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 Jaya algorithm has recently been proposed, which is simple and efficient meta-heuristic 

optimization technique and has received a great attention in the world of optimization. It has 

been successfully applied to some thermal, design and manufacturing associated optimization 

problems. This paper aims to analyze the performance of Jaya algorithm for permutation flow-

shop scheduling problem which is a well-known NP-hard optimization problem. The objective 

is to minimize the makespan. First, to make Jaya algorithm adaptive to the problem, a random 

priority is allocated to each job in a permutation sequence. Second, a job priority vector is 

converted into job permutation vector by means of Largest Order Value (LOV) rule. An 

exhaustive comparative study along with statistical analysis is performed by comparing the 

results with public benchmarks and other competitive heuristics. The key feature of Jaya 

algorithm of simultaneous movement towards the best solution and going away from the worst 

solution enables it to avoid being trapped in the local optima. Furthermore, the uniqueness of 

Jaya algorithm compared with any other evolutionary based optimization technique is that it is 

totally independent of specific parameters. This substantially reduces the computation effort and 

numerical complexity. Computational results reveal that Jaya algorithm is efficient in most cases 

and has considerable potential for permutation flow-shop scheduling problems. 

© 2020 by the authors; licensee Growing Science, Canada 
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1. Introduction 

 

Permutation flow-shop scheduling problem (PFSP) has been proven to be the most popular non-

deterministic-polynomial-time (NP)-hard with an extensive engineering relevance (Hejazi & Saghafian, 

2005; Rinnooy Kan, 1976). A typical PFSP consists of each job i (i ϵ {1, 2, 3…, n}) to be processed on 

each machine j (j ϵ {1, 2, 3…, m}) in the same sequence of machines. Each machine can process only 

one job at a time. The objective is to determine an optimum production schedule which would satisfy the 

desired objective function under some given constraints (time horizon, limited resources) in a most 

efficient way. Since the PFSP has a great engineering background, many researchers have proposed 

several algorithms which can be broadly classified into three categories: exact, heuristic and meta-

heuristic. Exact methods such as total enumeration, linear programming (Tseng & Stafford, 2008) and 

branch and bound (Madhushini & Rajendran, 2011) can obtain exact solutions. However, due to 

computational complexity, they cannot be applied for medium and large size problems. Heuristic 
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algorithms (Nawaz et al., 1983) employ the problem-oriented specific knowledge and some constructive 

operations to solve the problems. They usually can obtain a nearly optimal solution in a reasonable 

computational time, while the solution qualities are not satisfactory. However, Nawaz–Enscore–Ham 

(NEH) (Nawaz et al., 1983) is one of the most effective heuristic and can provide comparable results 

with meta-heuristics. Meta-heuristic, on the other hand, starts from previously generated solutions and 

try to improve these solutions by using some strategies with domain-dependent knowledge. Some of the 

efficient meta-heuristics include genetic algorithm (GA) (Reeves & Yamada, 1998), simulated annealing 

algorithm (SA) (Osman & Potts, 1989) , particle swarm optimization algorithm (PSO) (Kuo et al., 2009), 

ant colony optimization (ACO) (Rajendran & Ziegler, 2004), artificial bee colony algorithm (ABC) (Pan 

et al., 2011), iterated greedy algorithm (IG) (Ruiz & Stützle, 2007), teaching learning-based optimization 

algorithm (TLBO) (Baykasoǧlu et al., 2014) etc.  

Recently it has been found out that mutation of two or more of these meta-heuristics known as hybrid 

heuristics can be more efficient than being applied in an isolated manner. As a consequence, a lot of 

hybrid heuristic based algorithms have been investigated by researchers in the past few years and reported 

that they can improve the performance especially when dealing with real-world and large-scale problems  

(Engin & Güçlü, 2018; Kuo et al., 2009; Lin et al., 2015; Ruiz et al., 2019;  Zhang et al., 2019; Zhao et 

al., 2018). The performance of all types of approaches discussed above can be judged by three main 

factors: solution efficiency, computational efficiency, and ease of application. It should be noted that 

although hybrid heuristics produce most efficient results in less computation time, they become utter 

complicated due to their hybrid nature as the complexity vary dramatically according to their structure 

and parameters which in turn makes it problematic to understand and implement. 

A new meta-heuristic optimization technique named as Jaya algorithm recently proposed by Venkata 

Rao (2016, 2019) is novel, simple and efficient algorithm to solve both constrained and unconstrained 

optimization problems. It has been successfully applied by many researchers in various fields of 

engineering and sciences (Rao, 2019). For instance, Rao and Saroj (2017) applied Jaya algorithm for the 

economic optimization of the shell-tube heat exchanger and compared the results with the earlier attempts 

of the same problem using GA, PSO and CSO (civilized swarm optimization). Computational results 

show the superiority of Jaya over other meta-heuristics. In the thermal area, Jaya finds another application 

in the optimization of the dimensions of a micro-channel heat sink under two objective functions viz. 

thermal resistance and pumping power (Rao et al., 2016). Experimental results show better performance 

when compared with TLBO and MOEA (multi-objective evolutionary algorithm). Gao et al. (2016) 

proposed Jaya algorithm for solving real-life case study of traffic light scheduling problem. Few 

improvement strategies and a feature based search operator is embedded to obtain the improved 

optimization results. Jaya showed better results as compared to harmony search (HS) and water cycle 

algorithm (WCA). Zhang et al. (2016) applied Jaya along with fractional Fourier entropy methodology 

for identification of tea category under sensitivity measurement. 

Jaya also finds its applications in materials and manufacturing optimization processes. One such is the 

optimization of surface roughness in the surface grinding process (Rao et al., 2016). It is found that Jaya 

yields better results than reported by previous literature using GA, SA, PSO, ABC, ACO, HS and TLBO. 

A similar problem was addressed by Rao and Rai (2017) in the optimization of process parameters of the 

submerged arc welding process and results were compared with conventional meta-heuristics. Another 

application of Jaya exists in the optimization of control parameters for machining (turning) of carbon 

fiber-reinforced polymer (CFRP) (Abhishek et al., 2017). Jaya algorithm was combined with non-linear 

regression modeling and fuzzy inference system to optimize the process control parameters including 

feed rate, spindle speed and depth of cut. These parameters were optimized under three objectives viz. 

material removal rate (MRR), the average surface roughness (Ra) and net cutting force. Computational 

results revealed that Jaya has considerable potential in the context of machining performance 

optimization problems. Few applications of Jaya can also be found in design related problems (Du et al. 

2017; Rao & More, 2017). Moreover, Jaya has also received successful applications in the optimization 
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of power transmission and electrical related problems. Singh et al. (Singh et al., 2017) performed design 

optimization of proportional-integral-derivative (PID) controller for automatic generation control (AGC) 

using Jaya algorithm. The superiority of Jaya is justified by comparing with particle swarm optimization 

(PSO), teaching-learning based optimization (TLBO) and differential evolution (DE) algorithms. Huang 

et al. (2017) applied Jaya algorithm for solving maximum power point tracking (MPPT) for photovoltaic 

(PV) systems by incorporating natural cubic spline based prediction model (S-Jaya). Simulation results 

proved the faster convergence of Jaya algorithm for providing higher tracking efficiency.   

Based on the review of publically available literature, it seems that Jaya has potential in solving 

engineering design and non-linear optimization problems. Yet it appears from the literature that it has 

very limited applications to scheduling problems such as flow shops and job shops. For instance Gao et 

al. (2016) proposed Jaya algorithm for solving flexible job shop scheduling problems with an objective 

to minimize the maximum machine workload. The superiority of Jaya is presented by comparing with 

existing methods. A similar problem was addressed by Guo et al. (2017) considering flexible job-shop 

rescheduling problem. Buddala and Mahapatra (2017) applied TLBO and Jaya algorithm for optimization 

of flexible flow shop scheduling problem with objective of makespan minimization. Computational 

results validate the efficiency of Jaya as compared with other meta-heuristics. Radhika et al. (2016) 

applied Jaya algorithm for optimization of master production scheduling problem with multi-objective. 

Jaya produced better results when compared with conventional techniques such as genetic algorithm 

(GA) and differential evolution (DE). Recently, Mishra and Shrivastava (2018) applied TLBO and Jaya 

algorithm for flow shop scheduling problem with an objective to minimize the sum of work-in-process 

(WIP) inventory holding and tardiness costs. Computational results reveal the effectiveness when 

compared with the existing heuristics. However, the results were not compared with public benchmarks.    

It is a well-known fact that apart from design and non-linear optimization problems most of the developed 

meta-heuristics are supposed to provide effective solutions for complex combinatorial optimization 

problems as well especially when dealing with flow shop scheduling problems. Secondly, the specialty 

of Jaya algorithm is that unlike any other optimization technique such as GA, SA and PSO it is a 

parameterless algorithm (free from algorithm-specific parameters) and contain only two common control 

parameters (population size and a number of generations) which make it very easy to understand and 

implement. Based on this motivation, we apply Jaya algorithm to permutation flow-shop scheduling 

problem. The performance of Jaya algorithm on flow shop can also give an idea for its possible scope in 

solving other scheduling problems. The objective is to minimize the maximum completion time i.e. 

makespan. In order to make Jaya adaptive to solve flow shop, a random priority is assigned to each job 

in permutation sequence. Then the largest order value (LOV) rule is utilized to convert job priority vector 

to job permutation vector. Jaya algorithm is compared with many benchmark problems and efficient 

heuristics available in the literature. The methodology, application and effectiveness of Jaya algorithm 

for PFSP are explained in the proceeding sections.   

The rest of the paper is organized as follows: In section 2 we describe the objective function and the 

implementation of Jaya algorithm to PFSP with an illustrative example. Section 3 shows the parameter 

estimation, comparison of results and discussions followed by section 4 with conclusions and future 

extensions. 

2. Jaya algorithm and objective function 

2.1 A brief introduction of Jaya algorithm  

Jaya algorithm is based on the principle that the solution to the given problem should move towards the 

best-known solution and goes away from the worst solution. The steps involved in the application of Jaya 

algorithm are briefly summarized as follows:- 

 Initialize number of design variables, population size and termination criterion 
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 Identify the worst and the best solution in the population 

 Modify the design variable of other solutions based on the best and the worst solution  according 

to equation (1) 

 Compare the updated solution from the previous solution. If the updated solution is better, replace 

it otherwise keep the older one.            

 Report the optimum solution 𝑥′௜,௞,௟ =  𝑥௜,௞,௟ +  𝑟ଵ,௜,௟  ∗  (𝑥௜,௞,௟௕௘௦௧ −  ห𝑥௜,௞,௟ห)  −  𝑟ଶ,௜,௟  ∗  (𝑥௜,௞,௟௪௢௥௦௧ −  ห𝑥௜,௞,௟ห)  (1) 

where, 

2.2 Description of the objective function for PFSP 

A typical flow-shop scheduling problem consists of job 𝑖 𝜖 ሼ1,2,3 … ,𝑛ሽ to be processed on machine 𝑗 𝜖 {1,2,3 … ,𝑚}. Each job must visit each machine in the same sequence. The objective is to obtain an 

optimum production schedule of jobs which would minimize the total completion time (makespan). Let 

Ci,j,k  be the completion time of job i on machine j in schedule k. Therefore the completion time can be 

defined as: 

C1,j,k =  p
1,j,k

+ p
1,j-1,k

 (1) 

Ci,1,k= p
i,1,k

+ p
i-1,1,k

 (2) 

Ci,j,k=p
i,j,k,

+max{ Ci,j-1,k+ Ci-1,j,k}     (3) 

πk= Cn,m,k (4) 

π*= min{ π1, π2, π3,…, πl} (5) 
 

In the above equations, pi,j,k,  represents the processing time of job i on machine j in schedule k. 𝜋௞ is the 

maximum completion time (makespan) of kth schedule and 𝜋∗ represents the schedule with minimum 

makespan. 

2.3 Implementation of Jaya algorithm to PFSP  

The implementation of Jaya algorithm for permutation flow-shop scheduling problem (PFSP) is 

described in the following steps. 

Step 1: - Initialize population size i.e. number of schedules (NP), decision variables i.e. number of jobs 

(n), and termination criterion i.e. generation number (GEN)  

Step 2: - Create a job priority vector, Ψk,l = { 𝜓ଵ,௞,௟  , 𝜓2,k,l , … ,𝜓i,k,l , … ,𝜓௡,௞,௟}, where Ψ୩,୪ is an n-

dimensional vector which represents the sequence of jobs in the kth schedule at lth iteration and 𝜓௜,௞,௟ is 

the priority assigned to an ith job in the kth schedule at lth iteration. The priority is randomly generated 

with uniform random number distribution as per the Eq. (7). 

xi,k,l  the value of an ith variable in kth population during lth iteration 

 xi,k,lbest  the value of  an ith variable in the population having the best solution 

xi,k,lworst  the value of  an ith  variable in the population having the worst solution 

x'i,k,l  updated value of   𝑥௜,௞,௟ 
r1,i,l , r2,i,l random numbers for the ith variable during the lth iteration for best and worst solutions 

respectively in the range [0, 1] 
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Step 3:- Convert the job priority vector (Ψk,l) into job permutation vector (Θk,l) by Largest Order Value 

(LOV) rule, i.e. jobs are arranged in non-increasing order of their prioritys (𝜓௜,௞,௟). Therefore  Θ୩,୪ =

{ θj,1,k,l, θj,2,k,l , …  , θj,i,k,l , … , 𝜃௝,௡,௞,௟ }, where  𝜃௝,௜,௞,௟ is jth job placed at ith  position in kth schedule at lth 

iteration.  

 Step 4:- Calculate the makespan (πmax,k,l) for each permutation sequence (Θk,l). Compare the πmax,k,l value 

of each schedule with the corresponding πmax,k,l-1 value obtained in the previous iteration and update the 

better solution (In case of the very first iteration, directly go to step 5). 

Step 5: Identify the schedule with minimum makespan (Θk,l,min) and maximum makespan (Θ୩,୪,୫ୟ୶) and 

their corresponding priority vectors (Ψk,lmin & Ψk,lmax) respectively. 

Step 6: - Update the prioritys of all priority vectors based on the prioritys of Ψ୩,୪୫୧୬ & Ψ୩,୪୫ୟ୶ as per Eq. 

(8) 𝜓'
i,k,l

= 𝜓i,k,l+ r1,i,l * (𝜓i,k,lmin - ห𝜓i,k,lห) - r2,i,l* (𝜓i,k,lmax- ห𝜓i,k,lห)    (8) 

where,  𝝍i,k,l  the priority of ith job in kth schedule during lth iteration 𝝍i,k,lmin  the priority of  the ith job in the schedule having minimum makespan (πmax,k,lmin) 𝝍i,k,lmax  the priority of  the ith job in the schedule having maximum makespan (πmax,k,lmax)  𝝍'
i,k,l

  updated value of   𝜓௜,௞,௟ 
r1,i,l , r2,i,l random numbers for the ith job during the lth iteration for minimum and maximum 

solutions respectively in the range [0, 1] 

Step 7: Convert the updated priority vector into job permutation vector and identify the makespan of the 

new schedules obtained (as per step 3 and 4). 

Step 8: - Compare the makespan values of new schedule with the corresponding previous schedule and 

update the better solution (replace or retain the schedule with minimum makespan). 

Step 9: - Repeat the above steps until the termination criteria are satisfied. 

 Step 10: - Report the optimum solution (optimum schedule with minimum makespan) 𝑖 𝜖 {1,2,3, … ,𝑛}, 𝑘 𝜖 {1,2,3, …𝑁𝑃}, 𝑙 𝜖 {1,2,3, … ,𝐺𝐸𝑁}  

The flow chart of Jaya algorithm for PFSP is depicted in Fig. 1. 

2.4 Illustrative example 

Let us consider an eight job three machine problem. The processing times of jobs are given in Table 1. 

Let the size of the population be 5. The solution steps for calculating makespan is represented in Fig. 2. 

In step 1 the initial job priority vector is created using equation 7. Now each priority vector is arranged 

in a non-increasing order of their priorities and the corresponding job permutation vector (Θk,l)  is 

retrieved as shown in steps 2 and 3. For each job permutation sequence, makespan (πmax,k,l) is calculated. 

Step 4 identifies the schedules with minimum and maximum makespans (Θ୩,୪,୫୧୬ & Θ୩,୪,୫ୟ୶) and 

corresponding job priority vectors (Ψk,lmin & Ψk,lmax) .  
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Fig. 1. Flowchart of Jaya algorithm for solving PFSP 

Table 1  

Processing times of jobs 

Jobs/ Machines Processing time of job (in min) 

J1 J2 J3 J4 J5 J6 J7 J8 

M1 5 74 67 97 87 10 69 69 

M2 76 21 48 36 86 42 32 12 

M3 74 83 6 71 64 20 99 54 

Start 

Initialize population size (no. of sequences), decision variables (no. of jobs) and generation 

number (termination criterion) 

Create a job priority vector (job sequence) 𝚿k,l={ 𝝍1,k,l , 𝝍2,k,l ,… , 𝝍i,k,l ,…,𝝍n,k,l} 

𝚿k,lmin & 𝚿k,lmaxand identify the corresponding  )k,lθ(for each permutation schedule ) max,k,lπ( Evaluate 

Convert job priority vector (𝚿k,l) to job permutation vector (Θk,l) by LOV rule 

Modify the solution based on the best  and the worst solution, 𝝍'
i,k,l

= 𝝍i,k,l+ r1,i,l * (𝝍i,k,lmin - ห𝝍i,k,lห) - 
r2,i,l* (𝝍i,k,lmax- ห𝝍i,k,lห) 

of  new  max,k,lπIs 

sequence is less than 

previous one? 

Keep the previous sequence Accept the new sequence 

Is the termination 

criteria satisfied? 

Report the final schedule with minimum makespan (π*) 
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As shown in Fig. 2, sequences 1 and 2 have minimum and maximum makespan respectively. Therefore, 

the priorities of priority vectors 1 and 2 will be assigned as 𝜓i,k,lmin  and  𝜓i,k,lmax respectively. Now the 

priorities of each priority vector are updated (Step 4) using equation 8 and the corresponding new job 

permutation vector is obtained (Step 5). The makespan of each schedule in new job permutation vector 

is compared with the corresponding value in old one and the better solution is retained (Step 6). This 

completes one iteration. In the next iteration, compare the current solution with the previous solution and 

update the better solutions accordingly. After the termination criteria is satisfied, the near-optimal 

solution is reached.  

3. Computational results and comparisons 

In this section, we determine the estimation of parameters and evaluate the performance of Jaya algorithm 

by comparing the results with some classical and some efficient heuristics for the PFSP problem. 

Moreover, Jaya is coded in Matlab 8.6.0 and experimental results are analyzed on a 3.25 GHz i5-4570 

processor. The performance of Jaya algorithm, is evaluated with three standard benchmarks viz. Carlier’s 

benchmarks (Carlier, 1978) , Reeves and Yamada’s benchmarks (Reeves & Yamada, 1998) and 

Taillard’s benchmarks (Taillard, 1990) . These benchmarks have been widely used by many researchers 

to demonstrate the performance of PFSSP problems. Secondly, perhaps Jaya algorithm is not yet applied 

for PFSP in an isolated or any hybridized form, therefore we attempt to select some classical algorithms 

and some recent heuristics to evaluate our results. Moreover, we do not recalculate or reproduce the 

results obtained by other algorithms and accept the actual results from the literature.  

In order to measure the effectiveness and accuracy of Jaya algorithm, ten independent runs are carried 

out for each problem set and three performance measures as shown in equations (9)-(11) are 

calculated. 𝑆∗ represents the best solution obtained by the aforementioned benchmarks, Sbest  and Sworst  

denotes the best and the worst solutions respectively obtained by the algorithms. Si denotes the solution 

obtained at an ith run. BRE is the best percentage relative error to 𝑆∗, ARE is the average percentage 

relative error to 𝑆∗, WRE represents the worst percentage relative error to 𝑆∗ and k is the number of runs. 𝐵𝑅𝐸 =  
(Sbest -𝑆∗ )𝑆∗ ×100 

(9) 

ARE = (෍ (Si- 𝑆∗)𝑆∗k

i=1

×100)/k 

 

(10) 

WRE = 
(Sworst - 𝑆∗)𝑆∗ ×100 

(11) 

3.1 Estimation of parameters 

Jaya algorithm, as aforementioned, consists of only two common control parameters: population size 

(NP) and generation number (GEN). The value range of these parameters are set as:  𝑁𝑃 ∈ {50,100,150,200 and 250}, 𝐺𝐸𝑁 ∈ {500, 1000, 1500, 2000, and 2500}. Hence, a total of 25 

combinations of {NP, GEN} are taken and for each set, 20 independent runs are carried out.  

To evaluate the experimental results, two problem sizes of 50 jobs × 20 machines and 100 jobs × 20 

machines are taken from Taillard’s problem set (Taillard, 1990) and experimental results are analyzed 

by Analysis of Variance (ANOVA) method. The results were found significant with p-value < 0.05 (95% 

confidence interval) for both the parameters. Fig. 3 and Fig. 4 show the mean plots of ARE values for NP 

and GEN for the two problem sizes respectively. In Fig. 3 and Fig. 4 it is seen that for both the problem 

sizes, the optimum possible set could be {NP, GEN} = {200, 1500}. 
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Fig. 2. An example to demonstrate the application of Jaya algorithm for PFSP 

3.2 Comparisons with various algorithms 

In this section, we evaluate the performance of Jaya algorithm with Carlier’s benchmark set (Carlier, 

1978) and Reeves and Yamada’s benchmark set (Reeves & Yamada, 1998). The efficiency of Jaya 

algorithm is compared with the following efficient meta-heuristics available in literature: 

 Hybrid Genetic Algorithm (HGA) by (Wang & Zheng, 2003). 

 Hybrid Differential Evolution (HDE) by (Qian et al., 2008).  

 Hybrid Particle Swarm Optimization (HSPO) by (Liu, Wang, & Jin, 2008).  

 Teaching Learning Based Optimization (TLBO) by (Baykasoǧlu et al., 2014). 

 Hybrid Backtracking Search Algorithm (HBSA) by (Lin et al., 2015).  
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(a) (b) 

Fig. 3. ARE mean plots of parameters for 50×20 problem size (a) GEN factor (b) NP factor    (95% 

confidence interval) 

  
(a) (b) 

Fig. 4. ARE mean plots of parameters for 100×20 problem size (a) GEN factor (b) NP factor (95% 

confidence interval) 

The BRE, ARE and WRE values of all these algorithms shown in Table 2 and Table 3. From tables 2 and 

3 it can be seen that Jaya algorithm has produced efficient results for all these benchmarks. Fig. 5 depicts 

the mean plots of ARE and BRE values of various algorithms under 95% confidence interval. In Fig. 5(a) 

we see that in terms of ARE, Jaya outperforms TLBO, HPSO and HGA and fairly comparable with HDE 

and HBSA. Similarly, the BRE value (Fig. 5(b)) of Jaya is less than TLBO and equally proportionate 

with other algorithms. This gives us an idea Jaya seems to be efficient and have considerable potential 

to solve permutation flow shop scheduling problem. 

  
(a) (b) 

Fig 5. Mean plots of performance measures for various algorithms (a) ARE values (b) BRE values (95% 

confidence interval) 
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Table 2  
Comparisons of HGA, HDE, HPSO and Jaya. Bold indicate the best solution obtained among various algorithms 

Instance n×m S* HGA HDE HPSO Jaya 

BRE ARE WRE BRE ARE WRE BRE ARE BRE ARE WRE 

Car1 11×5 7038 0 0 0 0 0 0 0 0 0 0 0 

Car2 13×4 7166 0 0 0 0 0 0 0 0 0 0 0 

Car3 12×5 7312 0 0 0 0 0 0 0 0.79 0 0 0 

Car4 14×4 8003 0 0 0 0 0 0 0 0 0 0 0 

Car5 10×6 7720 0 0 0 0 0 0 0 0.59 0 0.106 0.233 

Car6 8×9 8505 0 0.04 0.76 0 0 0 0 0.61 0 0 0 

Car7 7×7 6590 0 0 0 0 0 0 0 0 0 0 0 

Car8 8×8 8366 0 0 0 0 0 0 0 0.03 0 0 0 

Rec01 20×5 1247 0 0.14 0.16 0 0.144 0.160 0 0.41 0 0.111 0.261 

Rec03 20×5 1109 0 0.09 0.18 0 0 0 0.18 0.30 0 0.123 0.382 

Rec05 20×5 1242 0 0.29 1.13 0.242 0.242 0.242 0.24 0.29 0.142 0.195 0.425 

Rec07 20×10 1566 0 0.69 1.15 0 0.230 1.149 0.70 1.66 0 0.881 1.213 

Rec09 20×10 1537 0 0.64 2.41 0 0 0 0 1.54 0 0.678 1.431 

Rec11 20×10 1431 0 1.10 2.59 0 0 0 0 1.20 0 0.743 1.607 

Rec13 20×15 1930 0.36 1.68 3.06 0.104 0.301 0.518 0.21 1.25 0.207 1.026 2.383 

Rec15 20×15 1950 0.56 1.12 2.00 0 0.308 0.923 0.67 1.36 0.41 1.062 2.615 

Rec17 20×15 1902 0.95 2.32 3.73 0 1.178 2.471 0 2.33 0.894 1.378 2.629 

Rec19 30×10 2093 0.62 1.32 2.25 0.287 0.559 0.860 0.67 1.35 0.956 1.358 2.293 

Rec21 30×10 2017 1.44 1.57 1.64 0.198 1.413 1.636 1.44 1.61 1.286 1.406 4.958 

Rec23 30×10 2011 0.40 0.87 1.69 0.448 0.482 0.497 0.90 1.84 1.442 2.083 4.724 

Rec25 30×15 2513 1.27 2.54 3.98 0.478 1.492 2.308 1.11 2.42 1.592 2.207 3.82 

Rec27 30×15 2373 1.10 1.83 4.00 0.843 1.285 2.191 0.55 1.83 1.559 1.717 3.245 

Rec29 30×15 2287 1.40 1.70 4.20 0.306 0.791 1.443 1.01 3.05 1.618 1.983 3.585 

Rec31 50×10 3045 0.43 1.34 2.5 0.296 0.824 1.839 1.38 2.34 1.905 2.286 3.021 

Rec33 50×10 3114 0 0.78 0.83 0 0.434 0.835 0 0.78 0 0.257 1.445 

Rec35 50×10 3277 0 0 0 0 0 0 0 0.01 0 0.108 0.593 

Rec37 75×20 4951 3.75 4.90 6.18 1.818 2.727 3.878 2.26 3.03 2.686 3.254 4.141 

Rec39 75×20 5087 2.20 2.79 4.48 0.983 1.541 1.985 1.47 2.11 1.868 2.227 3.126 

Rec41 75×20 4960 3.64 4.92 5.91 1.673 2.629 3.306 2.74 3.48 2.548 3.127 5.141 

 

Table 3  
Comparisons of HBSA, TLBO and Jaya. Bold indicate the best solution obtained among various algorithms 

Instance n×m S* HBSA TLBO Jaya 

BRE ARE WRE BRE ARE BRE ARE WRE 

Car1 11×5 7038 0 0 0 0 0 0 0 0 

Car2 13×4 7166 0 0 0 0 0 0 0 0 

Car3 12×5 7312 0 0.060 1.190 0 0.324 0 0 0 

Car4 14×4 8003 0 0 0 0 0 0 0 0 

Car5 10×6 7720 0 0 0 0 0.593 0 0.106 0.233 

Car6 8×9 8505 0 0 0 0 0 0 0 0 

Car7 7×7 6590 0 0 0 0 0 0 0 0 

Car8 8×8 8366 0 0 0 0 0 0 0 0 

Rec01 20×5 1247 0 0.14 0.16 0 0.160 0 0.111 0.261 

Rec03 20×5 1109 0 0.08 0.18 0 0 0 0.123 0.382 

Rec05 20×5 1242 0.24 0.24 0.24 0.242 0.242 0.142 0.195 0.425 

Rec07 20×10 1566 0 0.46 1.15 0.325 0.911 0 0.881 1.213 

Rec09 20×10 1537 0 0.07 0.65 0.978 1.607 0 0.678 1.431 

Rec11 20×10 1431 0 0 0 1.327 1.887 0 0.743 1.607 

Rec13 20×15 1930 0.10 0.53 1.14 0.725 1.347 0.207 1.026 2.383 

Rec15 20×15 1950 0.05 0.64 1.18 0.872 2.205 0.41 1.062 2.615 

Rec17 20×15 1902 0 0.1 2.16 2.050 3.785 0.894 1.378 2.629 

Rec19 30×10 2093 0 1.00 2.16 2.102 3.440 0.956 1.358 2.293 

Rec21 30×10 2017 0.29 0.81 1.29 1.636 2.677 1.286 1.406 4.958 

Rec23 30×10 2011 0.69 1.50 2.83 1.542 2.984 1.442 2.083 4.724 

Rec25 30×15 2513 0.94 1.95 3.08 3.104 4.497 1.592 2.207 3.82 

Rec27 30×15 2373 1.47 2.54 3.78 2.950 4.130 1.559 1.717 3.245 

Rec29 30×15 2287 1.01 1.96 2.91 4.416 6.209 1.618 1.983 3.585 

Rec31 50×10 3045 0.43 1.91 2.66 4.696 5.813 1.905 2.286 3.021 

Rec33 50×10 3114 0 0.59 1.28 2.055 3.308 0 0.257 1.445 

Rec35 50×10 3277 0 0 0 0.335 0.458 0 0.108 0.593 

Rec37 75×20 4951 1.92 2.93 4.20 5.777 6.461 2.686 3.254 4.141 

Rec39 75×20 5087 0.90 1.88 3.38 4.030 4.993 1.868 2.227 3.126 

Rec41 75×20 4960 1.69 2.72 3.55 5.161 5.907 2.548 3.127 5.141 
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3.3 Comparisons with Taillard’s benchmarks 

The performance of Jaya is also compared with well-known Taillard’s benchmarks (Taillard, 1990) . 

Hybrid Particle Swarm Optimization (HPSO) by (Kuo et al., 2009) and TLBO by (Baykasoǧlu et al., 

2014) are considered for comparing results with Jaya algorithm.  Table 4 shows the minimum, maximum 

and average values of makespan obtained by various algorithms. Table 5 presents the ARE values 

obtained by HPSO, TLBO and Jaya. As we can see that the ARE values of Jaya are better than TLBO 

and comparable with HPSO. Above all, we come to our final outcome that for all three well-known 

benchmarks, the results obtained by Jaya algorithm for permutation flow-shop scheduling problem seems 

plausible when compared with other efficient heuristics and hence this algorithm can be considered as 

amenable and exhaustive to discrete combinatorial optimization problems. 

Table 4  
Comparisons of HPSO, TLBO and Jaya. Bold indicate the best solution obtained among various algorithms 

Instance n×m S* HPSO TLBO Jaya 

Min Max Avg. Min Max Avg. Min Max Avg. 

Ta001 20×5 1278 1278 1278 1278 1278 1297 1287.2 1278 1285 1281.5 

Ta011 20×10 1582 1582 1596 1587.3 1586 1618 1606 1584 1623 1609 

Ta021 20×20 2297 2297 2315 2307 2325 2370 2345.7 2311 2347 2338.6 

Ta031 50×5 2724 2724 2724 2724 2724 2741 2729.4 2724 2736 2729 

Ta041 50×10 2991 3034 3063 3053.6 3120 3169 3141 3060 3108 3088.1 

Ta051 50×20 3771 3923 3966 3944.3 3986 4095 4029.7 3981 4082 4052.5 

Ta061 100×5 5493 5493 5493 5493 5493 5527 5499.4 5493 5505 5500.3 

Ta071 100×10 5770 None None None 5887 5997 5928.7 5850 5964 5938.1 

Ta081 100×20 6286 None None None 6549 6726 6617.8 6470 6609 6571.6 

Ta091 200×10 10868 None None None 10979 11079 11033 11094 11165 11135 

Ta101 200×20 11294 None None None 11855 12024 11940 12079 12146 12119.4 

Ta111 500×20 26189 None None None 27377 27565 27492 27937 28073 28000.5 
 

Table 5  

Comparisons of ARE values of HPSO, TLBO and Jaya. Bold indicate the best solution obtained among 

various algorithms 
Instance Jaya TLBO HPSO 

ARE ARE ARE 

Ta001 0.274 0.72 0 

Ta011 1.707 1.52 0.335 

Ta021 1.811 2.08 0.435 

Ta031 0.184 0.20 0 

Ta041 2.086 5.03 2.093 

Ta051 4.604 6.86 4.604 

Ta061 0.133 0.12 0 

Ta071 2.913 2.75 None 

Ta081 4.543 5.28 None 

Ta091 2.457 1.52 None 

Ta101 7.308 5.72 None 

Ta111 6.917 4.98 None 
 

5. Conclusions and future extensions 

In the present study, we test the performance of recently proposed, simple and efficient meta-heuristic 

optimization technique named Jaya algorithm for permutation flow-shop scheduling problem for the first 

time in literature. The uniqueness of the proposed algorithm as against other common meta-heuristics is 

that it does not require turning of algorithm-specific parameters. The objective is to minimize the 

makespan (maximum completion time). To obtain a job permutation vector largest order value rule 

(LOV) is utilized. The results are analyzed on well-known public benchmarks and compared with the 

efficient heuristics available in the literature. Computational results reveal the effectiveness of Jaya 

algorithm. An extensive experimental work is carried out in order to explore the potential of Jaya 

algorithm for solving permutation flow shop scheduling problems. It has been investigated that 

performance of Jaya on flow shop scheduling problems can give an idea about its possible applications 

to other discrete combinatorial problems. Further research in the proposed study can be extended in the 
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following directions. Firstly due to simplicity in its application, Jaya algorithm can be hybridized or 

modified with other algorithms in order to achieve more efficient results. Secondly, it can also be applied 

to other complex shop floor problems such as parallel flow-shop, flexible flow shop, open shop, two-

stage flow shop etc. considering maintenance and quality effects. 
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