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SUMMARY

A theory of discrete Cosserat rods is formulated in the language of discrete Lagrangian mechanics.
By exploiting Kirchhoff’s kinetic analogy, the potential energy density of a rod is a function on
the tangent bundle of the configuration manifold and thus formally corresponds to the Lagrangian
function of a dynamical system. The equilibrium equations are derived from a variational principle
using a formulation that involves null–space matrices. In this formulation, no Lagrange multipliers are
necessary to enforce orthonormality of the directors. Noether’s theorem relates first integrals of the
equilibrium equations to Lie group actions on the configuration bundle, so–called symmetries. The
symmetries relevant for rod mechanics are frame–indifference, isotropy and uniformity. We show that
a completely analogous and self–contained theory of discrete rods can be formulated in which the
arc–length is a discrete variable ab initio. In this formulation, the potential energy density is defined
directly on pairs of points along the arc–length of the rod, in analogy to Veselov’s discrete reformulation
of Lagrangian mechanics. A discrete version of Noether’s theorem then identifies exact first integrals
of the discrete equilibrium equations. These exact conservation properties confer the discrete solutions
accuracy and robustness, as demonstrated by selected examples of application. Copyright c© 2010
John Wiley & Sons, Ltd.

key words: Special Cosserat rods; Lagrangian mechanics; Noether’s theorem; discrete mechanics;

frame–indifference; holonomic constraints; variational formulation

1. INTRODUCTION

Over the past two decades, the theory of discrete mechanics (cf. e.g. [2] for a review) has
received the focus of intense research and attained a considerable degree of development.
Numerical integrators that are derived from a discrete variational principle have favourable
conservation properties. The aim of this article is the systematic application of concepts that
have been developed in the context of discrete mechanics (and also concepts from classical
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102 P. JUNG, S. LEYENDECKER, J. LINN AND M. ORTIZ

mechanics) to the formulation of a theory of discrete Cosserat rods, analogous in structure and
scope to the classical theory of Cosserat rods, in which the arc–length is a discrete variable
ab initio. Thus, whereas the potential energy density of a rod is a function on the tangent
bundle TQ of a one–dimensional manifold Q parameterized by arc–length, the discrete rod
theory formulated here is predicated on potential energy densities defined over Q×Q, i.e., on
pairs of points along the arc–length of the rod, in analogy to Veselov’s discrete reformulation
of Lagrangian mechanics, see [1]. On this foundation, a complete and self–contained theory
of discrete rods, including the derivation of discrete equations of equilibrium and of exactly
conserved arc–lengthwise momentum maps, can be formulated that is in analogy with discrete
Lagrangian mechanics.

First steps in this direction were taken by Bobenko and Suris. In their paper [3] they derived
an integrable discretization of a Lagrange top as an application case of their general approach
to formulate continuous as well as discrete time Lagrangian mechanics on Lie groups. Using
a discrete version of Kirchhoff’s kinetic analogy (see Love [4], Section 260) they obtained
an edge–based, equidistantly discretized version of an inextensible, unshearable and isotropic
Kirchhoff rod model which, like its rigid body counterpart, turns out to be a discrete integrable
system. In our article we apply the discrete Lagrangian mechanics approach to a more general
rod model of Cosserat type. We formulate two discrete models, possibly with non–equidistant
step size. In the vertex–based approach, displacements and rotational degrees of freedom are
defined on the grid nodes while the edge–based approach associates the rotational degrees of
freedom with the edges between the nodes.

As the configuration space SE(3) of a Cosserat rod is a Lie group, it is possible to apply the
general approach developed in [3] in the continuous as well as in the discrete setting. However,
in the context of geometrically exact rod mechanics the spatial or material representation
of physical quantitites is a more appropriate concept than an equivalent, but rather abstract
reformulation of the theory in terms of the right or left trivialisation of a Lagrangian system on
a Lie group. We formulate a Cosserat rod model, without explicitly exploiting the Lie group
structure, as a Lagrangian system whose configuration space consists of a six–dimensional
submanifold of R12. This submanifold structure is generated by internal holonomic constraints
on the rod directors, which we enforce by the method of null–space matrices. In the discrete
setting we use the corresponding discrete null–space method which has been proposed by
Betsch in [5] and developed for multibody systems in [25] and for flexible multibody systems
in [26].

The potential energy density (or stored energy function) is an object of central importance
in rod theory: it specifies the constitutive properties of the rod and implies the constitutive
equations which relate strains to forces and moments. Kirchhoff’s kinetic analogy suggests that
this energy density function (depending on the curve parameter) is formally equivalent to the
Lagrangian function of a time–dependent mechanical system, such that the static equilibrium
equations of a rod correspond to the Euler–Lagrange equations of the latter. The possibility
to generalize Kirchhoff’s classical kinetic analogy to Cosserat rods has been utilized in the
articles by Kehrbaum and Maddocks [6] and Chouaieb and Maddocks [7] to investigate static
equilibrium problems for both Kirchhoff and Cosserat rods as Hamiltonian systems (see also
Chouaieb [8]). Starting from the energy density, which is assumed to be uniform and may
be augmented by various constraints to enforce inextensibility or unshearability, they directly
proceed to define the respective Hamiltonians via a Legendre transform. In this way, they
obtain a variety of Hamiltonian systems whose canonical equations are equivalent to the static
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A DISCRETE MECHANICS APPROACH TO COSSERAT ROD THEORY – PART 1 103

equilibrium equations of the respective rod model. However, these authors do not explore the
formulation of static equilibrium problems for Cosserat rods as constrained Lagrangian systems
on manifolds. We present such a Lagrangian formulation of the continuum theory of Cosserat
rods to provide a starting as well as a reference point for our discrete mechanics formulation
of the theory.

Like all systems of non–relativistic classical mechanics, the theory of Cosserat rods is
formulated on the background of Galilean space–time [9]. As part of the general requirement
of Galilei invariance of all equations this implies that frame–indifference (i.e. invariance under
rigid body motions) is a fundamental property for all internal quantities in three–dimensional
elasticity as well as in one and two–dimensional theories of structural members (i.e. rods and
shells). This holds in particular for the equilibrium equations, any measure of strain as well
as the constitutive relations relating the latter to the former (see Truesdell and Noll [10] and
Antman [11] for a detailed discussion).

Likewise frame–indifference is required also for corresponding discrete structure models. In
the context of finite element discretizations of Cosserat rods this subject is discussed in detail
by Crisfield and Jelenić [12]. We would like to add that frame–indifference already implies a
specific form (20) of the equilibrium equations and ensures the existence of six first integrals
that can be recovered as momentum maps in the context of Noether’s theorem. This theorem is
a powerful tool to identify first integrals in Lagrangian mechanics due to invariance properties
of the Lagrangian function under symmetry transformations (see Marsden and Ratiu [14]).
Two more integrals not depending on space–time symmetries, but rather on the constitutive
properties of a rod appear in the special cases of uniform or isotropic material and geometric
behaviour. Frame–indifference in the discrete setting requires special attention, as it can be
violated by certain interpolations of rotations (see [12] or [15]).

Discrete Lagrangian mechanics for Cosserat rods is also a topic in Dixon [16]. He gives a
variational formulation of rod dynamics next to and motivated by a comprehensive treatment
of rigid bodies in the discrete setting. Our approach is similar, but we restrict ourselves to
static rod configurations and spatial momentum maps. Also, we note that our formulation is
different in many aspects, as we use different techniques to discretize the Lagrangian function
and to handle constraints.

An outline of the article is as follows. In Section 2, we define the configuration of a
rod and introduce strain measures. Using the tools from variational calculus, we derive the
equilibrium equations as constrained Euler–Lagrange equations in Sections 3 and 4. In Section
5, we formulate a theory of discrete rods involving discrete pendants of energy density, stress
quantities and equilibrium equations. Numerical examples, including a comparison with a
finite–element discretization, are presented in Section 7. The article concludes with a summary
in Section 8.

2. KINEMATICS OF COSSERAT RODS

We briefly summarize the basic kinematics of the special Cosserat theory of rods using a
notation adopted from Antman [11]. Generally, a rod is a fiber–like elastic body, i.e. it is
possible to specify a family of cross–sections which have small proportions compared to the
length of the rod. This suggests a mathematical model of a rod in terms of a spacecurve
corresponding to its centerline and a director frame which defines the orientation of the local

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 1:101–130
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104 P. JUNG, S. LEYENDECKER, J. LINN AND M. ORTIZ

cross–section plane. For a thorough discussion of the physical aspects of Cosserat rod theory
and its relation to three–dimensional, finite deformation elasticity we refer to the seminal
article [19] of Simo and the recent textbook [29] of Géradin and Cardona.

Notation 1. Throughout this work, we denote three–dimensional Euclidean space by
(E3, 〈 · , · 〉) and choose a fixed right–handed orthonormal triple (e1, e2, e3) of basis vectors.
We denote vectors w ∈ E

3 by boldface roman italic letters. Any vector quantity w ∈ E
3 may

be decomposed with respect to the basis (e1, e2, e3) in the form w = w1e1 + w2e2 + w3e3. We
denote the triple w = (w1, w2, w3)

T ∈ R
3 of the cartesian components wk = 〈w, ek〉 by roman

italic letters and isomorphically identify real column vectors w ∈ R
3 with their Euclidean

counterparts w ∈ E
3. In the same way, any vector equation in E

3 can be isomorphically
written in R

3 using real column vectors.

2.1. Configuration variables

Figure 1. Configuration of a Cosserat rod.

A configuration of a special Cosserat rod is defined by a regular spacecurve r : [sc, sf ] → E
3,

which corresponds to the centerline of the rod and continuously connects the position vectors
r(s) of the cross–section centroids, together with a pair d

(1),d(2) : [sc, sf ] → E
3 of director

fields spanning the family of cross–section planes along the centerline (see Figure 1). The
directors are required to satisfy the orthonormality conditions

〈d(1)(s),d(2)(s)〉 = 0, ‖d(k)(s)‖ = 1, k = 1, 2 (1)

at any s ∈ [sc, sf ]. The orientation of a cross–section is given by its unit normal vector d
(3)(s) =

d
(1)(s)×d

(2)(s) in accordance with the condition 〈d(3)(s), r′(s)〉 > 0 which prevents degenerate
rod configurations and assures that the cross–section normal d

(3)(s) and the centerline tangent
vector r

′(s) point into the same half space. The triple (d(1)(s),d(2)(s),d(3)(s)) of orthonormal
director fields is related to the fixed basis (e1, e2, e3) by a proper orthogonal linear map
R(s) : E3 → E

3 defined by the set of equations

d
(k)(s) = R(s) ek, k = 1, 2, 3.

The matrix representation of R(s) with respect to the basis (e1, e2, e3) is an element
R(s) ∈ SO(3) i.e. R(s)T = R(s)−1, det(R(s)) = 1, and the k–th column of R(s) consists

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 1:101–130
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of the column vector d(k)(s) ∈ R
3 corresponding to d

(k)(s). In summary, we arrive at a
mathematical description of the configurations of a Cosserat rod in terms of a curve within
the product manifold R

3 × SO(3), which is completely defined by specifying a pair (r,R) of
curves

r : [sc, sf ] → R
3 and R : [sc, sf ] → SO(3) (2)

that are both assumed to be sufficiently smooth.

2.2. Submanifolds and null–space matrices

Disregarding the orthonormality conditions in (1), the mapping s 7→ (r(s), R(s)) corresponds
to a regular curve in R

12. Since there are six independent constraints, the curve is constrained
to a differentiable manifold of dimension six.

Let Q be a (n − k)–dimensional submanifold of Rn and let TqQ denote the tangent space
of Q at q ∈ Q. Here, k is the number of independent constraints imposed on R

n. A null–space
matrix at q is a matrix P (q) ∈ R

n×(n−k) such that

range(P (q)) = TqQ for all q ∈ Q .

Clearly, the columns of P (q) for each q ∈ Q form a basis for TqQ and, as a consequence, the
matrix P (q) induces a linear isomorphism P (q) : R(n−k) → TqQ. For the terminology of null–
space matrices see Betsch [5], Leyendecker et al. [17] and references therein. By the definition
of submanifolds of Rn and the implicit function theorem (see [13], ch. 4.7 and 8.2) we may
assume the existence of a neighborhood U ⊂ R

n, of each q ∈ Q, and a function g : U → R
k

such that Q ∩ U = g−1({0}). Then, while G(q) denotes the Jacobi–matrix of g at q, we have

range(P (q)) = null(G(q)). (3)

In the setting of Cosserat rods, we have Q = R
3 × SO(3) (cf. (2)), and for q ∈ Q we write

q =









r
d(1)

d(2)

d(3)









.

For each q ∈ Q, there exists a neigborhood U of q such that Q ∩ U = g−1({0}) with the
constraint function

g(q) =

















1
2 (‖d(1)‖2 − 1)
1
2 (‖d(2)‖2 − 1)
1
2 (‖d(3)‖2 − 1)
〈d(1), d(2)〉
〈d(1), d(3)〉
〈d(2), d(3)〉

















that consists of the six orthonormality conditions 〈d(j), d(k)〉 = δjk which constitute internal
holonomic constraints on the director degrees of freedom. We choose the corresponding null–
space matrix to be

P (q) =









13 03

03 −d̂(1)

03 −d̂(2)

03 −d̂(3)









for q ∈ Q . (4)
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106 P. JUNG, S. LEYENDECKER, J. LINN AND M. ORTIZ

Notation 2. Let d ∈ R
3. By d̂ ∈ so(3) we denote the skew–symmetric matrix that is uniquely

determined by the relation d̂ y = d × y for all y ∈ R
3. In (4), 13 and 03 denote the 3 × 3

identity and zero matrices, respectively.

Obviously, P is a valid null–space matrix according to (3).

2.3. Strain measures

The strain vectors u and v take values in R
3 and are frame–indifferent quantities which fully

describe the internal deformation of the rod as well as its configuration up to a rigid body
motion. For a detailed discussion of the strain variables we refer to Antman [11], Chapter 8.6.

The local change of the moving frame consisting of the directors d
(k)(s) is uniquely

determined through the set of evolution equations

d

ds
d

(k)(s) = u(s) × d
(k)(s), k = 1, 2, 3 . (5)

The vector function u : [sc, sf ] → E
3 is called the Darboux–vector corresponding to the director

field. From now, we will drop the argument s as long as there is no danger of confusion. Let
us consider the components of u with respect to the basis (d(1),d(2),d(3)):

u = ū1 d
(1) + ū2 d

(2) + ū3 d
(3) (6)

Notation 3. To distinguish between the decompositions of a vector quantity with respect to the
fixed basis (e1, e2, e3) and the director basis (d(1),d(2),d(3)), vector components with respect
to the latter are denoted by sans–serif boldface letters, e.g. u = (ū1, ū2, ū3)

T . u is called the
material description of the Darboux–vector u, whereas u (with uk = 〈u, ek〉) is called its spatial
description.

Equations (5) and (6) imply that the skew–symmetric matrix associated with u can be
expressed by:

û = RT d

ds
R (7)

From this expression, we see that the material components ūk of u are invariant under arbitrary
rotations of the director field, i.e. they are frame–indifferent quantities. This will become
important in the subsequent sections. A second look at (7) reveals that the components (ū1, ū2)
of u describe flexure, as they result from projecting the local change d

ds
d

(3) of the cross–section
normal onto the cross–section plane. Likewise the third component ū3 of u measures the local
twist of the rod. The material description of the centerline tangent vector

d

ds
r = v̄1 d

(1) + v̄2 d
(2) + v̄3 d

(3)

yields the strain variables v̄1, v̄2, associated with shear, and v̄3 associated with dilatation. A
more compact and obviously frame–indifferent expression for v is

v = RT d

ds
r . (8)

The frame–indifferent material vector quantities u(s) and v(s) are differential invariants of
the framed curve (r,R) which determine the configuration of a Cosserat rod up to an overall
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A DISCRETE MECHANICS APPROACH TO COSSERAT ROD THEORY – PART 1 107

rigid body motion, qualifying them as proper strain variables of a Cosserat rod. If the six
components of the pair (u, v) are given as continuous functions of the real variable s ∈ [sc, sf ],
one may first solve the director frame evolution equation d

ds
R = R · û with an arbitrarily

chosen frame R0 = R(s0) fixing the value of R(s) at some particular s0 ∈ [sc, sf ]. Using this
known frame R(s;R0) as well as the given material shear strains v(s) we obtain the centerline
curve by means of integrating (8) with the final result r(s) = r0 +

∫ s

sc
R(s;R0) ·v(s) ds, which

indicates how the solution s 7→ (r(s), R(s)) depends parametrically on rigid body motions
(r0, R0) as integration constants. More specifically one can show that for given (u, v) any two
solutions differ by at most a rigid body motion (see [11], Chapter 8.6 for a detailed proof).

Remark 1. One can think of the strain vectors u and v as functions on [sc, sf ] as they describe
the deformation along the rod. However, it is also possible to treat them as functions on the
tangent bundle TQ since in (7) and (8) only elements of Q and their derivatives occur. This
is the crucial step that establishes the link to geometric mechanics.

3. VARIATIONAL FORMULATION: UNIFORM RODS

The fact that the equations of motion for a Lagrange top are formally equivalent to the
equilibrium equations of an isotropic Kirchhoff rod is known in the literature as Kirchhoff’s
kinetic analogy (see Love [4]; a modern treatment can be found in Nizette and Goriely [18]).
In the setting for the Lagrange top, the independent variable denotes time whereas for the
Kirchhoff rod it denotes arc–length. Likewise, the body frame of the top corresponds to the
director frame of the rod. It is important to note that the Lagrangian function formally
corresponds to the potential energy density of the rod–configuration, since this is the starting
point for the kinetic analogy. Unlike for the Kirchhoff rod, it is questionable if there exists
a dynamical system in the real world which has the same mathematical formulation as a
Cosserat rod. However, this does not touch the mathematical theory, so we are going to use
mathematical tools from classical mechanics [14, 2] to derive the equilibrium equations. In
summary, we give a variational method to derive the equilibrium equations which is different
from the procedure in Antman [11] or Simo [19]. In this section, we restrict ourselves to the
theory for uniform rods. Some aspects of the non–uniform theory, involving more technicalities,
are presented in Section 4.

3.1. Derivation of the equilibrium equations

First of all, we assume a hyperelastic material behavior. The potential energy density has the
same domain as the strain vectors u and v, i.e. it is described by a function

W : TQ→ R

and the total potential energy is then obtained by

V (q) =

∫ sf

sc

W

(

q(s),
d

ds
q(s)

)

ds, q ∈ C(Q).

Generally, the domain C(Q) of V is a subset of C2([sc, sf ], Q), the set of twice continuously
differentiable curves in Q and depends on the imposed boundary conditions.
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Without loss of generality, the energy density W = W int + W ext splits into an internal
component W int, associated to strain and an external component W ext associated to external
loads such as gravity. The internal potential energy is required to be frame–indifferent as it is
associated only with elastic deformation. This means that W int remains constant if rigid body
transformations

r 7→ y + r, y ∈ R
3 (9)

(r,R) 7→ (Y r, Y R), Y ∈ SO(3) (10)

(and compositions thereof) are applied. By an argument analogous to [11], it can be shown
that a frame–indifferent energy density takes the most general form

W int(r,R, r′, R′) = W
int

(u, v). (11)

We define internal forces n and moments m as

n =
∂W int

∂r′
, m =

3
∑

k=1

d(k) ×
∂W int

∂d(k) ′
(12)

and the external forces f and moments l (n, m, f and l are spatial quantities) as

f = −
∂W ext

∂r
, l = −

3
∑

k=1

d(k) ×
∂W ext

∂d(k)
. (13)

It can be shown that the material counterparts of (12) respectively take the equivalent form

n =
∂W

int

∂v
, m =

∂W
int

∂u

which are possibly more familiar expressions.

Lemma 3.1. Frame–indifference of W int implies the relations

∂W int

∂r
= 0 (14a)

3
∑

k=1

d(k) ×
∂W int

∂d(k)
+

3
∑

k=1

d(k) ′ ×
∂W int

∂d(k) ′
+ r′ × n = 0 (14b)

that become useful when analyzing the equilibrium equations.

Proof. Let t ∈ R, ξ ∈ R
3 then

W int(r,R, r′, R′) = W int(r + tξ, R, r′, R′) (15)

due to frame–indifference. Differentiating (15) with respect to t and setting t = 0 yields

0 =

〈

∂W int

∂r
, ξ

〉

.

Since ξ can be chosen arbitrarily, (14a) follows. Next, set Y (t) = exp(tξ̂), and again due to
frame–indifference we have

W int(r,R, r′, R′) = W int(Y (t)r, Y (t)R, Y (t)r′, Y (t)R′). (16)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 1:101–130
Prepared using nmeauth.cls



A DISCRETE MECHANICS APPROACH TO COSSERAT ROD THEORY – PART 1 109

Differentiating (16) with respect to t and setting t = 0 yields

0 =

〈

∂W int

∂r
, ξ̂r

〉

+
3
∑

k=1

〈

∂W int

∂d(k)
, ξ̂d(k)

〉

+

〈

∂W int

∂r′
, ξ̂r′

〉

+
3
∑

k=1

〈

∂W int

∂d(k) ′
, ξ̂d(k) ′

〉

By cyclic permutation, this computes to

0 =

〈

ξ, r̂
∂W int

∂r

〉

+
3
∑

k=1

〈

ξ, d̂(k) ∂W
int

∂d(k)

〉

+

〈

ξ, r̂′
∂W int

∂r′

〉

+
3
∑

k=1

〈

ξ, d̂(k) ′ ∂W
int

∂d(k) ′

〉

Now we use ∂W int

∂r
= 0 and ∂W int

∂r′
= n to obtain (14b). ✷

The equilibrium configurations of any static system coincide with the critical points of
the potential energy. This means, for hyperelastic rods, a (stable or unstable) equilibrium
configuration satisfies

dV (q) δq = 0 in any direction δq ∈ TqC(Q) (17)

where dV (q) ∈ TqC(Q)∗ denotes the derivative of V at q. Equation (17) formally corresponds
to Hamilton’s principle of critical action, yet the physical dimension of the integral is energy
and integration is taken with respect to the curve parameter s. For simplicity, we assume fixed
endpoints qc, qf and set

C(Q) = {q ∈ C2([sc, sf ], Q) | q(sc) = qc, q(sf ) = qf}.

For (17), the following are necessary and sufficient:

P (q)T

(

d

ds

∂W

∂q′
−
∂W

∂q

)

= 0,

g(q) = 0

(18)

with P given in (4). The details of the derivation are omitted and can be found in [20] and in
[17]. Eqns. (18) are the Euler-Lagrange equations corresponding to the variational principle (17)
with respect to the boundary conditions specified in C(Q). There is another set of equations
which is also equivalent to (17) and possibly more familiar reading

d

ds

∂W

∂q′
−
∂W

∂q
+G(q)Tλ = 0,

g(q) = 0.

(19)

Here, λ : [sc, sf ] → R
6 is a Lagrange multiplier associated to the orthonomality constraints in

Q.

Remark 2. The equivalence of (17), (18) and (19) holds for arbitrary submanifolds Q.
However, in the setting for special Cosserat rods, Q = R

3 × SO(3) is the case of interest.

As s denotes the curve parameter, we will call (18) or (19) spatial Euler–Lagrange or equilibrium
equations. It is interesting to see that, as a consequence of frame–indifference, the Euler–
Lagrange equations attain a specific form (see also [20]).
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Lemma 3.2. Consider a hyperelastic rod with W ext = W ext(r,R). Using the definitions (12)
and (13), the spatial Euler–Lagrange equations (18) can be rewritten in the form

d

ds
n+ f = 0 (20a)

d

ds
m+

(

d

ds
r

)

× n+ l = 0. (20b)

Proof. The spatial Euler–Lagrange equations on Q = R
3 × SO(3) can be split in two

components:

d

ds

∂W

∂r′
−
∂W

∂r
= 0

3
∑

k=1

d(k) ×

(

d

ds

∂W

∂d(k) ′
−

∂W

∂d(k)

)

= 0

Using (12), (13) and (14), the first equation becomes

d

ds

∂W int

∂r′
−
∂W int

∂r
−
∂W ext

∂r
=

d

ds
n+ f = 0

and the second equation becomes

3
∑

k=1

d(k) ×
d

ds

∂W int

∂d(k) ′
−

3
∑

k=1

d(k) ×
∂W int

∂d(k)
−

3
∑

k=1

d(k) ×
∂W ext

∂d(k)

=
3
∑

k=1

d(k)×
d

ds

∂W int

∂d(k) ′
+

3
∑

k=1

(

d

ds
d(k)

)

×
∂W int

∂d(k) ′
+

(

d

ds
r

)

×n+l =
d

ds
m+

(

d

ds
r

)

×n+l = 0.

✷

Remark 3. The equilibrium equations (20) can be rewritten, in the equivalent form

d

ds
n + u × n + f = 0 (21a)

d

ds
m + u × m + v × n + l = 0 (21b)

in which only material quantities appear. This can be seen by using the chain rule on m = Rm

and n = R n and then applying (7).

3.2. Spatial symmetries and momentum maps

It is well known that the static equilibrium equations (20) feature various first integrals due
to frame–indifference as well as further, constitutively determined, symmetries. In the absence
of external forces and moments, (20) immediately imply the conservation of both the spatial
force n as well as the total momentum m+ r′ × n. Two additional integrals, namely the twist
moment 〈m, d(3)〉 and the quantity 〈n, v〉+〈m,u〉−W arise in the isotropic and in the uniform
case, respectively. A comprehensive analysis within the framework of rod dynamics is given in
Maddocks and Dichmann [30]. The conservation of the corresponding static integrals follows
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immediately from the vanishing time derivatives (see also Dichmann Li and Maddocks [28],
Section 4.4). In the following we explicitely show how these integrals may be derived in a
constructive way via Noether’s theorem.

Noether’s theorem, as first formulated by E. Noether [33], provides a systematic framework
that recovers conserved quantities as a result of Lie group symmetries. We now give a few
definitions that are needed to formulate Noether’s theorem in a version similar to the one
given in Marsden and West [2]. Let G be a Lie group acting on the configuration manifold Q
and let

Φ : G×Q→ Q

denote the group action of G on Q. The tangent lift

ΦTQ : G× TQ→ TQ

of Φ is defined by ΦTQ
g (δq) = d

dt
Φg(c(t))

∣

∣

t=0
for g ∈ G, δq ∈ TQ and c being a curve in Q

such that c(0) = q and d
dt
c(t)
∣

∣

t=0
= δq.

Let g denote the Lie algebra corresponding to G and g
∗ its dual space. Given an energy

density W and a group action Φ, the corresponding momentum map J : TQ→ g
∗ is given by

J(q, q′) ξ =

〈

∂W

∂q′
, ξQ(q)

〉

, ξ ∈ g (22)

where

ξQ(q) =
d

dε
Φ(exp(εξ), q)

∣

∣

∣

∣

ε=0

∈ TqQ

denotes the infinitesimal generator.
An energy density W : TQ→ R is said to be invariant under Φ if

W ◦ ΦTQ
g = W for all g ∈ G

which implies that the potential energy integral is invariant under pointwise transformation
by Φg. If W is Φ–invariant then Φ is called a symmetry and by Noether’s theorem, there exists
a momentum map (first integral of the equilibrium equations) associated with this symmetry.

Theorem 3.3 (Noether’s theorem) Consider a hyperelastic rod in equilibrium, W
denoting the potential energy density and q denoting the corresponding configuration map.
If W is invariant under the action Φ : G×Q→ Q then

d

ds
J(q(s), q′(s)) = 0

i.e. the momentum map J of Φ is conserved.

A proof can be found e.g. in [2]. In the following, we list symmetries for the Cosserat rod
(Q = R

3 × SO(3)) and construct the associated integrals via Noether’s theorem.

3.2.1. Frame–indifference. Recall from Section 3.1 that spatial quantities (e.g. strains, forces,
moments and energy density) are frame–indifferent, or objective, if they are invariant under
rigid motions. i.e. under the group actions

Φtrans
y : (r,R) 7→ (y + r,R), y ∈ R

3

Φrot
Y : (r,R) 7→ (Y r, Y R), Y ∈ SO(3)
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on the configuration manifold Q. What could eventually be seen from the fact that (18) and
(20) are equivalent can also be derived in a more formal way via Noether’s theorem. Assume
W = W int that is no external loads act on the rod. First, we consider translational invariance:
Let ξ ∈ R

3, then the infinitesimal generator reads ξQ(q) = (ξ, 0) and

J trans(q, q′)ξ =

〈

∂W

∂q′
, (ξ, 0)

〉

= 〈n, ξ〉

i.e. the stress force n is a momentum map of the Cosserat rod. Secondly, rotational invariance
is considered. Let ξ̂ ∈ so(3), then ξQ(q) = (ξ̂r, ξ̂R) and

J rot(q, q′) ξ̂ =

〈

∂W

∂q′
, (ξ̂r, ξ̂R)

〉

= 〈n, ξ̂r〉 +
3
∑

k=1

〈

∂W

∂(d(k) ′)
, ξ̂d(k)

〉

= 〈r × n+m, ξ〉

where the last equality follows by cyclic permutation. The duality on so(3) is as follows:

〈ψ̂, ξ̂〉
so(3) = 1

2 trace(ψ̂ξ̂T ) = 〈ψ, ξ〉R3 for ψ̂, ξ̂ ∈ so(3). Thus, the total momentum m+ r× n is
another momentum map of the Cosserat rod.

3.2.2. Isotropy. A rod is called isotropic, if its energy density W is invariant under the action

Φiso
α : (r,R) 7→ (r,RQ(α))

where

Q(α) =





cos(α) − sin(α) 0
sin(α) cos(α) 0

0 0 1





rotates the cross–section around d(3) by the angle α. Let ξ ∈ R then d
dt

cos(tξ)
∣

∣

t=0
= 0,

d
dt

sin(tξ)
∣

∣

t=0
= ξ and consequently ξQ(q) = (0, d(2)ξ,−d(1)ξ, 0). Thus,

J iso(q, q′) ξ =

〈

∂W

∂q′
, ξQ(q, s)

〉

=

〈

d(2),
∂W

∂(d(1) ′)

〉

ξ −

〈

d(1),
∂W

∂(d(2) ′)

〉

ξ = 〈m, d(3)〉ξ

where the last equality follows with (12). Hence the third momentum map is the twist moment
〈m, d(3)〉.

Remark 4. From (7) and (8), we see that the strain vectors are compatible with the action
of Φiso in the following sense:

u ◦ Φiso
α

TQ
= Q(α)T

u

v ◦ Φiso
α

TQ
= Q(α)T

v

(23)

which are helpful relations when testing isotropy.

Example 3.4. In the range of small strains one expects — in analogy to linear beam theory
— the energy density to be quadratic in the strains. The most frequently encountered example
of a frame–indifferent energy density of this type is given by the function

W (q, q′) = W int(q, q′) =
1

2

〈

u − u
0, C1(u − u

0)
〉

+
1

2

〈

v − v
0, C2(v − v

0)
〉

, (24)
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where

C1 =





EI1 0 0
0 EI2 0
0 0 GJ



 and C2 =





GA 0 0
0 GA 0
0 0 EA





are the positive definite stiffness matrices of a pre–deformed prismatic rod with a constant
cross section area A and geometric area moments I1, I2 and J = I1 + I2, consisting of
an isotropic, elastic material characterized by the shear modulus G and Young’s modulus E.
The pre–deformed geometry is given by its strain measures v

0 = (0, 0, 1)T , corresponding to
centerline parametrized by arc–length and cross sections orthogonal to its tangent, and u

0,
describing the initial curvature and twist of the rod. The constitutive equations

m = C1(u − u
0), n = C2(v − v

0)

derived from this energy density provide a linear relation of the forces and moments to the
strains. The energy density (24) is obviously frame–indifferent. Note that despite the spatial
isotropy of the rod material, the effectice constitutive behaviour of the rod is anisotropic unless
the shape of the cross section displays kinetic symmetry (I1 = I2 = I).

One may consider more general rod geometries with cross sections varying smoothly along
the centerline, which yields variable geometry parameters A(s) and I1(s), I2(s) and effectively
leads to an explicit dependence of the energy density on the curve parameter. This likewise
happens if the curvature and twist of the undeformed rod are not constant. More general rod
models of this type are treated in the following section.

4. VARIATIONAL FORMULATION: NON-UNIFORM RODS

Until now we only considered uniform rods but we did not define the actual concept of
uniformity. In order to do this properly, we have to refine the theory presented so far by
choosing a different domain for W . In the dynamical setting, the theory from this section
corresponds to non–autonomous systems, such as considered in [2], Part 4.

4.1. Derivation of the equilibrium equations

Generally, the potential energy density may depend on the curve parameter s. It is therefore
described by a function

W : R× TQ→ R

and the total potential energy is obtained by

V (q) =

∫ sf

sc

W

(

s, q(s),
d

ds
q(s)

)

ds, q ∈ C(Q).

C(Q) denotes the set of admissible curves. It is again a subset of C2([sc, sf ], Q) corresponding
to the problem setup.

Before we proceed, we define the configuration bundle Y = R × Q, which is needed
for discussing the variations and for formally defining uniformity. For a configuration map
q ∈ C(Q) we choose a representation defined in the following way: let c : [ac, af ] → Y be a
map, its components denoted by c(a) = (cs(a), cq(a)). The first component cs : [ac, af ] → R
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is strictly increasing and maps [ac, af ] diffeomorphically to [sc, sf ]. The curve c is required to
satisfy q = cq ◦ c−1

s . Recall that q = {(s, q(s)) | s ∈ [sc, sf ]} is a subset of Y , thus variations
of q involve both variations of q(s) and variations of s. In the following, q is identified with a
class of curves c that are associated with the same configuration map q = cq ◦ c

−1
s . Using the

chain rule on q(s) = cq(c
−1
s (s)) gives q′(s) =

c′q(c−1
s (s))

c′s(c−1
s (s))

. Accordingly, V (q) can be written as

V (q) =

∫ af

ac

W

(

cs(a), cq(a),
c′q(a)

c′s(a)

)

c′s(a) da (25)

where integration is now taken over [ac, af ]. This formulation reveals that the full expression
for the derivative dV contains derivatives with respect to s, and that further the tangent
space TqC(q) includes variations δcs of the s–parameter. For uniform rods, these terms can be
neglected.

In the extended setting, consider again the variational principle

dV (q)δq = 0, δq ∈ TqC(Q)

Computing the derivative dV using the expression in (25), we obtain exactly the same result
as for uniform rods: If the endpoints of the rod are considered fixed, then (17), (18) and (19)
are equivalent.

Consequently, the equilibrium equations (20) apply both to uniform and to non–uniform
rods, which is little surprising, but proved once more in a formal way. However, the details
of the computation are somewhat different (see [2]). The variational principle now yields two
equations, (18) being the first and

∂W

∂s
+

d

ds

(〈

∂W

∂q′
, q′
〉

−W

)

= 0 (26)

being the second, but it turns out that (26) is implied by (18).

4.2. Spatial symmetries and momentum maps

Symmetry transformations may act on Y , rather than onQ. This is crucial to define uniformity.

4.2.1. Uniformity. A Cosserat rod is called uniform if its energy density W is invariant under
the action

Φuni
y : (s, r, R) → (s+ y, r,R), y ∈ R

i.e. in the case of translational invariance with respect to the curve parameter s. From equation
(26) we see that

Juni =

〈

∂W

∂q′
, q′
〉

−W = 〈m,u〉 + 〈n, v〉 −W

is the associated momentum map.

Remark 5. The formal definition for a momentum map J : R×TQ→ g
∗ in the general case

reads

J(s, q, q′) ξ =

〈

∂W

∂q′
, ξq

Y (s, q)

〉

−

(〈

∂W

∂q′
, q′
〉

−W

)

ξs
Y (s) for ξ ∈ g

and reduces to (22) if ξs
Y (s) = 0.
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Figure 2. Deformed configuration with 11 vertices.

5. DISCRETE ROD THEORY

In this section, we convey continuous rod theory to the discrete setting. We apply the concepts
of variational calculus and the discrete null–space method which allow us to formulate a discrete
version of the equilibrium equations that can be solved numerically. In the discrete setting, we
lose the pushforward operation (m = Rm) between spatial and material quantities. Also, we
have to deal with the fact that discrete mechanics confines the admissible functional form of
discrete strain measures, but does not provide a canonical choice.

5.1. Discrete rods

Consider a predefined grid s1 . . . sN (with si < si+1) and define increments hi = si+1 − si. A
discrete configuration map is given by a sequence q1 . . . qN ∈ Q and we write qi = qi(si), which
we denote as a vertex–based discretization approach (see also Sec. 6.3). The energy integral is
approximated by N − 1 discrete energy density functions

Wi : Q×Q→ R, i = 1 . . . N − 1

where Q × Q is the usual (in discrete mechanics) discrete replacement for TQ. These energy
functions should be chosen such that Wi is a consistent approximation of the energy integral
over the i–th rod segment, i.e.

Wi(qi, qi+1) =

∫ si+1

si

W

(

q(s),
d

ds
q(s)

)

ds+ O(hα+1
i ) (27)

for some α ∈ N. Moreover, it is crucial that the Wi inherit all symmetries from the continuous
model. In Section 6.1 we will make suggestions based on the formulation of discrete strain
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measures. The potential energy sum reads

V d(qd) =

N−1
∑

i=1

Wi(qi, qi+1), qd ∈ S(Q).

Here, S(Q) denotes the set of discrete configuration maps and must be a subset of Q{s1...sN}

which accounts for certain boundary conditions. As for continuous rods, we assume that each
Wi is of the form Wi = W int

i +W ext
i with W int

i being frame–indifferent.
Now, we define the discrete elastic forces ni and moments mi and the discrete external forces

fi and moments li.

ni =
∂W int

i

∂ri+1
, m−

i = −

3
∑

k=1

d
(k)
i ×

∂W int
i

∂d
(k)
i

, m+
i =

3
∑

k=1

d
(k)
i+1 ×

∂W int
i

∂d
(k)
i+1

(28)

fi+1 = −

(

∂W ext
i

∂ri+1
+
∂W ext

i+1

∂ri+1

)

, li+1 = −

3
∑

k=1

d
(k)
i+1 ×

(

∂W ext
i

∂d
(k)
i+1

+
∂W ext

i+1

∂d
(k)
i+1

)

. (29)

Lemma 5.1. As a consequence of frame–indifference, the following hold.

ni =
∂W int

i

∂ri+1
= −

∂W int
i

∂ri
(30)

m−
i + ri × ni = m+

i + ri+1 × ni (31)

Proof. Let t ∈ R, ξ ∈ R
3 then

W int
i (ri, Ri, ri+1, Ri+1) = W int

i (ri + tξ, Ri, ri+1 + tξ, Ri+1) (32)

due to frame–indifference. Differentiating (32) with respect to t and setting t = 0 yields

0 =

〈

∂W int
i

∂ri
, ξ

〉

+

〈

∂W int
i

∂ri+1
, ξ

〉

.

Since ξ can be chosen arbitrarily, (30) follows. Next, set Y (t) = exp(tξ̂) ∈ SO(3) and, again
due to frame–indifference, we have

W int
i (ri, Ri, ri+1, Ri+1) = W int

i (Y (t)ri, Y (t)Ri, Y (t)ri+1, Y (t)Ri+1). (33)

Differentiating (33) with respect to t and setting t = 0 yields

0 =

〈

∂W int
i

∂ri
, ξ̂ri

〉

+

3
∑

k=1

〈

∂W int
i

∂d
(k)
i

, ξ̂d
(k)
i

〉

+

〈

∂W int
i

∂ri+1
, ξ̂ri+1

〉

+

3
∑

k=1

〈

∂W int
i

∂d
(k)
i+1

, ξ̂d
(k)
i+1

〉

.

By cyclic permutation, this computes to

0 =

〈

ξ, r̂i
∂W int

i

∂ri

〉

+

3
∑

k=1

〈

ξ, d̂
(k)
i

∂W int
i

∂d
(k)
i

〉

+

〈

ξ, r̂i+1
∂W int

i

∂ri+1

〉

+

3
∑

k=1

〈

ξ, d̂
(k)
i+1

∂W int
i

∂d
(k)
i+1

〉

.

Using the definitions (28) and, since ξ can be chosen arbitrarily, (31) follows. ✷
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Remark 6. The definitions (28) are again motivated by the discrete momentum maps and
they are precisely those which permit a formulation of the equilibrium equations surprisingly
similar to the continuous case.

In complete analogy to the continuous setting a variational principle characterizes equilibrium
configurations.

dV d(qd) δq = 0 in any direction δqq ∈ TqS(Q) (34)

We set
S(Q) = {(q1 ... qN ) | qi ∈ Q, q1 = qc, qN = qf} (35)

such that variations at the boundary are zero (δq1 = δqN = 0). In this case, we obtain the
discrete Euler-Lagrange equations

P (qi)
T

(

∂Wi−1

∂qi
+
∂Wi

∂qi

)

= 0

g(qi) = 0

i = 2 ... N − 1 (36)

which hold equivalently to (34). This system of equations serves as a basis for numerical
algorithms. After introducing a reparametrization φ : R6 → Q, we can reduce the number of
unknowns to its theoretical minimum by solving the equivalent system F (φ(a2) ... φ(aN−1)) =
0 instead. An example of φ is φ(r, c) = (r, exp(ĉ)) = (r,R(c)) i.e. SO(3)–matrices are
parametrized by their rotation vectors.

Lemma 5.2. Using the expressions (28) and (29) for the discrete forces and moments allows
the discrete Euler–Lagrange equations (36) to be alternatively written as

ni − ni−1 + fi = 0 (37a)

m−
i −m−

i−1 + (ri − ri−1) × ni−1 + li = 0 (37b)

m+
i −m+

i−1 + (ri+1 − ri) × ni + li = 0 (37c)

where (37b) and (37c) are equivalent.

Proof. The discrete Euler–Lagrange equations on Q = R
3 × SO(3) can be split in two

components:

∂Wi−1

∂ri
−
∂Wi

∂ri
= 0 (38)

3
∑

k=1

d
(k)
i ×

(

∂Wi−1

∂d
(k)
i

−
∂Wi

∂d
(k)
i

)

= 0 (39)

The claims follow by applying the definitions (28) and (29) and the identity (31). ✷

Already at this stage, we see that the discrete forces ni are constant, if no external loads
are applied (W ext

i = 0).

5.2. Boundary conditions

By (35), the discrete Euler–Lagrange equations describe a configuration where both ends
q1, qN are in fixed position (rod fully clamped at both ends). It is easy to extend the system
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of equations to the case where one end is free. For example if the end qN is free, we have to
consider the additional equations

P (qN )T ∂WN−1

∂qN
= 0, g(qN ) = 0

The meaning of these equations is that both the discrete force fN−1 and the discrete moment
m+

N−1 are zero. If rN is fixed and RN is free then the additional equations are

3
∑

k=1

d
(k)
N ×

∂WN−1

∂d
(k)
N

= 0, g(qN ) = 0

which say that the discrete moment m+
N−1 is zero. Discrete mechanics provides a most natural

way to handle various boundary conditions. More sophisticated conditions involving external
potentials at the boundary or single directors can also be handled, see [25, 26].

5.3. Discrete Momentum maps

Let G be a Lie group acting on the manifold Q and let Φ : G×Q→ Q denote the group action
of G on Q, then Φ can be lifted canonically to Q×Q.

ΦQ×Q : G× (Q×Q) → Q×Q

An energy function Wi : Q×Q→ R is said to be invariant under Φ if Wi ◦ΦQ×Q
g = Wi for all

g ∈ G, i = 1...N−1. Again, Φ is called a symmetry action, and the discrete version of Noether’s
theorem states that there exists a discrete constant quantity (sequence of momentum maps)
associated with Φ. A sequence of momentum maps J±

i : Q×Q→ g
∗ is defined by

〈J+
i (qi, qi+1), ξ〉 =

〈

∂Wi

∂qi+1
(qi, qi+1), ξQ(qi+1)

〉

, ξ ∈ g,

〈J−
i (qi, qi+1), ξ〉 =

〈

−
∂Wi

∂qi
(qi, qi+1), ξQ(qi)

〉

, ξ ∈ g.

Remark 7. When Noether’s theorem applies, the two momentum maps J−
i and J+

i coincide,
and there is only one conserved quantity.

Theorem 5.3 (Discrete Noether’s theorem) Consider a balanced configuration (qi)
N
i=1 ∈

S(Q) of a discrete rod. If its discrete energy functional is invariant under the action Φ :
G×Q→ Q then

J±
i−1(qi−1, qi) = J±

i (qi, qi+1) for i = 2...N − 1

i.e. the corresponding discrete momentum map is conserved.

For a proof, one can consult [2] again. Table I lists the momentum maps associated with
the three symmetry actions for elastic rods. Their computations are omitted as they can be
computed in exactly the same way as the continuous momentum maps.
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6. DISCRETIZATION

In all preceding developments, the discrete energy density of the rod has been presumed given.
However, in practice discrete rods are often intended as approximations of continuous rods,
and the question naturally arises of how to formulate discrete rod energy densities that are
consistent with their continuous counterparts. Then, a result in [2] shows that the discrete
equations of equilibrium are consistent in the sense of ordinary differential equations and the
discrete rod configurations converge to the continuous limit by virtue of Gronwall’s inequality.
In this section, we present a specific discretization strategy that is based on the formulation
of discrete strain measures. We recall that the most general frame–indifferent energy density
of a rod is of the form (11), i.e., it can be expressed in terms of the strain measures u and
v defined in (7) and (8). Within this representation, the consistency condition (27) takes the
form

W int
i (qi, qi+1) =

∫ si+1

si

W
int

(u, v) ds+ O(hα+1
i ) (41)

A family of discrete energy densities that is consistent in this sense is obtained by writing

W int
i (qi, qi+1) = hiW

int
(ui, vi) (42)

where ui and vi are suitably chosen discrete strain measures that are frame–indifferent and
consistent with u and v in the usual sense of numerical differentiation. It bears emphasis that
the results of the general theory presented in the foregoing apply regardless of the choice
of discrete strain measures. Considerable latitude therefore remains as regards that choice,
which must be made based on considerations of stability, numerical accuracy and efficiency.
A particular choice of discrete strain measures that is found to behave well in applications is
presented next.

6.1. Discrete strain measures

From (7) it follows that the strain vector u satisfies the differential equation

d

ds
R = R û . (43)

symmetry action momentum map
frame–indifference
(a) rigid translation ni

(b) rigid rotation m−
i + ri × ni

= m+
i + ri+1 × ni

isotropy 〈d
(2)
i+1,

∂Wi

∂d
(1)
i+1

〉 − 〈d
(1)
i+1,

∂Wi

∂d
(2)
i+1

〉

= −〈d
(2)
i , ∂Wi

∂d
(1)
i

〉 + 〈d
(1)
i , ∂Wi

∂d
(2)
i

〉

Table I. Momentum maps of a discrete rod.
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If R : [sc, sf ] → SO(3) is a solution of (43) then the relation

R(si+1) = R(si) exp(Ω(si+1)), Ω(si+1) =

∫ si+1

si

û(s) ds+ O(h5
i ) (44)

holds. The proof of this statement as well as precise expressions for Ω can be found in [34],
Chapter IV.7. The first step towards the discrete world is to assume that u is constant on
[si, si+1]. In that case, (44) simplifies to

R(si+1) = R(si) exp((si+1 − si) û). (45)

Next, the Cayley–transform which induces a map from so(3) to SO(3) is introduced and its
connection to the exponential map on so(3) is shown. Finally, we use this knowledge to design
discrete strain measures.

Lemma 6.1. For ŷ ∈ so(3), R ∈ SO(3), trace(R) 6= −1 the following identities hold:

13 +
2

1 + ‖y‖2
(ŷ + ŷ2) = (13 + ŷ)(13 − ŷ)−1 (46)

1

1 + trace(R)
(R−RT ) = (R+ 13)

−1(R− 13) (47)

We recognize the Cayley–transform cay(ŷ) = (13 + ŷ)(13 − ŷ)−1 and its inverse
inv cay(R) = (R + 13)

−1(R − 13) and Lemma 6.1 implies that the Cayley–transform gives a
bijection

cay : so(3)
1:1
−−→ {R ∈ SO(3)| trace(R) 6= −1}.

The Cayley transform on so(3) is interesting for applications in (computational) mechanics as
can be seen in [23].

Lemma 6.2. Let R ∈ SO(3) be a rotation with angle φ about the axis n ∈ R
3, ‖n‖ = 1. Then

the Cayley–transform is connected to the exponential map by the identity

exp(φ n̂) = cay

(

tan

(

φ

2

)

n̂

)

= R.

Since 2 tan(φ/2) = φ + O(φ3), we obtain an approximation of the logarithm on SO(3) by
(twice) the inverse Cayley–transform (47).

Note that whenever writing “log(R) ≈ 2 inv cay(R)” one has to consider the fact that the
exponential map on so(3) is not injective, so a logarithm can only be meant as a local inverse.

We apply this approximation property to the canonical (vertex based) discretization of (7),
assuming u to be constant on the segment [si, si+1] as in (45), and thus define the discrete
strain measures ûi to be

ûi(ri, Ri, ri+1, Ri+1) =
2

hi

inv cay(RT
i Ri+1)

=
1

hi

2

1 + trace(RT
i Ri+1)

(RT
i Ri+1 −RT

i+1Ri)

=
2

hi

tan

(

φi

2

)

n̂i, i = 1 . . . N − 1

(48)

Copyright c© 2010 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2010; 1:101–130
Prepared using nmeauth.cls



A DISCRETE MECHANICS APPROACH TO COSSERAT ROD THEORY – PART 1 121

where exp(φi n̂i) = RT
i Ri+1 i.e. φi ni is the rotation vector of the incremental rotation RT

i Ri+1.
In the special case, when φi measures pure bending, our curvature measure corresponds to the
one proposed by Bergou et al. [21] (see also [3], Section 6).

We define the discrete strain vectors vi to be

vi(ri, Ri, ri+1, Ri+1) =
1

2

1

si+1 − si

(RT
i+1 +RT

i )(ri+1 − ri), i = 1 . . . N − 1. (49)

Remark 8. At first glance, this discretization seems to be very similar to the one obtained
from a finite element method using linear finite elements and numerical integration via the
midpoint rule, see e.g. [24, 27]. The finite element method yields precisely the strain measures
vi. Note the arithmetic averaging of the transposed frame variables in (49), which corresponds
to a non–orthogonal, yet second order accurate interpolation of the transposed frame evaluated
at (si + si+1)/2 that may be computed very efficiently. The bending strains (48), however are
different. Here, the finite element discretization reads

ûi(qi, qi+1) =
1

2hi

(RT
i Ri+1 −RT

i+1Ri) =
1

hi

sin(φi) n̂i, i = 1 . . . N − 1 (50)

Note the difference between 2 tan(φ/2) and sin(φ). The singularity for |φi| → π and its positive
effects are discussed further below. For i = 1 . . . N − 1, the Taylor series expansions of the
strain measures in the discrete mechanics and the linear finite element approach read

û
disc mech
i (qi, qi+1) =

(

1 + O(h2
i )
)

(

ûi(qi, q
′
i) +

h

4
(RT

i R
′′
i − (R′′

i )TRi) + O(h2
i )

)

û
fem
i (qi, qi+1) = ûi(qi, q

′
i) +

h

4
(RT

i R
′′
i − (R′′

i )TRi) + O(h2
i )

respectively. This shows that they only differ in terms of order O(h2
i ) and higher. Therefore,

as long as deformation is rather small, the discrete mechanics approach yields the same results
as a linear finite element method. The comparison of load-displacement curves for the hinged
frame in Figure 10 shows good agreement in the range of small displacements. However note,
that quadratic finite elements have been used in [24] while we use twice as many elements in the
discrete mechanics approach. Naturally, the good agreement still holds for small deformation.

Using the quadrature rule (42) we obtain a discretization of the energy integral ready for
implementation. In the case of the small strain quadratic energy example (24) this yields

W int
i (qi, qi+1) =

1

2

(

〈ui − u
0, C1(ui − u

0)〉 + 〈vi − v
0, C2(vi − v

0)〉
)

hi . (51)

Note that ui and vi inherit many properties from their continuous counterparts. In the context
of symmetries, we would like to mention

ui ◦ ΦY ×Y
iso (α, · ) = Q(α)T

ui

vi ◦ ΦY ×Y
iso (α, · ) = Q(α)T

vi,

which are the discrete equivalents to (23). Before going on, we elaborate on the properties of
the energy defined above and explain why these properties are numerically favourable.
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• Symmetries: The energy sum given by (51) is frame–indifferent and isotropic and uniform.
• Computational effort: (48) and (49) can be computed efficiently without evaluating

trigonometric functions or matrix inverses.
• Growth of the elastic energy: As vi is linear with respect to ri+1− ri, the discrete energy

grows quadratically with respect to ri+1−ri. Growth with respect to φi is also important.
Whereas, around φi = 0, ui is linear in φi, ui exhibits a singularity for |φi| → π. Thus, in

a admissible configuration, the angle between any pair d
(k)
i , d

(k)
i+1 of directors is strictly

smaller than π. There is a stronger advantage of this singularity. In scenarios with large
stresses it must be made sure that the discrete equilibrium equations (37c) still have a
solution. This is achieved, for example by the choice of ui.

• Well–posedness: The large–strain behavior resulting from the discrete strain measure
(48) is also useful when studying well–posedness of certain problems, although this is
generally a difficult issue (if e.g. buckling occurs).

• Consistency: We are going to show analytically and by numerical experiments that
the energy sum given in (51) approximates the continuous integral with second–order
consistency.

Remark 9. While the discrete mechanics approach admits a certain freedom regarding the
choice of discrete strain measures, the list of favourable properties of our specific choices
(48) and (49) indicates that they are not arbitrary at all. From the viewpoint of the discrete
differential geometry (DDG) of framed curves, the expression κi = 2 tan(φi/2) provides
the prefered definition of discrete curvature (see the contributions by T. Hoffmann and
J.M. Sullivan in [22]). It also appears as an essential part of the integrable discretization
of symmetric, inextensible Kirchhoff rods given in the work [3] by Bobenko and Suris. The
recent paper by Bergou et al. [21] provides a kinematical description of discrete, inextensible
Kirchhoff rods of more general type (e.g. non–symmetric cross sections) as discrete curves with
an adapted frame. These authors derive the discrete curvature κi = 2 tan(φi/2) using the DDG
concepts of discrete parallel transport and discrete holonomy. In this sense, DDG confirms our
definition (48) from a complementary viewpoint.

6.2. Variational error analysis

In order to establish consistency of the discrete mechanics discretization, variational error
analysis is used, see [2]. There, it is shown that solutions of the discrete Euler–Lagrange
equations converge to the continuous solution with order α if and only if the discrete Lagrangian
approximates the continuous action with consistency order α and stability holds. Accordingly,
the main task is to compute the order of consistency (41) for our discrete strain measures (48)
and (49) in the vertex–based case, and (56) and (57) in the edge–based case, respectively.

For simplicity, only the case of additively separable energy densities is considered; as this is

the case in (51). We start by rewriting (42) with W
int

(u, v) = W u,int(u) +W v,int(v) as

W int
i (qi, qi+1) = W u,int

i (qi, qi+1) +W v,int
i (qi, qi+1)

= hiW
u,int(ui(qi, qi+1)) + hiW

v,int(vi(qi, qi+1))
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and we consider the contribution from axial and shear strains first. The Taylor series expansion
∫ si+1

si

W v,int

(

v

(

q(s),
d

ds
q(s)

))

ds

= hiW
v,int(v(qi, q

′
i)) +

h2
i

2

(

∂W v,int

∂q
(v(qi, q

′
i))q

′
i +

∂W v,int

∂q′
(v(qi, q

′
i))q

′′
i

)

+ O(h3
i )

displays the lower order terms needed for comparison. Herein, the shorthand qi = q(si) has
been extended to arbitrary derivatives of q. Note that the discrete strain measures (49) are
given by

vi(qi, qi+1) = v

(

qi + qi+1

2
,
qi+1 − qi

hi

)

(52)

Before computing the derivatives
∂kW v,int

∂hk
i

we make use of the Taylor series expansion

qi+1 = qi + hiq
′
i +

h2
i

2 q
′′
i + O(h3

i ) of the configuration variable itself. This yields

W v,int
i (qi, qi+1)

= hiW
v,int

(

v

(

qi +
hi

2
q′i +

h2
i

4
q′′i + O(h3

i ), q
′
i +

hi

2
q′′i + O(h2

i )

))

= hiW
v,int (v (qi, q

′
i)) +

h2
i

2

(

∂W v,int

∂q
(v(qi, q

′
i)) q

′
i +

∂W v,int

∂q′
(v(qi, q

′
i)) q

′′
i

)

+ O(h3
i ).

(53)

Thus,

∫ si+1

si

W v,int(v(q, q′)) ds−W v,int
i (qi, qi+1) = O(h3

i ) which means that W v,int
i (qi, qi+1) is

second–order consistent.
The bending and torsional contribution takes a little more work, since the approximation

(48) of the strain vector u involves the factor including the trace and is therefore not of the
form (52). We perform this consistency order proof for discrete energies of the form

W u,int
i (qi, qi+1) = f(qi, qi+1)hiW

u,int

(

u

(

qi + qi+1

2
,
qi+1 − qi

hi

))

(54)

with f(qi, qi+1) = 1 + O(h2
i ). The energy density in (51) together with the discrete strain

measures (48) takes this form with

f(qi, qi+1) =

(

4

1 + trace(RT
i Ri+1)

)2

. (55)

By the same arguments as used in (53), the expansion of W u,int
i (qi, qi+1) reads

W u,int
i (qi, qi+1)

= f(qi, qi+1)

(

hiW
u,int (u (qi, q

′
i)) +

h2
i

2

(

∂W u,int

∂q
(u(qi, q

′
i))q

′
i +

∂W u,int

∂q′
(u(qi, q

′
i))q

′′
i

)

+ O(h3
i )

)

Accordingly,
∫ si+1

si

W u,int(u(q, q′)) ds−W u,int
i (qi, qi+1) =

(1−f(qi, qi+1))

(

hiW
u,int (u (qi, q

′
i)) +

h2
i

2

(

∂W u,int

∂q
(u(qi, q

′
i))q

′
i +

∂W u,int

∂q′
(u(qi, q

′
i))q

′′
i

)

+ O(h3
i )

)
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Insertion of the expansion of qi+1 into (55) yields

f(qi, qi+1) =

(

1

1 +
h2

i

8 trace(RT
i R

′′
i ) + O(h3

i )

)2

=

(

1 −
h2

i

8
trace(RT

i R
′′
i ) + O(h3

i )

)2

since RT
i Ri = 13 and RT

i R
′
i is skew–symmetric. The last equality holds by the geometric

series and the fact that |
h2

i

8 trace(RT
i R

′′
i ) + O(h3

i )| < 1 for sufficiently small time steps. In

summary, this yields

∫ si+1

s1

W u,int(u(q, q′)) ds −W u,int
i (qi, qi+1) = O(h3

i ). The total discrete

energy W int
i (qi, qi+1) is therefore consistent of order 2 and solutions of the discrete Euler-

Lagrange equations (36) converge quadratically.

6.3. Vertex–based and edge–based formulation

The underlying structure of a discrete beam is a one–dimensional simplicial complex consisting
of N vertices (zero–simplices) (v1 . . . vN ) and N − 1 edges (one–simplices) (e1 ... eN−1), see
Figure 3. The dual ∗ei of the edge ei is simply its midpoint (a zero–simplex) while the dual
∗vi of the vertex vi is given by the interval ranging from ∗ei−1 to ∗ei (the convex hull of the
midpoints of the adjacent edges). In the one–dimensional case, there is no difference between
circumcentric and barycentric duals, see [31] for further details.

• • •
••

...

...

e
1 e

N−1v
1

v
Nv

2

∗e
1

∗v
1

∗v
2 ∗e

N−1 ∗v
N

Figure 3. One–dimensional primal complex (bottom) and its dual (top).
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Figure 4. Vertex–based rod.

6.3.1. Vertex–based rod. Specifying a discrete rod configuration q = (q1 ... qN ) ∈ S(Q) as
defined in (35) with qi = (ri, Ri) ∈ Q = R

3×SO(3), both the position vectors and the director
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frames are associated with (are functions defined on) the vertices and we call this the vertex–
based approach (Figure 4). The discrete strain measures ui, vi can take the form given in (48)
and (49) and represent the strains in the edge ei. Consequently, their dual quantities m±

i , ni

live on ∗ei. Since the discrete Euler–Lagrange equations (36) involve derivatives of the discrete
energy with respect to the primal quantities qi living on vi, they state an equilibrium condition
on ∗vi. Table II summarizes the relevant quantities and their domains. Boundary conditions
can be defined in a straightforward way in the vertex–based formulation by requiring e.g. q1
and qN to be equal to prescribed configurations.

• • ...
r
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d
1

1

d
1

2

d
1

3

r
2 • •

d
N−1

1

d
N−1

2

d
N−1

3

r
N

Figure 5. Edge–based rod.

6.3.2. Edge–based rod. In their work, Bergou et al. [21] construct a discrete, inextensible
Kirchhoff rod model, where the directors are associated with the edges. From the viewpoint
of discrete differential geometry, this approach is more natural, as the definition of vertex
tangents is ambiguous. We show that our formulation of discrete rods can easily be adapted
to the edge–based concept. Thereby we also generalize the kinematical model of a discrete
framed curve to the case of non–adapted frames. The position vectors (r1 ... rN ) are again
associated with the vertices whereas the director frames (R1 ... RN−1) are associated with the
edges (Figure 5). Thus, the i–th rod segment is specified by the position vectors ri, ri+1 and
the director frame Ri. Here, axial strains vi are associated with the edges ei while ui represents
the angular strains on the vertex vi. This affects the approximation of the total deformation
energy as follows

W =

N−1
∑

i=2

W u,int(ui)h
(v)
i +

N−1
∑

i=1

W v,int(vi)h
(e)
i

where h
(e)
i measures the length of ei as in the vertex–based case and h

(v)
i measures length of

∗vi. The obvious edge–based analogue of (49) is given by

vi =
1

h
(e)
i

RT
i (ri+1 − ri), i = 1 ... N − 1. (56)

Note that unlike in the vertex–based case, no interpolation of the frame variables is required
for edge–based rods. We adapt the angular strains from (48)

ûi =
1

h
(v)
i

2

1 + trace(RT
i−1Ri)

(RT
i−1Ri −RT

i Ri−1), i = 2 ... N − 1. (57)
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Note that our definition of edge–based frames (see Fig. 5) requires to shift indices backwards
by one. Being dual to the angular strains, the bending and torsional moments m±

i live on ∗vi,
while the shear and stretch forces ni are defined on ∗ei due to their duality to the axial strains.
Consequently, the discrete Euler–Lagrange equations state equilibrium of forces on ∗vi and
equilibrium of moments on ∗ei, as summarized in Table II. Special attention has to be given to
boundary conditions specifying the orientation of the beam’s ends. A naive approach would be
to prescribe R1 and RN−1. However, this might lead to unnaturally large deformation between
the first and the second, or the prelast and last beam element, respectively. Alternatively, the
orientation of dummy–directors R0, RN sitting on the end–nodes v1, vN , respectively, can be
prescribed. The contribution of the corresponding strains u1,uN to the deformation energy

involves the shorter interval lengths h
(v)
1 , h

(v)
N . For both the vertex– and the edge–based rod, it

is possible to associate the configuration variables, strains, forces and moments in a meaningful
way with primal or dual mesh elements. This is done in Table II. In the case of an edge–based

vertex–based model edge–based model
vertices (vi) qi = (ri, Ri) ri, ui

edges (ei) ui, vi Ri, vi

dual vertices (∗vi) fi, li, m±
i , fi,

DEL eqns. DEL eqns.( ∂
∂ri

–part)

dual edges (∗ei) m±
i , ni ni, li,

DEL eqns.( ∂

∂d
(k)
i

–part)

Table II. Primal and dual rod variables.

discretization, one has to take care of the more complicated, staggered grid structure. However,
all steps of the variational error analysis can be carried out along the same lines as in the vertex
based case, with the same results concerning consistency and convergence order.

7. EXAMPLES

7.1. Fully clamped three–dimensional rod

In the following, we treat a boundary value problem, where both ends of a straight rod are
clamped. The main focus is on the spatial momentum maps and on convergence properties.
We choose boundary data that result in a non–trivial deformation which exhibits non–zero
twist, extension, flexure and shear:

rc =





0
−0.4

0



 , rf =





0
0.4
0



 , d(3)
c = d

(3)
f =





−0.18070
0.89768
0.40187





d(1)
c = −d

(2)
f =





0.21093
−0.36372
0.90731



 , d(2)
c = d

(1)
f =





0.96065
0.24872
−0.12363





(58)

Practically any boundary data would work here because the actual shape of the deformation
has no influence on the fact that momentum maps are conserved.
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Figure 6. (a) The three components ((mi)1, (mi)2, (mi)3) of the stress–resultant moment in the
material description, (mi)1 and (mi)2 being the bending moments, and (mi)3 being the torsional
moment. (b) The three components ((ni)1, (n2), (n3)) of the stress–resultant force in the material

decription, (ni)1 and (ni)2 being the shear–force and (ni)3 being the stretch–force.

We first implement the model given by (48), (49) and (51) (i.e. the vertex–based model)
involving diagonal stiffness matrices C1 = diag(EI,EI,GJ), C2 = diag(GA,GA,EA) and
u

0 = (0, 0, 0)T , v
0 = (0, 0, 1)T , corresponding to an initially straight rod. The stiffness

parameters are EI = 1, GJ = 1, GA = 200 and EA = 200. The rod of length L = 1 is
equidistantly discretized into N = 11 material points; thus hi = 0.1 for all i.

We compute the deformed configuration by solving the system (36) using a Gauss–Newton
iteration (Matlab–function fsolve) and a finite–difference approximation of the Jacobi–
matrix. The tolerance of the algorithm is set to 10−8. The initial guess is simply a spline
generated from the boundary data.

Figure 2 depicts the deformed configuration with the director frame at each node. The
discrete forces ni and moments mi are shown in Figure 6. Since the stiffness matrices are
diagonal, each component is associated to a specific component of strain. For example (mi)3 is
the twist moment. Note that in the discrete setting, (mi)3 is not a momentum map, although
it is ’almost’ conserved, as we can see from Figure 6 (a). Figure 7 (a) shows the momentum
maps associated with frame–indifference and isotropy (see Table I). The momentum maps are
constant up to a deviation of magnitude 10−6 to 10−7 as seen in Figure 7 (b). This number
reflects the precision of the iteration algorithm. The components of the stress–resultant moment
m−

i in the spatial description are depicted in Figure 7 (c).

We analyze the convergence properties of discrete rod models and compare the two
different approaches presented in Section 6.2 using the boundary value problem above. A
fine discretization with N = 321 material points is assumed to be sufficiently precise to serve
as reference solution. We consider convergence of the discrete spacecurve (r1 . . . rN ) to the

reference curve. Here, distances are measured with respect to the norm max{‖ri − rref
i ‖2, i =

1 . . . N}. In addition, convergence of the director field is analyzed, distances being measured

with respect to the norm max{‖Ri − Rref
i ‖F , i = 1 . . . N} (and i = 1 . . . N − 1 in the edge–

based approach) using the Frobenius norm ‖ · ‖F . The errorplots obtained from the two–point
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Figure 7. (a) The three momentum maps listed in Table I. Top: m−

i
+ ri × ni. Middle: ni. Bottom:

−〈d
(2)
i

,
∂Wi

∂d
(1)
i

〉 + 〈d
(1)
i

,
∂Wi

∂d
(2)
i

〉. In each plot: blue = first component, green = second component, red

= third component. (b) The relative deviation in the momentum maps, componentwise. (c) The
components of the stress–resultant moment m−

i
in the spatial description.

boundary value problem (58) with h ∈ {1
4 ,

1
10 ,

1
40 ,

1
80} are shown in Figure 8. Both models

converge quadratically to the same configuration as we have analytically determined in Section
6.2. Furthermore, we observe that the approximation properties of the edge–based model are
slightly better, supposedly, because it does not employ a non–orthogonal SO(3)–interpolation.
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Figure 8. Convergence analysis. (a) Vertex–based model. (b) Edge–based model.

7.2. Two–dimensional hinged frame

We consider the two–dimensional example of a hinged frame. An L–shaped extensible and
shearable rod is attached at both endpoints such that the tangents are able to move freely

(a) (b)

Figure 9. (a) Deformation of the hinged L–frame corresponding to the load–level parameters λ1 = 15,
λ2 = 18.495, λ3 = −9.233 and λ4 = 21.014. (b) The results obtained by Betsch and Steinmann [24].
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(moment free support). This example has previously been discussed in the articles [24, 32] and
all data are taken from there. The length of each leg is 1

2L = 120 and the stiffness parameters
are GA = 16.62 · 106, EA = 43.2 · 106, EI = 14.4 · 106 and GJ = 11.08 · 106. A vertical force
f = 103 · (0,−λ)T is applied at position 96 measured from the right upper end.

Here, the edge–based approach is used. As the problem is only two–dimensional, there are
two translational degrees of freedom per node and only one rotational degree of freedom
specifying the orientation of an edge. We employ the following reparametrization

(

x
y

)

7→ r =





x
y
0





α 7→ R =





0 sin(α) cos(α)
0 − cos(α) sin(α)
1 0 0





and solve for x1 . . . xN , y1 . . . yN , α1 . . . αN−1. Note however, that the three–dimensional strains
(48) and (56) are used to derive the discrete equilibrium equations. This buckling problem has
multiple equilibria, the two stable equilibria are indicated in Figure 9 (a) by the dashed line.
The equilibria can be used to create clever (deformed) initial configurations from which the
configurations corresponding to the load–level parameters λ1 = 15, λ2 = 18.495, λ3 = −9.233
and λ4 = 21.014, depicted in Figure 9 (a), can be obtained directly by solving the discrete
equilibrium equations iteratively (again Gauss–Newton iteration in the Matlab–funtion fsolve

has been used). We compare the results from our discrete mechanics model using N = 21
vertices to those obtained by Betsch and Steinmann [24] with ten quadratic finite elements
and observe small differences in the configurations with high deformation which are probably
due to the different factor used in the strains (48) and of course due to the different types of
discretization.

To compute the complete load–displacement curve for the node under load (see Figure 10), a
standard arc–length method described e.g. in [35] has been employed. Comparing the curve to
that obtained in [24] shows an overall good qualitative agreement and a very good agreement
in the range of small displacements, see Remark 8 for an analysis of the different discrete strain
measures in use.

The resulting material forces and moments are depicted in Figure 11. Due to the presence of
loading, the problem is not frame–indifferent. However, the change in the discrete momentum
maps in Figure 12 exactly represents the applied loading (up to the numerical tolerance used
to solve the equilibrium equations). Note that this is guaranteed by the discrete mechanics
approach independent of the number of nodes in the discrete grid.
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Figure 10. Load–displacement curve of the hinged L–frame.
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Figure 11. (a) The discrete forces ni. (b) The discrete moments mi.
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Figure 12. The discrete momentum maps do change exactly according to the applied load.
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8. SUMMARY AND CONCLUSIONS

We have formulated a theory of discrete Cosserat rods that is analogous to discrete Lagrangian
mechanics by exploiting Kirchhoff’s kinetic analogy. In this analogy, the arc–length along the
rod plays the role of time in Lagrangian mechanics. The resulting theory of discrete Cosserat
rods is a self–contained theory with a structure and scope identical to that of the classical
theory of rods but where the arc–length is a discrete variable ab initio. In particular, the discrete
equilibrium equations are Euler–Lagrange equations and their structure is a consequence of
frame–indifference. A discrete version of Noether’s theorem identifies exact first integrals of the
discrete equilibrium equations from the symmetries of the system. The symmetries relevant for
rod mechanics are frame–indifference, isotropy and uniformity. The discrete Noether’s theorem
provides a constructive tool and a complete mathematical theory to identify the arc–lengthwise
first integrals of the equilibrium equations. This constructive tool is especially useful in the
discrete setting where precise expressions for the forces and moments are not always evident.
Numerical experiments based on a particular choice of discrete strain measures bear out the
exact conservation of discrete momentum maps, exhibit a quadratic rate of convergence and
illustrate the versatility of the approach, e.g., as regards the implementation of general material
models, boundary conditions, as well as the handling of finite kinematics.

We close by pointing out limitations of the approach and opportunities for further
development. As in the case of Lagrangian mechanics, the variational structure of the discrete
theory and its exact conservation properties are no guarantee of good numerical performance,
including accuracy and convergence. In practice, great care must be exercised in choosing
a particular discrete energy density in order to ensure good numerical performance, which
must be carefully assessed independently of geometrical considerations by means of standard
tools of analysis. Specifically, the convergence properties of the discrete theory must be
carefully established either by analytical tools or by way of numerical testing. A natural
and straightforward extension of the theory to dynamics may be accomplished within the
framework of multi–symplectic integrators [36].
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