

* Corresponding author

E-mail: am712@snu.edu.in (A. K. Mishra)

2020 Growing Science Ltd.

doi: 10.5267/j.ijiec.2019.12.001

International Journal of Industrial Engineering Computations 11 (2020) 415–428

Contents lists available at GrowingScience

International Journal of Industrial Engineering Computations

homepage: www.GrowingScience.com/ijiec

A discrete Jaya algorithm for permutation flow-shop scheduling problem

Aseem K. Mishraa* and Divya Shrivastavaa

aDepartment of Mechanical Engineering, Shiv Nadar University, NH 91 Tehsil Dadri, Gautam Buddha Nagar Uttar Pradesh 201314,

India

C H R O N I C L E A B S T R A C T

Article history:

Received October 8 2019

Received in Revised Format

December 28 2019

Accepted December 31 2019

Available online

January 2 2020

 Jaya algorithm has recently been proposed, which is simple and efficient meta-heuristic

optimization technique and has received a great attention in the world of optimization. It has

been successfully applied to some thermal, design and manufacturing associated optimization

problems. This paper aims to analyze the performance of Jaya algorithm for permutation flow-

shop scheduling problem which is a well-known NP-hard optimization problem. The objective

is to minimize the makespan. First, to make Jaya algorithm adaptive to the problem, a random

priority is allocated to each job in a permutation sequence. Second, a job priority vector is

converted into job permutation vector by means of Largest Order Value (LOV) rule. An

exhaustive comparative study along with statistical analysis is performed by comparing the

results with public benchmarks and other competitive heuristics. The key feature of Jaya

algorithm of simultaneous movement towards the best solution and going away from the worst

solution enables it to avoid being trapped in the local optima. Furthermore, the uniqueness of

Jaya algorithm compared with any other evolutionary based optimization technique is that it is

totally independent of specific parameters. This substantially reduces the computation effort and

numerical complexity. Computational results reveal that Jaya algorithm is efficient in most cases

and has considerable potential for permutation flow-shop scheduling problems.

© 2020 by the authors; licensee Growing Science, Canada

Keywords:

Jaya algorithm

Permutation flow-shop scheduling

problem

Makespan minimization

1. Introduction

Permutation flow-shop scheduling problem (PFSP) has been proven to be the most popular non-

deterministic-polynomial-time (NP)-hard with an extensive engineering relevance (Hejazi & Saghafian,

2005; Rinnooy Kan, 1976). A typical PFSP consists of each job i (i ϵ {1, 2, 3…, n}) to be processed on

each machine j (j ϵ {1, 2, 3…, m}) in the same sequence of machines. Each machine can process only

one job at a time. The objective is to determine an optimum production schedule which would satisfy the

desired objective function under some given constraints (time horizon, limited resources) in a most

efficient way. Since the PFSP has a great engineering background, many researchers have proposed

several algorithms which can be broadly classified into three categories: exact, heuristic and meta-

heuristic. Exact methods such as total enumeration, linear programming (Tseng & Stafford, 2008) and

branch and bound (Madhushini & Rajendran, 2011) can obtain exact solutions. However, due to

computational complexity, they cannot be applied for medium and large size problems. Heuristic

416

algorithms (Nawaz et al., 1983) employ the problem-oriented specific knowledge and some constructive

operations to solve the problems. They usually can obtain a nearly optimal solution in a reasonable

computational time, while the solution qualities are not satisfactory. However, Nawaz–Enscore–Ham

(NEH) (Nawaz et al., 1983) is one of the most effective heuristic and can provide comparable results

with meta-heuristics. Meta-heuristic, on the other hand, starts from previously generated solutions and

try to improve these solutions by using some strategies with domain-dependent knowledge. Some of the

efficient meta-heuristics include genetic algorithm (GA) (Reeves & Yamada, 1998), simulated annealing

algorithm (SA) (Osman & Potts, 1989) , particle swarm optimization algorithm (PSO) (Kuo et al., 2009),

ant colony optimization (ACO) (Rajendran & Ziegler, 2004), artificial bee colony algorithm (ABC) (Pan

et al., 2011), iterated greedy algorithm (IG) (Ruiz & Stützle, 2007), teaching learning-based optimization

algorithm (TLBO) (Baykasoǧlu et al., 2014) etc.

Recently it has been found out that mutation of two or more of these meta-heuristics known as hybrid

heuristics can be more efficient than being applied in an isolated manner. As a consequence, a lot of

hybrid heuristic based algorithms have been investigated by researchers in the past few years and reported

that they can improve the performance especially when dealing with real-world and large-scale problems

(Engin & Güçlü, 2018; Kuo et al., 2009; Lin et al., 2015; Ruiz et al., 2019; Zhang et al., 2019; Zhao et

al., 2018). The performance of all types of approaches discussed above can be judged by three main

factors: solution efficiency, computational efficiency, and ease of application. It should be noted that

although hybrid heuristics produce most efficient results in less computation time, they become utter

complicated due to their hybrid nature as the complexity vary dramatically according to their structure

and parameters which in turn makes it problematic to understand and implement.

A new meta-heuristic optimization technique named as Jaya algorithm recently proposed by Venkata

Rao (2016, 2019) is novel, simple and efficient algorithm to solve both constrained and unconstrained

optimization problems. It has been successfully applied by many researchers in various fields of

engineering and sciences (Rao, 2019). For instance, Rao and Saroj (2017) applied Jaya algorithm for the

economic optimization of the shell-tube heat exchanger and compared the results with the earlier attempts

of the same problem using GA, PSO and CSO (civilized swarm optimization). Computational results

show the superiority of Jaya over other meta-heuristics. In the thermal area, Jaya finds another application

in the optimization of the dimensions of a micro-channel heat sink under two objective functions viz.

thermal resistance and pumping power (Rao et al., 2016). Experimental results show better performance

when compared with TLBO and MOEA (multi-objective evolutionary algorithm). Gao et al. (2016)

proposed Jaya algorithm for solving real-life case study of traffic light scheduling problem. Few

improvement strategies and a feature based search operator is embedded to obtain the improved

optimization results. Jaya showed better results as compared to harmony search (HS) and water cycle

algorithm (WCA). Zhang et al. (2016) applied Jaya along with fractional Fourier entropy methodology

for identification of tea category under sensitivity measurement.

Jaya also finds its applications in materials and manufacturing optimization processes. One such is the

optimization of surface roughness in the surface grinding process (Rao et al., 2016). It is found that Jaya

yields better results than reported by previous literature using GA, SA, PSO, ABC, ACO, HS and TLBO.

A similar problem was addressed by Rao and Rai (2017) in the optimization of process parameters of the

submerged arc welding process and results were compared with conventional meta-heuristics. Another

application of Jaya exists in the optimization of control parameters for machining (turning) of carbon

fiber-reinforced polymer (CFRP) (Abhishek et al., 2017). Jaya algorithm was combined with non-linear

regression modeling and fuzzy inference system to optimize the process control parameters including

feed rate, spindle speed and depth of cut. These parameters were optimized under three objectives viz.

material removal rate (MRR), the average surface roughness (Ra) and net cutting force. Computational

results revealed that Jaya has considerable potential in the context of machining performance

optimization problems. Few applications of Jaya can also be found in design related problems (Du et al.

2017; Rao & More, 2017). Moreover, Jaya has also received successful applications in the optimization

A. K. Mishra and D. Shrivastava / International Journal of Industrial Engineering Computations 11 (2020) 417

of power transmission and electrical related problems. Singh et al. (Singh et al., 2017) performed design

optimization of proportional-integral-derivative (PID) controller for automatic generation control (AGC)

using Jaya algorithm. The superiority of Jaya is justified by comparing with particle swarm optimization

(PSO), teaching-learning based optimization (TLBO) and differential evolution (DE) algorithms. Huang

et al. (2017) applied Jaya algorithm for solving maximum power point tracking (MPPT) for photovoltaic

(PV) systems by incorporating natural cubic spline based prediction model (S-Jaya). Simulation results

proved the faster convergence of Jaya algorithm for providing higher tracking efficiency.

Based on the review of publically available literature, it seems that Jaya has potential in solving

engineering design and non-linear optimization problems. Yet it appears from the literature that it has

very limited applications to scheduling problems such as flow shops and job shops. For instance Gao et

al. (2016) proposed Jaya algorithm for solving flexible job shop scheduling problems with an objective

to minimize the maximum machine workload. The superiority of Jaya is presented by comparing with

existing methods. A similar problem was addressed by Guo et al. (2017) considering flexible job-shop

rescheduling problem. Buddala and Mahapatra (2017) applied TLBO and Jaya algorithm for optimization

of flexible flow shop scheduling problem with objective of makespan minimization. Computational

results validate the efficiency of Jaya as compared with other meta-heuristics. Radhika et al. (2016)

applied Jaya algorithm for optimization of master production scheduling problem with multi-objective.

Jaya produced better results when compared with conventional techniques such as genetic algorithm

(GA) and differential evolution (DE). Recently, Mishra and Shrivastava (2018) applied TLBO and Jaya

algorithm for flow shop scheduling problem with an objective to minimize the sum of work-in-process

(WIP) inventory holding and tardiness costs. Computational results reveal the effectiveness when

compared with the existing heuristics. However, the results were not compared with public benchmarks.

It is a well-known fact that apart from design and non-linear optimization problems most of the developed

meta-heuristics are supposed to provide effective solutions for complex combinatorial optimization

problems as well especially when dealing with flow shop scheduling problems. Secondly, the specialty

of Jaya algorithm is that unlike any other optimization technique such as GA, SA and PSO it is a

parameterless algorithm (free from algorithm-specific parameters) and contain only two common control

parameters (population size and a number of generations) which make it very easy to understand and

implement. Based on this motivation, we apply Jaya algorithm to permutation flow-shop scheduling

problem. The performance of Jaya algorithm on flow shop can also give an idea for its possible scope in

solving other scheduling problems. The objective is to minimize the maximum completion time i.e.

makespan. In order to make Jaya adaptive to solve flow shop, a random priority is assigned to each job

in permutation sequence. Then the largest order value (LOV) rule is utilized to convert job priority vector

to job permutation vector. Jaya algorithm is compared with many benchmark problems and efficient

heuristics available in the literature. The methodology, application and effectiveness of Jaya algorithm

for PFSP are explained in the proceeding sections.

The rest of the paper is organized as follows: In section 2 we describe the objective function and the

implementation of Jaya algorithm to PFSP with an illustrative example. Section 3 shows the parameter

estimation, comparison of results and discussions followed by section 4 with conclusions and future

extensions.

2. Jaya algorithm and objective function

2.1 A brief introduction of Jaya algorithm

Jaya algorithm is based on the principle that the solution to the given problem should move towards the

best-known solution and goes away from the worst solution. The steps involved in the application of Jaya

algorithm are briefly summarized as follows:-

 Initialize number of design variables, population size and termination criterion

418

 Identify the worst and the best solution in the population

 Modify the design variable of other solutions based on the best and the worst solution according

to equation (1)

 Compare the updated solution from the previous solution. If the updated solution is better, replace

it otherwise keep the older one.

 Report the optimum solution 𝑥′௜,௞,௟ = 𝑥௜,௞,௟ + 𝑟ଵ,௜,௟ ∗ (𝑥௜,௞,௟௕௘௦௧ − ห𝑥௜,௞,௟ห) − 𝑟ଶ,௜,௟ ∗ (𝑥௜,௞,௟௪௢௥௦௧ − ห𝑥௜,௞,௟ห) (1)

where,

2.2 Description of the objective function for PFSP

A typical flow-shop scheduling problem consists of job 𝑖 𝜖 ሼ1,2,3 … ,𝑛ሽ to be processed on machine 𝑗 𝜖 {1,2,3 … ,𝑚}. Each job must visit each machine in the same sequence. The objective is to obtain an

optimum production schedule of jobs which would minimize the total completion time (makespan). Let

Ci,j,k be the completion time of job i on machine j in schedule k. Therefore the completion time can be

defined as:

C1,j,k = p
1,j,k

+ p
1,j-1,k

 (1)

Ci,1,k= p
i,1,k

+ p
i-1,1,k

 (2)

Ci,j,k=p
i,j,k,

+max{ Ci,j-1,k+ Ci-1,j,k} (3)

πk= Cn,m,k (4)

π*= min{ π1, π2, π3,…, πl} (5)

In the above equations, pi,j,k, represents the processing time of job i on machine j in schedule k. 𝜋௞ is the

maximum completion time (makespan) of kth schedule and 𝜋∗ represents the schedule with minimum

makespan.

2.3 Implementation of Jaya algorithm to PFSP

The implementation of Jaya algorithm for permutation flow-shop scheduling problem (PFSP) is

described in the following steps.

Step 1: - Initialize population size i.e. number of schedules (NP), decision variables i.e. number of jobs

(n), and termination criterion i.e. generation number (GEN)

Step 2: - Create a job priority vector, Ψk,l = { 𝜓ଵ,௞,௟ , 𝜓2,k,l , … ,𝜓i,k,l , … ,𝜓௡,௞,௟}, where Ψ୩,୪ is an n-

dimensional vector which represents the sequence of jobs in the kth schedule at lth iteration and 𝜓௜,௞,௟ is

the priority assigned to an ith job in the kth schedule at lth iteration. The priority is randomly generated

with uniform random number distribution as per the Eq. (7).

xi,k,l the value of an ith variable in kth population during lth iteration

 xi,k,lbest the value of an ith variable in the population having the best solution

xi,k,lworst the value of an ith variable in the population having the worst solution

x'i,k,l updated value of 𝑥௜,௞,௟
r1,i,l , r2,i,l random numbers for the ith variable during the lth iteration for best and worst solutions

respectively in the range [0, 1]

A. K. Mishra and D. Shrivastava / International Journal of Industrial Engineering Computations 11 (2020) 419𝜓i,k,l=1+rand(0,1)×(n-1) (7)

Step 3:- Convert the job priority vector (Ψk,l) into job permutation vector (Θk,l) by Largest Order Value

(LOV) rule, i.e. jobs are arranged in non-increasing order of their prioritys (𝜓௜,௞,௟). Therefore Θ୩,୪ =

{ θj,1,k,l, θj,2,k,l , … , θj,i,k,l , … , 𝜃௝,௡,௞,௟ }, where 𝜃௝,௜,௞,௟ is jth job placed at ith position in kth schedule at lth

iteration.

 Step 4:- Calculate the makespan (πmax,k,l) for each permutation sequence (Θk,l). Compare the πmax,k,l value

of each schedule with the corresponding πmax,k,l-1 value obtained in the previous iteration and update the

better solution (In case of the very first iteration, directly go to step 5).

Step 5: Identify the schedule with minimum makespan (Θk,l,min) and maximum makespan (Θ୩,୪,୫ୟ୶) and

their corresponding priority vectors (Ψk,lmin & Ψk,lmax) respectively.

Step 6: - Update the prioritys of all priority vectors based on the prioritys of Ψ୩,୪୫୧୬ & Ψ୩,୪୫ୟ୶ as per Eq.

(8) 𝜓'
i,k,l

= 𝜓i,k,l+ r1,i,l * (𝜓i,k,lmin - ห𝜓i,k,lห) - r2,i,l* (𝜓i,k,lmax- ห𝜓i,k,lห) (8)

where, 𝝍i,k,l the priority of ith job in kth schedule during lth iteration 𝝍i,k,lmin the priority of the ith job in the schedule having minimum makespan (πmax,k,lmin) 𝝍i,k,lmax the priority of the ith job in the schedule having maximum makespan (πmax,k,lmax) 𝝍'
i,k,l

 updated value of 𝜓௜,௞,௟
r1,i,l , r2,i,l random numbers for the ith job during the lth iteration for minimum and maximum

solutions respectively in the range [0, 1]

Step 7: Convert the updated priority vector into job permutation vector and identify the makespan of the

new schedules obtained (as per step 3 and 4).

Step 8: - Compare the makespan values of new schedule with the corresponding previous schedule and

update the better solution (replace or retain the schedule with minimum makespan).

Step 9: - Repeat the above steps until the termination criteria are satisfied.

 Step 10: - Report the optimum solution (optimum schedule with minimum makespan) 𝑖 𝜖 {1,2,3, … ,𝑛}, 𝑘 𝜖 {1,2,3, …𝑁𝑃}, 𝑙 𝜖 {1,2,3, … ,𝐺𝐸𝑁}

The flow chart of Jaya algorithm for PFSP is depicted in Fig. 1.

2.4 Illustrative example

Let us consider an eight job three machine problem. The processing times of jobs are given in Table 1.

Let the size of the population be 5. The solution steps for calculating makespan is represented in Fig. 2.

In step 1 the initial job priority vector is created using equation 7. Now each priority vector is arranged

in a non-increasing order of their priorities and the corresponding job permutation vector (Θk,l) is

retrieved as shown in steps 2 and 3. For each job permutation sequence, makespan (πmax,k,l) is calculated.

Step 4 identifies the schedules with minimum and maximum makespans (Θ୩,୪,୫୧୬ & Θ୩,୪,୫ୟ୶) and

corresponding job priority vectors (Ψk,lmin & Ψk,lmax) .

420

Yes No

 No

 Yes

Fig. 1. Flowchart of Jaya algorithm for solving PFSP

Table 1

Processing times of jobs

Jobs/ Machines Processing time of job (in min)

J1 J2 J3 J4 J5 J6 J7 J8

M1 5 74 67 97 87 10 69 69

M2 76 21 48 36 86 42 32 12

M3 74 83 6 71 64 20 99 54

Start

Initialize population size (no. of sequences), decision variables (no. of jobs) and generation

number (termination criterion)

Create a job priority vector (job sequence) 𝚿k,l={ 𝝍1,k,l , 𝝍2,k,l ,… , 𝝍i,k,l ,…,𝝍n,k,l}

𝚿k,lmin & 𝚿k,lmaxand identify the corresponding)k,lθ(for each permutation schedule) max,k,lπ(Evaluate

Convert job priority vector (𝚿k,l) to job permutation vector (Θk,l) by LOV rule

Modify the solution based on the best and the worst solution, 𝝍'
i,k,l

= 𝝍i,k,l+ r1,i,l * (𝝍i,k,lmin - ห𝝍i,k,lห) -
r2,i,l* (𝝍i,k,lmax- ห𝝍i,k,lห)

of new max,k,lπIs

sequence is less than

previous one?

Keep the previous sequence Accept the new sequence

Is the termination

criteria satisfied?

Report the final schedule with minimum makespan (π*)

A. K. Mishra and D. Shrivastava / International Journal of Industrial Engineering Computations 11 (2020) 421

As shown in Fig. 2, sequences 1 and 2 have minimum and maximum makespan respectively. Therefore,

the priorities of priority vectors 1 and 2 will be assigned as 𝜓i,k,lmin and 𝜓i,k,lmax respectively. Now the

priorities of each priority vector are updated (Step 4) using equation 8 and the corresponding new job

permutation vector is obtained (Step 5). The makespan of each schedule in new job permutation vector

is compared with the corresponding value in old one and the better solution is retained (Step 6). This

completes one iteration. In the next iteration, compare the current solution with the previous solution and

update the better solutions accordingly. After the termination criteria is satisfied, the near-optimal

solution is reached.

3. Computational results and comparisons

In this section, we determine the estimation of parameters and evaluate the performance of Jaya algorithm

by comparing the results with some classical and some efficient heuristics for the PFSP problem.

Moreover, Jaya is coded in Matlab 8.6.0 and experimental results are analyzed on a 3.25 GHz i5-4570

processor. The performance of Jaya algorithm, is evaluated with three standard benchmarks viz. Carlier’s

benchmarks (Carlier, 1978) , Reeves and Yamada’s benchmarks (Reeves & Yamada, 1998) and

Taillard’s benchmarks (Taillard, 1990) . These benchmarks have been widely used by many researchers

to demonstrate the performance of PFSSP problems. Secondly, perhaps Jaya algorithm is not yet applied

for PFSP in an isolated or any hybridized form, therefore we attempt to select some classical algorithms

and some recent heuristics to evaluate our results. Moreover, we do not recalculate or reproduce the

results obtained by other algorithms and accept the actual results from the literature.

In order to measure the effectiveness and accuracy of Jaya algorithm, ten independent runs are carried

out for each problem set and three performance measures as shown in equations (9)-(11) are

calculated. 𝑆∗ represents the best solution obtained by the aforementioned benchmarks, Sbest and Sworst

denotes the best and the worst solutions respectively obtained by the algorithms. Si denotes the solution

obtained at an ith run. BRE is the best percentage relative error to 𝑆∗, ARE is the average percentage

relative error to 𝑆∗, WRE represents the worst percentage relative error to 𝑆∗ and k is the number of runs. 𝐵𝑅𝐸 =
(Sbest -𝑆∗)𝑆∗ ×100

(9)

ARE = (෍ (Si- 𝑆∗)𝑆∗k

i=1

×100)/k

(10)

WRE =
(Sworst - 𝑆∗)𝑆∗ ×100

(11)

3.1 Estimation of parameters

Jaya algorithm, as aforementioned, consists of only two common control parameters: population size

(NP) and generation number (GEN). The value range of these parameters are set as: 𝑁𝑃 ∈ {50,100,150,200 and 250}, 𝐺𝐸𝑁 ∈ {500, 1000, 1500, 2000, and 2500}. Hence, a total of 25

combinations of {NP, GEN} are taken and for each set, 20 independent runs are carried out.

To evaluate the experimental results, two problem sizes of 50 jobs × 20 machines and 100 jobs × 20

machines are taken from Taillard’s problem set (Taillard, 1990) and experimental results are analyzed

by Analysis of Variance (ANOVA) method. The results were found significant with p-value < 0.05 (95%

confidence interval) for both the parameters. Fig. 3 and Fig. 4 show the mean plots of ARE values for NP

and GEN for the two problem sizes respectively. In Fig. 3 and Fig. 4 it is seen that for both the problem

sizes, the optimum possible set could be {NP, GEN} = {200, 1500}.

422

Fig. 2. An example to demonstrate the application of Jaya algorithm for PFSP

3.2 Comparisons with various algorithms

In this section, we evaluate the performance of Jaya algorithm with Carlier’s benchmark set (Carlier,

1978) and Reeves and Yamada’s benchmark set (Reeves & Yamada, 1998). The efficiency of Jaya

algorithm is compared with the following efficient meta-heuristics available in literature:

 Hybrid Genetic Algorithm (HGA) by (Wang & Zheng, 2003).

 Hybrid Differential Evolution (HDE) by (Qian et al., 2008).

 Hybrid Particle Swarm Optimization (HSPO) by (Liu, Wang, & Jin, 2008).

 Teaching Learning Based Optimization (TLBO) by (Baykasoǧlu et al., 2014).

 Hybrid Backtracking Search Algorithm (HBSA) by (Lin et al., 2015).

A. K. Mishra and D. Shrivastava / International Journal of Industrial Engineering Computations 11 (2020) 423

(a) (b)

Fig. 3. ARE mean plots of parameters for 50×20 problem size (a) GEN factor (b) NP factor (95%

confidence interval)

(a) (b)

Fig. 4. ARE mean plots of parameters for 100×20 problem size (a) GEN factor (b) NP factor (95%

confidence interval)

The BRE, ARE and WRE values of all these algorithms shown in Table 2 and Table 3. From tables 2 and

3 it can be seen that Jaya algorithm has produced efficient results for all these benchmarks. Fig. 5 depicts

the mean plots of ARE and BRE values of various algorithms under 95% confidence interval. In Fig. 5(a)

we see that in terms of ARE, Jaya outperforms TLBO, HPSO and HGA and fairly comparable with HDE

and HBSA. Similarly, the BRE value (Fig. 5(b)) of Jaya is less than TLBO and equally proportionate

with other algorithms. This gives us an idea Jaya seems to be efficient and have considerable potential

to solve permutation flow shop scheduling problem.

(a) (b)

Fig 5. Mean plots of performance measures for various algorithms (a) ARE values (b) BRE values (95%

confidence interval)

424

Table 2
Comparisons of HGA, HDE, HPSO and Jaya. Bold indicate the best solution obtained among various algorithms

Instance n×m S* HGA HDE HPSO Jaya

BRE ARE WRE BRE ARE WRE BRE ARE BRE ARE WRE

Car1 11×5 7038 0 0 0 0 0 0 0 0 0 0 0

Car2 13×4 7166 0 0 0 0 0 0 0 0 0 0 0

Car3 12×5 7312 0 0 0 0 0 0 0 0.79 0 0 0

Car4 14×4 8003 0 0 0 0 0 0 0 0 0 0 0

Car5 10×6 7720 0 0 0 0 0 0 0 0.59 0 0.106 0.233

Car6 8×9 8505 0 0.04 0.76 0 0 0 0 0.61 0 0 0

Car7 7×7 6590 0 0 0 0 0 0 0 0 0 0 0

Car8 8×8 8366 0 0 0 0 0 0 0 0.03 0 0 0

Rec01 20×5 1247 0 0.14 0.16 0 0.144 0.160 0 0.41 0 0.111 0.261

Rec03 20×5 1109 0 0.09 0.18 0 0 0 0.18 0.30 0 0.123 0.382

Rec05 20×5 1242 0 0.29 1.13 0.242 0.242 0.242 0.24 0.29 0.142 0.195 0.425

Rec07 20×10 1566 0 0.69 1.15 0 0.230 1.149 0.70 1.66 0 0.881 1.213

Rec09 20×10 1537 0 0.64 2.41 0 0 0 0 1.54 0 0.678 1.431

Rec11 20×10 1431 0 1.10 2.59 0 0 0 0 1.20 0 0.743 1.607

Rec13 20×15 1930 0.36 1.68 3.06 0.104 0.301 0.518 0.21 1.25 0.207 1.026 2.383

Rec15 20×15 1950 0.56 1.12 2.00 0 0.308 0.923 0.67 1.36 0.41 1.062 2.615

Rec17 20×15 1902 0.95 2.32 3.73 0 1.178 2.471 0 2.33 0.894 1.378 2.629

Rec19 30×10 2093 0.62 1.32 2.25 0.287 0.559 0.860 0.67 1.35 0.956 1.358 2.293

Rec21 30×10 2017 1.44 1.57 1.64 0.198 1.413 1.636 1.44 1.61 1.286 1.406 4.958

Rec23 30×10 2011 0.40 0.87 1.69 0.448 0.482 0.497 0.90 1.84 1.442 2.083 4.724

Rec25 30×15 2513 1.27 2.54 3.98 0.478 1.492 2.308 1.11 2.42 1.592 2.207 3.82

Rec27 30×15 2373 1.10 1.83 4.00 0.843 1.285 2.191 0.55 1.83 1.559 1.717 3.245

Rec29 30×15 2287 1.40 1.70 4.20 0.306 0.791 1.443 1.01 3.05 1.618 1.983 3.585

Rec31 50×10 3045 0.43 1.34 2.5 0.296 0.824 1.839 1.38 2.34 1.905 2.286 3.021

Rec33 50×10 3114 0 0.78 0.83 0 0.434 0.835 0 0.78 0 0.257 1.445

Rec35 50×10 3277 0 0 0 0 0 0 0 0.01 0 0.108 0.593

Rec37 75×20 4951 3.75 4.90 6.18 1.818 2.727 3.878 2.26 3.03 2.686 3.254 4.141

Rec39 75×20 5087 2.20 2.79 4.48 0.983 1.541 1.985 1.47 2.11 1.868 2.227 3.126

Rec41 75×20 4960 3.64 4.92 5.91 1.673 2.629 3.306 2.74 3.48 2.548 3.127 5.141

Table 3
Comparisons of HBSA, TLBO and Jaya. Bold indicate the best solution obtained among various algorithms

Instance n×m S* HBSA TLBO Jaya

BRE ARE WRE BRE ARE BRE ARE WRE

Car1 11×5 7038 0 0 0 0 0 0 0 0

Car2 13×4 7166 0 0 0 0 0 0 0 0

Car3 12×5 7312 0 0.060 1.190 0 0.324 0 0 0

Car4 14×4 8003 0 0 0 0 0 0 0 0

Car5 10×6 7720 0 0 0 0 0.593 0 0.106 0.233

Car6 8×9 8505 0 0 0 0 0 0 0 0

Car7 7×7 6590 0 0 0 0 0 0 0 0

Car8 8×8 8366 0 0 0 0 0 0 0 0

Rec01 20×5 1247 0 0.14 0.16 0 0.160 0 0.111 0.261

Rec03 20×5 1109 0 0.08 0.18 0 0 0 0.123 0.382

Rec05 20×5 1242 0.24 0.24 0.24 0.242 0.242 0.142 0.195 0.425

Rec07 20×10 1566 0 0.46 1.15 0.325 0.911 0 0.881 1.213

Rec09 20×10 1537 0 0.07 0.65 0.978 1.607 0 0.678 1.431

Rec11 20×10 1431 0 0 0 1.327 1.887 0 0.743 1.607

Rec13 20×15 1930 0.10 0.53 1.14 0.725 1.347 0.207 1.026 2.383

Rec15 20×15 1950 0.05 0.64 1.18 0.872 2.205 0.41 1.062 2.615

Rec17 20×15 1902 0 0.1 2.16 2.050 3.785 0.894 1.378 2.629

Rec19 30×10 2093 0 1.00 2.16 2.102 3.440 0.956 1.358 2.293

Rec21 30×10 2017 0.29 0.81 1.29 1.636 2.677 1.286 1.406 4.958

Rec23 30×10 2011 0.69 1.50 2.83 1.542 2.984 1.442 2.083 4.724

Rec25 30×15 2513 0.94 1.95 3.08 3.104 4.497 1.592 2.207 3.82

Rec27 30×15 2373 1.47 2.54 3.78 2.950 4.130 1.559 1.717 3.245

Rec29 30×15 2287 1.01 1.96 2.91 4.416 6.209 1.618 1.983 3.585

Rec31 50×10 3045 0.43 1.91 2.66 4.696 5.813 1.905 2.286 3.021

Rec33 50×10 3114 0 0.59 1.28 2.055 3.308 0 0.257 1.445

Rec35 50×10 3277 0 0 0 0.335 0.458 0 0.108 0.593

Rec37 75×20 4951 1.92 2.93 4.20 5.777 6.461 2.686 3.254 4.141

Rec39 75×20 5087 0.90 1.88 3.38 4.030 4.993 1.868 2.227 3.126

Rec41 75×20 4960 1.69 2.72 3.55 5.161 5.907 2.548 3.127 5.141

A. K. Mishra and D. Shrivastava / International Journal of Industrial Engineering Computations 11 (2020) 425

3.3 Comparisons with Taillard’s benchmarks

The performance of Jaya is also compared with well-known Taillard’s benchmarks (Taillard, 1990) .

Hybrid Particle Swarm Optimization (HPSO) by (Kuo et al., 2009) and TLBO by (Baykasoǧlu et al.,

2014) are considered for comparing results with Jaya algorithm. Table 4 shows the minimum, maximum

and average values of makespan obtained by various algorithms. Table 5 presents the ARE values

obtained by HPSO, TLBO and Jaya. As we can see that the ARE values of Jaya are better than TLBO

and comparable with HPSO. Above all, we come to our final outcome that for all three well-known

benchmarks, the results obtained by Jaya algorithm for permutation flow-shop scheduling problem seems

plausible when compared with other efficient heuristics and hence this algorithm can be considered as

amenable and exhaustive to discrete combinatorial optimization problems.

Table 4
Comparisons of HPSO, TLBO and Jaya. Bold indicate the best solution obtained among various algorithms

Instance n×m S* HPSO TLBO Jaya

Min Max Avg. Min Max Avg. Min Max Avg.

Ta001 20×5 1278 1278 1278 1278 1278 1297 1287.2 1278 1285 1281.5

Ta011 20×10 1582 1582 1596 1587.3 1586 1618 1606 1584 1623 1609

Ta021 20×20 2297 2297 2315 2307 2325 2370 2345.7 2311 2347 2338.6

Ta031 50×5 2724 2724 2724 2724 2724 2741 2729.4 2724 2736 2729

Ta041 50×10 2991 3034 3063 3053.6 3120 3169 3141 3060 3108 3088.1

Ta051 50×20 3771 3923 3966 3944.3 3986 4095 4029.7 3981 4082 4052.5

Ta061 100×5 5493 5493 5493 5493 5493 5527 5499.4 5493 5505 5500.3

Ta071 100×10 5770 None None None 5887 5997 5928.7 5850 5964 5938.1

Ta081 100×20 6286 None None None 6549 6726 6617.8 6470 6609 6571.6

Ta091 200×10 10868 None None None 10979 11079 11033 11094 11165 11135

Ta101 200×20 11294 None None None 11855 12024 11940 12079 12146 12119.4

Ta111 500×20 26189 None None None 27377 27565 27492 27937 28073 28000.5

Table 5

Comparisons of ARE values of HPSO, TLBO and Jaya. Bold indicate the best solution obtained among

various algorithms
Instance Jaya TLBO HPSO

ARE ARE ARE

Ta001 0.274 0.72 0

Ta011 1.707 1.52 0.335

Ta021 1.811 2.08 0.435

Ta031 0.184 0.20 0

Ta041 2.086 5.03 2.093

Ta051 4.604 6.86 4.604

Ta061 0.133 0.12 0

Ta071 2.913 2.75 None

Ta081 4.543 5.28 None

Ta091 2.457 1.52 None

Ta101 7.308 5.72 None

Ta111 6.917 4.98 None

5. Conclusions and future extensions

In the present study, we test the performance of recently proposed, simple and efficient meta-heuristic

optimization technique named Jaya algorithm for permutation flow-shop scheduling problem for the first

time in literature. The uniqueness of the proposed algorithm as against other common meta-heuristics is

that it does not require turning of algorithm-specific parameters. The objective is to minimize the

makespan (maximum completion time). To obtain a job permutation vector largest order value rule

(LOV) is utilized. The results are analyzed on well-known public benchmarks and compared with the

efficient heuristics available in the literature. Computational results reveal the effectiveness of Jaya

algorithm. An extensive experimental work is carried out in order to explore the potential of Jaya

algorithm for solving permutation flow shop scheduling problems. It has been investigated that

performance of Jaya on flow shop scheduling problems can give an idea about its possible applications

to other discrete combinatorial problems. Further research in the proposed study can be extended in the

426

following directions. Firstly due to simplicity in its application, Jaya algorithm can be hybridized or

modified with other algorithms in order to achieve more efficient results. Secondly, it can also be applied

to other complex shop floor problems such as parallel flow-shop, flexible flow shop, open shop, two-

stage flow shop etc. considering maintenance and quality effects.

References

Abhishek, K., Kumar, V. R., Datta, S., & Mahapatra, S. S. (2017). Application of JAYA algorithm for

the optimization of machining performance characteristics during the turning of CFRP (epoxy)

composites: comparison with TLBO, GA, and ICA. Engineering with Computers, 33(3), 457–475.

Baykasoǧlu, A., Hamzadayi, A., & Köse, S. Y. (2014). Testing the performance of teaching-learning

based optimization (TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling

cases. Information Sciences, 276, 204–218.

Buddala, R., & Mahapatra, S. S. (2017). Improved teaching–learning-based and JAYA optimization

algorithms for solving flexible flow shop scheduling problems. Journal of Industrial Engineering

International, 1–16.

Carlier, J. (1978). Ordonnancements a contraintes disjonctives. RAIRO-Operations Research.

Du, D.-C., Vinh, H.-H., Trung, V.-D., Hong Quyen, N.-T., & Trung, N.-T. (2017). Efficiency of Jaya

algorithm for solving the optimization-based structural damage identification problem based on a

hybrid objective function. Engineering Optimization, 273(September), 1–19.

Engin, O., & Güçlü, A. (2018). A new hybrid ant colony optimization algorithm for solving the no-wait

flow shop scheduling problems. Applied Soft Computing, 72, 166–176.

Gao, K., Sadollah, A., Zhang, Y., & Su, R. (2016). Discrete Jaya Algorithm for Flexible Job Shop

Scheduling Problem with New Job Insertion. 14th International Conference on Control, Automation,

Robotics & Vision, 2016(61603169), 13–15.

Gao, K., Zhang, Y., Sadollah, A., Lentzakis, A., & Su, R. (2016). Jaya, harmony search and water cycle

algorithms for solving large-scale real-life urban traffic light scheduling problem. Swarm and

Evolutionary Computation, (May), 1–15.

Guo, J., Gao, K., Wang, C., Sang, H., Li, J., & Duan, P. (2017). Discrete Jaya algorithm for solving

flexible job shop rescheduling problem. 2017 29th Chinese Control And Decision Conference

(CCDC), 6010–6015.

Huang, C., Wang, L., Yeung, R. S. cheung, Zhang, Z., Chung, H. S. H., & Bensoussan, A. (2017). A

Prediction Model Guided Jaya Algorithm for the PV System Maximum Power Point Tracking. IEEE

Transactions on Sustainable Energy, 3029(c).

Kuo, I.-H., Horng, S.-J., Kao, T.-W., Lin, T.-L., Lee, C.-L., Terano, T., & Pan, Y. (2009). An efficient

flow-shop scheduling algorithm based on a hybrid particle swarm optimization model. Expert Systems

with Applications, 36(3), 7027–7032.

Lin, Q., Gao, L., Li, X., & Zhang, C. (2015). A hybrid backtracking search algorithm for permutation

flow-shop scheduling problem. Computers & Industrial Engineering, 85, 437–446.

Liu, B., Wang, L., & Jin, Y. H. (2008). An effective hybrid PSO-based algorithm for flow shop

scheduling with limited buffers. Computers and Operations Research, 35(9), 2791–2806.

Madhushini, N., & Rajendran, C. (2011). Branch-and-bound algorithms for scheduling in an m-machine

permutation flowshop with a single objective and with multiple objectives. European J. of Industrial

Engineering, 5(4), 361.

Mishra, A., & Shrivastava, D. (2018). A TLBO and a Jaya heuristics for permutation flow shop

scheduling to minimize the sum of inventory holding and batch delay costs. Computers & Industrial

Engineering, 124(July), 509–522.

Nawaz, M., Enscore, E. E., & Ham, I. (1983). A heuristic algorithm for the m-machine, n-job flow-shop

sequencing problem. Omega, 11(1), 91–95.

Osman, I., & Potts, C. (1989). Simulated annealing for permutation flow-shop scheduling. Omega, 17(6),

551–557.

A. K. Mishra and D. Shrivastava / International Journal of Industrial Engineering Computations 11 (2020) 427

Pan, Q.-K., Tasgetiren, M. F., Suganthan, P. N., & Chua, T. J. (2011). A discrete artificial bee colony

algorithm for the lot-streaming flow shop scheduling problem. Information Sciences, 181(12), 2455–

2468.

Qian, B., Wang, L., Hu, R., Wang, W. L., Huang, D. X., & Wang, X. (2008). A hybrid differential

evolution method for permutation flow-shop scheduling. International Journal of Advanced

Manufacturing Technology, 38(7–8), 757–777.

Radhika, S., Ch, S. R., D, N. K., & K, K. P. (2016). Multi-Objective Optimization of Master Production

Scheduling Problems using Jaya Algorithm. (December), 1729–1732.

Rajendran, C., & Ziegler, H. (2004). Ant-colony algorithms for permutation flowshop scheduling to

minimize makespan/total flowtime of jobs. European Journal of Operational Research, 155(2), 426–

438.

Rao, R. V., & More, K. C. (2017). Design optimization and analysis of selected thermal devices using

self-adaptive Jaya algorithm. Energy Conversion and Management, 140, 24–35.

Rao, R. V., More, K. C., Taler, J., & Ocłoń, P. (2016). Dimensional optimization of a micro-channel heat

sink using Jaya algorithm. Applied Thermal Engineering, 103, 572–582.

Rao, R. V., & Rai, D. P. (2017). Optimization of submerged arc welding process parameters using quasi-

oppositional based Jaya algorithm. Journal of Mechanical Science and Technology, 31(5), 2513–

2522.

Rao, R. V., Rai, D. P., & Balic, J. (2016). Surface Grinding Process Optimization Using Jaya Algorithm.

https://doi.org/10.1007/978-81-322-2731-1_46

Rao, R. V., & Saroj, A. (2017). Economic optimization of shell-and-tube heat exchanger using Jaya

algorithm with maintenance consideration. Applied Thermal Engineering, 116, 473–487.

Reeves, C. R., & Yamada, T. (1998). Genetic Algorithms, Path Relinking, and the Flowshop Sequencing

Problem. Evolutionary Computation, 6(1), 45–60. https://doi.org/10.1162/evco.1998.6.1.45

Reza Hejazi, S., & Saghafian, S. (2005). Flowshop-scheduling problems with makespan criterion: a

review. International Journal of Production Research, 43(14), 2895–2929.

Rinnooy Kan, A. H. G. (1976). Machine Scheduling Problems : Classification, complexity and

computations. Springer US.

Ruiz, R., Pan, Q.-K., & Naderi, B. (2019). Iterated Greedy methods for the distributed permutation

flowshop scheduling problem. Omega, 83, 213–222.

Ruiz, R., & Stützle, T. (2007). A simple and effective iterated greedy algorithm for the permutation

flowshop scheduling problem. European Journal of Operational Research, 177(3), 2033–2049.

Singh, S. P., Prakash, T., Singh, V. P., & Babu, M. G. (2017). Analytic hierarchy process based automatic

generation control of multi-area interconnected power system using Jaya algorithm. Engineering

Applications of Artificial Intelligence, 60(December 2016), 35–44.

Taillard, E. (1990). Some efficient heuristic methods for the flow shop sequencing problem. European

Journal of Operational Research, 47(1), 65–74.

Tseng, F. T., & Stafford, E. F. (2008). New MILP models for the permutation flowshop problem. Journal

of the Operational Research Society, 59(10), 1373–1386.

Venkata Rao, R. (2016). Jaya: A simple and new optimization algorithm for solving constrained and

unconstrained optimization problems. International Journal of Industrial Engineering Computations,

7, 19–34.

Venkata Rao, R. (2019). Introduction. In Jaya: An Advanced Optimization Algorithm and its Engineering

Applications (pp. 1–8). https://doi.org/10.1007/978-3-319-78922-4_1

Wang, L., & Zheng, D. Z. (2003). An effective hybrid heuristic for flow shop scheduling. International

Journal of Advanced Manufacturing Technology, 21(1), 38–44.

Zhang, W., Wang, Y., Yang, Y., & Gen, M. (2019). Hybrid multiobjective evolutionary algorithm based

on differential evolution for flow shop scheduling problems. Computers & Industrial Engineering,

130, 661–670. https://doi.org/10.1016/J.CIE.2019.03.019

Zhang, Y., Yang, X., Cattani, C., Rao, R. V., Wang, S., & Phillips, P. (2016). Tea category identification

using a novel fractional fourier entropy and Jaya algorithm. Entropy, 18(3), 1–17.

https://doi.org/10.3390/e18030077

428

Zhao, F., Liu, H., Zhang, Y., Ma, W., & Zhang, C. (2018). A discrete Water Wave Optimization

algorithm for no-wait flow shop scheduling problem. Expert Systems with Applications, 91, 347–363.

© 2020 by the authors; licensee Growing Science, Canada. This is an open access article

distributed under the terms and conditions of the Creative Commons Attribution (CC-

BY) license (http://creativecommons.org/licenses/by/4.0/).

