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Abstract

The aim of this work is to develop an approximate aggregation method for certain

non-linear discrete models. Approximate aggregation consists in describing the dy-

namics of a general system involving many coupled variables by means of the dynamics

of a reduced system with a few global variables. We present discrete models with two

di�erent time scales, the slow one considered to be linear and the fast one non-linear

because of its transition matrix depends on the global variables. In our discrete model

the time unit is chosen to be the one associated to the slow dynamics, and then we

approximate the e�ect of fast dynamics by using a su�ciently large power of its cor-

responding transition matrix. In a previous work the same system is treated in the case

of fast dynamics considered to be linear, conservative in the global variables and in-

ducing a stable frequency distribution of the state variables. A similar non-linear model

has also been studied which uses as time unit the one associated to the fast dynamics and

has the non-linearity in the slow part of the system. In the present work we transform

the system to make the global variables explicit, and we justify the quick derivation of

the aggregated system. The local asymptotic behaviour of the aggregated system entails
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that of the general system under certain conditions, for instance, if the aggregated

system has a stable hyperbolic ®xed point then the general system has one too. The

method is applied to aggregate a multiregional Leslie model with density dependent

migration rates. Ó 1999 Elsevier Science Inc. All rights reserved.

Keywords: Approximate aggregation of variables; Population dynamics; Time scales;

Discrete dynamical systems

1. Introduction

When modelling ecological systems we always have to decide the level of
complexity we should introduce so as to optimize the pro®t of the study. Any
model is a compromise between generality and simplicity on the one hand and
biological realism on the other. The more biological details are included in
specifying a model, the more complicated and specialized it becomes. Models
describing ecological systems in detail involve a very large number of coupled
variables, which usually results in analytical intractability. At the other ex-
treme, very simple models, which are mathematically tractable, do not justify
the assumptions to be made in order to obtain such simplicity.

Nature o�ers many examples of systems where several events occur at dif-
ferent time scales. It is then common practice to consider those events occur-
ring at the fastest scale as being instantaneous with respect to the slower ones
which results in a lesser number of variables or parameters needed to describe
the evolution of the system. A subsequent issue is to determine how far the
results obtained from the reduced system are from the real ones. Several
mathematical methods have been developed in relation with the two above-
mentioned issues, reduction and an estimation of the discrepancy between the
complete system and the systems arising from the reduction, to name the best
known: averaging methods, singular perturbation methods and aggregation
methods. As far as applications of these methods are concerned, by far the
most important ones have been in physics, chemistry, mechanics and industrial
processes. In comparison, not much has been done up to now in life sciences
although there are many examples of biological systems with di�erent time
scales. The issue was mainly considered in the context of ecological systems
involving several species with di�erent developmental stages, or a single species
engaged in several actions with di�erent time scales (reproduction, aging, food
intake), or both, by means of the aggregation methods. The study was initiated
about 10 years ago by one of us, Auger [1], in the frame of ordinary di�erential
equations. The main e�ort was spent in deriving the so-called aggregated
systems and a general formal computational method, the quick derivation
method, was described by Auger in a large class of systems possessing one or
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several invariants. The method was re®ned and a number of examples were
investigated by Auger and his collaborators [2±4].

Aggregation methods study the relationship between a large class of complex
systems and their corresponding aggregated systems. The aim of aggregation
methods is twofold: on the one hand they construct the aggregated systems that
summarize the dynamics of the complex ones, simplifying their analytical study,
and on the other, looking at the relationship in the opposite sense, the complex
systems are explanations of the simple form of the aggregated ones. The es-
sential property of complex systems that allows their aggregation is the exis-
tence of two di�erent time scales. As a result of that we can think of a
hierarchically structured system with a division into subsystems that are weakly
coupled and simultaneously exhibit a strong internal dynamics. The idea of
aggregation is then to choose a global variable, sometimes called a macro-
variable, for each subsystem and to build up a reduced system for these global
variables. The aggregated system re¯ects in a certain way both dynamics, the
one corresponding to the fast time scale and the one corresponding to the slow
time scale. The slow dynamics of the general system, the initial complex one,
usually corresponds to the dynamics of the reduced system, while the fast dy-
namics of the general system is re¯ected in the parameters of the reduced one in
such a way that it is possible to study the in¯uences between the di�erent hi-
erarchical levels, which seems meaningful from an ecological point of view.

Recently, some of the authors have extended aggregation methods to the
case of discrete systems. In Refs. [5,6] the case of linear, density independent,
time discrete systems is studied; a very general linear model with two time
scales is aggregated and it is proved that the elements de®ning the asymptotic
behaviour of the general and the aggregated systems are equal up to a certain
order. These results are applied to models of structured populations with
subpopulations in each stage class associated to di�erent spatial patches or
individual activities, considering a fast time scale for patch or activity dynamics
and a slow time scale for the demographic process. In Refs. [7,8] a non-linear
case is developed in which the fast dynamics are still considered to be linear and
the slow dynamics are non-linear. The distinction between time scales is based
upon using the fast dynamics as time unit of the discrete process.

The aim of this work is to present another non-linear discrete case of ag-
gregation method. For the time unit of the discrete process we use the one
corresponding to the slow dynamics, which are considered to be linear and thus
represented by a general non-negative matrix. The fast dynamics are dependent
on global variables and we suppose that they act a large number of times during
one single time unit of the slow dynamics. In Section 2, we present the general
model of a population divided into groups which are also divided into sub-
groups. The fast dynamics are internal for every group and, for every ®xed
values of the global variables, asymptotically leads the group to certain constant
proportions among its subgroups. The global variables used in the aggregation
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are the total number of individuals in each group: they are constants of motion
for the fast dynamics. After introducing the aggregated system, the general
model is rewritten to make explicit, as clearly as possible, its dependence on the
global variables. That allows, in Section 3, a comparison of the asymptotic
properties of both systems. Finally, in Section 4 we develop a general model for
an age structured population divided into age classes and subdivided into
geographical patches. The demographic process evolves at a slow time scale in
comparison with the migration process, which is considered density dependent.
The aggregated system, whose variables are the total number of individuals in
each age class, is a non-linear matrix model. A particular case with two age
classes and two geographical patches is treated and the results of Section 3 are
used to yield the existence of a stable ®xed point for the general system from the
density dependent Leslie matrix appearing in the aggregated system.

2. The model

We suppose a general population, whose evolution is described in discrete
time, divided into p groups, and each of these groups is divided into several
subgroups.

The state of the population at time n is represented by a vector

Xn � x1
n; . . . ; xp

n

ÿ �> 2 RN
�

where every vector xi
n 2 RNi

� ; i � 1; . . . ; p, represents the state of the i group,
N � N 1 � � � � � N p.

Apart from the above de®ned variables we give a prominent role to the
global variables, the total number of individuals in every group, denoted

si
n �

XNi

j�1

xij
n ; i � 1; . . . ; p:

We denote by 1 the row vector all whose entries are equal to 1, specifying its
length with a subindex if there exists any ambiguity. So, we have si

n � 1xi
n, and

denoting U the matrix

U � diagf1N1 ; . . . ; 1Npg �

1� � �N1�
1 0 � � � 0 � � � 0 � � � 0

0 � � � 0 1� � �N2�
1 � � � 0 � � � 0

..

. ..
. . .

. ..
.

0 � � � 0 0 � � � 0 � � � 1� � �Np�
1

0BBBBB@

1CCCCCA;
we obtain

sn � s1
n; . . . ; sp

n

ÿ �> � 1x1
n; . . . ; 1xp

n

ÿ �> � UXn 2 Rp
�:

In the evolution of this population we distinguish between two di�erent time
scales, and so we will speak henceforth of the slow dynamic and the fast dy-
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namic. The fast dynamic is non-linear, dependent on global variables, internal
to every group and conservative of its total number of individuals. Asymp-
totically, the fast dynamic leads the group to certain constant proportions
among its subgroups for every ®xed value of s.

These conditions are ful®lled if we introduce the density-dependent block
diagonal matrix

P: Rp
� ! RN�N

� ; P�s� � diagfP1�s�; . . . ;Pp�s�g;
where Pi�s� is a real matrix of dimensions N i � Ni, that is the projection matrix
associated to the fast dynamics for each group i � 1; . . . ; p: These matrices
satisfy the following hypothesis.

Hypothesis (H1).

(i) P : Rp
� ! RN�N

� is C1:
(ii) Pi�s� is a regular stochastic matrix for every i � 1; . . . ; p and every
s 2 Rp

�.

A regular stochastic matrix is a primitive non-negative matrix whose col-
umns sum up to 1. It is well known that, for each matrix Pi�s�, 1 is a simple
eigenvalue, larger than the real part of any other eigenvalue, with strictly
positive left and right eigenvectors. To be more speci®c, the left eigenspace of
this matrix associated to the eigenvalue 1 is generated by vector 1> and the
right eigenspace is generated by vector mi�s�, that is unique if we choose it
having positive entries and verifying 1mi�s� � 1.

We de®ne

Pi � lim
k!�1

Pk
i �s� � �mi�s�j . . . jmi�s��;

where Pk
i �s� is the kth power of the matrix Pi�s�:

We use as time unit of the discrete process the one corresponding to the slow
dynamics, which is considered to be linear and thus represented by a general
non-negative matrix M of dimensions N � N . Then, the general model to be
studied is

Xn�1 �MPk�UXn�Xn �MPk�sn�Xn; �1�
where we have represented the fast dynamics by the kth power of matrix P�s�,
where k is large, which means that it acts a large number of times during one
single time unit of the slow dynamics.

2.1. The aggregated model

We build up a model which describes the dynamics of the global variables sn.
The exact model satis®ed by these variables is obtained premultiplying in (1) by
matrix U:
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sn�1 � UXn�1 � UMPk�sn�Xn:

In order to get a system with the global variables as the unique state variables,
we propose the following approximation, which means that the fast dynamics
has reached its equilibrium distribution:

UMPk�sn�Xn � UMP�sn�Xn � UMPc�sn�UXn � UMPc�sn�sn;

where

P�s� � lim
k!�1

Pk�s� � diagfP1�s�; . . . ;Pp�s�g;

Pc�s� � diagfm1�s�; . . . ; mp�s�g
and we have used that

P�s� � Pc�s�U:
The approximate model for the global variables, which we call aggregated
system, is the following:

sn�1 � UMPc�sn�sn: �2�
The aim of this work is to show that, under some hypotheses of regularity, the
dynamics of this aggregated system re¯ect that of the general system (1).

2.2. The general model in terms of global variables

For each i � 1; . . . ; p, let us consider the new variables

yi1 � si; yik � xik ÿ mik�s�si; k � 2; . . . ;N i

that is, yi1 is the global variable si and the other Ni ÿ 1 variables in group i are
changed into the di�erence between the old variable and the corresponding
value in the fast dynamics equilibrium.

In matrix form, this change reads

yi �

yi1

yi2

..

.

yiNi

0BBBB@
1CCCCA �

1 1 . . . 1

ÿmi2�s� 1ÿ mi2�s� . . . ÿmi2�s�
..
. ..

. . .
. ..

.

ÿmiN i�s� ÿmiN i�s� . . . 1ÿ miN i�s�

0BBBB@
1CCCCA

xi1

xi2

..

.

xiNi

0BBBB@
1CCCCA

� Tÿ1
i �s�xi;

where

Ti�s� �

mi1�s� ÿ1 ÿ1 . . . ÿ1

mi2�s� 1 0 . . . 0

mi3�s� 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

miN i�s� 0 0 . . . 1

0BBBBBBB@

1CCCCCCCA; i � 1; . . . ; p:
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Denoting T�s� the matrix of dimensions N � N :

T�s� � diagfT1�s�; . . . ;Tp�s�g;
we can write

x1

..

.

xp

0B@
1CA � T�s�

y1

..

.

yp

0BB@
1CCA:

We now transform system (1) by using the above change of variables:

Yn�1 � Tÿ1�sn�1�MPk�sn�T�sn�Yn; �3�
where we have introduced the notation Y � �y1; . . . ; yp�>:

In the last system we need to separate the equations corresponding to the
global variables from the rest of equations. To this end, we change the order of
variables in system (3) by means of the following transformation:

s �
s1

..

.

sp

0B@
1CA � y11

..

.

yp1

0BB@
1CCA �

e1 . . . 0

..

. . .
. ..

.

0 . . . ep

0BB@
1CCA

p�N

y1

..

.

yp

0BB@
1CCA;

where ei � �1; 0; . . . ; 0� is a row of dimensions 1� N i; i � 1; . . . ; p:
Also, we need the new variables, de®ned for each i � 1; . . . ; p:

zi �

zi1

zi2

..

.

ziNiÿ1

0BBBB@
1CCCCA �

yi2

yi3

..

.

yiN i

0BBBB@
1CCCCA �

0 1 0 . . . 0

0 0 1 . . . 0

..

. ..
. ..

. . .
. ..

.

0 0 0 . . . 1

0BBBB@
1CCCCA
�Niÿ1��Ni

yi1

yi2

..

.

yiN i

0BBBB@
1CCCCA � Biy

i:

Let us introduce the following notations

A � diagfe1; . . . ; epgp�N and B � diagfB1; . . . ;Bpg�Nÿp��N ;

which enable us to express the change of variables in matrix form

s � A

y1

..

.

yp

0BB@
1CCA and z �

z1

..

.

zp

0BB@
1CCA � BY;

and also

Y � A>s� B>Z:

Bearing Eq. (3) in mind, we obtain the following system

sn�1 � AYn�1 � ATÿ1�sn�1�MPk�sn�T�sn��A>sn � B>Zn�; �4�
Zn�1 � BYn�1 � BTÿ1�sn�1�MPk�sn�T�sn��A>sn � B>Zn�: �5�
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We will simplify this system applying some properties of the matrices which we
summarize in the following lemma.

Lemma 1.

(a) For each i � 1; . . . ; p and each s 2 Rp
�; we have

Ri�s� � Tÿ1
i �s�Pi�s�Ti�s� �

1 0

0 Qi�s�
� �

;

where Qi�s� is a real matrix of dimensions �Ni ÿ 1� � �Ni ÿ 1�:
(b) det�Pi�s� ÿ kI� � �1ÿ k� det�Qi�s� ÿ kI�:
(c) ATÿ1�s� � U:
(d) BTÿ1�s� � N�s� � diagfN1�s�; . . . ;Np�s�g; where

Ni�s� � �ÿBim
i�s�jINiÿ1 ÿ Bim

i�s�1i�; i � 1; . . . ; p:

(e) T�s�A> � Pc�s�:
(f) H

�k�
i �s� � Ti�s�Rk

i �s�B>i � ÿ1Niÿ1Qk
i �s�

Qk
i �s�

� �
; i � 1; . . . ; p; k � 1; 2; . . . ;

where Ri�s� is de®ned in (a).
(g) Rk�s�A> � A>; k � 1; 2; . . . ; where R�s� � diagfR1�s�; . . . ;Rp�s�g:

Proof. See Appendix A.

From (b) and hypothesis (H1) (b) we conclude that the eigenvalues of
Qi�s�; i � 1; . . . ; p, are, for each s 2 Rp

�, those of Pi�s� except 1. This implies
that the spectral radius of Qi�s� is less than 1, that is q�Qi�s�� < 1:

Lemma 2. Let K � Rp
� be a compact set. Then,

lim
k!1

Qk�s� � 0 uniformly for s 2 K

where Q�s� � diagfQ1�s�; . . . ;Qp�s�g:
Proof. See Appendix A.

We are now ready to simplify the systems (4) and (5). First of all, we have
that

Pk�s�T�s�A> � T�s�Rk�s�A> � T�s�A> � Pc�s�
and

Pk�s�T�s�B> � T�s�Rk�s�B> � H�k��s�;
where H�k��s� � diagfH�k�1 �s�; . . . ;H�k�p �s�g:

Therefore, the ®nal version of the model in terms of global variables is

sn�1 � UMPc�sn�sn �UMH�k��sn�Zn; �6�

Zn�1 � N�sn�1�MPc�sn�sn �N�sn�1�MH�k��sn�Zn: �7�
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3. Analysis of the relationship between the general and the aggregated model

In this section we establish the fundamental result of this paper and some of
its consequences which are easily used in applications.

Let F : Rp
� ! Rp

� be the function de®ned by F�s� � UMPc�s�s; which is the
map associated to the aggregated system (2).

De®nition 3. An open and bounded set A � Rp
� is called F-shrinkable if there

exists a positive number d such that the compact set �Ad � fs 2 Rp
�: d�s;A�6 dg

veri®es

F� �Ad� � A:

Now, we solve Eq. (7) for the variables Zn in terms of global variables sn: To
this end, let us denote

R�m; n� �
Ymÿ1

j�n

N�sj�1�MH�k��sj�; m > n; R�n; n� � I:

Then, a straightforward calculation leads to

Zn � R�n; 0�Z0 �
Xnÿ1

j�0

R�n; j� 1�N�sj�1�MPc�sj�sj; n P 1:

Substituting in Eq. (6), we obtain

sn�1 � UMPc�sn�sn

�UMH�k��sn� R�n; 0�Z0 �
Xnÿ1

j�0

R�n; j� 1�N�sj�1�MPc�sj�sj

 !
; �8�

which is an equation where variables Z appears just as their initial values Z0.
The next result gives su�cient conditions for the expression

UMH�k��sn� R�n; 0�Z0 �
Xnÿ1

j�0

R�n; j� 1�N�sj�1�MPc�sj�sj

 !
to have a bound which tends to zero, uniformly for s in a certain compact set,
when k tends to in®nity.

Theorem 4. Let A � Rp
� be a F-shrinkable set. There exist a positive integer k0

and a compact set K � RN of the form �Ad � K1; K1 compact subset of RNÿp; such
that, for k P k0, K is positively invariant for the system (6,7). Moreover,
restricted to K, there exist positive constants C1 and C2, which are independent of
k, such that the following inequalities hold:

ksn�1 ÿUMPc�sn�snk6C1Q�k�;

kZn�1 ÿN�sn�1�MPc�sn�snk6C2Q�k�;

where Q�k� � SupfkQk�s�k: s 2 �Adg:
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Proof. See Appendix A.

If we come back to the initial state variables, X, we can express Theorem 4 as
follows in the next corollary.
Corollary 5. Assuming the hypotheses of Theorem 4. There exist a positive in-
teger k0 and a compact set �K � RN such that, for k P k0; �K positively invariant for
the initial system (1), Xn�1 �MPk�sn�Xn: Moreover, restricted to �K; there exists
a positive constant �C; which is independent of k, such that the following inequality
holds:

kXn�1 ÿMP�sn�Xnk6 �CQ�k�:

The last result yields that the initial system (1) can be considered a small
perturbation of system

Xn�1 �MP�sn�Xn; �9�

when restricted to an appropriate positively invariant compact set.
The latter system and the aggregated system (2), sn�1 � UMPc�sn�sn, give an

example of the so called perfect aggregation, see Ref. [9]. This means that the
following diagram is commutative,

that is U�MP�UX�X� � UMPc�UX�UX. It is easy to derive the relationship
between the solutions of both systems. If fXngn2N is a solution of the system
Xn�1 �MP�sn�Xn then fsngn2N � fUXngn2N is a solution of the system
sn�1 � UMPc�sn�sn. And if fsngn2N is a solution of the system sn�1 � UMPc (sn)
sn then fXngn2N � fMPc�sn�sngn2N is a solution of the system Xn�1 �
MP�sn�Xn: In particular, if s� is a ®xed (periodic) point of the aggregated
system we have that MPc�s��s� is a ®xed (periodic) point of system (9).

The established relationship among the systems (1), (2), (9) and the usual
implicit function theorem argument give us an easy to apply consequence of the
main result.
Corollary 6. Let s� be a ®xed point of the aggregated system (2),
sn�1 � UMPc�sn�sn, and suppose that the eigenvalues of the associated linearized
map have modulus less than one. Then, for k su�ciently large, there exist X� ®xed
point of the initial system (1), Xn�1 �MPk�sn�Xn; for which the eigenvalues of the
associated linearized map have also modulus less than one. Moreover, there exists
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a positive constant �C; which is independent of k, such that the following inequality
holds:

kX� ÿMPc�s��s�k6 �CQ�k�:

4. Multiregional demography with two time scales

In this section we apply the above general aggregation method to the case of
an age-structured population located in a multipatch environment. These kinds
of models have been frequently treated in the literature, see Refs. [10,11]. In
contrast with those two references, we propose a model where the migration
and the demographic processes develop at di�erent time scales, migration being
a fast process in comparison with demography. We suppose migration to be
density dependent.

We consider a population divided into p age-classes and living in an envi-
ronment composed of m patches. We denote

xij
n � number of individuals of age class i in patch j at time n;

i � 1; . . . ; p and j � 1; . . . ;m. And using the notation of Section 2,

Xn � x1
n; . . . ; xp

n

ÿ �>
; where xi

n � xi1
n ; . . . ; xim

n

ÿ �>
;

si
n �

Xm

j�1

xij
n ; i � 1; . . . ; p; and sn � s1

n; . . . ; sp
n

ÿ �>
:

We suppose that the migration rates between di�erent patches of individuals
belonging to the same age class i are dependent on s, the vector of number of
individuals in every age class. Those migration rates form a regular m� m
stochastic matrix Pi�s�, for every value of s. So, the matrix P�s� �
diagfP1�s�; . . . ;Pp�s�g represents the complete migration process.

The demography is considered density independent and, therefore, it is
de®ned by means of two kinds of constant transition coe�cients as in the
classical Leslie model:

F j
i � fertility rate of age class i in patch j, i � 1; . . . ; p and j � 1; . . . ;m:

Sj
i � survival rate of age class i in patch j, i � 1; . . . ; p ÿ 1 and j � 1; . . . ;m:

The coe�cients satisfy the usual constraints of Leslie models.
We de®ne the matrices Fi � diagfF 1

i ; . . . ; F m
i g; i � 1; . . . ; p and Si �

diagfS1
i ; . . . ; Sm

i g; i � 1; . . . ; p ÿ 1: And ®nally we get a generalized Leslie ma-
trix
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L �

F1 F2 . . . Fpÿ1 Fp

S1 0 . . . 0 0

0 S2 . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . Spÿ1 0

0BBBBBBB@

1CCCCCCCA:

Finally, we propose the following multipatch density dependent Leslie
model

Xn�1 � LPk�sn�Xn; �10�
which has the form of the general system (1).

The corresponding aggregated system is

sn�1 � ULPc�sn�sn; �11�
where ULPc�sn� is a general density dependent Leslie matrix of order p, that we
denote L�s�:We have

L�s� �

u1�s� u2�s� . . . upÿ1�s� up�s�
r1�s� 0 . . . 0 0

0 r2�s� . . . 0 0

..

. ..
. . .

. ..
. ..

.

0 0 . . . rpÿ1�s� 0

0BBBBBBB@

1CCCCCCCA;
where

ui�s� � 1Fim
i�s�; i � 1; . . . ; p;

and

ri�s� � 1Sim
i�s�; i � 1; . . . ; p:

The aggregated system (11), ®nally written

sn�1 � L�sn�sn �12�
is a typical non-linear matrix equation, which can exhibit a very complex be-
haviour even in two dimensions, see Ref. [12]. Recently, Cushing [13±16] has
presented a general theory for the asymptotic dynamics of non-linear matrix
equations as they apply to the dynamics of structured populations; existence
and stability of equilibrium class distribution vectors are studied by means of
bifurcation theory techniques using a single composite, biologically meaningful
quantity as a bifurcation parameter, namely the inherent net reproductive rate.

4.1. Particular case: two ages and two patches

To illustrate the usefulness of the aggregated system to study the general
system we develop a less general example where Corollary 6 applies.
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We suppose a population divided in two age-classes and living in an envi-
ronment composed of two patches, with the migration changes performed in a
much faster time scale than the demography changes, and with a migration rate
in the adult class depending on the global density of adult individuals.

The demography is de®ned by means of the matrix

L � F1 F2

S 0

� �
;

where

Fi �
F 1

i 0

0 F 2
i

 !
; i � 1; 2; and S � S1 0

0 S2

� �
:

The migration process is represented by matrix

P � diagfP1;P2g �

1ÿ p1 p2 0 0

p1 1ÿ p2 0 0

0 0 a
s2�a

1
2

0 0 s2

s2�a
1
2

0BBBB@
1CCCCA;

where we have tried to represent the existence of a good patch, the ®rst one,
and a bad patch, the second one; at low adult density individuals in patch 1
mostly stay there, while at high adult density individuals mostly migrate to
patch 2.

The system (10) in this particular case reads as follows

x11
n�1

x12
n�1

x21
n�1

x22
n�1

0BBB@
1CCCA �

F 1
1 0 F 1

2 0

0 F 2
1 0 F 2

2

S1 0 0 0

0 S2 0 0

0BBB@
1CCCA

1ÿ p1 p2 0 0

p1 1ÿ p2 0 0

0 0 a
s2

n�a
1
2

0 0
s2

n
s2

n�a
1
2

0BBBBB@

1CCCCCA
k

x11
n

x12
n

x21
n

x22
n

0BBB@
1CCCA:
�13�

The equilibrium frequencies of fast dynamics are included in matrix Pc�s2�;

Pc�s2� � diagfm1; m2�s2�g �

p2

p1�p2
0

p1

p1�p2
0

0 s2�a
3s2�a

0 2s2

3s2�a

0BBBBB@

1CCCCCA;
The aggregated system (12) is then constructed as follows:

s1
n�1

s2
n�1

 !
� 1 1 0 0

0 0 1 1

� � F 1
1 0 F 1

2 0

0 F 2
1 0 F 2

2

S1 0 0 0

0 S2 0 0

0BBB@
1CCCA

p2

p1�p2
0

p1

p1�p2
0

0
s2

n�a
3s2

n�a

0
2s2

n
3s2

n�a

0BBBBB@

1CCCCCA
s1

n

s2
n

 !
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and so, we have

s1
n�1

s2
n�1

 !
� u

aF 1
2
��F 1

2
�2F 2

2
�s2

n

a�3s2
n

r 0

 !
s1

n

s2
n

 !
; �14�

where

u � F 1
1 p2 � F 2

1 p1

p1 � p2

and r � S1p2 � S2p1

p1 � p2

:

We now try to ®nd under which conditions system (13) has an asymptoti-
cally stable equilibrium. We start studying the same problem for the aggregated
system (14) and then we will apply Corollary 6.

We assume that F 1
2 > F 2

2 , that is, the adult fertility rate is larger in the good
patch than in the bad patch.

The system (14) has an equilibrium s� � �s1�; s2��> if s2� satis®es the equation

det
uÿ 1

aF 1
2
��F 1

2
�2F 2

2
�s2

a�3s2

r ÿ1

 !
� 0; �15�

that is

1ÿ uÿ r
aF 1

2 � �F 1
2 � 2F 2

2 �s2

a� 3s2

� �
� 0:

That happens, for s2� > 0, if and only if

1

3
F 1

2 �
2

3
F 2

2 <
1ÿ u

r
< F 1

2 : �16�
In particular, last conditions implies that �1ÿ u�=r > 0 or u < 1, which is a
natural assumption because otherwise if the young fertility rate is larger than
one the evolution of the population always exhibits exponential growth.

To simplify the writing of some coming expressions we denote b � �1ÿ
u�=r:

Assuming conditions (16) the only value s2� satisfying Eq. (15) is

s2� � a�bÿ F 1
2 �

F 1
2 � 2F 2

2 ÿ 3b

and the corresponding s1� is s2�=r:
We are proving that s� veri®es the hypotheses of Corollary 6. For that, if we

call G the map associated to system (14), G�s� � L�s2�s, we need to prove that
the eigenvalues of its jacobian matrix at s� have modulus less than one.

Some straightforward calculations yield

JG�s�� � u
ba��F 1

2
�2F 2

2
�s2�

a�3s2�

r 0

 !
:

An equivalent condition to that of the eigenvalues being inside the unit disk
is
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jTr�JG�s���j < 1� det�JG�s��� < 2;

which means in our particular case

u < 1ÿ r
ba� �F 1

2 � 2F 2
2 �s2�

a� 3s2� < 2:

The rightmost inequality obviously holds and the ®rst one is equivalent to

1

3
F 1

2 �
2

3
F 2

2 < b;

which is already included in conditions (16).
Summarizing the conclusions of Corollary 6:
If

1

3
F 1

2 �
2

3
F 2

2 <
1ÿ F 1

1
p2�F 2

1
p1

p1�p2

S1p2�S2p1

p1�p2

< F 1
2

and k is su�ciently large then the system (13) possesses an asymptotically
stable ®xed point X� � �x11�; x12�; x21�; x22��> which can be written as

F 1
1 0 F 1

2 0

0 F 2
1 0 F 2

2

S1 0 0 0

0 S2 0 0

0BBB@
1CCCA 0

2s2�

3s2� � a

p2

p1�p2
0

p1

p1�p2
0

0 s2��a
3s2��a

0 2s2�
3s2��a

0
2s2�

3s2� � a

0BBBBB@

1CCCCCA
s1�

s2�

� �

�

F 1
1

p2

p1�p2
s1� � F 1

2
s2��a

3s2��a s2�

F 2
1

p1

p1�p2
s1� � F 2

2
2s2�

3s2��a s2�

S1 p2

p1�p2
s1�

S2 p1

p1�p2
s1�

0BBBBB@

1CCCCCA
plus another term which tends to zero as k tends to in®nity.

5. Conclusion

In the present work we have introduced a model of an age structured
population in a multipatch environment where we have distinguished between
two di�erent time scales. We have reduced the initial complex model to a non-
linear matrix equation, whose coe�cients re¯ect the asymptotic information of
the fast dynamics (the migration process). This is an example of how a simpler
model admits an explanation given by a more complex model. The study of the
simpler model, the aggregated model, give us information of the initial model
via the general results of Section 3.

Very di�erent applications can be undertaken by writing di�erent situations
in the general form of system (1) and applying Theorem 4 to the required
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particular case. For instance, it is possible to study the in¯uence of spatial
heterogeneity on the stability of ecological communities. Spatial heterogeneity
can play a very important role in the stability of ecological communities [17].
This was shown in a time and space discrete version of the host-parasitoid
Nicholson±Bailey model. Although the one patch model is always unstable,
computer simulations have shown that the spatial version becomes stable when
the size n of the 2D array of �n� n� patches is large enough. This result shows
that the spatial dynamics can have important consequences on the dynamics
and stability of the community.

In the future, we intend to extend our methods to more general fast and slow
dynamics, as well as to aggregated systems whose global variables are obtained
more generally than by adding up state variables. We plan to model a patch
structured host-parasitoid community and try to obtain similar results to those
for the cellular automaton spatial model based upon Nicholson±Bailey model,
[17].
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Appendix A

Proof of Lemma 1. We only provide a proof of (a) and (b). Straightforward
calculations yield the rest of statements.

(a) We multiply the matrices using the following decomposition:

Pi�s� �
p11�s� p>12�s�
p21�s� P22�s�

� �
;

where p11�s� 2 R; p12�s�; p21�s� 2 RNiÿ1; P22�s� 2 R�N
iÿ1���Niÿ1�;

Ti�s� � mi1�s� ÿ1Niÿ1

Bim
i�s� INiÿ1

� �
and

Tÿ1
i �s� �

1 1Niÿ1

ÿBim
i�s� INiÿ1 ÿ Bim

i�s�1Niÿ1

� �
Then,

Tÿ1
i �s�Pi�s� �

1 1Niÿ1

ÿBim
i�s� � p21�s� ÿBim

i�s�1iÿ1 � P22�s�
� �

;

Tÿ1
i �s�Pi�s�Ti�s� �

1 0

0 P22�s� ÿ p21�s�1Niÿ1

� �
� 1 0

0 Qi�s�
� �

;
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where we have used the notation

Qi�s� � P22�s� ÿ p21�s�1Niÿ1:

(b) Using (a) we have

det�Pi�s� ÿ kI� � det�Tÿ1
i �s�Pi�s�Ti�s� ÿ kI�

� �1ÿ k� det�Qi�s� ÿ kI�: �

Proof of Lemma 2. We are proving that, for each e > 0, there if a k0 2 N such
that is k P k0, then

for every s 2 K; kQk�s�k < e:

Since q�Q�s�� < 1, given an e > 0, for each s 2 K there exists a natural number
k0�s� such that, for k P k0�s�,

kQk�s�k < e
2
:

From Hypothesis �H1��a�, we deduce that Q is a continuous function of s so
that there exists an open neighborhood of s, W �s�, such that

for every t 2 W �s�; kQk�t�k < e:

The family fW �s� : s 2 Kg is an open covering of the compact set K. Then
there exists a ®nite subfamily such that

K � W �s1� [ � � � [ W �sr�:
If we choose k0 � maxfk0�s1�; . . . ; k0�sr�g, we have, for k P k0:

for every s 2 K; kQk�s�k < e

and the Lemma follows. �

Proof of Theorem 4. We have d > 0 such that �Ad � fs 2 Rp
� : d�s;A�6 dg

veri®es that F� �Ad� � A, and we begin by establishing the following assertion
(A1): There exists k0 2 N such that for k P k0 and s0 2 �Ad it is implied that
sn 2 �Ad for every n � 1; 2; . . .

Reasoning by induction, let us suppose that s0; s1; . . . ; sn 2 �Ad and prove that
sn�1 2 �Ad, that is, ksn�1 ÿ F�sn�k6 d:

With the purpose of ®nding a bound for kR�m; n�k we de®ne the following
constants:

a � sup
s2 �Ad

ksk; b � sup
s2 �Ad

kN�s�k; c � sup
s2 �Ad

kPc�s�k:

The existence of b and c yields from the special structures of matrices N�s� and
Pc�s� whose columns are vectors of 1-norm smaller than 2 and equal to 1 re-
spectively.

R. Bravo de la Parra et al. / Mathematical Biosciences 157 (1999) 91±109 107



Lemma 2 and the structure of matrix H�k��s� allow us to ®nd a number k1 2
N such that

kH�k��s�k < 1

2bkMk for every k P k1 and s 2 �Ad: �17�
Now it is straightforward to ®nd a bound for kR�m; n�k;

kR�m; n�k6
Ymÿ1

j�n

kN�sj�1�kkMkkH�k��sj�k6
Ymÿ1

j�n

bkMk 1

2bkMk � 2nÿm: �18�

Using Eq. (8) and bound (18) we can deduce

ksn�1ÿF�sn�k6 kUkkMkkH�k��sn�k

� kR�n; 0�kkZ0k �
Xnÿ1

j�0

kR�n; j
 

�1�kkN�sj�1�kkMkkPc�sj�kksjk
!

6 kUkkMkkH�k��sn�k 2ÿnkZ0k� �
Xnÿ1

j�0

2j�1ÿnbkMkca�

6 kUkkMk�2ÿnkZ0k � 2abckMk�kH�k��sn�k:
Before ®nding k0 let us de®ne K1 � fZ 2 RNÿp: kZk6 dg, where d can be

chosen to be any number verifying d P 2abckMk:
Supposing, without any loss of generality, that Z0 2 K1 we yield from

Lemma 2 the existence of k0 P k1 such that inequality

kH�k��s�k6 d
kUkkMk�d � 2abckMk�

holds for every k P k0 and s 2 �Ad, and so assertion (A1) is an immediate
consequence.

To prove the positive invariance of the compact set �Ad � K1 we only need to
prove, using Eq. (7), that if sn 2 �Ad and Zn 2 K1 then

N�sn�1�MPc�sn�sn �N�sn�1�MH�k��sn�Zn 2 K1 for k P k0

and that is straightforward using bound (17) and the fact that d P 2abckMk;

N�sn�1�MPc�sn�sn �N�sn�1�MH�k��sn�Znk6 bkMkca� bkMk 1

2bkMk d

6 d
2
� d

2
� d:

To ®nish the proof we have just to deduce the two stated inequalities. The
structure of matrix H�k��s� allow us to ®nd a constant h, independent of k, such
that

kH�k��s�k6 hkQk�s�k:
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And now from systems (6) and (7) we have

ksn�1 ÿUMPc�sn�snk � kUMH�k��sn�Znk6 kUkkMkkH�k��s�kd
6 kUkkMkhkQk�s�kd 6 �dhkUkkMk�Q�k�

and analogously

kZn�1 ÿN�sn�1�MPc�sn�snk6 �bdhkMk�Q�k�: �
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