corresponding
time evolution jul (X) = U(l,u)∗XU(l,u) is defined by

U(l,u) =
−→∏
l
i=1M

u(i, ui) =Mu(1, u1)M
u(2, u2) · · ·Mu(l, ul), U(0,u) = I,

where the single time slice interaction unitary is given by

Mu(l, u) = e−i{j
u

l−1(L1(u))∆Λ(l)+jul−1(L2(u))∆A
∗(l)+jul−1(L2(u)

∗)∆A(l)+jul−1(L3(u))∆t(l)}.

Note thatMu(l, u), for fixed u, depends only on u through u1, . . . , ul−1, and similarly
U(l,u) depends only on u1, . . . , ul. We write U(l,u) rather than U(l, u1, . . . , ul) purely
for notational convenience; the latter would technically be more appropriate!

As before, it is convenient to run the definition backwards in time, i.e.,

U(l,u) =
←−∏
l
i=1Mi(ui) =Ml(ul)Ml−1(ul−1) · · ·M1(u1), U(0,u) = I,

where Ml(u) is given by

(7.1) Ml(u) = e−i{L1(u)∆Λ(l)+L2(u)∆A
∗(l)+L2(u)

∗∆A(l)+L3(u)∆t(l)}.

These operators are functions of the current control value and do not depend on the
full sequence u. The corresponding difference equation is written as

(7.2) ∆U(l,u) =
{
M±(ul)∆Λ(l) +M+(ul)∆A

∗(l)

+M−(ul)∆A(l) +M◦(ul)∆t(l)
}
U(l − 1,u), U(0,u) = I.

One could imagine the different controls u ∈ U to correspond to different values of a
magnetic field which is applied to the atom and can be changed by the experimenter
in each time step. Another common control input is obtained using a laser whose
amplitude can be controlled by the experimenter. We will discuss a specific example
in the context of the discrete model in section 8.3.

The question of controller design could already be posed at this deterministic
level. Though this rules out feedback control (as the observations are a random
process), open loop controls for quantum systems have already generated important
applications. For example, optimal control theory has allowed the design of time-
optimal pulse sequences for nuclear magnetic resonance (NMR) spectroscopy that
significantly outperform the state of the art for that technology [58].

Open loop control design is beyond the scope of this article, so we will not go into
detail. Let us take a moment, however, to make a connection with this literature.
Let X ∈ B0 be some atomic operator; then using the quantum Itô rules, we easily
establish as in section 4.2 that the expectation of the controlled time evolution jul (X)
in the case of deterministic u satisfies

(7.3)
∆P(jul (X))

∆t
= P(jul−1(L(X,ul))),

where the controlled Lindblad generator is given by

L(X,u) =M+(u)∗XM+(u) + λ2 M◦(u)∗XM◦(u) +M◦(u)∗X +XM◦(u).
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As P(jul (X)) is linear in X , we can introduce a (deterministic) 2× 2 matrix νu

l such
that P(jul (X)) = Tr[νu

l X ]; then (7.3) can be written as a deterministic recursion for
νu

l , known as the (controlled, discrete) master equation:

∆νu

l

∆t
= M+(ul)ν

u

l−1M
+(ul)

∗ + λ2M◦(ul)ν
u

l−1M
◦(ul)

∗ +M◦(ul)ν
u

l−1 + νu

l−1M
◦(ul)

∗.

The control goal in such a scenario is generally formulated as the desire to choose u

so that the expectation of a certain atomic observable, or a nonlinear function of such
expectations, is maximized. But these expectations can be obtained in closed form by
solving the master equation, so that the control problem reduces to a deterministic
optimal control problem for the master equation. This is precisely the sort of problem
that is solved in [58] (in a continuous time context).

7.2. Closed Loop Control (Feedback). We now turn to the issue of letting
the control at time step l be a function of the observation history prior to time l.
Mathematically, it is not entirely clear how to modify the description in the previous
section to allow for feedback in the repeated interaction model; there are in fact some
subtleties. It is the goal of this section to clear up this point. For notational simplicity
we assume from this point onwards that U ⊂ R, i.e., that our control input is a real
scalar (this is not essential; everything we will do can be generalized).

Let us first consider what we mean by a controller. A controller is a signal
processing device—a black box—that on every time step takes an observation ∆y as
its input and generates a control signal in U as its output. The most general control
strategy µ is thus described by a set of functions, one for each time step:

µ = {f1, f2(∆y1), f3(∆y1,∆y2), . . . , fk(∆y1, . . . ,∆yk−1)}.

Causality is enforced explicitly by making the control in time step l a function only
of the observations up to that time step. The feedback control µ is called admissible
if fl takes values in U for every l. We call the set of all admissible controls K.

The functions fl encode the input-output behavior of the controller implementing
the admissible strategy µ ∈ K. We now need to hook up the controller to our model
of the system. As the observation at time i is described by the observable ∆Yi, we
define the output of the controller at time l as the observable

ul = fl(∆Y (1), . . . ,∆Y (l − 1)) ∈ Yl−1.

Clearly ι(ul) is a random variable that takes values in U, precisely as it should be.
It now remains to close the loop, i.e., to make the time evolution a function of

the output ul of the controller. Formally, we can proceed exactly as in the open loop
case; i.e., we define the time evolution jµl (X) = Uµ(l)∗XUµ(l) by

Uµ(l) =
−→∏
l
i=1M

µ(i, ui) =Mµ(1, u1)M
µ(2, u2) · · ·Mµ(l, ul), Uµ(0) = I,

where the single time slice interaction unitary is given by

Mµ(l, u) = jµl−1(Ml(u)).

To make this precise, however, we need to define what we mean by composing the
unitary operator-valued function Mµ(l, u) with the observable ul. We will thus take
a moment to talk about such compositions.
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Composition of an Operator-Valued Function and an Observable. Let us be-
gin with a simple classical analogy. Let u be a random variable in ℓ∞(Ω,F ,P), where
Ω is a finite set. Then u takes a finite number of values, and we will suppose these lie
in a set U. Let M : U → V be a map from U to some linear space V . We would like
to define M(u) as a V -valued random variable. We could do this as follows:

(7.4) M(u)(ω) =
∑

u∈ran u

M(u)χ{u=u}(ω),

where ranu is the range of u and χ{u=u} is the indicator function on {ω : u(ω) = u}.
This is particularly convenient if we want to think of ℓ∞(Ω,F ,P) as being itself a
linear space; by elementary linear algebra the set of V -valued random variables is
isomorphic to V ⊗ ℓ∞(Ω,F ,P), and the definition of M(u) above only involves sums
and tensor products (M(u)⊗ χ{u=u}), which are naturally defined in this space.

Though this is obviously not the simplest way of defining composition in the
classical case, (7.4) looks the most natural in the noncommutative context. Let us
consider the algebra A ⊗ C , where C is commutative but A not necessarily so. We
can think of A ⊗C as a linear space of A -valued random variables; indeed, applying
the spectral theorem to C we find that A ⊗ C ≃ A ⊗ ℓ∞(F) ≃ ℓ∞(F ;A ). Now
suppose we are given a map M : U → A and an observable u ∈ C such that ι(u)
takes values in U. Then it is natural to define the composition M(u) as an element in
A ⊗ C in the same way as (7.4). This motivates the following definition.

Definition 7.2. Let A , C be ∗-algebras where C is commutative. Let U ⊂ R,
M : U → A , and let u ∈ C be such that sp u = ran ι(u), the spectrum of u, is a subset
of U. Then the composition M(u) ∈ A ⊗ C is defined by

M(u) =
∑

u∈sp(u)

M(u)Pu(u),

where Pu(u) = ι−1(χ{ι(u)=u}) is the eigenspace projector of u for eigenvalue u.
In what follows it will be important to understand how the composition M(u)

behaves under unitary transformations. Consider A ⊗C ⊂ B, and let U be a unitary
operator in B. Consider the map MU : U → U∗A U defined by MU (u) = U∗M(u)U
for all u ∈ U. Then U∗M(u)U ∈ U∗(A ⊗ C )U = U∗A U ⊗ U∗CU is given by
(7.5)

U∗M(u)U =
∑

u∈sp(u)

U∗M(u)U U∗Pu(u)U =
∑

u∈sp(u)

U∗M(u)U PU∗uU (u) = MU (U
∗
uU).

Hence unitary rotations preserve the compositions defined above, as long as we re-
member to rotate both the observable u and the map M(u).

Controlled Quantum Flows. Let us return to the controlled time evolution
Uµ(l). Note that Mµ(l, ·) : U → jµl−1(M ⊗ Ml), whereas ul ∈ Yl−1 = jµl−1(Cl−1).
Hence according to Definition 7.2, the composition M(ul) makes sense as an operator
in the algebra jµl−1(M ⊗ Cl−1 ⊗ M ) ⊂ Bl, and by (7.5)

M(l, ul) = M(l, f(∆Y (1), . . . ,∆Y (l − 1))) = jµl−1(Ml(f(∆Z(1), . . . ,∆Z(l − 1)))).

For brevity, we will write

ǔl = fl(∆Z(1), . . . ,∆Z(l − 1)) ∈ Cl−1
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so that M(l, ul) = jµl−1(Ml(ǔl)). In particular, we can now express Uµ(l) as

(7.6) Uµ(l) =
←−∏
l
i=1Mi(ǔi) = Ml(ǔl)Ml−1(ǔl−1) · · ·M1(ǔ1), Uµ(0) = I,

which gives the controlled quantum stochastic difference equation

(7.7) ∆Uµ(l) =
{
M±(ǔl)∆Λ(l) +M+(ǔl)∆A

∗(l)

+M−(ǔl)∆A(l) +M◦(ǔl)∆t(l)
}
Uµ(l − 1), Uµ(0) = I.

The main thing to note is that in order to close the loop in (7.2), the open loop
controls ul should be replaced by ǔl ∈ Cl−1 rather than ul ∈ Yl−1. This ensures that
the corresponding flow jµl (X) depends on the observations history in the right way, by
virtue of (7.5). Other than this subtlety, the treatment of closed loop time evolution
proceeds along much the same lines as in the absence of feedback.

The notion of a controlled quantum flow [17] summarizes these ideas in a general
context. The following definition is a discrete version of this concept and defines a
generic repeated interaction model with scalar feedback.

Definition 7.3 (controlled quantum flow). The quadruple (U,M,Z, µ) s.t.
1. U ⊂ R;
2. Ml : U → M ⊗ Ml, Ml(u) is a unitary operator of the form (7.1) ∀u ∈ U;
3. Z is an adapted process Z(l) ∈ Wl, l = 1, . . . , k, such that Z(l) is self-adjoint

and Cl = alg{Z(i) : i = 1, . . . , l} is commutative for every l;
4. µ ∈ K is an admissible control strategy,

defines a controlled quantum flow jµl (X) = Uµ(l)∗XUµ(l). Here Uµ(l) is given by
(7.6) and the corresponding observations process Y µ(l) is given by

∆Y µ(l) = Uµ(l)∗ ∆Z(l)Uµ(l), l = 1, . . . , k.

Remark 7.4. For illustrative purposes, we will concentrate in what follows on
the homodyne detection case Z = A + A∗; the theory for photodetection Z = Λ
proceeds along the same lines. The notion of a controlled quantum flow is much
more general, however, and even allows for feedback to the detection apparatus. For
example, recall that a homodyne detection setup can measure any of the processes
eiϕA + e−iϕA∗. We could now make ϕ a function of the past observations (i.e.,
ϕ(l) = f̃l(∆Z(1), . . . ,∆Z(l − 1))), thus feeding back to the homodyne detector; this
fits within the framework of the controlled quantum flow as it just requires us to
use a “nonlinear” Z. Feedback to the detector has proven to be useful for sensitive
measurements of the phase of an optical pulse; see [84, 3]. We will not consider this
further here, but everything we will discuss can be adapted to this case as well. We
encourage readers to work out the following sections for the feedback scenarios of their
choice!

7.3. Filtering in the Presence of Feedback. Now that we have resolved how to
model a quantum system with feedback, the next question to be resolved is whether
filtering still works in this context. Fortunately this is indeed the case, and in fact little
changes in the proofs. The resulting filters are completely intuitive: one obtains the
same filter from a controlled quantum flow as one would obtain by first calculating the
filter with an open loop control, then substituting the feedback law into the filtering
equation. In this section we will briefly discuss filtering in the presence of feedback
using the reference probability method. From this point onwards we restrict ourselves
to the homodyne detection case Z = A+A∗.
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Fix an admissible feedback control strategy µ ∈ K and the corresponding control
observables ul, ǔl. We wish to find an expression for πµl (X) = P(jµl (X)|Y µ

l ). For this
to make sense we have to make sure that the self-nondemolition and nondemolition
properties still hold. If they do not, then we did something wrong (recall that these
properties are essential for a meaningful interpretation of the theory), but let us take
a moment to verify that everything is as it should be.

Lemma 7.5. The observation algebra Y
µ
l is commutative (self-nondemolition)

and jµl (X) ∈ (Y µ
l )′ (nondemolition) for every l = 1, . . . , k and X ∈ M ⊗ Cl.

Proof. The unitary Ml(ǔl), by construction, commutes with every element of
Cl−1. Hence Uµ(l)∗ ∆Z(i)Uµ(l) = ∆Y µ(i) for every i ≤ l − 1, and we find that

[∆Y µ(i),∆Y µ(l)] = Uµ(l)∗[∆Z(i),∆Z(l)]Uµ(l) = 0.

This establishes self-nondemolition. Nondemolition is established similarly.
To apply the reference probability method, we need a suitable change of state.

The proof of the following lemma is omitted as it is identical to that of Lemma 6.2.
Lemma 7.6. Let V µ be the solution of the following difference equation:

∆V µ(l) =
{
M+(ǔl) (∆A(l) + ∆A∗(l)) +M◦(ǔl)∆t(l)

}
V µ(l − 1), V µ(0) = I.

Then V µ(l) ∈ C ′
l and P(V µ(l)∗XV µ(l)) = P(Uµ(l)∗XUµ(l)) for any X ∈ M ⊗ Wk.

From Lemma 3.4, we immediately obtain the Kallianpur–Striebel formula,
(7.8)

πµl (X) =
σµl (X)

σµl (I)
∀X ∈ M ⊗ Cl, σµl (X) = Uµ(l)∗ P(V µ(l)∗XV µ(l)|Cl)Uµ(l),

and following the proof of Theorem 6.4 gives the following unnormalized controlled
filtering equation for homodyne detection:

∆σµl (X) = σµl−1(L(X, ǔl))∆t(l) + σµl−1(J (X, ǔl))∆Y
µ(l), σµ0 (X) = ρ(X).

Here we have used the controlled Lindblad generator

L(X,u) =M+(u)∗XM+(u) + λ2 M◦(u)∗XM◦(u) +M◦(u)∗X +XM◦(u),

and we have written

J (X,u) = XM+(u) +M+(u)∗X + λ2M◦(u)∗XM+(u) + λ2M+(u)∗XM◦(u).

As in section 6.2, we can also normalize this equation; this gives rise to the following
nonlinear controlled filtering equation for homodyne detection:

∆πµl (X) = πµl−1(L(X, ǔl))∆t(l)

+
πµl−1(J (X, ǔl))− πµl−1(X + λ2L(X, ǔl))πµl−1(J (I, ǔl))

I − λ2πµl−1(J (I, ǔl))2

× (∆Y µ(l)− πµl−1(J (I, ǔl))∆t(l)).

Finally, we claim that even in the controlled case ∆Y µ(l) − πµl−1(J (I, ǔl))∆t(l) is a
martingale. To show this, it suffices to demonstrate that πµl−1(J (I, ǔl))∆t(l) is the
predictable part in the Doob decomposition of ∆Y µ(l), but this follows exactly as in
the proof of the uncontrolled counterpart of this result, Lemma 5.7.
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7.4. The Controlled Quantum Filter. Since πµl (X) is linear in X , we can find
a random 2 × 2 matrix ρµl such that ι(πµl (X)) = Tr[ρµl X ] for every X ∈ M . In fact,
the conditional density matrix ρµl satisfies the recursion

(7.9) ρµl = Γ(ρµl−1, u
µ
l ,∆y

µ
l ),

where yµl = ι(Y µ(l)), uµl = ι(ul) = fl(∆y
µ
1 , . . . ,∆y

µ
l−1),

Γ(ρ, u,∆y) = ρ+ L(ρ, u)λ2 +
J (ρ, u)− Tr[J (ρ, u)] (ρ+ λ2L(ρ, u))

1− λ2 Tr[J (ρ, u)]2

× (∆y − Tr[J (ρ, u)]λ2),

and

L(ρ, u) =M+(u)ρM+(u)∗ + λ2 M◦(u)ρM◦(u)∗ +M◦(u)ρ+ ρM◦(u)∗,

J (ρ, u) = M+(u)ρ+ ρM+(u)∗ + λ2M+(u)ρM◦(u)∗ + λ2M◦(u)ρM+(u)∗.

To obtain the recursion (7.9) we can essentially follow the procedure used in section
5.4 for the uncontrolled case. The only subtlety here is that we need to deal with the
presence of feedback in terms such as πµl−1(XM

+(ǔl)) that occur in the recursion for
πµl (X). The following lemma shows how to do this; it is comparable to the classical
statement E[f(X,Y )|Y = y] = E[f(X, y)|Y = y].

Lemma 7.7. Consider a map X : U → M and an observable ǔ ∈ Cl such that
uµ = ι(Uµ(l)∗ǔUµ(l)) takes values in U. Then ι(πµl [X(ǔ)]) = Tr[ρlX(uµ))].

Proof. Using Definition 7.2, we have

πl[X(ǔ)] = πl




∑

u∈sp(ǔ)

X(u)Pǔ(u)





=
∑

u∈sp(ǔ)

P[Uµ(l)∗X(u)Pǔ(u)U
µ(l)|Yl]

=
∑

u∈sp(ǔ)

P[Uµ(l)∗X(u)Uµ(l)|Yl]Uµ(l)∗Pǔ(u)U
µ(l)

=
∑

u∈sp(ǔ)

πl[X(u)]PUµ(l)∗ǔUµ(l)∗(u).

Applying ι to both sides, the result follows immediately.
It is sometimes more convenient to use the unnormalized form of the filter. As

σµl (X) is linear in X , we can proceed exactly as before to find a random 2× 2 matrix
̺µl such that ι(σµl (X)) = Tr[̺µl X ] for every X ∈ M . The result of Lemma 7.7 is
easily shown to hold also for σµl (·), and we obtain

(7.10) ̺µl = Σ(̺µl−1, u
µ
l ,∆y

µ
l ),

where

(7.11) Σ(̺, u,∆y) = ρ+ L(̺, u)λ2 + J (ν, u)∆y.

The conditional density matrix ρµl can then be calculated as ρµl = ̺µl /Tr[̺
µ
l ].
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Remark 7.8. The filters (7.9) and (7.10) define classical controlled Markov pro-
cesses [60, Chapter 4], where future increments depend explicitly on previous control
actions and on a commutative driving process ∆yµl . By analogy with the classical
case, one could even consider the controlled quantum flow to be a kind of “quantum
controlled Markov process,” though a precise statement of this concept is not yet
defined in the literature (but see also Remark 4.5).

7.5. Separated Strategies. Recall that an admissible strategy µ ∈ K is defined
by a set of feedback functions µ = {f1, . . . , fk} that describe how the control values
depend on the measurement record. Any causal control strategy can be written in
this form. We remarked in section 3.4, however, that in many cases the controls need
not have an arbitrarily complicated dependence on the measurement record—it is
sufficient to make the feedback at every time step a function of the filter only. In
other words, many control goals can be attained using only feedback of the form

(7.12) uµl = gl−1(ρ
µ
l−1), l = 1, . . . , k,

where gl takes values in U for any l. Note that such a strategy is in fact admissible as
ρµl−1 is a function of ∆yµ1 , . . . ,∆y

µ
l−1 only, so that we could always write gl−1(ρ

µ
l−1) =

fl(∆y
µ
1 , . . . ,∆y

µ
l−1) for some function fl.

Both in the case of optimal control (section 8) and in control design using Lya-
punov functions (section 9), we will see that the theory leads very naturally to strate-
gies of the form (7.12). This is highly desirable; not only does such structure sig-
nificantly simplify the control design procedure, but the resulting controls are also
much easier to implement in practice. Note that to implement an arbitrary admis-
sible strategy µ ∈ K, the controller must have enough internal memory to store the
entire observation history. One has no other choice, as the feedback signal may be an
arbitrary function of the control history. On the other hand, to implement a strategy
of the form (7.12) the controller only needs to store the current density matrix ρµl at
any time. The density matrix is then updated recursively using the filter (7.9).

Control strategies of the form (7.12) are called separated control strategies, as the
controller separates into two parts: a filtering step, which can be solved recursively as
described above, and a control step, which reduces to the simple evaluation of some
deterministic function of the filter state. The structure of the separated controller
is illustrated in Figure 7.1. The ubiquity of this separation structure highlights the
fundamental importance of filtering in (quantum) stochastic control.

Let us finally fix the notation. An admissible separated strategy µ is given by

µ = {g0(ρ), g1(ρ), . . . , gk−1(ρ)},

where gi : S → U are functions on the set S of 2 × 2 density matrices (self-adjoint,
nonnegative, unit trace 2× 2 matrices). We denote the set of all admissible separated
strategies by KS , and the corresponding feedback signal is given by (7.12).

Unlike in the absence of control (see section 5.5), the controlled filter ρµl need not
be a Markov process as in general µ ∈ K may have an arbitrary dependence on the
observation history (ρµl is a controlled Markov process in the sense of [60, Chapter 4]).
On the other hand, for separated controls µ ∈ KS the process ρµt is in fact Markov.
The following lemma can be proved as in section 5.5.

Lemma 7.9. For separated µ ∈ KS , the filter ρµl satisfies the Markov property

E
µ(g(ρµj )|σ{ρ

µ
0 , . . . , ρ

µ
l }) = E

µ(g(ρµj )|σ{ρ
µ
l }) ∀ l ≤ j ≤ k.
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time 1 l + 2 2 l + 3

∆y∆ l

u = gl ( l -1)filter

ρl 
ρl -1

∆y∆ l+1

u = gl (ρl)filter

ρl +1 ρl 

time t = λ2 l time t = λ2 (l +1)

Fig. 7.1 The operation of a separated feedback control. The only quantity stored by the controller at
the beginning of time step l is the filter state in the previous time step ρl−1. The control
ul is calculated using a deterministic function gl and is fed back to the atom through an
actuator. Simultaneously, time slice l of the field interacts with the atom. We subsequently
detect the field, which gives rise to the observation ∆yl. The filter uses ∆yl and ul to
update the filter state to ρl. The procedure then repeats in time step l+ 1 with ρl as basis
for the control.

8. Optimal Control. Now that we have described repeated interactions with
feedback and have obtained filtering equations in this context, the remaining question
is, how do we choose the control strategy µ to achieve a particular control goal?
In this section we approach this problem using optimal control theory, where the
control goal is expressed as the desire to minimize a certain cost function. Dynamic
programming allows us to construct a control strategy and to verify its optimality.
For an introduction to optimal stochastic control we refer to, e.g., [60, 62, 35, 4, 14].

In optimal control theory, the control objective is expressed in terms of a cost
function J(µ). In this paper we mainly consider the cost function

(8.1) J(µ) = P

[
k∑

l=1

jµl−1(Q(ǔl))∆t(l) + jµk (K)

]

.

This cost is defined in terms of the quantities Q : U → M and K ∈ M , with K
and Q(u) nonnegative and self-adjoint for all u ∈ U. Large values of these penalty
quantities correspond to undesirable behavior, while small values correspond to the
desirable behavior being sought. The penalty Q(u) will be accumulated at each time
step, contributing to a running cost. For example, it may take the form Q(u) =
Q + c(u), where Q ∈ M penalizes deviation from a desired state and the function
c : U → [0,∞) penalizes the control effort. K is a terminal cost incurred at the end
of the time horizon. Ultimately the goal is to find, if possible, an admissible control
strategy µ that minimizes the cost J(µ)

Remark 8.1. Note that the cost J(µ) is defined on a fixed time interval of length
k. We could also consider this problem on an infinite time horizon, and use either
discounted or average cost per unit time extensions of (8.1) (without the terminal
cost K). Though the theory of this section extends readily to this scenario, we will
restrict ourselves to the cost J(µ) for concreteness.

The key step needed to apply dynamic programming is to express the cost function
in terms of a filtered quantity. This will be discussed further in section 8.2, where
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we describe the concept of information state. The following calculation, which makes
use of properties of conditional expectations, the spectral theorem, and Lemma 7.7,
expresses the cost (8.1) in terms of the filter (7.9):

J(µ) = P

[
k∑

l=1

P[jµl−1(Q(ǔl))|Yl−1] ∆t(l) + P[jµk (K)|Yk]
]

= P

[
k∑

l=1

πµl−1[Q(ǔl)]∆t(l) + πµk [K]

]

= E
µ

[
k∑

l=1

ι(πµl−1[Q(ǔl)])∆t+ ι(πµk [K])

]

= E
µ

[
k∑

l=1

Tr[ρµl−1Q(uµl )]∆t+Tr[ρµkK]

]

.(8.2)

Here E
µ is the P

µ-expectation on the probability space (Ωµ,Fµ,Pµ) obtained by
applying the spectral theorem to Y

µ
k . We retain the superscript µ to emphasize that

the observation algebra is control-dependent; Y µ(l) and Y ν(l) need not commute!
The final form of the cost is now a classical cost function for the classical recursion

(7.9); in other words, we have reduced the control problem to a problem of classical
optimal control for the classical controlled Markov process (7.9). Hence we can apply
almost directly the ordinary dynamic programming methodology, which we will do
in the next subsection. We only need to take care to use different probability spaces
Ωµ, Ων for different control strategies, as the corresponding observations need not
commute; this does not present any additional difficulties, however.

In order to implement the dynamic programming method, we will use the fact that
the conditional distribution of ∆yµl given ∆yµ1 , . . . ,∆y

µ
l−1 can be evaluated explicitly.

This proceeds in a manner similar to the proof of Lemma 5.11, but taking into account
the dependence of the coefficients on the controls using Lemma 7.7.

Lemma 8.2. For any admissible strategy µ ∈ K we have

(8.3) P
µ[∆yl = ±λ | Yµl−1] = p(∆y = ±λ; ρµl−1, u

µ
l ),

where

(8.4) p(∆y = ±λ; ρ, u) = 1

2
± λ

2
Tr[J (ρ, u)]

depends only on the previous filter state and the control value being applied, and in
particular is independent of the feedback strategy µ.

Before we proceed, let us fix some notation. In the following we will encounter
separated control strategies µ, µ∗, µ̄ ∈ KS . We will denote the corresponding con-
trol functions by µ = {g0(ρ), . . . , gk−1(ρ)}, µ∗ = {g∗0(ρ), . . . , g∗k−1(ρ)}, and µ̄ =
{ḡ0(ρ), . . . , ḡk−1(ρ)}. We will also denote by µ ∈ K an arbitrary admissible strat-
egy, in which case the corresponding feedback process is always denoted by uµl .

8.1. Dynamic Programming. The goal of this section is to give a brief intro-
duction to dynamic programming. The main results we will need are the dynamic
programming equation or Bellman equation (8.6), which allows us to construct ex-
plicitly a candidate optimal control strategy in separated form, and the verification
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Lemma 8.4, which verifies that the strategy constructed through the dynamic pro-
gramming equation is indeed optimal. As motivation for the Bellman equation we will
first prove the “converse” of the verification lemma: if an optimal separated strategy
exists, then the Bellman equation follows. The Bellman equation can also be intro-
duced in a more general context without this assumption, and without any reference
to separated strategies; this will be discussed briefly at the end of this section.

Let us begin by considering a separated control strategy µ ∈ KS . A central idea
in dynamic programming is that one should consider separately the cost incurred over
different time intervals within the total control interval 0, . . . , k. To this end, let us
introduce the cost-to-go

Wl(µ, ρ) = E
µ

[
k∑

i=l+1

Tr[ρµi−1Q(uµi )]∆t+Tr[ρµkK]

∣
∣
∣
∣
∣
ρµl = ρ

]

.

The quantity Wl(µ, ρ) is the cost incurred by the control µ over the interval l, . . . , k,
given that ρµl = ρ. Note in particular that W0(µ, ρ0) = J(µ). It is straightforward to
obtain a recursion for Wl(µ, ρ) using the Markov property of the controlled filter:

Wl(µ, ρ) = E
µ[Tr[ρµl Q(uµl+1)]∆t+Wl+1(µ, ρ

µ
l+1)|ρ

µ
l = ρ]

= Tr[ρQ(gl(ρ))]∆t+
∑

∆y=±λ

p(∆y; ρ, gl(ρ))Wl+1(µ,Γ(ρ, gl(ρ),∆y)),
(8.5)

with the terminal condition Wk(µ, ρ) = Tr[ρK].
The goal of optimal control theory is to find, if possible, a control strategy µ∗

that minimizes J(µ). For the time being, let us suppose that such a strategy exists
within the class of separated controls, i.e., that µ∗ ∈ KS is such that J(µ∗) ≤ J(µ) for
any µ ∈ KS . It is not unnatural to expect that the same strategy µ∗ also minimizes
Wl(µ, ρ) for any l and ρ: if the strategy µ∗ is optimal over the full time interval
0, . . . , k, then it should also be optimal over any subinterval l, . . . , k. If we assume
that this is indeed the case, then we can simplify the expression for Wl(µ

∗, ρ):

Wl(µ
∗, ρ) = inf

µ∈KS

Wl(µ, ρ)

= inf
gl,...,gk



Tr[ρQ(gl(ρ))]∆t+
∑

∆y=±λ

p(∆y; ρ, gl(ρ))Wl+1(µ,Γ(ρ, gl(ρ),∆y))





= inf
gl



Tr[ρQ(gl(ρ))]∆t+ inf
gl+1,...,gk

∑

∆y=±λ

p(∆y; ρ, gl(ρ))Wl+1(µ,Γ(ρ, gl(ρ),∆y))





= inf
gl



Tr[ρQ(gl(ρ))]∆t+
∑

∆y=±λ

p(∆y; ρ, gl(ρ)) inf
µ∈KS

Wl+1(µ,Γ(ρ, gl(ρ),∆y))





= inf
gl



Tr[ρQ(gl(ρ))]∆t+
∑

∆y=±λ

p(∆y; ρ, gl(ρ))Wl+1(µ
∗,Γ(ρ, gl(ρ),∆y))



 .

The following lemma makes these ideas precise.
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Lemma 8.3 (dynamic programming equation). Suppose µ∗ ∈ KS is optimal in
KS , i.e., J(µ∗) ≤ J(µ) for any µ ∈ KS, and define Vl(ρ) =Wl(µ

∗, ρ). Then

Vl(ρ) = inf
u∈U



Tr[ρQ(u)]∆t+
∑

∆y=±λ

p(∆y; ρ, u)Vl+1(Γ(ρ, u,∆y))



 , l < k,

Vk(ρ) = Tr[ρK](8.6)

for all l and any ρ that is reachable under µ∗ in the sense that P
µ∗

(ρµ
∗

l = ρ) > 0.
Moreover, the infimum in (8.6) is attained at u = g∗l (ρ).

Proof. In view of the discussion above, it suffices to show that the conditions
of the lemma imply that µ∗ minimizes Wl(µ, ρ), i.e., that Wl(µ

∗, ρ) ≤ Wl(µ, ρ) for
any µ ∈ KS , l = 0, . . . , k, and any reachable ρ. To this end, let us suppose that this
statement holds for time step l + 1. Then by (8.5)

Tr[ρQ(gl(ρ))]∆t+
∑

∆y=±λ

p(∆y; ρ, gl(ρ))Wl+1(µ
∗,Γ(ρ, gl(ρ),∆y)) ≤Wl(µ, ρ)

for any µ ∈ KS and reachable ρ. Note that the left-hand side is precisely Wl(µ
′, ρ),

where µ′ is the control strategy that coincides with µ at time l and with µ∗ at all
other times (this follows asWl+1(µ

∗, ρ) depends only on the control functions at times
l+1, . . . , k). We would like to show that the left-hand side is bounded from below by

Wl(µ
∗, ρ) = Tr[ρQ(g∗l (ρ))]∆t +

∑

∆y=±λ

p(∆y; ρ, g∗l (ρ))Wl+1(µ
∗,Γ(ρ, g∗l (ρ),∆y))

for all reachable ρ. Suppose that this is not the case. We define a new control strategy
µ̄ ∈ KS as follows. At time l, we set

ḡl(ρ) =

{
g∗l (ρ), Wl(µ

∗, ρ) ≤Wl(µ
′, ρ),

gl(ρ) for all other ρ.

For any time i �= l, we let µ̄ coincide with µ∗, i.e., ḡi(ρ) = g∗i (ρ) for i �= l. Clearly,

Wl(µ̄, ρ) = Tr[ρQ(ḡl(ρ))]∆t

+
∑

∆y=±λ

p(∆y; ρ, ḡl(ρ))Wl+1(µ
∗,Γ(ρ, ḡl(ρ),∆y)) ≤Wl(µ

∗, ρ),

with strict inequality for some reachable ρ. But then

J(µ∗) = E
µ∗

[
l∑

i=1

Tr[ρµ
∗

i−1Q(g∗i−1(ρi−1))]∆t+Wl(µ
∗, ρµ

∗

l )

]

≥ J(µ̄),

which contradicts optimality of µ∗. Hence evidently Wl(µ
∗, ρ) ≤ Wl(µ, ρ) also for

time step l. It remains to notice that the statement holds trivially for l = k as
Wk(µ, ρ) = Tr[ρK] is independent of µ, and hence for any l = 0, . . . , k by induction.

Returning to the statement of the lemma, (8.6) can now be obtained as above,
and the fact that the infimum is attained at g∗l (ρ) follows directly if we compare (8.6)
with the expression for Wl(µ

∗, ρ) given by (8.5). Hence the proof is complete.
Let us now consider (8.6) without assuming that an optimal control µ∗ exists. As

a backwards-in-time recursion, this expression makes sense without any reference to
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µ∗. Vl(ρ) is uniquely defined for any l = 0, . . . , k and ρ: after all, the cost quantities
Tr[ρQ(u)] and Tr[ρK] are bounded from below, so that the infimum exists and is
uniquely defined at every step in the recursion starting from the terminal time k.

Equation (8.6) is called the dynamic programming equation or Bellman equation.
By Lemma 8.3, we find that if an optimal control µ∗ ∈ KS exists, then it must be
the case that Vl(ρ) = Wl(µ

∗, ρ) and that all the infima in the recursion are attained;
moreover, in this case an optimal control can be recovered by choosing the control
functions gl(ρ) to be minimizers at every step in the Bellman recursion.

One could now ask whether the converse also holds true. Suppose that in the
Bellman recursion all the infima turn out to be attained. Then we can define a
separated control strategy µ∗ by setting

(8.7) g∗l (ρ) ∈ argmin
u∈U



Tr[ρQ(u)]∆t+
∑

∆y=±λ

p(∆y; ρ, u)Vl+1(Γ(ρ, u,∆y))



 .

The question is, does this imply that µ∗ is optimal? This is indeed the case, as we will
show in the following lemma. Note that this immediately gives a constructive way of
finding optimal controls, which is precisely the main idea of dynamic programming.

Lemma 8.4 (verification and separation). Suppose that all the infima in the
Bellman equation are attained. Then any control µ∗ defined by (8.7) is optimal in
K, i.e., J(µ∗) ≤ J(µ) for any µ ∈ K. Moreover, Vl(ρ) = Wl(µ

∗, ρ) for any l and all
reachable ρ, and in particular V0(ρ0) = J(µ∗).

Proof. By substituting (8.7) in (8.6) and comparing with (8.5), the last statement
is evident. It remains to show that J(µ∗) ≤ J(µ) for any µ ∈ K. Note that

Vl(ρ
µ
l ) ≤ Tr[ρµl Q(uµl+1)]∆t+

∑

∆y=±λ

p(∆y; ρµl , u
µ
l+1)Vl+1(Γ(ρ

µ
l , u

µ
l+1,∆y))

by (8.6), where we have chosen an arbitrary µ ∈ K. But by Lemma 8.2, this is

Vl(ρ
µ
l ) ≤ Tr[ρµl Q(uµl+1)]∆t+ E

µ(Vl+1(ρ
µ
l+1)|Y

µ
l ).

By recursing the relation backwards from l = k − 1, we obtain

V0(ρ0) ≤ E
µ

[
k∑

l=1

Tr[ρµl−1Q(uµl )]∆t+Tr[ρµkK]

]

= J(µ).

But we have already established that V0(ρ0) = J(µ∗), hence the result follows.
Let us reflect for a moment on what we have achieved. We began by showing

that the cost-to-go for any strategy µ∗ that is optimal in the class KS of separated
controls must satisfy the Bellman recursion. Conversely, if the infima in the Bellman
equation are all attained, we can construct a control strategy µ∗ by solving the Bellman
recursion (dynamic programming). We then verified in Lemma 8.4 (the verification
lemma) that the strategy thus constructed is indeed optimal, not only in the class of
separated controls but in the class K of all admissible controls. Combining these two
results, we conclude that any strategy that is optimal in KS is necessarily optimal
within the larger class K (Lemma 8.4 is also called the separation lemma for this
reason). This shows that the idea of separated controls is very natural, and indeed
universal, for this type of control problem.

Remark 8.5. We have not given conditions under which existence of the infima
in the Bellman recursion is guaranteed. This can be a delicate issue; see, e.g., [15].
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However, if U is a finite set the infima are trivially attained. This particularly simple
case is also the most straightforward to implement on a computer.

Remark 8.6. The results above are formulated only for reachable ρ. This is as it
should be, as for nonreachable ρ the cost-to-go is defined as a conditional expectation
on a set of measure zero and is thus not unique. These issues are irrelevant, however,
to the application of the dynamic programming algorithm and the verification lemma,
which are the most important results of this section.

Finally, we briefly remark on the case where the infima in the Bellman equation are
not attained. It follows from Lemma 8.3 that there cannot exist an optimal separated
control in this case. Nonetheless the solution Vl(ρ) of the Bellman equation, called
the value function, is still a relevant quantity; it can be shown to be the infimum
(not minimum!) of the cost-to-go over a suitable class of (not necessarily separated)
controls. This characterization can be useful in practice, for example, if we wish to
quantify the performance of suboptimal controls.

This approach also provides a different entry point into the theory of dynamic
programming than the one we have chosen, providing additional insight into the
structure of the theory. One could begin by proving directly that the value function
Vl(ρ), now defined as the infimum of the cost over the time horizon l, . . . , k, satisfies
the dynamic programming equation. This does not require us to assume the existence
of an optimal control, and in particular places no a priori preference on the class of
separated controls. The only thing that is needed is the fact that the filtering equation
is a controlled Markov process, which is key to the entire procedure. Indeed, we have
used this property in an essential way in the form of Lemma 8.2. If the infima in the
Bellman recursion are attained, then we can construct an explicit separated control
strategy as was demonstrated above; verification then proceeds as we have indicated.

We will not further detail this approach here, as we do not need these results
in what follows. We refer to [15] for an extensive study of discrete time dynamic
programming, or to, e.g., [35] for the continuous time case.

8.2. Information States. The key idea that facilitated the dynamic program-
ming solution to the optimal control problem discussed above was the representation
of the cost J(µ) in terms of the filtered quantity ρµl . This is an instance of a general
methodology involving information state representations [60, Chapter 6]. An infor-
mation state is a quantity that is causally computable from information available
to the controller, i.e., the observation record and previous choices of control values.
The dynamic evolution of the information state is given by an information state fil-
ter. Solving a given optimal control problem reduces to expressing the cost function
exclusively in terms of a suitable information state, then applying the dynamic pro-
gramming method. The resulting optimal feedback control will be a separated control
relative to the information state filter. In the previous sections we used the density
operator ρµl as an information state to represent the cost J(µ), as indicated in the
calculation (8.2), and the filter for this information state was given by (7.9).

The choice of information state for a given problem is not unique. In the case
of the cost function J(µ) defined by (8.1), we could also use the unnormalized condi-
tional density operator ̺µl discussed in section 7.4 as an information state, with the
corresponding filter (7.10). To see this, we use the reference probability method and
condition on Cl as follows. We begin by defining the state

P0µ[X ] = P[Uµ(k)XUµ(k)∗], X ∈ M ⊗ Wk,

and we denote the associated classical state, as obtained through the spectral theorem,
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by P
0µ. Under P

0µ, ∆y1, . . . ,∆yk are i.i.d. random variables taking values ±λ with
equal probability, and in particular the law of the process ∆y under P

0µ is independent
of the feedback control µ ∈ K. Then (cf. (8.2)) we have

J(µ) = P

[
k∑

l=1

V µ(l − 1)∗Q(ǔl)V
µ(l − 1)∆t(l) + V µ(k)∗KV µ(k)]

]

= P

[
k∑

l=1

P[V µ(l − 1)∗Q(ǔl)V
µ(l − 1)|Cl−1] ∆t(l) + P[V µ(k)∗KV µ(k)|Ck]

]

= P

[
k∑

l=1

Uµ(k)Uµ(k)∗P[V µ(l − 1)∗Q(ǔl)V
µ(l − 1)|Cl−1]U

µ(k)Uµ(k)∗ ∆t(l)

+ Uµ(k)Uµ(k)∗P[V µ(k)∗KV µ(k)|Ck]Uµ(k)Uµ(k)∗
]

,

where the change of state operator V µ(l) was defined in Lemma 7.6. Now recall
that Uµ(k)∗P[X |Cl]Uµ(k) = Uµ(l)∗P[X |Cl]Uµ(l); see the proof of the nondemolition
property in section 2.5. Changing to the state P0µ, we therefore obtain

J(µ) = P0µ

[
k∑

l=1

σµl−1[Q(ǔl)]∆t(l) + σµk [K]

]

= E
0µ

[
k∑

l=1

ι(σµl−1[Q(ǔl)])∆t+ ι(σµk [K])

]

= E
0µ

[
k∑

l=1

Tr[̺µl−1Q(uµl )]∆t+Tr[̺µkK]

]

,

where the unnormalized conditional state σµl was defined by (7.8) and ̺µl is the asso-
ciated density matrix. Using this representation, we can define a value function Sl(̺)
and find an optimal control using the alternate dynamic programming equation

Sl(̺) = inf
u∈U



Tr[̺Q(u)]∆t+
∑

∆y=±λ

p0(∆y)Sl+1(Σ(̺, u,∆y))



 , l < k,

Sk(̺) = Tr[̺K],

where p0(∆y = ±λ) = 0.5. In fact, the optimal control is given by

h∗l (̺) ∈ argmin
u∈U



Tr[̺Q(u)]∆t+
∑

∆y=±λ

p0(∆y)Sl+1(Σ(̺, u,∆y))



 .

This is a separated feedback control relative to the information state filter (7.10).
The conditional state (either normalized or unnormalized) is not the correct choice

for every cost function. In 1981 Whittle [82] discovered a different type of informa-
tion state for optimal control problems with exponential cost functions (risk-sensitive
control), which are not solvable using the standard conditional states. Instead, the
filter for the corresponding information state depends explicitly on quantities defining
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the cost function, and the optimal feedback control is separated relative to this filter.
Following [50] we now explain this briefly in the context of this paper.

In the quantum setting, a risk-sensitive cost can be defined by

Jθ(µ) = P

[

C(k)∗eθj
µ

k
(K)C(k)

]

,

where ∆C(l) = θ
2j
µ
l−1(Q(ǔl−1))C(l − 1)∆t(l), C(0) = I, defines the “exponential”

running cost, and θ > 0 is a fixed real parameter (the risk parameter). Let us now
define Ũµ(l) = Uµ(l)C(l) (which is not unitary in general), so that

Jθ(µ) = P

[

Ũµ(k)∗eθKŨµ(k)
]

.

We can now proceed as in the previous part of this section to express the control cost
in terms of an unnormalized filtered quantity. The corresponding filter is not obtained
from the usual unitary Uµ(l), however, but from the modified operator Ũµ(l). We
can obtain a change-of-state operator Ṽ µ(l) as in Lemma 7.6, which gives rise to an
information state filter that depends explicitly on the running cost Q(u). We can
subsequently express Jθ(µ) in terms of this filter, and the optimal control problem
can then be solved using dynamic programming. We leave the details as an exercise.

In classical stochastic control, the risk-sensitive cost is known to possess improved
robustness properties compared to the usual cost J(µ); in particular, as the risk
parameter θ increases, the optimal performance becomes less sensitive to the details
of the underlying model. To what extent these advantages carry over to the quantum
case remains to be explored (but see [51]).

8.3. Example. We will give a numerical example of dynamic programming for a
particularly simple system—a controlled version of the dispersive interaction model.

The Controlled Quantum Flow. We consider again the dispersive interaction
model of section 2.6, but now we add a control input. The controlled repeated inter-
action matrices are now given by

L1(u) = 0, L2(u) = iσz, L3(u) = iu(σ+ − σ−).

Such an interaction can be realized in certain systems by applying a magnetic field
of strength u to the atom; see, e.g., Figure 1.1, in addition to the usual dispersive
interaction with the electromagnetic field. In principle any u ∈ R is admissible, i.e.,
we should take U = R. As we will be evaluating the dynamic programming recursion
numerically, however, it is more convenient to discretize the admissible controls, i.e.,
we choose U = {−Kε,−(K− 1)ε, . . . ,Kε} ⊂ R, where ε is the discretization step size
and 2K + 1 is the total number of admissible controls.

Our first task is to evaluate the matrices M±,+,−,◦(u) in the controlled difference
equation. Let us calculate explicitly

Ml(u) = exp(σz(∆A
∗(l)−∆A(l)) + u(σ+ − σ−)∆t(l)).

Writing

B(u) = σz ⊗ λ (σ+ − σ−) + u(σ+ − σ−)⊗ λ2I =







0 λ2u λ 0
−λ2u 0 0 −λ
−λ 0 0 λ2u
0 λ −λ2u 0






,
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we calculate the matrix exponential

eB(u) =









cos(λw(u)) uλ sin(λw(u))
w(u)

sin(λw(u))
w(u) 0

−uλ sin(λw(u))
w(u) cos(λw(u)) 0 − sin(λw(u))

w(u)

− sin(λw(u))
w(u) 0 cos(λw(u)) uλ sin(λw(u))

w(u)

0 sin(λw(u))
w(u) −uλ sin(λw(u))

w(u) cos(λw(u))









,

where we have written w(u) =
√
1 + λ2u2. Hence we obtain

Ml(u) =
sin(λw(u))

λw(u)
σz (∆A

∗(l)−∆A(l))

+

[
cos(λw(u)) − 1

λ2
+

sin(λw(u))

λw(u)
u(σ+ − σ−)

]

∆t(l) + I.

We can now immediately determine the coefficients in the quantum stochastic differ-
ence equation for the controlled dispersive interaction model:

M±(u) = 0, M+(u) =
sin(λw(u))

λw(u)
σz ,

M−(u) = − sin(λw(u))

λw(u)
σz , M◦(u) =

cos(λw(u)) − 1

λ2
+

sin(λw(u))

λw(u)
u (σ+ − σ−).

An Invariant Set. The solution ρµl of the filtering recursion is always a density
matrix; recall that ι(πµl (X)) = Tr[ρµl X ] is a positive map with πµl (I) = 1, so that ρµl
must be a positive matrix and have unit trace. Then the goal of dynamic programming
is to calculate the feedback function g∗l (ρ) for any time step l and density matrix ρ.
Unfortunately, even the space of 2× 2 density matrices is rather large; discretization
of this space, as would be necessary for computer implementation of the dynamic
programming recursion, would require a tremendous number of discretization points.
For this reason dynamic programming is computationally expensive, prohibitively so
in moderate- to high-dimensional systems where optimal control theory often plays the
role of a benchmark rather than a practical solution. In such cases, one is compelled
to settle for control designs that are suboptimal, i.e., they do not minimize a cost
function. We will briefly explore one such approach in section 9.

The simple example treated in this section, however, has a feature which signif-
icantly simplifies the implementation of dynamic programming. As we will demon-
strate shortly, there is an invariant set of density matrices which is parametrized by
points on a circle; i.e., if we start the filter somewhere on this circle, it will always
remain there. This reduces the dynamic programming algorithm to the calculation of
the feedback function g∗l (ρ) on the circle. With a sufficiently accurate discretization
of the circle, this problem can be solved numerically without too many complications.
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To find the desired invariant set, note that

Lµ(σz , u) =
sin(2λw(u))

λw(u)
u (σ+ + σ−)− 2u2 sin2(λw(u))

w(u)2
σz ,

J µ(σz , u) =
sin(2λw(u))

λw(u)
I,

Lµ(σ+ + σ−, u) = − sin(2λw(u))

λw(u)
u σz −

2 sin2(λw(u))

λ2
(σ+ + σ−),

J µ(σ+ + σ−, u) = −2u sin2(λw(u))

w(u)2
I,

J µ(I, u) = sin(2λw(u))

λw(u)
σz +

2u sin2(λw(u))

w(u)2
(σ+ + σ−).

(8.8)

Hence evidently the recursion for πµl (σz) and πµl (σ+ + σ−) forms a closed set of
equations. We claim furthermore that πµl (σz)

2 + πµl (σ+ + σ−)2 = I for all l, if this is
true for l = 0. The algebra is a little easier if we consider the unnormalized version;
using the discrete Itô rule, we calculate

∆(σµl (X)2)

=
{
2σµl−1(X)σµl−1(Lµ(X,u

µ
l )) + λ2σµl−1(Lµ(X,u

µ
l ))

2 + σµl−1(J µ(X,u
µ
l ))

2
}
∆t(l)

+ 2σµl−1(X + λ2Lµ(X,uµl ))σ
µ
l−1(J µ(X,u

µ
l ))∆Y

µ(l).

A tedious but straightforward calculation shows that

∆[σµl (σz)
2+σµl (σ++σ−)

2−σµl (I)2] = ϑu,λ [σ
µ
l−1(σz)

2+σµl−1(σ++σ−)
2−σµl−1(I)

2] ∆t(l),

where ϑu,λ is a complicated function of u and λ. Hence if πµ0 (σz)
2+πµ0 (σ++σ−)

2 = I,
it follows that πµl (σz)

2 + πµl (σ+ + σ−)2 = I for all l.
Now let ρ̃ be any density matrix. The remaining insight we need is that if we are

given x, z ∈ R such that Tr[ρ̃(σ+ + σ−)] = x, Tr[ρ̃σz ] = z, and x2 + z2 = 1, then this
uniquely determines ρ̃. To see this, let us write without loss of generality x = sin θ
and z = cos θ. Using the constraints Tr[ρ̃(σ+ +σ−)] = sin θ, Tr[ρ̃σz] = cos θ, Trρ = 1,
and ρ = ρ∗, we easily find that

ρ̃ =

(
1
2 + 1

2 cos θ 1
2 sin θ + iβ

1
2 sin θ − iβ 1

2 − 1
2 cos θ

)

for some β ∈ R.

But we can explicitly calculate the eigenvalues of this matrix as 1
2 (1± (1 + 4β2)1/2),

so that the remaining requirement for the density matrix ρ ≥ 0 implies that β = 0.
Hence we conclude that the “circle” of density matrices

S1 =

{(
1
2 + 1

2 cos θ 1
2 sin θ

1
2 sin θ 1

2 − 1
2 cos θ

)

: θ ∈ [0, 2π)

}

,

parametrized by the angle θ, is invariant under the filtering equation for our controlled
quantum flow in the sense that ρµl ∈ S1 for all l if ρ0 ∈ S1. We can thus restrict the
dynamic programming recursion to this set, which yields a feedback control law on
the circle of the form gl(θ).
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Fig. 8.1 The optimal control function g∗
l
(θ), for selected l, obtained by applying the dynamic pro-

gramming algorithm to the cost function (8.9). During the major portion of the control
interval, the feedback function is essentially equal to the first plot; the control passes through
zero at the state of maximal energy and has a break at the point of minimal energy. Close
to the terminal time, the optimal control varies a little to accommodate the terminal cost.

Dynamic Programming. We are now in a position to solve the dynamic pro-
gramming algorithm numerically. To this end, we have discretized the circle into
a set of 105 equidistant points, and we have discretized the control set U into 400
equidistant points in the interval [−10, 10]. As in the previous simulations, we have
chosen λ−2 = 300 and a terminal time of 3 (i.e., k = 900).

As a first control goal, suppose we would like to maximize the expected energy,
i.e., we would like to drive Tr[ρµl σz] to +1. To this end, we use the cost (8.1) with

Q(u) = Cu2 +D(I − σz),

K = I − σz .(8.9)

The first term in Q(u) penalizes the use of large control strengths, which is necessary
in any practical feedback loop. The second term tries to minimize 1−Tr[ρµl σz ] during
the running time of the system, whereas the terminal cost tries to minimize the
terminal value of 1−Tr[ρµl σz]. The constants C,D > 0 determine the relative weights
attributed to these control goals. As an example, we have chosen C = 0.25, D = 5.
The corresponding optimal feedback function gl(θ) is plotted for several times l in
Figure 8.1. Note that the control passes through zero at the state of maximal energy
θ = 0, whereas the break at θ = π drives the system away from the state of minimal
energy. This is not unexpected, as both θ = {0, π} are fixed points of the filter (see
section 5.6); the break in the control destabilizes the undesired minimal energy state.

As a second example, suppose we would like to drive the system close to the point
where Tr[ρµl σz ] = Tr[ρµl σx] = 2−1/2, i.e., θ = π/4. This point is uniquely characterized

by Tr[ρµl (σz + σx)] =
√
2, so we choose

Q(u) = Cu2 +D(I −X),

K = I −X,(8.10)

where X = 2−1/2(σx + σz) and, for example, C = 0.25 and D = 5. The optimal
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Fig. 8.2 The optimal control function g∗
l
(θ) for the cost (8.10). As before, the feedback function is

essentially equal to the first plot during the major portion of the control interval, and the
control passes through zero at the target state. In this case, however, the control function
is not discontinuous at the point of the circle opposite to the target state.

Fig. 8.3 The cost J(µ∗), as a function of ρ0 ∈ S1, for the optimal control strategy µ∗ minimizing
the cost (a) (8.9) and (b) (8.10). The cost is simply obtained as the final value function
in the dynamic programming recursion, J(µ∗)(ρ0) = V0[ρ0]. In case (a) the cost is zero
at θ = 0: after all, the target point is a fixed point of the filter, so no cost is accumulated
if we start at the target point. This is not the case in (b), where the target point is not a
fixed point.

feedback function for this case is plotted in Figure 8.2. Once again, the feedback
function passes through zero at the target point θ = π/4. However, note that the
function is no longer singular; as the opposite point on the circle is not a fixed point
of the filter in this case, it is evidently more efficient to let the filter drive itself toward
the target point without expending additional control effort.

Finally we have plotted the optimal cost J(µ∗) as a function of the initial state ρ ∈
S1 in Figure 8.3. The cost is easily obtained as a byproduct of dynamic programming,
as it is simply given by the value function at time zero. Note that in the case of our
first example, zero cost is possible: as the target θ = 0 is a fixed point of the filter,
no cost is accumulated if the system is initially in its state of maximal energy. In our
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second example, on the other hand, this is not the case: even if we start at the target
state θ = π/4, the filter will fluctuate around this point and a total cost (just under
J [µ∗] = 2) is accumulated over the control interval.

9. Lyapunov Control. Many control design methods other than optimal control
have been developed and are applied in control engineering, for a variety of reasons.
Indeed, the applicability of dynamic programming is limited by computational com-
plexity for use in low-dimensional problems or in situations where explicit solutions
are available. Among the alternative methods are Lyapunov design methods, and the
purpose of this section is to demonstrate their use in our quantum context.

Consider, for example, the following scenario. Recall that the dispersively inter-
acting atom, when untouched by the experimenter, has constant but unknown energy;
our control goal is to drive the energy to a particular value of our choice, say, +�ω0/2.
In the absence of sharp time constraints this problem is not uniquely expressed as an
optimal control problem: what cost should one choose? All we want to achieve is that
P(jl(H)) → �ω0/2 for large l, a much more modest control goal than the absolute
minimization of a particular cost function. Hence dynamic programming is unneces-
sarily complicated for the problem at hand, and we can resort to a simpler method
for control design. In this section we will design a controller for the control problem
described above through a very simple Lyapunov function method, similar in spirit to
[80]. The simplicity of the method is its chief feature: not only will we find a feedback
function that works, but the resulting feedback function is also of a very simple form
and is easily implementable.

As before, we can easily express the control goal in terms of the filter P(jl(H)) =
P(πl(H)) → �ω0/2 for large l. We will design a separated control that achieves
this goal. The Markov property of the filter with separated controls is key to the
procedure: it allows us to treat the problem entirely at the level of the filter, without
reference to the original repeated interaction model.

9.1. Lyapunov Stability. The main tool is the following Lyapunov theorem for
Markov processes, taken directly from [62].

Theorem 9.1 (Lyapunov theorem). Let xl be a (classical) Markov process. Sup-
pose there exists a nonnegative (Lyapunov) function V (x) ≥ 0 that satisfies

E(∆V (xl)|σ{xl−1}) = E(V (xl)|σ{xl−1})− V (xl−1) = −k(xl−1) ≤ 0 ∀ l,

where k(x) ≥ 0 is another nonnegative function. Then k(xl) → 0 as l → ∞ a.s.
Proof. Fix some n > 0. As V (x) is a nonnegative function, clearly

V (x0) ≥ V (x0)− E(V (xn)).

But by the condition of the theorem, we obtain

E(V (xn)) = E(V (xn−1)− k(xn−1)) = E(V (xn−2)− k(xn−2)− k(xn−1)) = · · · .

Iterating this procedure, we obtain

V (x0) ≥ E

(
n−1∑

l=0

k(xl)

)

.
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As this holds for any n and as V (x0) <∞, the right-hand side is finite for any n. But

∞∑

l=0

P(k(xl) ≥ ε) ≤ 1

ε
E

(
∞∑

l=0

k(xl)

)

<∞ ∀ ε > 0

by Chebyshev’s inequality, so the Borel–Cantelli lemma gives k(xl) → 0 a.s.
Remark 9.2. Previously we did everything on a fixed time horizon l = 0, . . . , k.

Now, however, we are considering what happens as l → ∞, so technically a little more
care is needed. The reader should convince himself that not much changes in this case.
In particular, there is no need to deal directly with an infinite-dimensional algebra
W∞ = M⊗∞ corresponding to an infinite number of time slices of the electromagnetic
field. Rather, one can use the natural embedding i : M ⊗ Wk → M ⊗ Wk+1, i(X) =
X ⊗ I, and the sequence of probability spaces Ωk ⊂ Ωk+1 obtained by applying the
spectral theorem to the corresponding observation algebras, to give meaning to infinite
time limits without functional analytic complications (provided the time step λ and
the repeated interaction model are fixed). We leave the details as an exercise.

Before we design the controller, let us verify that without control it is indeed the
case that πl(H) → ±�ω0/2 a.s. This already demonstrates the Lyapunov theorem.

Lemma 9.3. If uµl = 0, then Tr[ρµl σz ] → ±1 with unit probability.
Proof. We will use the Lyapunov function V (ρµl ) = 1 − Tr[ρµl σz ]

2, which is
nonnegative and is zero precisely when Tr[ρµl σz ] = ±1. Using the filtering equation
with uµl = 0 and (8.8), we find that

∆Tr[ρµl σz ] =
sin(2λ)

λ

V (ρµl−1)

cos2(2λ) + sin2(2λ)V (ρµl−1)
∆ỹµl ,

where ỹµl is the innovations process. Using the quantum Itô rule,

∆V (ρµl ) = − sin2(2λ)

λ2

V (ρµl−1)
2

(cos2(2λ) + sin2(2λ)V (ρµl−1))
2
(∆ỹµl )

2 + (· · · )∆ỹµl .

But E
µ(∆ỹµl |Y

µ
l−1) = 0 by the martingale property, and furthermore

E
µ((∆ỹµl )

2|Y µ
l−1) = (1− λ2 Tr[J (ρµl−1)]

2)∆t = (cos2(2λ) + sin2(2λ)V (ρµl−1))∆t,

where we have used (∆Ỹ (l))2 = (· · · )∆Ỹ (l)+ (∆Y (l))2 − (∆C(l))2 as in the proof of
Lemma 5.8. Hence we find

E
µ(∆V (ρµl )|σ{ρ

µ
l−1}) = − sin2(2λ)

λ2

V (ρµl−1)
2

cos2(2λ) + sin2(2λ)V (ρµl−1)
∆t ≤ 0.

The lemma now follows from the Lyapunov theorem.

9.2. Construction of a Lyapunov Control. We now turn to the control de-
sign. We wish to find a (time-invariant) feedback control uµl = g(ρµl−1) so that
P(πµl (σz)) → +1 as l → ∞. The way we approach this problem is to use a trial
Lyapunov function V (ρ) without fixing the control g. By inspecting the expression
for E

µ(∆V (ρµl )|σ{ρ
µ
l−1}), we can subsequently try to choose g so that this expression

is nonpositive and is zero only at (or in a small neighborhood of) the point ρ̃ ∈ S1,
where Tr[ρ̃σz] = +1. The desired result follows by dominated convergence.
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Let us implement this procedure. Choose the trial Lyapunov function V (ρ̃) =
1−Tr[ρ̃σz ]. Using the filtering equation with uµl = g(ρµl−1), (8.8), and the martingale
property of the innovations, we find that

E
µ(∆V (ρµl )|σ{ρ

µ
l−1}) = −

sin(2λw(f(ρµl−1)))

λw(f(ρµl−1))
f(ρµl−1)Tr[ρ

µ
l−1(σ+ + σ−)]∆t

+
2f(ρµl−1)

2 sin2(λw(f(ρµl−1)))

w(f(ρµl−1))
2

Tr[ρµl−1σz ] ∆t.

As a first attempt, consider the following feedback function:

f(ρ̃) =

{
−1 if Tr[ρ̃(σ+ + σ−)] < 0,
+1 if Tr[ρ̃(σ+ + σ−)] ≥ 0.

Then

E
µ(∆V (ρµl )|σ{ρ

µ
l−1})

∆t
= − sin(2λw(1))

λw(1)
|Tr[ρµl−1(σ++σ−)]|+

2 sin2(λw(1))

w(1)2
Tr[ρµl−1σz ].

Keeping in mind that ρµl ∈ S1 for all l, clearly there exists some δ > 0 such that this
expression is strictly negative for Tr[ρµl−1σz] < 1− δ; in fact, δ is the solution of

− sin(2λw(1))

λw(1)

√

(2− δ)δ +
2 sin2(λw(1))

w(1)2
(1− δ) = 0.

To keep E
µ(∆V (ρµl )|σ{ρ

µ
l−1}) nonpositive everywhere, we now modify the control

function to turn off the feedback in the set Tr[ρµl−1σz ] ≥ 1− δ:

(9.1) g(ρ̃) =







0 if Tr[ρ̃σz] ≥ 1− δ,

−1 if Tr[ρ̃(σ+ + σ−)] < 0 and Tr[ρ̃σz] < 1− δ,

+1 if Tr[ρ̃(σ+ + σ−)] ≥ 0 and Tr[ρ̃σz] < 1− δ.

This ensures that E
µ(∆V (ρµl )|σ{ρ

µ
l−1}) ≤ 0, where the equality holds only when

Tr[ρµl−1σz ] ≥ 1− δ. The Lyapunov theorem then guarantees that Tr[ρµl σz ] converges
to the set [1 − δ, 1]; i.e., lim inf l→∞ Tr[ρµl σz ] ≥ 1 − δ with unit probability. For
λ≪ 1, the threshold δ will be very small and hence the Lyapunov theorem guarantees
convergence to a tiny neighborhood of the desired control goal. For example, with
the choice λ−2 = 300, which we have used in the simulations, δ ≈ 5.6× 10−6.

Remark 9.4. We can do better than proving convergence to a small neighborhood
of the target point. In addition to the convergence k(xt) → 0, the invariant set
theorems [62] tell us that xt itself converges to the largest invariant set contained
in {x : k(x) = 0} (the convergence is in probability, but this is easily strengthened
to a.s. convergence). As the only invariant set inside the set Tr[ρ̃σz] ≥ 1 − δ is the
target point Tr[ρ̃σz ] = 1, convergence is guaranteed. A full discussion of the required
theorems is beyond the scope of this article, and we refer to [62] for further details.

To illustrate the effectiveness of (9.1), we have used the Monte Carlo method to
simulate in Figure 9.1 several sample paths of the controlled filter. It is immediately
evident that the control goal was attained for the five sample paths plotted, and the
Lyapunov theorem guarantees that this is indeed the case for any sample path.

The discussion above is mainly intended as an illustration of an alternative to
optimal control theory, and we have only used the Lyapunov theory in its simplest
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Fig. 9.1 Five typical sample paths of the conditional expectation πl(H) of the atomic energy (top
plot) for the controlled quantum flow on the circle with separated feedback law (9.1). Note
that πl(H) = +�ω0/2 is always attained. The bottom plot shows the feedback signal uµ

l
=

g(ρµ
l−1
). The initial state was ρ(x) = 〈Φ, XΦ〉, ρ ∈ S1, the time scale is λ−2 = 300, and

δ = 6× 10−6.

form. Lyapunov methods can be extended to a large class of systems; see, e.g., [69],
whose treatment using optimal control would be out of the question due to the high
dimensionality of the state space. Some control goals other than strict convergence
can be treated using similar methods; for example, we could try to find a control law
so that a quantity such as E(|Tr[ρµl σz]−α|) for some α ∈ (−1, 1) becomes small (but
usually nonzero) as l → ∞; see, e.g., [86]. Beside the restricted set of control goals
that can be treated by Lyapunov methods, a drawback of such methods is that there
is no general recipe which one can follow for the design of controls; the choice of a
proper control and Lyapunov function has to be investigated on a case-by-case basis.
Ultimately the control goal of interest and the available resources determine which
method of control design—be it optimal control, Lyapunov methods, or some other
approach—is most suitable for the problem at hand.

10. References for Further Reading. We have come to the end of our exposition
on the filtering and control of discrete quantum models, though in many ways we
have only scratched the surface of the theory of quantum probability, filtering, and
stochastic control. The goal of this final section is to provide some entry points into
the literature for further reading.

Quantum Probability. We have used quantum probability theory in its simplest
finite-dimensional form, where only finite state random variables are available. In
practice such a description is very restrictive, and one needs a theory that admits
continuous random variables. The theory of operator algebras (e.g., Kadison and
Ringrose [53, 54] or Bratteli and Robinson [21]), particularly von Neumann algebras,
provides the proper generalization of the concept of a quantum probability space to the
infinite-dimensional context. For an accessible introduction to quantum probability
we refer to the excellent lecture notes by Maassen [65]. See also [16, 20] and the
references therein. The required background on functional analysis can be found,
e.g., in the textbook by Reed and Simon [74].



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

312 LUC BOUTEN, RAMON VAN HANDEL, AND MATTHEW R. JAMES

Readers with a background in physics might wonder why we did not use the
projection postulate in this paper. We do not need this postulate to develop the
theory, and in fact the projection postulate can be obtained as a special case within
the quantum probability framework used in this paper. See [20] for an example.

Quantum Noise and Stochastic Calculus. The three discrete noises—we have
suggestively denoted them as A(l), A∗(l), and Λ(l)—are replaced in the continuous
time theory by the standard noises At (the annihilation process), A∗

t (the creation
process), and Λt (the gauge process). For each time t, At, A

∗
t ,Λt are defined as

operators acting on a Hilbert space that is known as the Fock space, and the latter
plays a central role in the theory of quantum noise. The processes (At + A∗

t )t≥0

or (Λt)t≥0 each generate a commutative algebra; the spectral theorem allows us to
interpret the former as a diffusion process (a Wiener process in the vacuum state),
and the latter as a counting process (a Poisson process in a so-called coherent state,
and a.s. zero in the vacuum). A brief introduction is given in, e.g., [20].

Based on these processes, one can now proceed to define quantum stochastic inte-
grals and obtain the quantum Itô rule: dAt dA

∗
t = dt, dΛt dA

∗
t = dA∗

t , dAt dΛt = dAt,
and all other combinations are zero. Next one defines quantum stochastic differen-
tial equations, which provide “quantum noisy” versions of the famous Schrödinger
equation and form good models of actual physical systems, particularly those used in
quantum optics (see [36] for a physicist’s perspective). An accessible starting point
in the literature on quantum stochastic calculus are Hudson’s lecture notes [48]; see
also the original article by Hudson and Parthasarathy [49] and Parthasarathy’s book
[71]. Several other approaches to the theory have been developed since; some of these
appear in the book by Meyer [68] and the lecture notes of Biane [16].

Physical Models. The physical theory that describes the interaction of light (the
electromagnetic field) with matter (atoms, molecules, etc.) is called quantum electro-
dynamics; see the book by Cohen-Tannoudji, Dupont-Roc, and Grynberg [25]. Very
often, and in particular for the purposes of filtering and control, quantum electrody-
namics does not directly provide a usable model; these models are non-Markov. In
many systems, however, the Markov approximation is quite good, and applying this
approximation to models from quantum electrodynamics gives rise precisely to quan-
tum stochastic differential equations. The Markov approximation can be pursued at
different levels of rigor, ranging from the ad-hoc “whitening” of the noise which is
common in the physics literature [36] to rigorous Wong–Zakai-type limits [42, 1]. As
in classical probability theory it is also common to begin with a Markov model in
the form of a quantum stochastic differential equation, which is justified either on
phenomenological grounds or through a separate modeling effort.

The modeling of the detectors, e.g., photodetection or homodyne detection, is
another important topic. The operating principles of optical detectors are described
in many textbooks on quantum optics; see, e.g., [81, 66]. In the quantum stochastic
context we refer to, e.g., [36], or to the more mathematical perspective of Barchielli [7].

Continuous Limits of Discrete Models. The discrete models which we have used
throughout the paper are conceptually very similar to the more realistic continuous
models. There is more than a conceptual resemblance, however: these models in
fact converge to corresponding continuous models as we let the time step λ2 → 0.
Though there is no particular physical intuition behind this convergence except the
one we have already given—that small time slices of the field approximately contain
at most one photon—the convergence demonstrates that even results obtained using
these highly simplified models have some relevance to the physical world.
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A simple example of this convergence is easily verified. Recall that the classical
stochastic process x(l) = ι(A(l) + A∗(l)), with the measure induced by the vacuum
state, defines a symmetric random walk with step size λ. First, let us express this
process in terms of time t = lλ2 rather than the time step number l, i.e., xt =
x(⌊t/λ2⌋). Taking the limit (in law) as λ → 0 gives, by the usual functional central
limit argument (e.g., [39, p. 452]), a Wiener process. But ι(At + A∗

t ) is a Wiener
process, so we see that A(l) +A∗(l) converges to At +A∗

t at least in a weak sense.
Similarly, most of the expressions given in this article converge as λ→ 0 to their

continuous time counterparts. In particular the difference equation (4.1), the filtering
equations, etc., converge to (quantum) stochastic differential equations. Even the
discrete Itô table “converges” to the quantum Itô rules dAt dA

∗
t = dt, etc., if we

formally set ∆Λ → dΛ, ∆A → dA, ∆A∗ → dA∗, ∆t → dt, and terms such as
λ2∆A → 0 (this was noticed in [5, 72]). Evidently the discrete theory mirrors its
continuous counterpart quite faithfully, which is the motivation for this article.

Convergence of the discrete models was investigated by Lindsay and Parthasarathy
[63], Attal and Pautrat [6], and Gough [41]. These articles demonstrate convergence
(of various types) of the solution of the difference equation (4.1) to the solution of a
corresponding quantum stochastic differential equation. The convergence of discrete
filters to their continuous counterparts was investigated in Gough and Sobolev [43].

Conditional Expectations and Quantum Filtering. The concept of conditional
expectations in von Neumann algebras is an old one; see, e.g., [79]. However, a
much more pragmatic notion of conditional expectations on which the definition we
have given is based first appeared in the pioneering work of Belavkin; see, e.g., [12].
The necessity of the nondemolition property, which is the key to the development of
both filtering and feedback control, appeared in [8]. This opened the door for the
development of nonlinear filtering, which is described in detail in the difficult and
technical paper [12] using martingale methods. The reference probability approach
to quantum filtering, using the Bayes formula, appears in [17] (but see also [11, 40]).
An introduction to quantum filtering is given in [20] using both methods.

Feedback Control. An early investigation on optimal feedback control in discrete
time can be found in Belavkin’s 1983 paper [9]. The Bellman equation for continuous
optimal control appears in [10]. A recent exposition on quantum optimal control, and
in particular quantum LQG control, is given in [33]; see also [18], and see [30, 31] for a
physicist’s perspective. The separation theorem for the continuous time case appears
in [17]. A different type of optimal control problem, the risk-sensitive control problem
with exponential cost, is investigated in [50]. Finally, Lyapunov function methods for
control design are investigated in [80, 69].

Many applications of quantum feedback control have been considered in the
physics literature; we refer to the introduction for references. Note that the “quantum
trajectory equations” or “stochastic master equations” used in the physics literature
are precisely filtering equations, written in terms of the innovations process as the
driving noise rather than being driven by the observations. The notion of filtering
has only recently gained acceptance in the physics literature, though the relevant
equations had already been developed by physicists. The reader should beware of the
discrepancy in terminology and interpretation between the physical and mathematical
literature. However, as the Markov property of the filter allows us to pretend that
the filter itself is the system to be controlled, most of the control schemes found in
the physics literature make sense in both contexts.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

314 LUC BOUTEN, RAMON VAN HANDEL, AND MATTHEW R. JAMES

Acknowledgments. The authors would like to thank John Stockton for providing
a figure. L.B. thanks Hans Maassen for introducing him to discrete systems.

REFERENCES

[1] L. Accardi, J. Gough, and Y. Lu, On the stochastic limit for quantum theory, Rep. Math.
Phys., 36 (1995), pp. 155–187.
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[61] B. Kümmerer, Markov dilations on W ∗-algebras, J. Funct. Anal., 63 (1985), pp. 139–177.
[62] H. Kushner, Introduction to Stochastic Control, Holt, Rinehart, and Winston, New York,

1971.
[63] J. M. Lindsay and K. R. Parthasarathy, The passage from random walk to diffusion in

quantum probability. II, Sankhyā Ser. A, 50 (1988), pp. 151–170.
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