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Abstract In this article, we present a microscopic-discrete mathematical model
describing crowd dynamics in no panic conditions. More specifically, pedestri-
ans are set to move in order to reach a target destination and their movement is
influenced by both behavioral strategies and physical forces. Behavioral strate-
gies include individual desire to remain sufficiently far from structural elements
(walls and obstacles) and from other walkers, while physical forces account
for interpersonal collisions. The resulting pedestrian behavior emerges there-
fore from non-local, anisotropic and short/long-range interactions. Relevant
improvements of our mathematical model with respect to similar microscopic-
discrete approaches present in the literature are: i) each pedestrian has his/her
own dynamic gazing direction, which is regarded to as an independent degree
of freedom and ii) each walker is allowed to take dynamic strategic decisions
according to his/her environmental awareness, which increases due to new
information acquired on the surrounding space through their visual region.
The resulting mathematical modeling environment is then applied to specific
scenarios that, although simplified, resemble real-word situations. In partic-
ular, we focus on pedestrian flow in two-dimensional buildings with several
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structural elements (i.e., corridors, divisors and columns, and exit doors). The
noticeable heterogeneity of possible applications demonstrates the potential of
our mathematical model in addressing different engineering problems, allowing
for optimization issues as well.

Keywords crowd dynamics · evacuation · environmental awareness · gazing
direction · social and physical forces

1 Introduction

Collective phenomena observed in human crowds both in normal and in panic
conditions has been addressed by a rapidly increasing number of multidisci-
plinary approaches. Particularly engaging and challenging is the self-emergence
of ordered and coordinated configurations from apparently uncorrelated pedes-
trian dynamics (for example, segregation of opposite flows in pedestrian counter-
streams [50], turbulent movement in extremely dense crowds [65], or pattern
formation around bottleneck structural elements [27], [41], [49]). In fact, such
group organizations are not the result of a common decision made by all indi-
viduals or by a leader, rather, they stem from simple sociological and behav-
ioral rules followed by each person, who probably does not even perceive the
global structure of the crowd he/she is part of.

For decades, pedestrian crowds have been studied with empirical approaches
only, as the evaluation methods have been typically based on direct observa-
tion, photographs and time-lapse movies, see for example [4], [15], [25], [40],
[58]. These methodologies have been able to collect a large amount of data re-
garding a wide range of pedestrian walking determinants, such as mean speeds
and preferential directions, reactions to the presence of obstacles and/or at-
traction points, individual behavior in fog or in dangerous situations, thereby
providing an important descriptive value. However, they have not been satis-
factory from a predictive point of view.

In relatively recent years, traditional methods to investigate crowd dy-
namics increasingly integrate and interface with computational approaches
deriving from applied physics, mathematics and engineering. Computer sim-
ulations can firstly provide a powerful tool for designing and planning urban
infrastructures, such as crowd facilities, subway or railway stations, stadia,
pedestrian precincts, shopping malls, or big buildings. In fact, they can be
used for a preliminary study, in order to test different design solutions, as well
as for optimization issues. Moreover, virtual simulations are able to highlight
critical conditions in which crowd disasters may occur and suggest effective
countermeasures to improve safety of mass events. The underlying require-
ment is obviously that theoretical models must be accurate enough to catch
complex unsteady crowd dynamics but also versatile and able to deal with dif-
ferent real-world applications. To this purpose, modeling pedestrian dynamics
is a difficult task because modelers have to take into account that a human
crowd, as other complex living systems such as groups of animals [48], is a
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complex system. In fact, walking individuals are not passively dragged by ex-
ternal forces but undergo active decision-based dynamics so that the use of
the well-established classical passive mechanics is no longer sufficient.

As nicely reviewed in [29], [61], the early computational methods of pedes-
trian flows date back to more than forty years ago and include models for
queuing and route choice [53], [60], [64], [66], transition matrix approaches [24]
and stochastic approaches [3], [55]. However, recent theoretical approaches for
crowd dynamics can be typically distinguished in macroscopic models (refer,
for instance, to [6], [16], [17], [28], [36], [37], [38], [42]), mesoscopic/kinetics
methods (see [7], [8], [9], [10]) and microscopic models.

In particular, microscopic approaches (also called individual-based models,
IBMs) describe a crowd as a collection of isolated pedestrians: each of them
is individually considered, assimilated to a point particle or a quasi-rigid disk
and followed during motion. More specifically, a first subgroup of microscopic
models is represented by the so-called cellular automata (CA, see for instance
[12], [43]), where each pedestrian behaves and moves according to a set of phe-
nomenological rules that he/she executes depending on his/her individuality
and/or as a reaction to extrapersonal stimuli (i.e., exerted by other walkers or
by the surrounding environment). Another subtype of microscopic approaches
includes instead the discrete models: they employ classical Newtonian laws of
point mechanics, as the motion of each individual is described by an ordinary
differential equation (ODEs). Several examples can be found in [30], [31], [32],
[33], [54] and references therein.

Despite specific differences, most of microscopic-discrete models dealing
with crowd dynamics show some significant similarities in the assumptions set
up to establish pedestrian movement. First, walkers typically move according
to a desired direction (i.e., the trajectory that minimizes the distance to their
target destination) at a comfort velocity. Apart from complicated strategies,
perturbations are typically assumed to result from two kinds of extrapersonal
interactions: social and physical. The so-called social interactions do not have
a physical source and reflect the desire of a pedestrian both to maintain a suf-
ficient distance from other walkers and walls and/or to closely follow his/her
groupmates, as in [34], [57]. On the other hand, physical interactions arise
from collisions between individuals, or between an individual and a structural
element within the domain. Both types of extrapersonal determinants are typ-
ically taken into account by a superposition of forces/velocity components
(according to the order of the model).

However, unlike CA models, most purely discrete approaches pay little
attention to the role played in crowd dynamics by the evolution of a pedes-
trian environmental awareness. As a matter of fact, the target destination (and
therefore the relative direction of motion) of each individual is in fact typically
established a priori, i.e., each pedestrian walks towards an initially-assigned
destination. This is a serious shortcoming of microscopic-discrete models, since
in reality a person may change his/her target destination according to new in-
formation learned about/from the surrounding environment, thereby giving
rise to completely different dynamics of the whole crowd. For instance, when
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moving within a building, an individual may dynamically change exit strat-
egy: for example, he/she may opt for the nearest door, even if it is not the
one he/she initially knew or decided to use. A walker is typically influenced
by sounds or signage as well. In principle, a dynamic environmental awareness
has to be coupled with a realistic evolution of the pedestrian gazing direction,
which can be partially uncorrelated and independent from the pedestrian di-
rection of movement. However, also this point has been disregarded by most
discrete approaches presented in the literature so far.

The aim of the present work is indeed to describe a mathematical modeling
environment able to address the above-mentioned critical issues. In particular,
we propose a microscopic-discrete approach, where each pedestrian is char-
acterized by his/her own preferred direction of movement, vision field and
evolving environmental awareness. The combination of these ingredients rep-
resents a substantial improvement with respect to similar models present in
the literature, as it allows to more realistically account for pedestrian decision-
based behavior. Our mathematical environment is then tested with simulations
dealing with crowd dynamics within two-dimensional built environments pro-
vided with several structural elements, such as corridors, divisors/columns,
and exits.

The rest of this paper is organized as follows. In Section 2, we clarify the as-
sumptions which our mathematical approach is based on and present the model
components. More specifically, this first part does not still include a pedestrian
dynamical environmental awareness (and the corresponding decision-based dy-
namics): this choice has been made to validate and compare our model against
the pertinent computational literature. The resulting simulations, shown in
Section 3, are able to capture selected experimentally-observed crowd pat-
terns (i.e., streamline), and give interesting suggestions for designing corridor
structures for smooth evacuations (i.e., in no strictly panic conditions). Then,
in Section 4, we introduce the possibility for pedestrians to change target des-
tination, as a consequence of new information acquired from the surrounding
environment. In this sense, numerical realizations presented in Section 5 pro-
vide a clear confirmation of the role played by such a model development in
reproducing more realistic dynamics. A discussion on results obtained by our
approach, as well as on possible model improvements, is proposed in Section
6. The paper is finally equipped with an Appendix dealing with a sensitivity
analysis of the main model parameters: in particular, it is focused on a justi-
fication of the parameter estimates and on their impact in the overall model
behavior.

2 Mathematical model

2.1 Individual characteristics of single pedestrians

A crowd of N pedestrians is modeled in a domain Ω ⊆ R2, which may re-
produce the planimetry of a building. Within the domain, selected points of
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Fig. 1: Pedestrian characterization. Left panel: any pedestrian i is represented
as a dimensionless point whose physical body is modelled as a circle of radius
Rbody

i . vi and wi indicate pedestrian’s instantaneous velocity ad gazing direc-
tion, respectively. Right panel: the pedestrian’s gazing direction wi is defined
by the angle ωi that it forms with the x-axis of the domain. wi indeed identi-
fies the pedestrian’s visual region Ωvis

i , where Rvis
i and θi are the vision depth

and the vision angle, respectively (refer to Eq. (3)).

interest for the considered walkers, such as exit doors, are identified. Each
pedestrian i = 1, ..., N is individually represented as a dimensionless point,
whose position is identified by the vector xi. The physical space occupied by
a walker is taken into account by defining a sphere of radius Rbody

i , which
corresponds to the major semiaxis of the ellipsoid obtained by overlapping
three circles representing his/her head and shoulders (see Fig. 1, left panel).
Each pedestrian is further characterized by a set of variables that completely
describes his/her state

(si(t),vi(t),wi(t)). (1)

si is an integer number which defines the psychological condition of each pedes-
trian, i.e., his/her desire to maintain a given stride:

si(t) =





0, if i is walking normally;

1, if i is in a hurry;

2, if i is running;

...

(2)

The value of si may change in time as a result of personal and extrapersonal
stimuli. The vectors vi and wi indicate instead the instantaneous velocity and
gazing direction of an individual i, respectively. It is useful to stress that vi and
wi are allowed to not be aligned and that can in principle vary independently.
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In this respect, the gazing direction is a further pedestrian degree of freedom
that, as we will see in the following, has an own evolution law. In particular,
wi is determined by ωi, which is the angle between wi and the x-axis of the
domain, i.e., wi(t) = (cosωi(t), sinωi(t)), see the right panel of Fig. 1. The
angle of vision of pedestrian i is set equal to θi ∈ [0, π/2] both on the left and
on the right of the gazing direction, so that his/her visual region finally reads:

Ωvis
i (t) =

{
y ∈ S2(xi(t), R

vis
i ) :

(y− xi(t))

|y− xi(t)|
·wi(t) ≥ cos(θi)

}
, (3)

where S2 is the 2D-ball centered xi(t) with radius Rvis
i , which is the vision

depth of the individual. The presence of structural obstacles (such as walls)
obviously reduces pedestrian’s visual region.

2.2 Pedestrian dynamics

To approach the dynamics of a generic pedestrian i, we start from a general
second-order particle model:

mi

d2xi

dt2
(t) + λi

dxi

dt
(t) = Fi(t), (4)

where the constants mi and λi are the mass and the friction coefficient, re-
spectively, while Fi denotes the sum of forces influencing walker behavior.
However, living entities, such as cells, human crowds or swarms, are not pas-
sively prone to the Newtonian laws of inertia, as they are able to actively
develop behavioral strategies which depend both on intrinsic stimuli and on
the interaction with the external environment. For instance, a pedestrian, at
least when he/she is not running too quick, can decide to stop and change di-
rection of motion: intelligence can be in fact regarded also as the ability of an
individual to actively control his/her body and therefore his/her movement,
see also [19]. These concepts allow to neglect the inertial term in Eq. (4), i.e.,
to assume, in mathematical terms, λi >> mi:

mi

λi︸︷︷︸
→ 0

d2xi

dt2
(t) +

dxi

dt
(t) =

Fi(t)

λi

⇒
dxi

dt
(t) =

Fi(t)

λi

= ṽi(t)︸ ︷︷ ︸
pedestrian
velocity

. (5)

Eq. (5) states that the velocity of an individual, and not his/her acceleration,
is proportional to the acting forces. This relation, called overdamped force-
velocity response, is at the basis of a number of discrete/IBM approaches (see
[23] and [62] for comments) and allows to describe selected pedestrian behavior
by a direct phenomenological postulation of the velocity contributions, i.e., by
a first-order model. The actual speed of a walker is finally established by
his/her desire and subjected to physical constraints.
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Taking into account of all the above-explained considerations, the equation
of motion of a pedestrian i reads as

dxi

dt
(t) = ṽi(t) = min{ v(si(t)), |vi(t)| }

vi(t)

|vi(t)|
. (6)

In Eq. ((6)), v(si(t)) defines the comfort speed of the individual, established
according to his/her personal status si (see Eq. (2)):

v(si(t)) =





v0, if si(t) = 0;

v1, if si(t) = 1;

v2, if si(t) = 2;

...

(7)

In particular, v0 < v1 < v2 < ... ≤ vmax, where vmax is a maximal value
coherent with human physical limitation (i.e., a maximal acceptable speed). An
analogous thresholding over the individual velocity has been earlier proposed
in the celebrated Helbing’s model (see [27]) and used to avoid unrealistically
high speeds, that might arise even from realistic dynamics.

We then assume that the dynamics of each pedestrian derive from the
combination of both social/behavioral and physical forces. The so-called social
forces (a concept introduced by Helbing and co-workers in the 90’s, see [27],
[31], [32], [34], [57]) do not have a physical source, but rather reflect the inten-
tions of a pedestrian to reach some target destinations (e.g., exits) at a given
speed and to keep a certain distance from walls and from strangers. Moreover,
when collisions between pedestrians happen, physical forces of pushing and
friction enter the picture. In other words, we can say that the instantaneous
movement of a pedestrian is the result of his/her own strategy (developed by
taking into account his/her purpose) and of the interactions with the surround-
ing environment and the walkers encountered along his/her motion. Then, the
velocity components of the generic pedestrian i read as follows:

vi(t) = vdes
i (t)︸ ︷︷ ︸

individual strategy
env. influence

+ vcrowd
i (t)︸ ︷︷ ︸

interpersonal
interactions

+ ξi(t)︸︷︷︸
noise

, (8)

where vdes
i is the individual strategy and vcrowd

i represents the velocity contri-
butions due to interactions with surrounding walkers. Finally, ξi is a fluctuation
term, that deals with variations of pedestrian behavior from the given rules
of motion. In this respect, the fluctuation term may account for accidental
events, as commented in similar models [27], or may model the uncertainty of
individual reactions to the same stimuli. From a mathematical point of view, ξi
can be in principle described by a vector whose modulus is v(si(t)) and whose
direction is established by a given probabilistic distribution (for example, a
gaussian law).
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Fig. 2: A representative domain reproducing the planimetry of a building com-
posed of two rooms. Each room is equipped with an exit door, that constitutes
a possible pedestrian target destination. Left panel, top: signed distance func-
tion for the exit door in the left room (color field, lighter colors indicate shorter
arrival times). Left panel, bottom: signed distance function for the exit door
in the right room (color field, lighter colors indicate shorter arrival times),
isochronal loci for different values of the arrival time (black contours), trajec-
tory followed by a single pedestrian to reach the exit door in the right room
(red thick line). Right panel: magnification of the gradient field of the signed
distance function.

2.2.1 Personal desired strategy.

The first term in Eq. (8) describes the attempt of a generic pedestrian i to
move in his/her preferred direction at his/her comfort velocity. Such a personal
component of the velocity is assumed to depend on the position of the target
destination and on the natural intention to stay sufficiently away form walls.
Indeed, we have:

vdes
i (t) = v

targ
i (t) + vwall

i (t). (9)

Target velocity. The target velocity of each pedestrian is established according
to his/her desire to minimize the effort to reach his/her target destination,
i.e., to cover the shortest possible path from his/her position to his/her target
destination at his/her preferred speed (other strategic behavior may be taken
into account).

Indeed, let us label each possible point of interest for pedestrians with an
integer number h = 1, ..., H, so that the target destination of the i-th individual
can be indicated by hi ∈ {h}H1 . A target destination can be any point within
the domain, any subset of domain’s boundaries (e.g., an exit door), or any
subset of the domain (e.g., a target area where a pedestrian needs to gather).
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The target velocity of pedestrian i is given by:

v
targ
i (t) = v(si(t)) zhi

(xi(t)) (10)

where v is his/her comfort speed value, as specified in Eq. (7). The unit vector
zhi

(xi(t)) represents the local tangent vector to the trajectory joining the
instantaneous position of the i-th pedestrian to his/her target destination with
the shortest arrival time (in short, optimal trajectory).

Computation of optimal trajectories is a well-consolidated subject; so, in
principle, the optimal path for a given pedestrian with a given target destina-
tion can be computed by using any of the available methods in the existing
literature. For instance, in polygonal domains, the trajectory to a target desti-
nation with the shortest arrival time is a piece-wise linear curve, which can be
computed using the visibility graph (see for instance, [1]). Other approaches
can be considered in case of non-polygonal or non-planar domains (where the
optimal trajectory must be replaced with the optimal geodesic path), but at
the price of increasing the computational cost.

If we neglect interpersonal collisions, each pedestrian would follow the opti-
mal trajectory to his/her target destination without any deviation. Therefore,
the optimal trajectory could be computed for each pedestrian once and for
all after assigning his/her destination. In our model, however, each walker can
change his/her target destination due to new information acquired from the
surrounding environment, and can also deviate from the optimal trajectory due
to inter-personal collisions. For these reasons, the optimal trajectory must be
recomputed at each time step for each pedestrian according to his/her instan-
taneous position and his/her target destination, thus leading to a unacceptable
computational cost.

In order to avoid to continuously recompute the optimal trajectory, we
adopt the following strategy. For each target location h = 1, . . . , H (e.g., a
door), we compute the distance function Φh(x) : R

2 → R+ ∪ {0}, defined as
follows:

Φh(x) := min
y∈Γh

d(x,y), ∀x ∈ Ω (11)

where Γh is the closure of the subdomain Γh that forms the location of interest
h and d(x,y) is the usual Euclidean distance. It can be proved that the signed
distance function Φh is the solution to the 2D Eikonal equation:

|∇Φh(x)|
2 = 1 (12)

with condition:
Φh(x) = 0, x ∈ Γh. (13)

Note that the above problem is well-posed even if boundary conditions are not

supplied on ∂Ω \ (∂Ω ∩ Γh). In fact, a simple analysis of the 2D Eikonal equa-
tion shows that characteristics emanate from Γh and cross domain boundaries
from domain’s interior both in case of a target destination located inside the
domain, and in case of a target destination located on its boundaries.
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It follows from Eq. (11), that the local unit tangent vector to the optimal
trajectory from the location of pedestrian i to his/her target destination hi is
simply given by:

zhi
(xi) = −∇Φhi

(xi). (14)

The above strategy has three major advantages. First, the problem in Eqs.
(12)-(13) can be solved only once for each target location. This can be ac-
complished very efficiently using, for instance, the fast-marching technique
introduced in [45] and [46]. Second, zhi

can be evaluated without explicitly
computing the optimal trajectory for each pedestrian at each time step, thus
avoiding a significant computational effort. Third, algorithm complexity is in-
dependent of domain geometry and can be easily generalized also to the case
of non-planar domain. An example of signed distance function is depicted in
Fig. 2.

Recent alternative approaches for evaluating pedestrian optimal paths may
also include minimum time length algorithms (see [51] and references therein).

Wall repulsion velocity. The desired shortest path, mainly in complex domains,
could be unrealistically close, or even superposed, to walls or non-walkable
structures such as columns. However, the intention of individuals to stay suf-
ficiently away from such architectural elements can be implemented by intro-
ducing a repulsive term for any pedestrian i, that is active only when he/she
is close enough to one of them:

vwall
i (t) =





−Ai exp
(
(Rbody

i − dwall
i (xi(t)) )/Bi

)
nwall
i (xi(t)),

if dwall
i (xi(t)) ≤ Rwall

i ;

0, else,

(15)

where Ai and Bi are constants and

nwall
i (xi(t)) =

∇dwall
i (xi(t))

|∇dwall
i (xi(t))|

is the unit vector directed from the position of individual i toward the nearest
point of the non-walkable element, as dwall

i (xi(t)) is corresponding distance,

as done for instance in [29], [57]. Finally, Rwall
i > Rbody

i is the wall repulsion
radius.

2.2.2 Interpersonal interaction velocity

The interaction component of the velocity of pedestrian i is the sum of differ-
ent contributions, which implement both physical/contact and social/repulsive
forces:

vcrowd
i (t) = vcont

i (t) + v
rep
i (t). (16)
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Fig. 3: Pedestrian interaction neighborhoods. Left panel: the contact neigh-
borhood Ωcont

ij ensures that a pair of walkers i, j collides when their relative

distance is lower then the sum of their body radius, as Rcont
ij = Rbody

i +Rbody
j .

Right panel: the contact neighborhood Ωcont
i models the desire of pedestrian

i to keep distance form the walkers within his/her visual region Ωvis
i .

Contact velocity. The contact component of the interaction velocity describes
the physical forces of pushing and sliding friction between two colliding pedes-
trians. It is a purely physical force that accounts for the mass of each walker.
In particular, the contact velocity term of an individual i is given by the su-
perposition of binary interactions, as

vcont
i (t) =

N∑

j=1

xj(t)∈Ωcont
ij

(t)

vcont
ij (t) =

=
N∑

j=1

xj(t)∈Ωcont
ij

(t)


−Ci(R

cont
ij − |xj(t)− xi(t)|) nij(xj(t),xi(t))︸ ︷︷ ︸

body force velocity




+

N∑

j=1

xj(t)∈Ωcont
ij

(t)


Di(R

cont
ij − |xj(t)− xi(t)|) tij(xj(t),xi(t))︸ ︷︷ ︸

sliding friction velocity


 .

(17)

The contact neighborhood of pedestrian i is

Ωcont
ij (t) =

{
y ∈ Ω : |y− xi(t)| ≤ Rcont

ij

}
, (18)

so that the corresponding component of his/her velocity comes into play only
when he/she gets close enough to another pedestrian j, so that both experience

a physical collision (see Fig. 3). The contact radius Rcont
ij = Rbody

i + Rbody
j is

the sum of the body radii of colliding pedestrians, while |xj(t)−xi(t)| is their
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distance. The unit vectors nij and tij are respectively defined as

nij(xj(t),xi(t)) =
xj(t)− xi(t)

|xj(t)− xi(t)|
, (19)

tij(xj(t),xi(t)) = k× nij(xj(t),xi(t)),

where k is the unit vector perpendicular to the plane of motion. Finally, Ci and
Di are constant parameters, whose value will be estimated in the Appendix and
listed in Table 1. It is useful to notice that we are assuming isotropic contact
interactions, as one can collide also with individuals coming from behind. In
mathematical terms, for any pair i, j of walkers, if xj(t) ∈ Ωcont

ij (t) at a given
time t, then xi(t) ∈ Ωcont

ji (t). The contact terms introduced in (17) represent
a slightly modification of the corresponding acceleration corrections employed
in [34].

Repulsion velocity. The repulsive term is introduced to reproduce the natural
tendency of pedestrians (at least in non-panic situations) to keep a distance
from surrounding individuals (the so-called territorial effect) and to avoid
collisions in cases of sudden velocity changes. Then, assuming again binary
repulsive interactions, we have:

v
rep
i (t) =

N∑

j=1

xj(t)∈Ω
rep
i

(t)

v
rep
ij (t) (20)

=

N∑

j=1

xj(t)∈Ω
rep
i

(t)

−Ei exp
(
(Rcont

ij − |xj(t)− xi(t)|)/Fi

)
nij(xj(t),xi(t)),

where Ei and Fi are constant coefficients (again estimated in the Appendix
and listed in Table 1), and Rcont

ij and nij(xj(t),xi(t)) are defined as in Eq.
(17). Ωrep

i represents instead the repulsion neighborhood at a given time t of
a generic pedestrian i, determined by the compact

Ωrep
i (t) =

{
y ∈ Ωvis

i (t) ∩Ω : |y− xi(t)| ≤ Rrep
i

}
, (21)

where the visual region Ωvis
i reads as in (3) and the repulsion radius Rrep

i repre-
sents the radius of his/her private sphere, i.e., the extension of the surrounding
space he/she intends to preserve. It is worthy to stress that, unlikely the case
of contact interactions, the repulsive velocity corrections are anisotropic, as
they are only active within the pedestrian vision field. This is consistent with
the fact that walkers rarely react to situations happening behind them. Indeed,
if a pedestrian j falls in the repulsion neighborhood of i, i.e., xj(t) ∈ Ωrep

i (t)
at a certain time t, it is not necessarily true that xi(t) ∈ Ωrep

j (t) at the same
time t. The anisotropy of the interpersonal repulsion term is not entirely new
in the literature, but it is widely related to the individual direction of motion.
In fact, it is usually assumed that pedestrians desire more open space in their
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walking direction than in others [29], [32]. Such an hypothesis is reasonable
in a first approximation: however, we strongly believe that a more realistic
repulsion neighborhood has to be related with the individual gazing direction,
as a pedestrian must see other walkers in order to avoid them.

2.3 Evolution of the gazing direction

During motion, each pedestrian may turn his/her gazing direction i) to reduce
the head rotation w.r.t. his/her movement direction, ii) to acquire new infor-
mation from the surrounding environment (i.e., to include a specific point in
his/her vision region), iii) for some unconscious fluctuations (noise). In more
details, recalling the relation between the gazing direction of individual i and
the angle ωi defined in Section 2.1, the temporal evolution of wi(t) is deter-
mined by the following equation:

dωi

dt
(t) = −Gi (vi(t)×wi(t)) · k︸ ︷︷ ︸

head rotation

−
∑

m

Pim (pm(t)×wi(t)) · k

︸ ︷︷ ︸
external stimuli

+ ζi(t)︸︷︷︸
noise

, (22)

where Gi and Pim are constant coefficients, k is as usual the unit vector
perpendicular to the plane of motion, and pm indicates the location of the
external stimulus m that can capture pedestrian attention. Finally, ζi is a
random fluctuation term for the evolution of the pedestrian gazing direction.
It may describe unpredictable individual reactions to environmental stimuli
or accidental head rotations. For these reasons, possible modeling laws for ζi
may be (i) a uniform distribution over the range of values [ωi − θi;ωi + θi] or
(ii) a gaussian distribution with mean ωi and standard deviation θi/2.58, i.e.,
in order to have the 99% of probability that ζi belongs to the individual visual
field.

For the reader’s convenience, we stress that the first term in Eq. (22)
employs the head rotation of a pedestrian in the direction of his/her motion:
it is therefore conceptually the opposite of the velocity correction used in
[57], that instead assumes that pedestrians adjust their position to reduce
the head rotation. Such a difference of viewpoints is due to the fact that, in
[57], pedestrians want to maintain their groupmates within their visual field.
Indeed, once their gazing direction has been established by the position of the
other individuals, they have to necessarily move accordingly.

3 Numerical results - I

3.1 Simulation details

In the next sections, we show numerical results in two-dimensional domains
Ω ⊂ R2, which reproduce the planimetry of buildings characterized by the
presence of rooms, exit doors, corridors, columns and internal/external walls.
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Table 1: Summary of the parameters used in the model.

Parameter Description Value Units

Rbody pedestrian body radius 0.3 m
Rvis pedestrian visual depth 50.0 m
θ pedestrian visual angle 1.48 rad
v0 desired speed of calm pedestrians 1.33 m s−1

A wall repulsion coefficient 1.0 m s−1

B wall repulsion coefficient 0.01 m
Rwall wall repulsion radius 0.4 m
C contact force coefficient 25.0 s−1

D contact force coefficient 50.0 s−1

E interpersonal repulsion coefficient 1.0 m s−1

F interpersonal repulsion coefficient 0.5 m
Rrep interpersonal repulsion radius 3.0 / 1.0 m
G gazing direction coefficient 2.0 rad s m−1

In all simulations, the entire crowd of pedestrians is characterized by the
very same physical determinants and social behavior, except from initial tar-
get destinations that, as it will be specified, can depend on the specific walker
(or walker subgroup). It is worthy to stress that, in principle, it would have
been possible to differentiate the characteristics of each single pedestrian, as
the relative parameters are individually defined. In particular, the parame-
ters of our model can be divided in (i) directly interpretable and measur-
able quantities, like the interaction radii and the dimensions of the visual
region, and (ii) technical coefficients, that determine the impact of each ve-
locity component but that do not have an immediate physical correspondence
(i.e., Ai, Bi, Ci, Di, Ei, Fi, Gi). In both cases, we here list their value, provid-
ing a short comment on how they have been estimated and, when possible, a
proper reference to the literature of the field. However, we remaind the reader
to the Appendix of this paper for a detailed sensitivity analysis, that justifies
the choices made for the parameter setting and studies the relative impact on
the simulation outcomes.

All pedestrians have a body radius Rbody
i = Rbody which is estimated

equal to 0.3 m (i.e., they are assumed to be adult medium-sized individuals, as
commonly done in similar models, see [63] and [67]). The walkers’ visual region
Ωvis

i , defined in Eq. (3), is instead defined by a visual depth Rvis
i = Rvis = 50

m and by a visual angle θi = θ = 1.48 rad (i.e., ≈ 85◦), see the considerations
in [11]. In all the following sets of simulations, we further assume that all
pedestrians are calm during the entire dynamics, i.e., no events take place
which can perturb their status: hence, si(t) = 0 for any i and any t. From
this hypothesis, it follows an common comfort speed v0 = 1.33 m s−1, which
is a realistic value for individuals in a no-hurry status, (as commented in
the already cited published work [67]). The wall repulsion force acts on any
pedestrian i when his/her distance from walls is lower then Rwall

i = Rwall = 0.4
m, while the constants Ai = A and Bi = B in Eq. (15) are estimated equal
to 1 m s−1 and 0.01 m, respectively. Both contact and repulsion forces are
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independent from the specific pair of interacting individuals: particularly, given
Rcont

ij = Rbody
i + Rbody

j = 2Rbody = 0.6 m, we set, for any i, the contact

constants Ci = C and Di = D equal to 25 s−1 and 50 s−1, respectively. Then,
the common repulsion radius is estimated in a realistic fashion Rrep

i = Rrep =
3 m. However, in the sets of simulations dealing with evacuation issues (cf.
Section 3.3), Rrep is reduced to 1 m: this is consistent, since individuals trying
to get out as soon as possible from a building care less of the territorial effect.
Instead, the repulsion constants Ei = E and Fi = F are always set equal to 1 m
s−1 and 0.5 m, respectively. We also assume the absence of any external stimuli
that can induce pedestrians to suddenly turn their gaze (i.e., the second term
at the r.h.s. of (22) is neglected). In the same equation, we set Gi = G = 2 (rad
s) m−1 for any i. In all realizations, we finally assume that the evolution both
of pedestrian velocity and of gazing direction are not affected by fluctuation
terms, i.e., ξ(t)i = ζi(t) ≡ 0 for any t and i, as it is done in the well-known
Helbing’s social force model [27].

In all the simulations proposed in the next sections, the domain boundary
∂Ω is formed either by walls or by exit doors. The exit doors represent possi-
ble pedestrian points of interest h: in this respect, if a walker falls within (or
cross) a part of the domain border occupied by a door, say Γh ⊂ ∂Ω (recall-
ing the same notation as in Section 2.2.1), he/she is assumed to have reached
his/her target and he/she is therefore eliminated from the system. On the
opposite, an individual is obviously not allowed to trespass external/internal
walls and other structural elements, such as columns. This critical situation is
not a priori avoided by the introduction of the threshold on the velocity and
of a proper wall repulsion law, but it is here computationally prevented with
a predictor-corrector scheme. Entering in more details, the position of each
pedestrian is firstly estimated using the entire simulation time step (predic-
tor). If a walker results to cross a domain boundary (that may happen if the
integration time step is over-estimated), the following procedure is activated:
(i) the exact time at which “the collision” with the wall occurs is computed by
backwards integration along the trajectory and (ii) from such an exact time,
until the end of the actual time step, the pedestrian is set to move along the
wall (corrector).

3.2 Streamline formation

We first deal with two rooms of 20×20 m2, connected by a corridor 10 m long
and 6 m wide. A crowd of 100 pedestrians is equally divided in two groups, each
located in a room. The target destination of the pedestrians initially located
in the left room (black points in Fig. 4) is the exit door in the right room,
while the target destination of the pedestrians initially located in the right
room (white points in Fig. 4) is the exit door in the left room. This choice is
done to obtain sufficiently long walker paths, which may result in interesting
collective dynamics, mainly emerging in the hallway passage.
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Fig. 4: Crowd dynamics in a building composed of two rooms and a 6 m-
wide corridor. Several ordered counter-stream queues autonomously emerge
when two groups of pedestrians walking in opposite directions encounter within
the corridor. The orange dot near to each individual indicate his/her gazing
direction, which is initially randomly generated. Representative images taken
at t = 0, 10, 13, 15, 27 seconds.

Fig. 5: Effect of the corridor width on the streamline formation. A progressive
reduction in the corridor width (to 3 and 2 meters, left/right respectively)
results in the subdivision of the passage in two larger lanes characterized by
a uniform direction of motion.

At the initial stages of motion, until the two groups are well separated,
each pedestrian moves according to his/her target destination and deviates
his/her walking direction because of the presence of walls, and because of
interactions with surrounding walkers (that, belonging to the same group,
therefore have the same preferred direction of motion), see Fig. 4. Then, in
order to reach the respective target doors, the two groups necessarily have to
enter the corridor in opposite directions, thereby encountering and partially
obstructing the passage each other. As a result, we observe the self-emergence
of several, almost parallel, one-individual-wide counter-stream queues, each
formed by pedestrians belonging to the same group, as reproduced in Fig.
4. Such collective dynamics are due to specific individual-scale behavior: the
single walkers have in fact to perform little sideways adjustments to continue
their motion towards their own target destinations. Form an energetic point of
view, it is in fact more efficient for them, in terms of deviation maneuvers, to
follow the path of another groupmate than to create a new path in the crowded
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hallmark structure. Finally, all pedestrians are able to reach their target exit
door, even if they acquire again an uncorrelated disordered migration.

The formation of pedestrian streamlines, empirically observed in real-world
scenarios involving bottleneck and narrow architectures [27], [41], [49], [50],
has been captured and reproduced with different types of mathematical ap-
proaches. However, in the case of both macroscopic [18] and microscopic-
discrete [34] models, the simulation outcomes are significantly affected by a
long-range attraction term between individuals of the same group that biases
walker movement enforcing groupmate aggregation. In this respect, it is use-
ful to underline that we do not employ such a type of velocity contribution
since, in our assumption, the subgroups of the overall crowd are composed
of individuals who do not know each other (i.e., they are not “real” group-
mates) but only share the same target destination. A self-emergent formation
of walker streamlines can be instead more easily captured by rule-based cellu-
lar automata, see [2], [59] and references therein.

We next turn to analyze how changes in the planimetry of the build en-
vironment affect the model outcome. As reproduced in Fig. 5, a progressive
reduction in the corridor width (to 3 and 2 meters, respectively) results in the
formation of two lanes of pedestrians walking in opposite directions. Due to
the decreased availability of free space in these cases, individuals are closely
packed to each other and to surrounding walls. It is also interesting to notice
how such lanes start as being composed of two (or even three) pedestrians in
parallel to end up in single-individual-wide queues toward the end of the corri-
dor. The rationale of these dynamics is that, in overcrowded narrow structures,
the only way for groups of walkers to go on moving in opposite directions is no
longer to create one-person-wide counter-stream queues but to autonomously
subdivide the passage in two larger lanes characterized by a uniform direc-
tion of motion. In real-world scenarios, as tunnels, subway stations or bridges,
such an emerging pattern is further encouraged and stabilized by structural
elements, i.e., internal walls, columns or trees, as commented again in [34].

3.3 Optimization of a pedestrian facility for evacuation purposes

In this section, we perform numerical simulations specifically designed to
present a preliminary study relative to the optimization of a pedestrian fa-
cility. More specifically, we focus on evacuation dynamics (in no panic condi-
tions) of a crowd composed of 200 pedestrians from a room through different
narrow passages. The effect of the specific planimetry is evaluated comparing
the evacuation time in the different cases. The evacuation time is defined as
the time needed by the entire crowd to enter the target “safe-room” (i.e., the
other w.r.t. their initial location). For the reader’s convenience, we recall that
in the following sets of realizations Rrep is reduced to 1 m.

In the first family of simulations, we consider the same planimetry in-
troduced in the previous test case. Here, however, the width of the corridor
between the two adjacent rooms has been varied for each realization and also



18 Annachiara Colombi et al.

Fig. 6: Effect of the corridor shape and measures on the evacuation time of a
crowd. We deal with 6, 3, and 2 m-wide corridors with or without a funnel-like
entrance. We also study the role of a series of divisors placed in the middle of
the widest corridor. In the bottom lines of panels, we represent the different
types of architectural solutions tested and some representative images of the
corresponding pedestrian dynamics. All the values in the plot are represented
as means ± SD over 50 realizations, characterized by the same parameter
setting but different initial distributions of the same number of pedestrians.

funnel-shape constructions and obstacles in corridor have been added for the
second and third serie of realizations, respectively (see Fig. 6). More in details,
all pedestrians are initially distributed in the left room, while the door in the
right room is their common target destination. As summarized in the plot of
Fig. 6 (top panel), it is immediately evident that narrower corridors result in
increments in the evacuation time. Moreover, it is possible to observe that,
at any corridor width, funnel-like geometries facilitate pedestrian evacuation.
This is due to the fact that a funnel-shape entrance of the corridor allows a
gradual modulation of walker velocity and direction of motion, thereby reduc-
ing the formation of possible overcrowded obstructions (at the bottleneck).
A further case of interest is the case with the widest corridor and a series of
divisors distributed along the medial axis (see Fig. 6 (bottom right panel)).
Such an architectural solution, however, has a little effect on the evacuation
dynamics. This is probably a consequence of the fact that the corridor is large
enough to allow a smooth flux of pedestrians. Moreover, since all walkers have
the same target destination, there is no necessity of creating and stabilizing
counter-stream lanes with structural elements.

We next employ our model on a planimetry representing two adjacent
rooms, separated by an internal wall. In this case, the narrow passage is con-
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Fig. 7: Effect of the presence of columns on the evacuation time of a crowd,
in the case of two adjacent rooms separated by an internal wall with a 1
m-wide door. The evacuation time does not significantly change as a conse-
quence of the specific architectural solutions. However, the presence of columns
reduces the clogging effect occurring near the exit door. All the values in the
plots are represented as means ± SD over 50 realizations, characterized by the
same parameter setting by different initial distributions of the same number
of pedestrians.

stituted by a 1 m-large door. Again, the group of individuals is initial placed
in the left room and wants to evacuate through the exit door of the right
room. As reproduced in Fig. 7, the absence or the presence of columns in front
of the internal door does not significantly affect the evacuation time of the
crowd (i.e., the difference in the corresponding evacuation times is less than
10 seconds). However, it is possible to observe that the addition of columns
prevents dramatic clogging effects in the proximity of the exit door. Such
structural elements force in fact a subdivision of walkers, thereby reducing
the pressure within the crowd mass. As captured in the bottom panels of Fig.
7, the evacuating individuals are more spaced near the exit door, preserving
a more extended “vital neighborhood”. These results agree with literature,
where such types of structure modifications are typically tested in panic con-
ditions, in order to preliminarily control and avoid critical situations especially
in the case of mass events. More specifically, it is interesting to notice that the
range of evacuation time in the case of adjacent rooms are comparable to those
measured in a similar, although of second order, discrete model dealing with
an analogous domain, see [34].
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4 Model extension: introduction of pedestrian environmental

awareness

In a great number of situations, pedestrians may change target destination
according to a dynamical synthesis between their initial purpose and the evo-
lution of their environment awareness, which is improved by acquiring new
information about surrounding environment during motion. For instance, a
walker aiming to get out as soon as possible from a building is firstly induced
to reach the exit he/she used to come into the building. However, during
motion, he/she may discover a new exit door, that may be preferable from
a strategic point of view. The improved environmental awareness allows the
pedestrian to opt for a change of the target destination. In other words, the
pedestrian motion is the result of a dynamical decision-based strategy. Tak-
ing into account these considerations, we propose a modified version of the
previously-described model. It is useful to remark that the inclusion of such
innovative aspects represents a definitive improvement of our approach w.r.t.
the existing literature.

A generic pedestrian i, besides the set of variables listed in (1), is now
characterized also by his/her environmental awareness, described by vector

ci(t) = {ci,1(t), ci,2(t), . . . , ci,H(t)} . (23)

Each component ci,h is associated to one of the possible target destinations:
it is set to 1 if pedestrian i is aware of the presence of the target destination h
and 0 otherwise. A consistent assumption is that all pedestrians initially know
at least one possible destination (for example, an individual within a building
knows at least the door from which he/she entered). As previously commented,
pedestrians may increase their environmental awareness by discovering during
motion new points of interest. In mathematical terms, if the position of a pre-
viously unknown possible target destination is included, at some instant t, in
the visual region of an individual i, i.e., xh ∈ Ωvis

i (t), the corresponding com-
ponent ci,h switches from 0 to 1. We recall that walker gazing direction turns
during motion according to Eq. (22) and that it may be partially uncorrelated
form the direction of motion. Finally, we reasonably assume that pedestrians
remember the location of all discovered destinations long enough to neglect
any effect due to memory loss.

Changes in the environment awareness affect pedestrian strategic behavior,
which determines the target destination and, ultimately, the preferred compo-
nent of the velocity, represented by the term vtarg in Eq. (9). More in details,
a pedestrian i is constantly allowed to change his/her destination by selecting
one of his/her current known points of interest according to a specific deci-
sional rule. A consistent assumption is that pedestrians intend to get out from
a building minimizing their efforts, thereby choosing the nearest exit: as a
consequence, the target destination hi(t) of pedestrian i, at a given instant t,
is such that

Φhi(t)(xi(t)) = min
h : ci,h(t)̸=0

{Φh(xi(t))}, (24)
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Fig. 8: Effect on pedestrian behavior of an evolving environmental awareness.
Left panel: in the absence of a dynamical environmental awareness, all walkers
get out from door 2, which is their initial target destination. Right panel:
with the inclusion of an evolving environmental awareness, some pedestrians,
seeing closer doors, change exit strategy. In both images, pedestrian paths are
represented. The black dots indicate the initial position of the walkers, while
the orange dots identify their initial gazing direction. In the right panel, the
green shadows reproduce the initial visual field of some single pedestrians: each
of them is a representative individual of the three types of behavior described
in the text.

where Φh(x) has been already introduced in Section 2.2.1. Finally, the pre-
ferred component of the velocity of such an individual i now reads as follows:

v
targ
i (t) = v(si(t)) zhi(t)(xi(t)), (25)

where zhi
has already been defined in Eq. (14).

5 Numerical results - II

In this section, we perform numerical simulations to analyze the role of a dy-
namical environmental awareness. In all realizations, both physical and behav-
ioral properties of pedestrians are characterized by the same set of assumptions
and parameters used in Section 3.1 (in particular, Rrep= 1 m). We here recall
that walkers can turn their gazing direction only to align it to the direction
of movement (i.e., in order to simplify the picture, we do not consider noises
or any other extrapersonal stimuli). Further, each individual is assumed to
initially know the location of only one of the possible destinations. This is
reasonable as a walker within a building typically is aware, at least, of the
position of the entrance from where he/she came in.
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Fig. 9: Crowd dynamics in a building composed of two rooms and a 6 m-
wide corridor, in the case of evolving pedestrian environmental awareness. All
walkers are initially located in the left room with the same gazing directions
given by wi(0) = (0, 1) and are initially aware of door 2 only. Pedestrians
below the orange line are able to see door 1, and therefore change their exit
strategy, while pedestrians over the orange line move toward the unique exit
they know, i.e. door 2. Interestingly, a couple of pedestrians initially placed
above the orange line (white dots) sees door 1 during their motion and sud-
denly changes strategy. The orange dot near to each individual indicate his/her
gazing direction. Representative images taken at t = 0, 4, 6, 7, 9, 11 seconds.

We first deal with a group of 10 individuals randomly distributed (with
a random initial gazing direction) in a square room of 100 m2, with 3 doors
located along different walls, see Fig. 8. All pedestrians are initially set to
know uniquely the exit located in the bottom side of planimetry of the room,
i.e., door 2, which therefore represents the common initial target destination.
In mathematical terms, we have that, for any individual i = 1, ..., 10, ci(0) =
{0, 1, 0} and hi(0) = 2. As expected, the inclusion in the model of an evolving
environmental awareness completely changes pedestrian collective dynamics,
see Fig. 8. A number of walkers in fact no longer get out from the room
through door 2 but change evacuation strategy (seeing during their motion
the presence of other exits). More specifically, it is possible to observe three
different pedestrian behavior:

– some individuals (i.e., i = 1, 4, 8) become aware of the presence of other
closer exits and, accordingly, opt to change their target destination;

– some individuals (i.e., i = 3, 5, 6, 9, 10) notice the presence of other exits,
but decide to maintain door 2 as target destination, since it is the closest
to their position (w.r.t. the known doors);

– some individuals (i.e., i = 2, 7) do not see other exits although such doors
may be in the proximity of their position, and therefore maintain their
initial target destination.

The rationale of the last phenomenology resides in the specific pedestrian
initial gazing direction, and in the following evolution: due to Eq. (22), the
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gaze of a pedestrian quickly aligns to his/her direction of motion. However,
since the visual field is strongly anisotropic, a door may not enter the visual
region of a pedestrian even if it is very close to his/her instantaneous position.

For these reasons, it is natural to investigate more deeply the role played
by the visual region in the evolution of pedestrian environmental awareness
and eventually in overall collective dynamics. For this purpose, we perform
a simulation using the “two-rooms-and-a-corridor” planimetry (introduced in
Fig. 4). More specifically, a crowd composed of 50 pedestrians is initially ran-
domly distributed in the left room, as shown in the left top panel in Fig. 9.
The initial gazing direction of each pedestrian is given by ωi(0) = π/2 rad, i.e.,
wi(0) = (0, 1), for any i. We further assume that all individuals are only aware
of the the position of the door located in the right room, i.e., ci(0) = {0, 1}
and hi(0) = 2 for any i. As shown in Fig. 9, pedestrians immediately separate
in two groups with opposite moving directions. More specifically, pedestrians
initially located in the area below the orange line are able to discover the
existence of door 1, as it falls within their visual region. On the contrary,
pedestrians that are initially placed over the line quickly align their gazes
towards their direction of movements, i.e., towards the right room, thereby
loosing the possibility of becoming aware of door 1 (and therefore of getting
out through the nearest exit). Interestingly, a couple of individuals initially
located in the upper zone (represented by white dots in Fig. 9) are forced by
interpersonal repulsive interactions to walk along the wall for a sufficient pe-
riod, so that door 1 enters their visual region. As a consequence, these walkers
change their preferred strategy and exit from the room through door 1 unlike
the surrounding pedestrians.

Finally, in order to attest the applicability of our model in more com-
plex and realistic situations, we show a representative numerical result per-
formed on a planimetry of a building constituted of several rooms and pro-
vided of 8 exit doors (see Fig. 10). All individuals are characterized by the
physical and behavioral parameters listed in Table 1. All of them are ini-
tially aware of door 8 only (because for instance they all entered through that
door), which therefore represents the common initial target destination, i.e.,
ci(0) = {0, 0, 0, 0, 0, 0, 0, 1} and hi(0) = 8 for any i = 1, 2, 3. Furthermore,
gazing direction is randomly generated at initial time for each pedestrian. All
individuals enhance their environmental awareness by seeing other exit doors;
as a consequence, only pedestrian 1 opts to maintain his/her initial evacuation
strategy, because door 8 is the closest to his/her position. Interestingly, walker
2 does not notice the presence of doors 6 and 7, although these are closer
exits: this behavior is due to the initial direction of his/her gaze and to the
inhibition effect of internal walls that reduce his/her vision region.

6 Conclusions

In this paper, a microscopic-discrete mathematical model describing crowd
dynamics in no panic conditions has been proposed, based on the concept of
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Fig. 10: Crowd dynamics in a building composed of several rooms and exits,
in the case of evolving pedestrian environmental awareness. Left panel: three-
dimensional view of the building. Right panel: planimetry of the building,
with the pathes performed by pedestrians. The black dots indicate the initial
position of the walkers, whereas the orange dots reproduce the initial direction
of their gaze. All pedestrians are initially randomly located within the building
with a randomly generated gazing direction. Door 8 is their common initial
target destination.

walker behavioral strategy. In more detail, in the first modeling setting, each
pedestrian has been assumed to move to reach his/her target destination: how-
ever, his/her movement is deviated by his/her tendency to remain sufficiently
far from walls and from other walkers and by interpersonal physical collisions.
These ideas have been translated in a first-order mathematical model based on
a set of ODEs, each of them describing the evolution of the velocity of a walker.
In particular, the long- and short-range interpersonal interactions introduce
non-locality and anisotropy in the individual behavior. Furthermore, pedes-
trian gazing direction has been assumed to have its own evolution equation.
The resulting model has been used to address some specific real-world sce-
narios involving pedestrian movement in two-dimensional built environments
with several structural elements and exits. The simulations presented along
the work have been able to capture and characterize the autonomous forma-
tion of pedestrian streamlines from the directionally opposite movement of
two groups of walkers along a corridor. A simple application of our approach
to the optimization of a pedestrian facility in the case of a no panic evacua-
tion has been also proposed. In particular, selected realizations have pointed
out that funnel-like constructions facilitate pedestrian evacuation, whereas the
presence of columns in the proximity of exits reduces clogging effects.

A key improvement of our mathematical model with respect to the existing
discrete-microscopic approaches is that pedestrians have been then allowed to
change target destination according to the evolution of their environmental
awareness. Such a model component implements the walker ability to evalu-
ate and synthesize the information dynamically acquired about/from the sur-
rounding space. The results of the corresponding numerical simulations have
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shown that evolutionary behavioral strategies play a fundamental role in cap-
turing realistic crowd phenomenology.

It is useful to remark that our model is based on a vectorial additivity
of separate velocity components, each of them describing an environmental
influence or a personal strategy. This is of course an approximation, but it is
consistent with experimental evidence. As commented in details in [34], quan-
titative measurements on animals and test persons, subjected to separate or
simultaneous stimuli of different nature and strength, show that the individ-
ual behavior can be described by a superposition of forces (see [39] [56]): this
assumption, in our model, is implemented by a superposition of velocity con-
tributions. The same considerations have allowed Helbing and co-workers to
represent pedestrian dynamics as the result of additive social forces. Analogous
approaches have been also employed by other authors, see [17] [22] and refer-
ences therein. For instance, alternative rules for establishing walker behavior
can be used: for example, social interactions can be described as gradients of
proper dynamically varying fields. Further, individual strategies can be repro-
duced with evolutionary algorithms [5] [47] or by tools of the game theory
[35]. In all these cases, our mathematical modeling environment would require
a complete revision. To compute pedestrian velocity, it would be possible also
to employ a “constrained optimization” approach. However, some non-trivial
issues would arise. In principle, it is not clear whether the optimization should
be performed with respect to a single or to multiple objective functions, nor
it is evident whether such objective functions should depend upon the ac-
tual state of the system, the simulated scenario, the individual interactions
or not. The second issue pertains to the optimization constraints. Both the
number and the type of constraints should vary according to the specific prob-
lem of interest, but it is not evident a priori which types of constraints are
best-suited to simulate a given situation. Not to mention that the weight as-
sociated to each constraint should be carefully chosen, as they significantly
affect the simulation outcomes (as much as the model parameters introduced
in our present model). Further, introducing in a optimization-based approach
a change in pedestrian’s behavior due to an evolving environmental awareness
(which is one of the key ingredient of our work) would be quite challenging
and should deserve dedicated studies. However, we believe that, for simple
scenarios (where the definition of a single objective function is rather straight-
forward), an optimization-based approach might lead to similar results as the
model proposed in this work. For instance, assuming a situation in which each
pedestrian wants to leave a location in the shortest time possible, the ob-
jective functions of a constrained optimization framework should be defined
as the time required to exit the location. In this case, we expect the result
of the optimization to be the same as the one presented in our work, as we
have defined that the unperturbed velocity of each pedestrian (i.e., without
interpersonal interactions) has the same (local) direction of the gradient of the
distance function from the target exit. Therefore, the unperturbed trajectory
is actually the shortest geodesic path among all possible paths to the target
exit, that is the trajectory with the shortest arrival time.
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However, the present version of our model can be of course improved in
several directions. The interpedestrian collision avoidance, introduced in Eq.
(20), is basically a first order version of the term used in the Helbing’s social
force model, i.e., a central, exponentially decaying repulsive force. However, few
recent works have demonstrated the inability of such a potential to properly
describe human collision avoidance, at least in specific density regimes [20],
[21], [44], [52], [59], [68]. In particular, in [68], the authors have shown that a
more realistic pedestrian microscopic behavior can be reproduced by including
a relative velocity in the computation of collision avoidance strategies, at least
in second order method frameworks. In this respect, it would be interesting
to analyze if such a limitation applies also to our model and, eventually, how
this issue can be tackled.

In principle, the present version of the model allows to account the pres-
ence in a crowd of different “social groups”. The term “social group” is here
used as in [57], i.e., to identify a set of individuals that intentionally walks to-
gether since they have social ties, as in the case of friends or family members.
To include this feature, it would be only necessary to add a specific attrac-
tion/agglometaring term in Eq. (16), to specify the common target destination
for the components of each social group, and to further assume that each group
member desires to maintain his/her groupmates in his/her visual region dur-
ing motion (i.e., a corresponding term in the evolution equation of the gazing
direction should be introduced). A relevant model refinement would also be
the implementation of alternative decision-based strategies, that characterize
different categories of pedestrians, i.e., resolute, anxious, and curious, or that
may apply to walkers with different travel purposes, i.e., travelers catching a
train, commuters in rush hours, shoppers. We in fact recall that in this paper
we have always assumed that walkers select as target destination the nearest
known point of interest. Further, the realism of the model would increase with
the introduction of extrapersonal elements and stimuli that may influence the
pedestrian movement and/or perception, such as fog, smoke or specific signage.

As briefly shown by the last simulation setting (cf. Fig. 10), our model has
the potential to be employed to describe crowd behavior in more realistic sce-
narios, which involve an increased number of agents moving in more complex
domains. Entering in more details, such model applications may look at the
field of crowd management, particularly in relation to sports and stadia events
(e.g., test of safe ingress and egress capacities), architectural projects of pub-
lic and commercial buildings (e.g., optimization of internal structural elements
for evacuation procedures) and designs of rail and metro stations (e.g., assess-
ment and improvement of safety, operational integration with large-scale crowd
events, evaluation of signage and communication systems). From a modeling
point of view, the application of the proposed mathematical approach to one
of the above-cited real-world scenarios requires the definition and the compre-
hensive typology of different kinds of crowds. Possible dimensions that have to
be considered are the purpose of the individuals, the level of pedestrian move-
ment (i.e, in terms of velocity and direction), the event/location atmosphere,
the identification of possible crowd heterogeneities, the type of interpersonal
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interactions, both within the crowd and with external groups (i.e., with stew-
ards or officers). Obviously, a model employment in the case of huge numbers
of individuals and/or complex and large enough domains involves computa-
tional issues, i.e., mainly related to the optimization of computing time. In
this respect, a possible solution is represented by the use of serial and parallel
computing. High performance serial computing can be achieved by using the
same programming techniques employed in particle fluid-dynamic simulations.
Otherwise, parallel computing is possible, for example, using Message Pass-
ing paradigm (MPI) or shared memory parallelization. In the first case, the
computational domain would be divided in subdomains that in turn would
be assigned to a single processor. At each time step, each processor should
communicate the pedestrians who leave its portion of domain and enter the
sub-domain of a neighboring node. In case of a shared memory parallelization
(e.g., on GPU devices), the computational domain and the data structure stor-
ing population data would be shared among different threads, each of them
updating the state of a sub-set of individuals.

For scenarios characterized by large numbers of individuals, both upscal-
ing and mean-field theory could be convenient strategies to control the high
computational effort required by reproducing the pedestrian flow in extended
environments, as provided by the relative literature, see for relevant examples
[6] [16] [17] [19] [42] and references therein. However, these approaches would
cause the loss of the characterization of the single pedestrians, i.e., in partic-
ular of the individual gazing direction and environmental awareness (which,
as already explained, are key features of our model). Entering in more details,
both continuous and kinetic methods can take into account the existence of a
vision region: however, it is aligned to the direction of the desired velocity, i.e.,
pedestrian head is assumed to be always directed toward the target objective,
see [13] [14]. In this respect, without the inclusion of a proper (possibly uncou-
pled) evolution law for the gaze of each pedestrian, it would be not possible
to reproduce dynamical variations of the individual environmental awareness
which, as seen, result in realistic decision-based behavior.

Finally, it is fundamental to remark that most of those applications re-
lated to safety problems involve panic situations. This topic, out of the scope
of the present work, would involve significant modeling changes, i.e., both in
determining the individual paths towards the target destination and in dealing
with the interpersonal interactions. As it is widely known from the phenomeno-
logical literature [16], [26], pedestrians entering a panic state in fact tend to
chaotically follow other individuals, thereby clustering into more or less large
groups and dropping their specific destination. Moreover, interactions with
walls and obstacles follows completely different rules, since panicked walkers
not only care less about obstacles but may prefer to approach walls for safety
reasons (especially in low visibility situations). For these reasons, a realistic
model should also include reasonable laws for the transition of each pedestrian
from a normal condition to a panic scenario.
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Appendix: parameter estimate and sensitivity analysis

As already explained, the model parameters can be distinguished in physical
quantities and merely technical coefficients. When possible, we opt to use a
parameter estimate inferred from the existing literature. In the other cases,
our choice is done after preliminary simulations, that help us to select the more
realistic parameter setting. In this respect, this Appendix gives details both on
how we establish the set of parameter values and on how our estimates affect
the simulation outcomes.

Variation of the visual region extension. Although the physical significance of
both Rvis

i and θi is sufficient to define their values, it is worth noting that
the extension of the visual region can definitely change pedestrian behavior.
In order to analyze this aspect, we refer to the simulation setting of Fig. 8 in
Section 5, i.e., a group of 10 individuals distributed in a square room with three
exits that want to reach the nearest door. In particular, all pedestrians are set
to initially know only the position of exit 2 but have a variable environmental
awareness (i.e., each of them is allowed to opt for an alternative door if he/she
actually sees it). Keeping fixed the other model parameters, we vary either the
visual depth Rvis

i = Rvis and the visual angle θi = θ (we recall that both are in
common for all individuals). As captured by the trajectories reported in Fig.
11, very low values ofRvis and θ result in a significantly limited visual region for
the pedestrians, that therefore typically maintain door 2 as target destination
(they are in fact not able to see any other exits). The model outcomes in such
a range of parameters could be also obtained by employing a discrete approach
that does not include a variable environmental awareness. The capability of
pedestrians to individuate (and therefore to choose) alternative targets then
increases with the overall extension of their visual region, i.e., it is enhanced
by increments in the values of Rvis and θ. In particular, for any Rvis higher
then the size of the domain, the walker behavior is entirely determined by the
extension of his/her visual angle θ, see the right panels in Fig. 11. Given these
considerations, we opt to estimate Rvis = 50 m, which is in the range of the
characteristic dimensions of the domains employed in this work, and θ = 85◦,
a value consistent with the literature, see [11].

For the sensitivity analysis of the remaining model parameters, we hereafter
employ the “two-adjacent-rooms-without-column” domain presented in Sec-
tion 3.3 (cf. Fig. 7 (top-right panel)). In particular, a group of 200 individuals
is initially located in the left room and wants to reach the door placed in the
right room. Starting from the very same initial distribution of pedestrians, we
then singularly vary selected model parameters and analyze the corresponding
simulation outcomes both by monitoring the evacuation time of the crowd and
by observing the emergence of characteristic collective dynamics.

Variation of the wall repulsion parameters. The wall repulsion radius Rwall

is estimated on the basis of empirical considerations. We first assume that
a person within a building takes into account the presence of a wall only
when he/she is approaching it. In this respect, given Rbody = 0.3 m, we set
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Fig. 11: Effect of the extension of the visual region on pedestrian dynamics. The
initial distribution of the group of individuals is the same for all realizations.
All walkers initially know only the position of door 2, but they have an evolving
environmental awareness (i.e., they are allowed to opt for the nearest known
door).

Rwall = 0.4 m, i.e., an individual tries to maintain a distance of about Rwall −
Rbody = 0.1 m from the nearest wall. Lower values of Rwall would result in
fact in decrements of the evacuation time (see the corresponding panel in
Fig. 12) but also in unphysical dynamics: the pedestrians would be in fact
dramatically pressed along the domain boundary or along the internal walls.
On the opposite, for Rwall > 0.4 m, no variations in the evacuation time occur.
This is a further justification for the chosen parameter value. The coefficients
A and B determine instead the exact form of the exponential function that
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defines the wall repulsion velocity. Keeping all the other parameters fixed,
A does not have a significant impact on the overall dynamics, see Fig. 12:
indeed, we opt for an intermediate value A = 1 m/s. Variations of B play
instead a critical role in the model outcomes. For B < 10−2 m, the evacuation
time is almost constant: however, it decreases when B ∈ (10−2 m, 1 m), until
reaching a threshold for B > 1 m. However, high enough values of B (i.e.,
> 1 m) correspond to the unrealistic situation of pedestrians that constantly
move along the boundary of the domain (not shown). We indeed opt to set
B = 10−2 m.

Variation of the interpersonal interaction parameters. By setting the pedes-
trian body radius Rbody equal to 0.3 m, the contact radius Rcont is necessarily
equal to 2Rbody = 0.6 m for any pair of interacting pedestrians. The evac-
uation time of the crowd decreases for C ∈ (10−1 s−1, 30 s−1), see Fig. 12.
However, we observe that, for too low values (i.e., < 5 s−1), the walkers collide
too frequently. On the opposite, high enough values of C (i.e., > 30 s−1) result
in unrealistically dynamics, as the pedestrians “rebound” one on each other
(due to the too high contribution of the contact component of the velocity)
thereby barely reaching the target door. Given such considerations, we esti-
mate C equal to 25 s−1. The evacuation time has instead a biphasic behavior
with respect to variations of D, as it is constant for D < 10 s−1, increases
for D ∈ (10 s−1, 103 s−1), until reaching a threshold for D > 103 s−1. In this
respect, we opt for the intermediate estimate D = 50 s−1.

The interpersonal repulsion radius is not determined by pedestrian physical
characteristics (unless the reasonable conditions Rcont < Rrep < Rvis). It in
fact defines the minimal distance below which a walker starts to deviate his/her
motion to avoid possible collisions with another individual, i.e., it has a sort of
psychological nature. In particular, the top-central panel in Fig. 12 shows that
variations of Rrep within the above-cited range of values do not significantly
affect the simulation outcomes (in terms of evacuation time of the crowd).
However, from a phenomenological point of view, it is clear that the comfort
interpersonal distance, evaluated by Rrep depends on the specific situation. In
this respect, it is consistent to assume Rrep = 1 m in the case of evacuation
scenarios (as panicking individuals tend to remain close one to another) and
a higher Rrep = 3 m in the other cases. The coefficient E does not affect the
dynamics of the crowd within a given range of values (i.e., E < 1 m/s, see
again Fig. 12). However, outside such a set of values, i.e., for E high enough,
we observe a blow up in the evacuation time: this is due to the fact that
the repulsive component overcomes the target velocity vtarg and therefore the
individuals try to keep the desired interpersonal distance rather than to reach
the exit door. Given these observations, we opt for E = 1 m/s. On the opposite,
variations of F do not play a critical role in walker behavior (refer to Fig. 12
(bottom-central graph)): indeed, an intermediate F = 0.5 m is chosen.

Variation of the gazing evolution parameter. The estimate of coefficient G is
inferred by qualitative and physical observations: too low values of G (i.e.,
< 1 (rad s)/m) generate unacceptable extremely rapid and uncontrollable
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Fig. 12: Effect of variations of selected model parameters. The graphs are
obtained by monitoring the evacuation time in the case of the “two-adjacent-
rooms-without-column” simulation setting. In all cases the initial pedestrian
distribution is the same. Within each panel, we identify the parameter estimate
used in the previous sections.

rotations of pedestrian’s head (not shown). On the opposite, too high values
(i.e., > 3 (rad s)/m) obviously force each walker to perfectly align his/her
gaze to his/her direction of motion, which is unrealistic. We indeed set an
intermediate G = 2 (rad s)/m.

Variation of the number of pedestrians. The number of pedestrian dramatically
affects the dynamics of the system. As reproduced in Fig. 12 (bottom-right
panel), aside slight perturbations due to numerical effects, the evacuation time
is in fact directly proportional to the number of individuals N . In this respect,
N = 200 corresponds to a value that allows to have a reasonable pedestrian
density, i.e., of 1 individual/m2, in the case of the domain setting used for this
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parameter sensitivity. The same considerations hold for the number of walker
used in the simulations presented in the previous sections.

Summing up the sensitivity analysis proposed in this section, it is possible
to conclude that pedestrian behavior strongly depends both on the extension
and on the dynamics of the visual region (which are defined by the visual
depth/angle and by the coefficient G, respectively). However, empirical con-
siderations allow us to infer a consistent estimate of the values of such param-
eters. On the opposite, the wall repulsion radius, as well as the interpersonal
repulsion distance, does not affect the model outcomes. The rationale is that
the corresponding velocity contributions are negative exponential functions:
indeed, rather than the point at which a pedestrian starts to experience in-
terpersonal interactions, it is fundamental the exact form of the exponential
laws, given by the relative coefficients (A,B,C,D,E, F ). However, physical
observations help us to provide a realistic set also of these parameters. Fi-
nally, the overall simulation results are obviously affected by the total number
of individuals taken into account, that obviously determines the evacuation
time of the overall crowd. In this respect, it is necessary to account a realistic
density of pedestrians for unit of area (i.e., ≈ 1 m−2).
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