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Abstract: As an alternative to mode-superposition or direct method in hydroelastic analysis, a discrete-module-finite-

element (DMFE) based hydroelasticity method with features of avoiding pre-determination of structure modal shapes and better 

computational efficiency has been proposed and well developed. The DMFE solves the hydroelastic problem as follows. Firstly, 

a freely floating flexible structure is discretized into several macro-submodules in two horizontal directions to perform a multi-

rigid-body hydrodynamic analysis. Each macro-submodule is then abstracted to a lumped mass at the center of gravity that 

bears the external forces including inertia force, hydrodynamic force and hydrostatic force (with displacements as unknown 

variables) acting on the macro-submodule. Apart from external forces, all lumped masses are also subjected to structural forces 

that reflect the structural deformation features of the original flexible structure. The key to calculating the structural forces is 

derivation of the equivalent overall structural stiffness matrix with respect to the displacements of all lumped masses, which is 

tackled following the finite element procedure. More specifically, each macro-submodule is discretized into a number of micro-

elements to derive the corresponding structural stiffness matrix, which is manipulated to a new one including only the nodes at 

the position of the lumped masses and surrounding boundaries by using the substructure approach, and subsequently the target 

overall stiffness matrix is obtained by combining together all macro-submodules. Finally, based on equivalence between 

external and structural forces indicated from the d'Alembert principle, the DMFE method establishes the hydroelastic equation 

on all lumped masses with their displacements as unknown variables. Solving the equation gives the displacement response of 

all lumped masses. Displacement and structural force responses are first calculated on the interfaces of every two adjacent 

macro-submodules, after which at any given position of the flexible structure, the recovery of displacement is based on the 

structural stiffness matrix of the corresponding macro-submodule and the recovery of structural force uses the spline 

interpolation scheme. The hydroelasticity of a narrow and a square pontoon-type VLFS is investigated. Satisfactory agreement 

is achieved with numerical results from other scholars. At last, a least square method to recover bending moment distribution 

of flexible floating structures with complicated shape is presented, including some unsolved problems. 
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1 Introduction 

Very large floating structure (VLFS), which can be used as floating pier, floating airport, floating solar 

or even floating city, has triggered extensive research [1]. Hydroelasticity of VLFSs under wave loads is a 

typical Fluid-Structure-Interaction (FSI) problem [2]. The hydroelasticity theory is adopted to calculate the 

dynamic response of a floating flexible structure, whose core idea is to solve the hydrodynamic equation that 

consists of inertia force, hydrostatic and hydrodynamic loadings, and force due to elastic deformation [3]. 

The modal analysis method and the direct method occupy a dominant position in studying the hydroelastic 

response of floating flexible structures. The former solves the problem by superposing the dynamic response 

of necessary oscillation modes of a floating flexible structure, where a pre-analysis is needed to determine 

the optimal combination of modes [4-6]. The latter is gradually adopted with increasingly powerful 

computing performance, although it is still time-consuming to analyze a single case [7-8]. 

In recent years, an efficient and convenient hydroelasticity method, i.e., the discrete-module-beam 

(DMB) method, has caught researchers’ attention since the work of Lu et al. [9], where a continuous floating 

flexible structure was studied. The DMB method first discretizes a floating flexible structure into several 

rigid macro-submodules to perform a multi-rigid-body hydrodynamic analysis, with which the external 

loading on the macro-submodules (with displacements as unknown variables) can be derived and the macro-

submodules are abstracted as lumped masses. Then, an equivalent Euler-Bernoulli beam that carries the 

flexible structure’s properties, including elastic modulus, poison’s ratio, etc., is introduced to connect every 

adjacent lumped mass, accounting for the structural deformation effects. Finally, the hydroelasticity equation 

is established and solved to obtain the dynamic response of the floating flexible structure. Progress has been 

made on the DMB hydroelasticity method by many researchers in different aspects. Sun et al. [10] explored 

a hinged VLFS and proposed a third-order interpolation scheme to calculate the bending moment distribution 

in the framework of DMB method. Zhang and Lu [11] proposed an approach to obtain the stiffness matrix of 

VLFSs with complex geometric features. Further, Zhang et al. [12] extended the DMB method into time 

domain and calculated the displacement response of a VLFS under weight-drop loads and moving point loads.  

Many researchers have applied the DMB method to investigate different engineering problems. Wei et 

al. [13] analyzed a VLFS’s hydroelastic behavior in inhomogeneous sea conditions. Zhang et al. [14] and Lu 

et al. [15] investigated the dynamic response and power capture performance of a floating flexible structure 

with a wave energy conversion unit. Jin et al. [16] implemented the DMB method to solve a floater-connector-

mooring coupled system. Bakti et al. [17] considered the forward speed effect in the hydroelasticity problem 

of a vessel. Zhang et al. [18] explored the hydroelasticity of a VLFS where a certain number of wind turbines 

are placed.  

By far, the framework of the DMB method has been well established. It is worth noting that, all above-

mentioned research work concerned with the DMB method focused on floating flexible structures with a 

relatively large length/width ratio, for the reason that the DMB method is a ‘one-dimensional’ method, where 

submodule-division is done only longitudinally (this is what we mean by stating ‘one-dimensional’ and a 

detailed explanation will be given in Section 3) and beam elements are adopted. Although it has been proven 

and recognized the method’s accuracy in calculating hydroelastic response and adaptability in different 

engineering scenarios, the method itself still remains a ‘one-dimensional’ method, which limits its 

applications only in narrow structures that has a relatively large length/width ratio. Besides, even for a narrow 
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structure case, it cannot be given by the DMB method the displacement and bending moment distribution 

along the width direction. However, for a floating flexible structure with a comparable length/width ratio that 

is common in the realm of ocean engineering, deformation and internal force response matter in both 

directions (length and width), whereas the DMB method cannot deal with such kind of problems. Therefore, 

to fill the gap, a discrete-module-finite-element (DMFE) based hydroelasticity method is developed that is 

capable of addressing the hydroelasticity of large floating flexible structures of arbitrary shape and size ratio.  

The remainder of this paper is organized as follows. The DMFE method is first elaborated in Section 2, 

including the discretization strategy, derivation of the lumped-mass stiffness matrix, recovery of the 

displacement and internal force responses. Comparisons and relations of the DMFE method with the DMB 

method are given in Section 3. Validations and applications of the DMFE method are given in Section 4 on 

both a narrow VLFS and a square one. Besides, more hydroelasticity results on an author-defined square 

VLFS are given in the Appendix. At last, an unsolved problem is elaborated in Section 5 on the bending 

moment distribution. 

2 The DMFE method 

The DMFE method focuses on the hydroelasticity of a floating flexible structure. This problem is 

elaborated in Fig. 1. A pontoon type VLFS with the size of 𝐿 × 𝐵 × 𝐷 is subjected to an incident wave 

coming with an angle of 𝜃. The VLFS is uniform and has a homogeneous, isotropic and linear material. A 

right-handed global coordinate system 𝑂 − 𝑋𝑌𝑍 is adopted with the 𝑍 axis pointing upward and the origin 

𝑂 located at the still water level vertically and at the left lower corner of the structure horizontally. Potential 

flow theory is used with the fluid considered inviscid, irrotational and incompressible.  

 

Fig. 1 A schematic of the hydroelastic problem of a pontoon type VLFS subjected to waves. 

A brief illustration of the procedure of the DMFE method are shown in Fig. 2. Two ‘discretization’ 

strategies are adopted for the hydroelastic analysis. The first one is related to the ‘macro-submodule division’ 
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of the floating flexible structure, in which the structure is divided into several submodules in both the length 

and width directions. Multi-rigid-body hydrodynamic analysis is conducted to obtain the hydrodynamic 

loadings, i.e., the wave excitation force 𝐅𝐸, added mass force 𝐅𝐴 and radiation damping force 𝐅𝑅𝑑, which, 

together with the hydrostatic force 𝐅𝐻𝑠 and inertial force 𝐅𝐼𝑛, comprise the total external force 𝐅𝐸𝑋𝑇 (with 

displacements 𝛏 as unknown variables) exerted on all the submodules. All submodules are then abstracted 

to be lumped masses (at centers of gravity of the submodules) that are subjected to the total external force. 

The second ‘discretization’ is the ‘finite element discretization’ of the floating flexible structure, the purpose 

of which is to derive the lumped-mass stiffness matrix 𝐊 with respect to all lumped masses. The structural 

force 𝐅𝑆𝑡 on all lumped masses can be derived based on the lumped-mass stiffness matrix and the unknown 

displacement variables. Finally, the hydroelastic equation of the floating flexible structure is established (at 

positions of all lumped masses, with displacements as unknown variables) according to the force equilibrium 

condition following the d'Alembert principle.  

 

Fig. 2. The flow diagram of the DMFE method. The definition of the variables shown in the figure will be illustrated in 

detail in the following subsections. The floating flexible structure is shown from top view. 

2.1 Macro-submodule division 
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The macro-submodule division strategy is illustrated in Fig. 3 that the floating flexible structure is 

divided (or discretized) equally into 𝑀 parts along the 𝑂𝑋 axis and 𝑁 parts along the 𝑂𝑌 axis. A total of 

𝑀 ×𝑁 (written as 𝑀𝑁 for the sake of brevity) macro-submodules are obtained. Each macro-submodule is 

labelled with a unique coordinate (𝑚, 𝑛) with 𝑚 being the 𝑚𝑡ℎ column in the macro-submodule-array 

and 𝑛  the 𝑛𝑡ℎ  row. Since the division is done uniformly, every macro-submodule has a dimension of 

𝐿/𝑀 × 𝐵/𝑁 ×𝐷. Further, the boundaries of certain macro-submodules form the ‘interface’, the solid line 

framed in dashed red box as an example. Division strategy in Fig. 3 leaves 𝑀 + 1 interfaces parallel to the 

𝑌 axis and 𝑁 + 1 interfaces parallel to the 𝑋 axis. Particularly, four interfaces among them are free ends, 

which are 𝑋 = 0, 𝑋 = 𝐿, 𝑌 = 0 and 𝑌 = 𝐵. 

 

Fig. 3. Macro-submodule division in the DMFE method. The structure is divided into 𝑴 and N parts in the 𝑿 and Y 

direction, respectively, leaving each macro-submodule being a 𝑳/𝑴 × 𝑩/𝑵 × 𝑫 cuboid. The solid line framed in 

dashed red box is an ‘interface’ composed of boundaries of certain macro-submodules.  

Each macro-submodule is then abstracted to be a lumped mass at the center of gravity that bears the 

external forces including inertia force, hydrodynamic force and hydrostatic force (with displacements as 

unknown variables) acting on the macro-submodule. Calculations on the external forces will be given in 

Section 2.2.  

Fig. 4 gives the three right-handed coordinate systems adopted in the DMFE method, that is, the global 

(earth-fixed) coordinate system 𝑂 − 𝑋𝑌𝑍, the reference coordinate system 𝑂(𝑚,𝑛)
′ − 𝑥(𝑚,𝑛)

′ 𝑦(𝑚,𝑛)
′ 𝑧(𝑚,𝑛)

′  and 

the body-fixed coordinate system 𝑂(𝑚,𝑛) − 𝑥(𝑚,𝑛)𝑦(𝑚,𝑛)𝑧(𝑚,𝑛) . Each macro-submodule (𝑚, 𝑛)  has a 

reference coordinate system and a body-fixed one with the origins located at the corresponding center of 

gravity when the structure stays at its equilibrium position. When the structure is subjected to waves, the 

reference coordinate system stays parallel to the global one and remains fixed at its original position, while 

the body-fixed coordinate system moves and rotates together with the corresponding macro-submodule. 

Since each macro-submodule is considered rigid, the displacement at its center of gravity, i.e., where 

the lumped mass is assumed to be located, 𝛏(𝑚,𝑛) is used to describe the motion of macro-submodule (𝑚, 𝑛), 

which is expressed as 

 𝛏(𝑚,𝑛) = [𝜉1
(𝑚,𝑛) 𝜉2

(𝑚,𝑛) 𝜉3
(𝑚,𝑛) 𝜉4

(𝑚,𝑛) 𝜉5
(𝑚,𝑛) 𝜉6

(𝑚,𝑛)] (1) 

where 𝜉𝑗
(𝑚,𝑛)(𝑗 = 1,2,3)  are three translational displacements in the reference coordinate system and 
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𝜉𝑗
(𝑚,𝑛)(𝑗 = 4,5,6) three rotational ones. 

 

Fig. 4. Three coordinate systems adopted in the DMFE method, i.e., the global coordinate system 𝑶 −𝑿𝒀𝒁, the 

reference coordinate system 𝑶(𝒎,𝒏)
′ − 𝒙(𝒎,𝒏)

′ 𝒚(𝒎,𝒏)
′ 𝒛(𝒎,𝒏)

′  and the body-fixed coordinate system 𝑶(𝒎,𝒏) −

𝒙(𝒎,𝒏)𝒚(𝒎,𝒏)𝒛(𝒎,𝒏). 

2.2 Multi-rigid-body hydrodynamic analysis 

Linear assumptions and harmonic excitations make it feasible to express a spatial-temporal variable 

Θ(𝑥, 𝑦, 𝑧, 𝑡) as follows 

 Θ(𝑥, 𝑦, 𝑧, 𝑡) = Ξ(𝑥, 𝑦, 𝑧)𝑒−𝑖𝜔𝑡 (2) 

where Ξ(𝑥, 𝑦, 𝑧) is a space-dependent complex variable, 𝑖 the imaginary unit, 𝜔 the circular frequency 

(of incident waves, as an example) and 𝑡 the time instant. Only the space-dependent variable is considered 

in the frequency domain analysis. 

The velocity potential 𝜙(𝑥, 𝑦, 𝑧) stands under linear and ideal fluid assumptions, which is expressed in 

the global coordinate system as 

 𝜙(𝑥, 𝑦, 𝑧) = 𝜙𝐼 + 𝜙𝑠 +∑𝜙𝑅
(𝑚,𝑛)

 (3) 

where 𝜙𝐼  is the velocity potential of incident waves, 𝜙𝑆  the velocity potential of scattered waves and 

𝜙𝑅
(𝑚,𝑛)

 the velocity potential of radiated waves induced by macro-submodule (𝑚, 𝑛), which can be further 

written as 

 𝜙𝑅
(𝑚,𝑛)

=∑ 𝜙𝑗𝑅
(𝑚,𝑛)

6

𝑗=1
= −𝑖𝜔∑ 𝜉𝑗

(𝑚,𝑛)𝜑𝑗𝑅
(𝑚,𝑛)

6

𝑗=1
 (4) 
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where 𝜑𝑗𝑅
(𝑚,𝑛)

  is the radiated velocity potential induced by the unitary-amplitude 𝑗𝑡ℎ  degree-of-freedom 

(DOF) motion of the macro-submodule (𝑚, 𝑛). 

The governing equations of velocity potentials and the corresponding boundary conditions for 

describing the hydrodynamics of the freely floating multi-rigid-bodies due to the ‘macro-submodule division’ 

of the floating flexible structure are given as follows,  

 

{
 
 
 
 
 
 

 
 
 
 
 
 

∇2𝜙∗ = 0                                                                                                         in   Ω

−𝜔2𝜙∗ + 𝑔
𝜕𝜙∗

𝜕𝑧
= 0                                                                                     on  𝑆𝐹

𝜕𝜙∗

𝜕𝑧
= 0                                                                                                            on  𝑆𝐵

𝜕(𝜙𝐼 + 𝜙𝑆)

𝜕𝑧
= 0                                                                               on  ∑𝑆(𝑚,𝑛)

𝜕𝜙𝑗𝑅
(𝑚,𝑛)

𝜕𝑛(𝑝,𝑞)
= {

𝑣𝑗
(𝑚,𝑛)

∙ n𝑗
(𝑚,𝑛)

,   𝑝 = 𝑚, 𝑞 = 𝑛

0,   else
             on  𝑆(𝑝,𝑞)  (

𝑚, 𝑝 = 1, 2,⋯ ,𝑀;
𝑛, 𝑞 = 1,2,⋯ , 𝑁; 𝑗 = 1,2,⋯ ,6

)

lim
𝑟→∞

√𝑟 (
𝜕𝜙×

𝜕𝑟
−
𝑖𝜔2

𝑔
𝜙×) = 0                                                                     on  𝑆∞

 (5) 

where Ω is the fluid domain, which is bounded by the free surface 𝑆𝐹, the bottom 𝑆𝐵, the wetted surface 

of all macro-submodules 𝑆(𝑚,𝑛) (𝑚 = 1,2,⋯ ,𝑀; 𝑛 = 1, 2,⋯ ,𝑁) and the cylindrical surface at infinity 𝑆∞; 

𝑣𝑗
(𝑚,𝑛)

 is the 𝑗𝑡ℎ DOF oscillating velocity of macro-submodule (𝑚, 𝑛); (n1
(𝑚,𝑛), n2

(𝑚,𝑛), n3
(𝑚,𝑛)

)
T
= 𝐧(𝑚,𝑛) 

is the unit vector of the macro-submodule (𝑚, 𝑛) that is normal to the wetted surface and pointing inward 

to the body; (n4
(𝑚,𝑛)

, n5
(𝑚,𝑛)

, n6
(𝑚,𝑛)

)
T
= 𝐬(𝑚,𝑛) × 𝐧(𝑚,𝑛) with 𝐬(𝑚,𝑛) being the position vector of the body 

surface of the macro-submodule (𝑚, 𝑛); 𝜙∗ can be replaced by 𝜙𝐼, 𝜙𝑆 or 𝜙𝑅; 𝜙× can be replaced by 

𝜙𝑆 or 𝜙𝑅. 

After solving the velocity potentials using the boundary element method, the relevant hydrodynamic 

coefficients are calculated by 

 

{
 
 
 
 

 
 
 
 𝐹𝑗𝐸

(𝑚,𝑛) = 𝑖𝜔𝜌∬ (𝜙𝐼 + 𝜙𝑆) ∙ 𝑛𝑗
(𝑚,𝑛)𝑑𝑆

𝑆(𝑚,𝑛)

𝜔2𝜉𝑘
(𝑝,𝑞)

𝐴𝑗,𝑘
[(𝑚,𝑛),(𝑝,𝑞)]

+ 𝑖𝜔𝜉𝑘
(𝑝,𝑞)

𝐵𝑗,𝑘
[(𝑚,𝑛),(𝑝,𝑞)]

= 𝜔2𝜉𝑘
(𝑝,𝑞)

𝜌∬ 𝜑𝑘𝑅
(𝑝,𝑞)

𝜕𝜑𝑗𝑅
(𝑚,𝑛)

𝜕𝑛𝑗
(𝑚,𝑛)

𝑑𝑆
𝑆(𝑚,𝑛)

𝐂𝑗
[(𝑚,𝑛),(𝑚,𝑛)]

𝛏(𝑚,𝑛) = −𝜌𝑔∬ (𝜉3
(𝑚,𝑛) + 𝜉4

(𝑚,𝑛)𝑦 − 𝜉5
(𝑚,𝑛)𝑥) ∙ 𝑛𝑗

(𝑚,𝑛)𝑑𝑆
𝑆(𝑚,𝑛)

𝑚,𝑝 = 1, 2,⋯ ,𝑀;  𝑛, 𝑞 = 1,2,⋯ , 𝑁;  𝑗, 𝑘 = 1,2,⋯ ,6

 (6) 

where 𝐹𝑗𝐸
(𝑚,𝑛)

 is the 𝑗𝑡ℎ DOF wave excitation force exerted on the macro-submodule (𝑚, 𝑛); 𝜌 the density 

of water, 𝜔  the wave frequency, 𝐴𝑗,𝑘
[(𝑚,𝑛),(𝑝,𝑞)]

  the added mass coefficient in the 𝑗𝑡ℎ  DOF of the macro-
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submodule (𝑚, 𝑛) induced by the 𝑘𝑡ℎ DOF motion of the macro-submodule (𝑝, 𝑞) and 𝐵𝑗,𝑘
[(𝑚,𝑛),(𝑝,𝑞)]

 the 

radiation damping coefficient, 𝐂𝑗
[(𝑚,𝑛),(𝑚,𝑛)]

 is the 𝑗𝑡ℎ row of the hydrostatic restoring coefficient matrix 

𝐂[(𝑚,𝑛),(𝑚,𝑛)], 𝑔 the gravitational acceleration, 𝑥 and 𝑦 the coordinates of a given point on 𝑆(𝑚,𝑛) in the 

body fixed coordinate system.  

Eq. 6 gives the hydrodynamic coefficients including the added mass 𝐀(𝜔)，the radiation damping 

𝐁(𝜔) , and wave excitation force 𝐅𝐸 , as well as the hydrostatic restoring stiffness matrix 𝑪 , which are 

elaborated in Appendix A. With the defined matrices, the added mass force 𝐅𝐴, the radiation damping force 

𝐅𝑅𝑑, the hydrostatic restoring force 𝐅𝐻𝑠 and the inertia force 𝐅𝐼𝑛 are expressed as 

 𝐅𝐴 = 𝜔
2𝐀(𝜔)𝛏 (7) 

 𝐅𝑅𝑑 = 𝑖𝜔𝐁(𝜔)𝛏 (8) 

 𝐅𝐻𝑠 = −𝐂𝛏 (9) 

 𝐅𝐼𝑛 = 𝜔
2𝐌𝛏 (10)  

Together with 𝐅𝐸, the external force acting on all lumped masses 𝐅𝐸𝑋𝑇 are defined as 

 𝐅𝐸𝑋𝑇 = 𝐅𝐸 + 𝐅𝐴 + 𝐅𝑅𝑑 + 𝐅𝐻𝑠 + 𝐅𝐼𝑛 (11) 

2.3 Finite element analysis 

Apart from the external force given in Section 2.2, the structural deformation induced force 𝐅𝑆𝑡 should 

also be considered for all the lumped masses, which are abstracted from the discretized macro-submodules. 

The structural force can be calculated by the lumped-mass stiffness matrix with respect to all lumped masses, 

𝐊 and the unknown displacements of lumped masses, 𝛏 as follows, 

 𝐅𝑆𝑡 = −𝐊𝛏 (12) 

As a result, the key to calculating the structural force is the determination of the lumped-mass stiffness 

matrix, the procedure of which is shown in Fig. 5. It is emphasized that the discretization strategies presented 

in Fig. 5 only serve to give a better illustration (similarly hereinafter). A convergence study is needed to 

finalize the discretization strategy, which will be dealt with in Section 4.1.2.  
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Fig. 5. The strategy to derive the lumped-mass stiffness matrix. The blue solid circles are the lumped masses, the 

black ones are the nodes at boundaries of each macro-submodule and the red ones are the nodes inside each macro-
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submodule. It is noted that the discretization strategies shown here only serve to give a better illustration and 

understanding. Convergence study is needed to finalize the discretization strategy. 

2.3.1 Finite element discretization 

As indicated by Eq. 11, all distributed loads acting on a certain macro-submodule have now been 

transformed to concentrated external forces acting on the corresponding lumped mass, which means the 

floating flexible structure is subjected to external forces only on points where lumped masses located (see 

Fig. 5a). Consequently, as shown in Fig. 6, the macro-submodule (𝑚, 𝑛) is subjected to external forces 

𝐅𝐸𝑋𝑇
(𝑚,𝑛)

 on the lumped mass (blue solid circle) and boundary force on boundaries (black solid lines). Here, 

the boundary force is actually the internal force which is induced by the structure’s elastic deformation and 

exposed when the macro-submodule is cut (or divided) from the floating flexible structure. No force is 

exerted elsewhere.  

Finite element discretization is adopted. Since all macro-submodules are identical, the same 

discretization strategy is used, which is shown in Fig. 6. The discretization is performed in the body-fixed 

coordinate system. A four-node element with 6 DOF at each node is adopted, that is, translations in the 𝑥(𝑚,𝑛), 

𝑦(𝑚,𝑛)  and 𝑧(𝑚,𝑛)  directions and rotations about the 𝑥(𝑚,𝑛) , 𝑦(𝑚,𝑛)  and 𝑧(𝑚,𝑛)  axes. It is noted that a 

lumped mass coincides with one of the nodes for the convenience of derivation of the lumped-mass stiffness 

matrix. As shown in Fig. 6, all nodes are categorized into three kinds: the lumped mass (blue solid circles), 

boundary nodes (black ones) and inner nodes (red ones). Clearly, the lumped mass is where external force is 

exerted, boundary nodes are where boundary force is exerted and no force is exerted on inner nodes. 

Introduction of finite element discretizes the structure from Fig. 5a to Fig. 5b. 

 

Fig. 6. Finite element discretization on the macro-submodule. This macro-submodule is cut from the original 

structure with external force acting on the lumped mass (blue solid circles) and boundary force acting on the 

boundaries (black solid lines). The boundary force is the internal force induced by elastic deformation and exposed 

when a macro-submodule is cut from the original structure. 

2.3.2 Substructuring and matrix manipulation 

The stiffness matrix of all nodes related to a given macro-submodule in Fig. 6 could be derived based 

on the finite element theory. As the finite element theory is rather mature and common, derivation of this 

stiffness matrix is not presented in this paper, and main focuses are put on the DMFE method. Extra attention 

is needed in node numbering, which underlies the form of this stiffness matrix. Recommended numbering 

rules are given: the lumped mass is always numbered as ‘1’, followed by all boundary nodes and then the 

inner nodes. Denote 𝐤module as the stiffness matrix of all nodes in Fig. 6 to relate displacement and force: 
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𝐤module

[
 
 
 𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

𝛏inner
(𝑚,𝑛)

]
 
 
 

= [

𝐅𝐸𝑋𝑇
(𝑚,𝑛)

𝐅boundary
(𝑚,𝑛)

𝟎

] (13) 

where  𝛏lumped−mass
(𝑚,𝑛)

  is the displacement of lumped mass (𝑚, 𝑛) , 𝛏boundary
(𝑚,𝑛)

  is the displacement of all 

boundary nodes on macro-submodule (𝑚, 𝑛) , 𝛏inner
(𝑚,𝑛)

  is the displacement of all inner nodes on macro-

submodule (𝑚, 𝑛) and 𝐅boundary
(𝑚,𝑛)

 is the force acting on all boundary nodes of macro-submodule (𝑚, 𝑛), 

𝟎 indicates no force is exerted on the inner nodes. 

It is worth noting that 𝐤module is already a matrix of huge size, let alone the stiffness matrix of the 

whole structure (containing all nodes together) after combining 𝐤module of every macro-submodule. Based 

on the fact that zero force is exerted on all the inner nodes, some manipulations could be performed to derive 

the following equations after ‘eliminating’ the inner nodes: 

 

𝛏inner
(𝑚,𝑛) = −𝚲INNER [

𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] (14) 

 

[
𝐅𝐸𝑋𝑇
(𝑚,𝑛)

𝐅boundary
(𝑚,𝑛) ] = 𝐊OUTER [

𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] (15) 

where a detailed derivation and the form of 𝚲INNER and 𝐊OUTER are given in Appendix B. 

𝐊OUTER in Eq. 15 directly describes the relationship between the force and the displacement related 

with the lumped-mass and boundary nodes of a given macro-submodule, which takes the structure from Fig. 

5b to Fig. 5c, where all the inner nodes are eliminated.  

It is noted that extra manipulation is needed on 𝐊OUTER  for some macro-submodules that have 

boundary nodes at free edges of the floating flexible structure (see Fig. 7a, highlighted in dark grey). As an 

example, boundary nodes of macro-submodule (1,1) framed in red dashed box are the nodes at free edges 

(Fig. 7b), which are subjected to no boundary force. An exception is the nodes j and k at the free edges as 

they both belong to the interface of two different macro-submodules and the cutting (or division) operation 

exposes the nodes to non-zero forces. Based on the above analysis on macro-submodule (1,1), for all macro-

submodules with boundary nodes at free edges (see Fig. 7a), the following equation is drawn  

 

𝐊OUTER

[
 
 
 
 𝛏lumped−mass
(𝑚,𝑛)

𝛏non−free
(𝑚,𝑛)

𝛏free−edge
(𝑚,𝑛)

]
 
 
 
 

= [
𝐅𝐸𝑋𝑇
(𝑚,𝑛)

𝐅non−free
(𝑚,𝑛)

𝟎

] (16) 

Here, the boundary nodes are categorized into non-free-edge nodes (non-free in short) and free-edge nodes 

with boundary force 𝐅non−free
(𝑚,𝑛)

 exerted on the former and no force exerted on the latter, which explains the 

vector ‘𝟎’ in Eq. 16. 
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Similarly, the substructuring and some manipulations are performed to ‘eliminate’ all the free-edge 

nodes: 

 

𝛏free−edge
(𝑚,𝑛) = −𝚲FREE−EDGE [

𝛏lumped−mass
(𝑚,𝑛)

𝛏non−free
(𝑚,𝑛)

] (17) 

 

[
𝐅𝐸𝑋𝑇
(𝑚,𝑛)

𝐅non−free
(𝑚,𝑛)

] = 𝐊NON−FREE [
𝛏lumped−mass
(𝑚,𝑛)

𝛏non−free
(𝑚,𝑛)

] (18) 

where a detailed derivation and the form of 𝚲FREE−EDGE and 𝐊NON−FREE are given in Appendix C. 

𝐊NON−FREE in Eq. 18 directly describes the relationship between the force and the displacement related 

with the lumped-mass and non-free-edge nodes of a given submodule, which takes the structure from Fig. 5c 

to Fig. 5d, where all the boundary nodes exposed to zero boundary force are eliminated.  

 
Fig. 7. (a) Illustrations of macro-submodules with nodes at free edges. (b) illustration of free-edge nodes on 

macro-submodule (𝟏, 𝟏) where no boundary forces are exerted. Despite at the free edge, boundary force exists on 

Node 𝒋 and Node 𝒌. 

It is emphasized that 𝚲FREE−EDGE and 𝐊NON−FREE differ among the ‘dark grey’ macro-submodules 

shown in Fig. 7a for the free-edge nodes appear differently in each macro-submodule, thus calculation is 

needed on each of them. On the contrary, 𝚲INNER and 𝐊OUTER are the same for each macro-submodule. 

Another numbering is needed on all nodes shown in Fig. 5d, including all the lumped-masses and all 

the boundary nodes remained. Recommended rules are the lumped masses being numbered first and then the 

remained boundary nodes. Fig. 8 gives all nodes of each macro-submodule that are not eliminated with blue 

solid circles being the lumped masses, black ones being the remained boundary nodes and the translucent 

ones being the eliminated boundary nodes (shown here only for better illustration). The stiffness matrix of 

macro-submodules without free-edge nodes is calculated by Eq. 15 and that of macro-submodules with free-

edge nodes are calculated by Eq. 18. With the node numbering, the structural stiffness matrix of Fig. 5d is 

constructed based on 𝐊OUTER and 𝐊NON−FREE following the standard finite element procedure, which is 

denoted 𝐊ALL. 
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Fig. 8. All nodes remained in each macro-submodule where force acts. The blue solid circles are the lumped 

masses, the black ones are the boundary nodes where the boundary force is exerted and the translucent ones are the 

eliminated free-edge nodes where no boundary force exists. 

Every node given in Fig. 8, the blue ones and the translucent ones aside, must appear in at least two 

macro-submodules, which ensures the existence of boundary force. When the stiffness matrix 𝐊ALL  is 

constructed, boundary force acting on each node will be added accordingly. More importantly, the sum of all 

boundary forces corresponding to a given node is undoubtedly zero. For instance, Node 𝑘 in Fig. 8 appears 

in four macro-submodules and in each macro-submodule a boundary force is exerted on Node 𝑘. The sum 

of the four boundary forces is zero. Similarity is observed for Node 𝑗 with the only difference being this 

node appears in two macro-submodules. Above analysis gives 

 
[
𝐅𝑆𝑡
𝟎
] = [

−𝐅𝐸𝑋𝑇
𝟎

] = −𝐊ALL [
𝛏

𝛏rest
] = − [

𝐊ALL
1,1 𝐊ALL

1,2

𝐊ALL
2,1 𝐊ALL

2,2 ] [
𝛏

𝛏rest
] (19) 

where 𝐊ALL
𝑗,𝑘
(𝑗, 𝑘 = 1,2) are the sub-matrices of 𝐊ALL and 𝛏rest is the displacement of all black nodes in 

Fig. 5d or Fig. 8. 𝐅𝑆𝑡 is the structural deformation induced force on the lumped masses, which together with 

the external force 𝐅𝐸𝑋𝑇, leads to the equilibrium condition following the d'Alembert principle. The meaning 

of 𝐅𝐸𝑋𝑇 is given in Eq. 11 and that of 𝛏 in Eq. A6. 

Some manipulations give 

 
𝛏rest = −[𝐊ALL

2,2 ]
−1
𝐊ALL
2,1 𝛏 ≜ −𝚲REST ∙ 𝛏 (20) 

 𝐅𝑆𝑡 = −𝐅𝐸𝑋𝑇 = −{𝐊ALL
1,1 −𝐊ALL

1,2 𝚲REST}𝛏 ≜ −𝐊 ∙ 𝛏 (21) 

𝐊 in Eq. 21 is the targeted lumped-mass stiffness matrix that directly describes the relationship between 

the structural force acting on the lumped masses and the displacement of them, which takes the structure 

from Fig. 5d to Fig. 5e, where only the lumped masses are reserved. 

2.3.3 The hydroelastic equation 

Eqs. 7-11 and 21 give the hydroelastic equation that the DMFE method establishes on all the lumped 

masses 
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 {−𝜔2(𝐌+ 𝐀(𝜔)) − 𝑖𝜔𝐁(𝜔) + (𝐂 + 𝐊)}𝛏 = 𝐅𝐸 (22) 

Solution of Eq. 22 is the displacement response of the lumped masses 𝛏. 

2.4 Recovery of displacement response 

After obtaining the displacements at the positions of lumped masses, displacement response (at any 

given position) of the whole structure is solved reversely compared to the derivation of the lumped-mass 

matrix. First, the deformation of all nodes in Fig. 5d is obtained through Eq. 20 with 𝛏 solved from Eq. 22, 

the displacement response of all the lumped masses, i.e., all nodes in Fig. 5e. Then, that of all the translucent 

nodes in Fig. 8 is solved through Eq. 17, after which the displacement response of all boundary nodes and 

the lumped mass is known for each macro-submodule, which takes the procedure to Fig. 5c. Finally, Eq. 14 

gives the displacement of all the inner nodes and finalizes the recovery of displacement response. 

It can be seen that, although finite element is introduced, the DMFE method simplifies the stiffness 

matrix of the whole structure, a surprisingly huge matrix, to the small-sized lumped-mass stiffness matrix by 

substructuring and matrix manipulations, which improves the computation efficiency significantly. Besides, 

as one of the unique features, modal analysis is not needed in the DMFE method.  

2.5 Recovery of internal force response 

The essence of calculating internal force response is integration of external loads, i.e., hydrodynamic 

pressure. Both the mode-superposition method and the direct method is able to obtain the ‘real-case’ 

hydrodynamic pressure distribution as the structure is considered elastic. However, all macro-submodules 

are considered rigid when the DMFE method performs hydrodynamic analysis, which means the DMFE 

method cannot give the actual hydrodynamic pressure distribution.  

Definitions are regulated first before describing the recovery strategies. For a flexible floating structure, 

whose horizontal dimensions is much larger than the vertical one, bending moment is a primary concern in 

safety assessment. Two different bending moments appear in this paper, i.e., 𝑀𝑦 (revolving around the 𝑌 

axis) and 𝑀𝑥 (revolving around the 𝑋 axis). It is emphasized that all internal forces presented in this paper 

are values per unit width. 
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Fig. 9. Bending moment and shear force acting on macro-submodule (𝒎,𝒏) with four vertexes 𝑬,𝑫, 𝑭, 𝑮. Two 

different bending moments are defined, i.e., 𝑴𝒚 (revolving around the 𝒀 axis) and 𝑴𝒙 (revolving around the 𝑿 

axis). The shear force on edges normal to the 𝒙(𝒎,𝒏) axis is denoted as 𝑵𝒚 and that on edges normal to the 𝒚(𝒎,𝒏) 

axis is denoted as 𝑵𝒙. 

Though hydrodynamic pressure is unsolvable in the framework of the DMFE method, the internal 

(boundary) force is ‘exposed’ when a macro-submodule is cut (divided) from the original structure (see Fig. 

6). Take macro-submodule (𝑚, 𝑛)  colored dark grey in Fig. 3 as an example, whose finite element 

distribution is shown in Fig. 6 and internal force illustrated in Fig. 9 with 𝐸, 𝐷, 𝐹, 𝐺 being the four vertexes. 

With displacement response of the whole structure solved in Section 2.4, Eq. 15 gives the internal force acting 

on all boundary nodes located in edges 𝐸𝐷, 𝐷𝐹, 𝐹𝐺, 𝐺𝐸, each being a six DOF vector, which is denoted as 

𝐹𝑖(𝑖 = 1,2,⋯ ,6). Fig. 10a gives the six-component internal force vector of boundary nodes on edge 𝐷𝐹. It 

can be seen combined with Fig. 9, that the third component 𝐹3 corresponds to 𝑁𝑥 in Fig. 9 and the fourth 

component 𝐹4 corresponds to 𝑀𝑥. Boundary nodes on edge 𝐺𝐸 share the same features with those on edge 

𝐷𝐹. Fig. 10b gives the six-component internal force vector of boundary nodes on edge 𝐷𝐸. It can be seen 

combined with Fig. 9, that the third component 𝐹3 corresponds to 𝑁𝑦 in Fig. 9 and the fifth component 𝐹5 

corresponds to 𝑀𝑦 . Boundary nodes on edge 𝐺𝐹  share the same features with those on edge 𝐷𝐸  In 

conclusion, the DMFE method is able to obtain the internal force of all boundary nodes (interfaces), of which 

only the following enters the bending moment recovery: shear force 𝑁𝑦  and bending moment 𝑀𝑦  of 

boundary nodes located on edges normal to the 𝑂(𝑚,𝑛) − 𝑥(𝑚,𝑛) axis; shear force 𝑁𝑥 and bending moment 

𝑀𝑥 of boundary nodes located on edges normal to the 𝑂(𝑚,𝑛) − 𝑦(𝑚,𝑛) axis. 

 

Fig. 10. Illustration of the six-component force vector of nodes on edge 𝑫𝑭 (a) and edge 𝑫𝑬 (b). In (a), the third 

component 𝑭𝟑 corresponds to 𝑵𝒙 in Fig. 9 and the fourth component 𝑭𝟒 corresponds to 𝑴𝒙. Similarly, in (b), 𝑭𝟑 

corresponds to 𝑵𝒚 in Fig. 9 and 𝑭𝟓 corresponds to 𝑴𝒚. 

In fact, the finite element theory will also give the ‘internal force’ on every inner node (red solid circles 

in Fig. 6). As shown in Fig. 11, one can cut the macro-submodule (𝑚, 𝑛) in Fig. 6 and expose the ‘internal 

force’ on corresponding inner nodes. This ‘internal force’ is denoted as exposed force 𝐅exposed. The stiffness 

matrix of the dark grey structure 𝐊exposed can be constructed and the deformation of every node 𝛏exposed 

is known. The product of the two terms will give forces acting on each node, 𝐅exposed included apparently. 

Notice that the force distribution on a given macro-submodule has changed since all external loads are 
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concentrated on the lumped mass, in which case, the derived 𝐅exposed does not reflect the internal force 

response of the original loading case. However, the ‘force concentration’ procedure imposes no effect on the 

boundary force (the internal force of nodes on interfaces) of a given macro-submodule. This indicates that, 

in the framework of the DMFE method, the recovery of internal force could only be done through some 

interpolation scheme using the ‘correct’ boundary force of the macro-submodule as a basis, which is one of 

the distinctive features of the DMFE method. 

 

Fig. 11. Macro-submodule (𝒎, 𝒏) in Fig. 6 is cut (divided) into two parts, in which case the internal force acting 

on inner nodes framed in blue dashed box will be exposed, which is denoted as exposed force 𝐅𝐞𝐱𝐩𝐨𝐬𝐞𝐝. The stiffness 

matrix of the exposed part (colored in dark grey) can be constructed (denoted as 𝐊𝐞𝐱𝐩𝐨𝐬𝐞𝐝) and the deformation of all 

nodes in the dark grey part can be solved in Section 2.4 (denoted as 𝛏𝐞𝐱𝐩𝐨𝐬𝐞𝐝). Apparently, 𝐅𝐞𝐱𝐩𝐨𝐬𝐞𝐝 =

𝐊𝐞𝐱𝐩𝐨𝐬𝐞𝐝𝛏𝐞𝐱𝐩𝐨𝐬𝐞𝐝. 

Strategies to calculate the bending moment distribution 𝑀𝑦(𝑥, 𝑦) is presented. Above analysis gives 

that only nodes located on the edges normal to 𝑂(𝑚,𝑛) − 𝑥(𝑚,𝑛) axis (see the solid circles in Fig. 12) enter 

the calculation. Particularly, the ones framed in the blue dashed box are located at the free ends with zero 

internal force (𝑀𝑦 = 𝑁𝑦 = 0).  

The red solid line in Fig. 12 (𝑦 = 𝑦0) penetrates through a certain number of interfaces, which means 

the bending moment values are known on certain specific locations (boundary nodes, i.e., solid circles). The 

spline with zero slope at free ends is used to connect all values. This drawn spline curve is then the bending 

moment distribution on this specific position 𝑀𝑦(𝑥, 𝑦)|𝑦=𝑦0
. Repetition of above step on every position will 

give the bending moment distribution 𝑀𝑦(𝑥, 𝑦) along the structure. Identical strategies and procedures are 

used to calculate 𝑀𝑥(𝑥, 𝑦), with the only difference being the red solid line in Fig. 12 is drawn parallel to 

the 𝑌 axis. This strategy is named as ‘the spline method’. 

 

Fig. 12. Illustration of the spline method. Solid circles are the boundary nodes that enters the calculation of 

bending moment 𝑴𝒚(𝒙, 𝒚). The ones framed in the dashed blue box are located at the free ends with zero internal 
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force (𝑴𝒚 = 𝑵𝒚 = 𝟎). 𝑴𝒚 and 𝑵𝒚 of the black ones are calculated through Eq. 15. A spline with zero slope at free 

ends is used to connect all bending moment values on boundary nodes (solid circles on the red line). This drawn spline 

is then the bending moment distribution 𝑴𝒚(𝒙, 𝒚)|𝒚=𝒚𝟎
 

3 Relations with the DMB method 

The DMFE method and the DMB method differ mainly in two aspects, that is, macro-submodule 

division and derivation of the lumped-mass stiffness matrix (see Fig. 13.), which limit the DMB method’s 

implementation only on VLFSs with a large length/width ratio.  

The DMB method divides the structure into macro-submodules only longitudinally, which is reasonable 

as the targeted structure is long and narrow. Lumped masses lie identically at each macro-submodule’s center 

of gravity. Finite element discretization is not adopted to derive the lumped-mass stiffness matrix. Instead, 

beam elements are introduced to connect every adjacent lumped mass, which leaves a beam-connected-

lumped-masses system. The beam element is abstracted from the macro-submodule between adjacent lumped 

masses (framed in red dashed box) and inherits the physical and mechanical properties of the original 

structure. Since the theoretical solution of a beam element’s structural stiffness matrix exists and the lumped 

masses are numbered, the lumped-mass stiffness matrix could be directly obtained by installing the stiffness 

matrix of every beam element following the standard procedure of the finite element method.  

Therefore, hydroelasticity is solved in the DMB method but only on the centerline of the structure where 

the lumped masses and beam elements are located. However, the DMFE method not only undertakes the 

submodule division in both length and width direction, but discretizes each macro-submodule with finite 

elements that cover the whole structure. The lumped-mass stiffness matrix is derived through substructuring 

and matrix manipulations, which assures that hydroelasticity could be solved everywhere along the large 

flexible floating structure. Details on the DMB method could be referred to [9-11]. 

 

Fig. 13. Macro-submodule division and introduction of beam element in the DMB method. 

Notice that the DMB method is viewed as a ‘one-dimensional’ method only results from the one-

dimensional macro-submodule division. It is emphasized the following aspects are all three-dimensional, 

including the VLFS itself, the potential-flow theory and the beam elements adopted. 

4 Validation and application 

4.1 A narrow VLFS 



 

18 

 

The hydroelastic response of the VLFS ‘MF-300’ under regular waves is studied both experimentally 

and numerically by numerous researchers [19-22]. Its characteristics are shown in Table. 1. The VLFS 

remains static before subjected to regular waves coming in from four directions shown in Fig. 14. The red 

dashed lines indicate three specific positions of the structure and are labeled as ‘P’ (portside), ‘C’ (centerline) 

and ‘S’ (starboard), respectively. The incident wave amplitude takes the value of 1m in all simulations 

presented in this paper. 

It is emphasized that all hydroelastic response presented in this paper is given in the form of amplitudes 

as the hydroelastic analysis is performed in the frequency domain. Therefore, amplitudes of vertical 

displacement (bending moment) are written as vertical displacement (bending moment) for brevity. 

Table 1. Principal particulars of ‘MF-300’ (Prototype) 

Length (m) 300.0 

Breadth (m) 60.0 

Draft (m) 0.5 

Depth (m) 2.0 

Vertical bending stiffness (N·m2) 4.77e11 

Water depth (m) 58.5 

Mass (kg) 9.225e6 

 

 

Fig. 14. Illustration of head (180°), beam (270°) and oblique waves (210° and 240°). Note that this definition 

contradicts with that defined in [21, 23] (the former is 180° larger than the latter). For example, 0° shown here 

corresponds to 180° in [21, 23]. Three specific locations are defined, that is, P (Y=0), C (Y=B/2) and S (Y=B). 

4.1.2 Convergence study 

4.1.2.1 On the macro-submodule division 

Convergence study on the macro-submodule division is given first. It has been proven that the 

hydroelasticity of MF-300 converges when the structure is divided into more than 5 macro-submodules 

longitudinally [9]. In this paper, MF-300 is divided into 8 macro-submodules in the 𝑋 direction. Hence, 

emphasis is placed on the macro-submodule division in the 𝑌 direction. Table 2 gives the details of the five 

different submodule-division strategy with the structure being divided in the 𝑌 direction into 1, 2, 3, 4 and 

5 parts. Notice the length and the height of each macro-submodule, regardless of the division strategy, are 

37.5m and 2m, respectively. Therefore, only the width is given in Table 2. Details on the finite element 

discretization on each macro-submodule in different strategies are presented in Fig. 15. The square grid is 
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adopted in the finite element discretization and a grid size of 5m is used for all strategies listed in Table 2. It 

is worth noting that adjustment is made on the grid size near a lumped mass to ensure that the lumped mass 

coincides with a certain node. 

Table 2. Details of strategies that enters the convergence study on the macro-submodule division in the 𝒀 

direction 

Number of macro-submodules 

in the 𝑌 direction 

Number of macro-submodules 

in the 𝑋 direction 

Size of each macro-submodule 

(only width is shown) 

Finite element 

discretization 

1 8 60m Fig. 15a 

2 8 30m Fig. 15b 

3 8 20m Fig. 15c 

4 8 15m Fig. 15d 

5 8 12m Fig. 15e 

 

 

Fig. 15. Finite element discretization on each macro-submodule (Top view) in different division strategies listed in 

Table 2. 
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Presented in Fig. 16 are the vertical displacement of MF-300 under a 180m regular wave for four 

incident angles indicated in Fig. 14.  

 

(a) 180m 180degree-S 

 

(g) 180m 240degree-S 

 

(b) 180m 180degree-C 

 

(h) 180m 240degree-C 

 

(c) 180m 180degree-P 

 

(i) 180m 240degree-P 
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(d) 180m 210degree-S 

 

(j) 180m 270degree-S 

 

(e) 180m 210degree-C 

 

(k) 180m 270degree-C 

 

(f) 180m 210degree-P 

 

(l) 180m 270degree-P 

Fig. 16. Vertical displacement of MF-300 under a 180m regular wave for four incident angles (180°, 210°, 240° 

and 270°). Simulations of Yago and Endo [19] using the mode-superposition method is shown in black dashed lines as 

comparison. Numbers in the legend reflect the macro-submodule division in the 𝒀 direction (see Table 2). A grey 

rectangular that represents MF-300 is located at the up-left corner of each sub-figure with the red solid line indicating 

the position and the arrow indicating the wave incident angle. 

Firstly, all simulations achieve a rather good agreement with Yago and Endo’s simulations, which 
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confirms the accuracy of the DMFE method. Secondly, different macro-submodule division strategies in 

Table 2 give almost identical results, which means the strategy with one macro-submodule in the 𝑌 direction, 

i.e., no division is done transversely, is capable enough to capture the elastic deformation in the width 

direction. It is reasonable to draw that the result converges when MF-300 is divided into more than 1 macro-

submodule in the 𝑌 direction. 

4.1.2.2 On the finite element discretization 

This section serves to explore the effects of the grid size. The convergence study in this section is 

performed on the structure with eight macro-submodules divided in the 𝑋  direction and three in the 𝑌 

direction. Similarly, the square grid is used. Table 3 gives the five different grid sizes taken, i.e., 1m, 2m, 3m, 

4m, and 5m. Fig. 17a illustrates the macro-submodule division strategy and Figs. 17b-f the detailed 

discretization that correspond to Table 3. 

Table 3. Details of strategies that enters the convergence study on the finite element discretization with different 

grid sizes 

Grid size 
Number of macro-submodule 

in the 𝑌 direction 

Number of macro-submodule 

in the 𝑋 direction 

Finite element 

discretization 

1m 3 8 Fig. 17b 

2m 3 8 Fig. 17c 

3m 3 8 Fig. 17d 

4m 3 8 Fig. 17e 

5m 3 8 Fig. 17f 
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Fig. 17. Finite element discretization (Top view) on each macro-submodule with different grid sizes listed in Table 

3. 

Vertical displacement of MF-300 under a 180m regular wave for four incident angles are given in Fig. 

18. Similarly, little difference is observed on the displacement response of strategies with different grid size 

and all simulations agree well with Yago and Endo’s results. It is reasonable to say that the result converged 

when the grid size is smaller than 5m. 

 

(a) 180m 180degree-S 

 

(g) 180m 240degree-S 

 

(b) 180m 180degree-C 

 

(h) 180m 240degree-C 

 

(c) 180m 180degree-P 

 

(i) 180m 240degree-P 
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(d) 180m 210degree-S 

 

(j) 180m 270degree-S 

 

(e) 180m 210degree-C 

 

(k) 180m 270degree-C 

 

(f) 180m 210degree-P 

 

(l) 180m 270degree-P 

Fig. 18. Vertical displacement of MF-300 under a 180m regular wave for four incident angles (180°, 210°, 240° 

and 270°). Simulations of Yago and Endo [19] using the mode-superposition method is shown in black dashed lines as 

comparison. Numbers in the legend reflect the grid size (see Table 3). A grey rectangular that represents MF-300 is 

located at the up-left corner of each sub-figure with the red solid line indicating the position and the arrow indicating 

the wave incident angle. 

4.1.3 Hydroelasticity of MF-300 
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Results given in this section come from the discretization strategy with an 8 × 3 macro-submodule 

division (Fig. 17a) and a grid size of 1m (Fig. 17b). Distributions of displacement response amplitude of MF-

300 under a 180m regular wave are given in Fig. 19. Symmetric features are seen in heading wave (Fig. 19a) 

and beam wave cases (Fig. 19d). 

 

(a) 180m 180degree 

 

(c) 180m 240degree 

 

(b) 180m 210degree 

 

(d) 180m 270degree 

Fig. 19. Vertical displacement distribution of MF-300 under a 180m regular wave. The results come from the 

discretization strategy with an 𝟖 × 𝟑 macro-submodule division (Fig. 17a) and a grid size of 1m (Fig. 17b). The value 

increases from purple to red, similarly hereinafter. 

Though MF-300 is widely and deeply explored, the authors would like to humbly point out that no result 

is found in the literature on the bending moment distribution of MF-300 under oblique or beam waves. Only 

bending moment distribution under heading waves is given. Fig. 20 presents the comparisons between the 

present results using the spline method and the simulations from Fu et al. [22] on the bending moment 

distribution 𝑀𝑦(𝑥, 𝑦)|𝑦=30
 of MF-300 on the centerline under a 144m regular heading wave (180°). Good 

agreement is shown, which validates the proposed model. 
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Fig. 20. Comparisons on the bending moment distribution 𝑴𝒚(𝒙, 𝒚)|𝒚=𝟑𝟎
 of MF-300 on the centerline under a 

144m regular heading wave between the spline method and Fu et al. [22]. The black circles are the bending moment 

values on the interfaces. A total of nine ones are shown as the structure is divided into 8 macro-submodules 

longitudinally (see Fig. 17a). 

Bending moment distributions of MF-300 under a 180m regular wave is given in Fig. 21 (results on 

three specific locations P (𝑀𝑦(𝑥, 𝑦)|𝑦=0
), C (𝑀𝑦(𝑥, 𝑦)|𝑦=30

) and S (𝑀𝑦(𝑥, 𝑦)|𝑦=60
) indicated in Fig. 14) and 

Fig. 22 (results along the whole structure 𝑀𝑦(𝑥, 𝑦) ). Bending moment 𝑀𝑦  in beam wave case is much 

smaller compared with other cases since the structure barely deforms along the 𝑋 direction in beam wave 

case (see Fig. 19d). 

 

Fig. 21. Bending moment distributions on P, C and S of MF-300 under a 180m regular wave for four incident 

angles. Presented here are results from the spline method. 
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(a) 180m 180degree 

 

(c) 180m 240degree 

 

(b) 180m 210degree 

 

(d) 180m 270degree 

Fig. 22. Bending moment distribution 𝑴𝒚(𝒙, 𝒚) along MF-300 under a 180m regular wave for four incident 

angles. Presented are the results from the spline method. 

4.2 A square VLFS 

Little research is found in the literature on mode-superposition method to deal with a square VLFS. 

Maybe it is a bit difficult to analyze the hydroelasticity of a square VLFS for the difficulties in modal analysis 

to finalize the optimal mode combination. Yoon et al. [23] adopted the direct method to calculate the 

hydroelasticity of a square VLFS under a 180m regular wave, whose characteristics are shown in Table 4. 

The DMFE method divides the structure into 64 macro submodules with 8 macro-submodules in both 𝑋 and 

𝑌 direction (Fig. 23a). Each macro-submodule is a 37.5m× 37.5m × 4m cuboid as uniform division is 

taken. Detailed finite element discretization is shown in Fig. 23b with a grid size of 2m taken. 

Yoon et al. [23] only gives the hydroelasticity of this square VLFS under a 180m regular wave with a 

225° incidence angle. Comparisons are given as follows. 

Table 4. Principal particulars of the square VLFS studied by Yoon et al. [23] (Prototype) 

Length (m) 300.0 

Breadth (m) 300.0 

Draft (m) 1.1 

Depth (m) 4.0 
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Vertical bending stiffness (N·m2) 4.53e8 

Water depth (m) Inf 

Mass (kg) 1.01475e8 

 

 

Fig. 23. Macro-submodule division (a) and finite element discretization (b) of the square VLFS studied in [23]. 

The structure is uniformly divided into 8 macro-submodules in both 𝑿 and 𝒀 direction. A grid size of 2m is taken 

and adjustment is made on elements near the lumped mass. 

4.2.1 Displacement response 

Fig. 24 presents the comparisons on the displacement response on three specific locations between the 

DMFE method and simulations from Yoon et al. [23]. Rather good agreement is shown. Vertical displacement 

response along the whole structure is given in Fig. 25, and a diagonally symmetric feature is shown. 

 

(a) displacement-S 

 

(b) displacement-C 
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(c) displacement-P 

Fig. 24. Vertical displacement of the square VLFS studied in [23] under a 180m regular wave with 225° incidence 

angle. A grey square is located at the up-left corner of each sub-figure with the red solid line indicating the position 

and the arrow indicating the wave incident angle. 

 

Fig. 25. Vertical displacement distribution given by the DMFE method of the square VLFS investigated in [23]. 

4.2.2 Bending moment distribution 

Fig. 26 presents the bending moment distributions of the square VLFS studied by Yoon et al. [23] on 

three locations, i.e., P (𝑀𝑦(𝑥, 𝑦)|𝑦=0
), C (𝑀𝑦(𝑥, 𝑦)|𝑦=150

) and S (𝑀𝑦(𝑥, 𝑦)|𝑦=300
). 

We would like to first humbly point out, without any disrespect to Yoon et al., two unreasonable aspects 

of Yoon et al.’s distribution curve. The first one is non-zero values at free ends. Internal bending moment 

should be zero at free ends, while a non-ignorable value is observed in Yoon et al. The second one is abrupt 

changes in distribution curve (Figs. 26a, c). Since the hydrodynamic load is distributed and the structure itself 

remains homogenous, continuous, uniform and linear, the bending moment distribution is supposed to be 

smooth, while some unexpected abrupt changes are seen in Yoon et al.  
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The present results given by the DMFE hydroelasticity method together with the spline based bending 

moment recovery approach display almost identical trends with Yoon et al, despite that the present values are 

a bit smaller. However, it has been pointed out that non-zero values are observed at free ends in Yoon et al. 

Besides, the present results are smooth with no abrupt changes, which seems to be a bit more convincible.  

Bending moment distribution 𝑀𝑦(𝑥, 𝑦) of this square VLFS under a 180m regular wave is given in Fig. 

27. 

 

(a) bending moment-S 

 

(b) bending moment-C 

 

(c) bending moment-P 

Fig. 26. Bending moment distribution of the square VLFS studied in [23] on three locations, that is, P, C and S, 

under a 180m regular wave with a 225° incidence angle. 
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Fig. 27. Bending moment distribution 𝑴𝒚(𝒙, 𝒚) of the square VLFS in [23] under a 180m regular wave with a 

225-degree incident angle. The spline method is used. 

All results on the continuous VLFS in Yoon et al. [23] have been re-presented and compared using the 

proposed DMFE method by far. It is emphasized again that little result is found towards hydroelasticity of a 

square VLFS, while hydroelasticity of a narrow VLFS is widely and thoroughly studied. Given this, the 

authors would like to present more results on the hydroelasticity of a square VLFS that may be useful as 

database for future research. The square VLFS is named as ‘SV-300’ (Square VLFS with a 300m length and 

300m width) with parameters shown in Table 5 and additional results presented in Appendix D. 

Table 5. Principal particulars of ‘SV-300’ (Prototype) 

Length (m) 300.0 

Breadth (m) 300.0 

Draft (m) 0.5 

Depth (m) 2.0 

Vertical bending stiffness (N·m2) 4.77e11 

Water depth (m) 58.5 

5 Further thoughts 

From the comparisons on the displacement and bending moment response with other scholars, it is 

reasonable to say the DMFE method successfully solves the hydroelasticity of flexible floating structure with 

a comparable length/width ratio. Although the DMFE method is only implemented on cuboid VLFSs in this 

paper, the authors are confident that the DMFE method is able to deal with the hydroelasticity of flexible 

floating structure of arbitrary shape.  

However, it is emphasized that the flexible floating structure studied in this paper is a regular cuboid, in 

which case, the spline method is operational. Fig. 28 gives some conceptual civil designs of large flexible 

floating structures with rather complicated shape. It is nearly impossible to ensure that a certain number of 

interfaces distribute uniformly on a given location. Therefore, a least square method is developed and 

elaborated as follows.  
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(a) Aequorea project 

 

(b) Lilypad project 

Fig. 28. Conceptual designs of large flexible floating structure, (a) the Aequorea project – oceanscraper; (b) the 

Lilypad project – floating ecopolis. Source: https://www.vincent.callebaut.org/. 

5.1 Least square method for recovery of internal force/moment 

Derivation of 𝑀𝑦(𝑥, 𝑦) is shown here for example. Based on analysis in Section 2.5 (Figs. 10b and 12), 

for each macro-submodule, the shear force value 𝑁𝑦 and bending moment value 𝑀𝑦 of boundary nodes on 

edges normal to the 𝑋 axis are calculated through Eqs. 15 and 18. Therefore, the least square method is 

performed to calculate the shear force or bending moment at a given location of each macro-submodule using 

the already known values on the boundary of the macro-submodule as a basis. Denote the bending moment 

distribution of macro-submodule (𝑚, 𝑛), 𝑀𝑦
(𝑚,𝑛)(𝑥, 𝑦) as a polynomial function up to the third order, 

 

𝑀𝑦
(𝑚,𝑛)(𝑥, 𝑦) =∑𝑎𝑗𝜑𝑗(𝑥, 𝑦)

10

𝑗=1

 

= 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦 + 𝑎4𝑥
2 + 𝑎5𝑥𝑦 + 𝑎6𝑦

2 + 𝑎7𝑥
3 + 𝑎8𝑥

2𝑦 + 𝑎9𝑥𝑦
2

+ 𝑎10𝑦
3 

(23) 

where 𝑎1, 𝑎2,⋯ , 𝑎10 are the undetermined coefficients.  

Then, the shear force distribution is expressed as  

 
𝑁𝑦
(𝑚,𝑛)(𝑥, 𝑦) =

𝜕

𝜕𝑥
𝑀𝑦
(𝑚,𝑛)(𝑥, 𝑦) =∑𝑎𝑗

𝜕

𝜕𝑥

10

𝑗=1

𝜑𝑗(𝑥, 𝑦) 

= 𝑎2 + 2𝑎4𝑥 + 𝑎5𝑦 + 3𝑎7𝑥
2 + 2𝑎8𝑥𝑦 + 𝑎9𝑦

2 

(24) 

The authors put a great thought into the order of the polynomial function. First, the order should be at 

least three to ensure the non-linear features in bending moment and shear force distribution. Second, the 

proposed least square method in the frame work of the DMFE method should cover the bending moment 

recovery in the DMB method where a third-order polynomial function with respect to only x is used. 

Therefore, the bending moment distribution should degenerate into that function when the variable y is fixed 
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at a chosen value. Last, high order interpolation may product Runge phenomenon and the number of the 

undetermined coefficients will increase. After some trials, the cubic polynomial function is adopted. 

Detailed derivation of 𝑎1, 𝑎2,⋯ , 𝑎10 is presented in Appendix E. Repetition of the method on every 

macro-submodule gives the bending moment distribution 𝑀𝑦(𝑥, 𝑦) along the structure. Identical strategies 

and procedures are used to calculate 𝑀𝑥(𝑥, 𝑦). 

5.2 The black cloud 

It can be seen that the least square method is performed on each macro-submodule regardless of its 

shape. With known shear force and bending moment at specific boundary nodes, an analytical formula will 

be derived to describe the bending moment distribution surface on this macro-submodule. Theoretically 

speaking, the least square method is better than the spline method for the former considers not only the 

bending moment but the shear force at boundary nodes. However, there is one deficiency of the least square 

method that the authors cannot conquer, and that is why the least square method is given at last even though 

the spline method is accurate enough to recover bending moment distribution of a square VLFS. 

As shown in Fig. 23, the square VLFS is divided into 8 macro-submodules in both 𝑋 and 𝑌 direction. 

When calculating the bending moment distribution 𝑀𝑦(𝑥, 𝑦), shear force and bending moment values on the 

nine blue lines, which are indicated in Fig. 29, are calculated. Fig. 30 gives the internal force distribution on 

these blue lines with (a) the shear force and (b) the bending moment. Notice 𝑋 = 0 and 𝑋 = 300 are with 

zero internal force for being free ends. It can be seen that the bending moment distributions change gradually 

along the 𝑌 direction. However, it is rather strange to see that the shear force distribution increase abruptly 

near the free ends. Therefore, the least square method could be performed taking account of all nodes and 

performed eliminating the nodes with suspiciously large shear force value. The former is denoted as LS-all 

(Least Square-all nodes) and the latter LS-part.  

 

Fig. 29. Shear force 𝑵𝒚 and bending moment 𝑴𝒚 value on the blue lines are calculated in performing the least 

square method to recover bending moment distribution 𝑴𝒚(𝒙, 𝒚). 
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(a) shear force 

 

(b) bending moment 

Fig. 30. Shear force 𝑵𝒚(𝒙, 𝒚)|𝒙=𝒙𝟎
 and bending moment 𝑴𝒚(𝒙, 𝒚)|𝒙=𝒙𝟎

 distribution on the blue lines indicated in 

Fig. 29. 

Bending moment distribution of the square VLFS studied by Yoon et al. [23] under a 180m regular wave 

with a 225° incidence angle calculated with the least square method is given in Fig. 31 (on P, C and S) and 

Fig. 32 (along the whole structure), which can be compared with the spline-method result in Fig. 27. Large 

oscillating phenomena are seen in the LS-all results near the free ends in the 𝑌 direction, resulting from the 

suspiciously large shear force values (large slope) at these locations. Slight difference is observed between 

the LS-part results and the spline results, which somehow indicates the accuracy of the least square method. 

Bending moment distribution on C for LS-all and LS-part coincides since the abrupt increase of shear force 

imposes no effect on the bending moment distribution of macro-submodules without nodes near the free ends. 

Note that the least square method gives an optimal solution for each macro-submodule while the spline 

method gives an optimal solution for a given location. Therefore, when the LS results are combined together 

to form the bending moment distribution curve on C, it diverges from the spline result. 

However, both the bending moment and the shear force are calculated through Eq. 15. The spline method 

uses the bending moment only and gives a satisfactory result. It is rather strange to see the shear force displays 

an incomprehensible steep increase towards the free ends. The authors have spent an amount of effort but 

still cannot conquer this. 
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(a) bending moment-S 

 

(b) bending moment-C 

 

(c) bending moment-P 

Fig. 31. Comparisons of bending moment distribution on three locations P, C and S, where LS-all refers to the 

least square method taking account of every node, LS-part refers to the least square method eliminating nodes with 

suspiciously large shear force value, spline refers to the spline method. 
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(a) Least square-all 

 

(b) Least square-part 

Fig. 32. Bending moment distribution 𝑴𝒚(𝒙, 𝒚) of the square VLFS investigated by Yoon et al. under a 180m 

regular wave with a 45-degree incident angle.  

6 Conclusion 

A discrete-module-finite-element method (DMFE) is developed in the frequency domain to analyze 

hydroelasticity of large flexible floating structures, including the displacement and internal force responses. 

In the framework of DMFE method, a large floating flexible structure is first discretized in ‘two 

dimensions’ (i.e., along the length and width direction of the structure), resulting in freely floating macro-

submodules. A multi-rigid-body hydrodynamic analysis based on linear potential flow theory is performed 

to obtain the external forces on these macro-submodules, including the wave excitation force, radiation force, 

hydrostatic force and inertial force. Subsequently, all submodules are abstracted to be lumped masses (at 

centers of gravity of the submodules) that subject to the total external forces (with displacements as unknown 

variables).  

Apart from the external forces, these lumped masses are also subjected to structural deformation induced 

forces due to the flexibility of the original structure. The structural force on all lumped masses can be derived 

based on the overall stiffness matrix with respect to all lumped masses and the unknown displacement 

variables of these lumped masses. A finite element discretization is introduced to the floating flexible 

structures to obtain the stiffness matrix for all submodules. After some deliberate substructuring and matrix 

manipulations, the lumped-mass stiffness matrix with respect to all lumped masses can be derived. 

Finally, the hydroelastic equation of the floating flexible structure is established (at positions of all 

lumped masses, with displacements as unknown variables) according to the force equilibrium condition 

between the external and structural forces following the d'Alembert principle. The displacements of lumped 

masses are obtained by solving this hydroelastic equation.  

Recovery of the displacement response at any given position of the flexible structure is reverse to the 

derivation of the lumped-mass stiffness matrix. Recovery of the internal force of the structure is implemented 



 

37 

 

with a spline interpolation using values of bending moment on interfaces of different macro-submodules. The 

DMFE method is applied on a narrow very large floating structure (VLFS) and a square VLFS. Good 

agreement is shown in comparisons with other scholars.  

Besides, the authors describe a least square method to recover bending moment distribution of arbitrary-

shaped flexible floating structure, but with one unsolved problem that the shear force increases abruptly near 

free ends. The authors are open to all useful opinions. Despite this black cloud, the DMFE method developed 

in Section 2 is clearly qualified to deal with the hydroelasticity of square VLFSs. 

The DMFE method takes a huge step forward from the discrete-module-beam (DMB) method by 

implementing the finite element to deal with hydroelasticity of flexible floating structures with a comparable 

length/width ratio. Compared with the mode-superposition method, the DMFE method needs no modal 

analysis to finalize the optimal mode combination that may be uneasy for a large floating flexible structure 

with a comparable length/width ratio or with a complicated shape. Compared with the direct method, the 

DMFE method adopts the finite element but reduces the matrix size greatly by substructuring and matrix 

manipulations, which improves the computational efficiency. 

Proposition of the DMFE method open up a number possibilities for future work. First, the DMFE 

method could be verified on a VLFS with complicated shape. Then, hydroelastic experiments on a square 

VLFS could be done to fill the void in the literature. In addition, it is worth exploring the following aspects, 

such as, modelling of hinge connection, extension into the time domain, strategies to deal with concentrated 

force, hydroelasticity under unsteady external loads, consideration of mooring lines, non-linear properties of 

both the hydrodynamic loads and the structure and so forth. 
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Appendix A 

The hydrodynamic coefficients, added mass 𝐀(𝜔)，radiation damping 𝐁(𝜔) , hydrostatic restoring 

force 𝐂 and wave excitation force 𝐅𝐸, are defined as follows: 

 

𝐀(𝜔) = [

𝐀[(1,1),(1,1)]

𝐀[(2,2),(1,1)]

⋮
𝐀[(𝑀,𝑁),(1,1)]

𝐀[(1,1),(1,2)]

𝐀[(2,2),(2,2)]

⋮
𝐀[(𝑀,𝑁),(2,2)]

⋯
⋯
⋱
⋯

𝐀[(1,1),(𝑀,𝑁)]

𝐀[(2,2),(𝑀,𝑁)]

⋮
𝐀[(𝑀,𝑁),(𝑀,𝑁)]

]

6𝑀𝑁×6𝑀𝑁

 (A1) 

where 𝐀[(𝑚,𝑛),(𝑝,𝑞)]  is a 6 × 6  matrix that represents the added mass coefficients matrix of the macro-

submodule (𝑚, 𝑛) induced by the motion of the macro-submodule (𝑝, 𝑞).  
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𝐁(𝜔) = [

𝐁[(1,1),(1,1)]

𝐁[(2,2),(1,1)]

⋮
𝐁[(𝑀,𝑁),(1,1)]

𝐁[(1,1),(1,2)]

𝐁[(2,2),(2,2)]

⋮
𝐁[(𝑀,𝑁),(2,2)]

⋯
⋯
⋱
⋯

𝐁[(1,1),(𝑀,𝑁)]

𝐁[(2,2),(𝑀,𝑁)]

⋮
𝐁[(𝑀,𝑁),(𝑀,𝑁)]

]

6𝑀𝑁×6𝑀𝑁

 (A2) 

where 𝐁[(𝑚,𝑛),(𝑝,𝑞)]  is a 6 × 6  matrix that represents the radiation damping coefficients matrix of the 

macro-submodule (𝑚, 𝑛) induced by the motion of the macro-submodule (𝑝, 𝑞).  

 

𝐂 = [

𝐂[(1,1),(1,1)]

𝟎
⋮
𝟎

𝟎
𝐂[(1,2),(1,2)]

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝐂[(𝑀,𝑁),(𝑀,𝑁)]

]

6𝑀𝑁×6MN

 (A3) 

where 𝐂[(𝑚,𝑛),(𝑚,𝑛)] is a 6 × 6 matrix that represents the hydrostatic restoring coefficients matrix of the 

macro-submodule (𝑚, 𝑛).  

 

𝐅𝐸 =

[
 
 
 
 𝐅𝐸

(1,1)

𝐅𝐸
(1,2)

⋮

𝐅𝐸
(𝑀,𝑁)

]
 
 
 
 

6𝑀𝑁×1

 (A4) 

where 𝐅𝐸
(𝑚,𝑛)

 is a 6 × 1 matrix that represents the wave excitation force exerted on the macro-submodule 

(𝑚, 𝑛).  

The mass matrix of all macro-submodules 𝐌 is expressed as 

 

𝐌 = [

𝐌[(1,1),(1,1)]

𝟎
⋮
𝟎

𝟎
𝐌[(1,2),(1,2)]

⋮
𝟎

⋯
⋯
⋱
⋯

𝟎
𝟎
⋮

𝐌[(𝑀,𝑁),(𝑀,𝑁)]

]

6𝑀𝑁×6MN

 (A5) 

where 𝐌[(𝑚,𝑛),(𝑚,𝑛)]  is a 6 × 6  matrix that represents the mass matrix of the macro-submodule (𝑚, 𝑛) 

(see [24]). The displacement of all lumped masses 𝛏 is expressed as 

 

𝛏 =

[
 
 
 
𝛏(1,1)

𝛏(1,2)

⋮
𝛏(𝑀,𝑁)]

 
 
 

6𝑀𝑁×1

 (A6) 

Appendix B 
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Detailed form of 𝐤module is given for better illustration 

 

𝐤module = [

𝐤module
lumped−mass

𝐤module
boundary

𝐤module
inner

] =

[
 
 
 𝐤lumped−mass

lumped−mass
𝐤boundary
lumped−mass

𝐤inner
lumped−mass

𝐤lumped−mass
boundary

𝐤boundary
boundary

𝐤inner
boundary

𝐤lumped−mass
inner 𝐤boundary

inner 𝐤inner
inner

]
 
 
 

 (B1) 

Similarities are observed among parameters in Eq. B1 and explanations are made only on the second row for 

the sake of brevity. 𝐤module
boundary

 is the rows of 𝐤module that corresponds to the boundary nodes with 

 

𝐤module
boundary

[
 
 
 𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

𝛏inner
(𝑚,𝑛)

]
 
 
 

 

= [𝐤lumped−mass
boundary

𝐤boundary
boundary

𝐤inner
boundary

]

[
 
 
 𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

𝛏inner
(𝑚,𝑛)

]
 
 
 

 

= 𝐤lumped−mass
boundary

𝛏lumped−mass
(𝑚,𝑛) + 𝐤boundary

boundary
𝛏boundary
(𝑚,𝑛) + 𝐤inner

boundary
𝛏inner
(𝑚,𝑛) 

= 𝐅internal
(𝑚,𝑛)

 

(B2) 

where 𝐤lumped−mass
boundary

  is the columns of 𝐤module
boundary

  that corresponds to the lumped mass, 𝐤boundary
boundary

 

corresponds to the boundary nodes and 𝐤inner
boundary

 the inner nodes. 

Eq. 13 and Eq. B1 give 

 

[
 
 
 𝐤lumped−mass

lumped−mass
𝐤boundary
lumped−mass

𝐤inner
lumped−mass

𝐤lumped−mass
boundary

𝐤boundary
boundary

𝐤inner
boundary

𝐤lumped−mass
inner 𝐤boundary

inner 𝐤inner
inner

]
 
 
 

[
 
 
 𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

𝛏inner
(𝑚,𝑛)

]
 
 
 

= [

𝐅EXT
(𝑚,𝑛)

𝐅boundary
(m,n)

𝟎

] (B3) 

Some manipulations give 

 

𝛏inner
(𝑚,𝑛) = −[𝐤inner

inner]
−1
[𝐤lumped−mass

inner 𝐤boundary
inner ] [

𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] (B4) 
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≜ −𝚲INNER [
𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] 

 

[
𝐅EXT
(𝑚,𝑛)

𝐅boundary
(𝑚,𝑛) ] 

= {[
𝐤lumped−mass
lumped−mass

𝐤boundary
lumped−mass

𝐤lumped−mass
boundary

𝐤boundary
boundary

] − [
𝐤inner
lumped−mass

𝐤inner
boundary

]𝚲INNER} [
𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] 

≜ 𝐊OUTER [
𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] 

(B5) 

Appendix C 

𝐊OUTER is expressed as 

 

𝐊OUTER =

[
 
 
 𝐊OUTER

lumped−mass

𝐊OUTER
boundary

𝐊OUTER
free−edge

]
 
 
 
=

[
 
 
 
 𝐊lumped−mass

lumped−mass
𝐊boundary
lumped−mass

𝐊free−edge
lumped−mass

𝐊lumped−mass
boundary

𝐊boundary
boundary

𝐊free−edge
boundary

𝐊lumped−mass
free−edge

𝐊boundary
free−edge

𝐊free−edge
free−edge

]
 
 
 
 

 (C1) 

Meanings of each sub-matrix in Eq. C1 could be referred to 𝐤𝑚𝑜𝑑𝑢𝑙𝑒 in Eqs. B1-B2. Apparently, 

 

[
 
 
 
 𝐊lumped−mass

lumped−mass
𝐊non−free
lumped−mass

𝐊free−edge
lumped−mass

𝐊lumped−mass
non−free 𝐊non−free

non−free 𝐊free−edge
non−free

𝐊lumped−mass
free−edge

𝐊non−free
free−edge

𝐊free−edge
free−edge

]
 
 
 
 

[
 
 
 
 𝛏lumped−mass
(𝑚,𝑛)

𝛏non−free
(𝑚,𝑛)

𝛏free−edge
(𝑚,𝑛)

]
 
 
 
 

= [
𝐅EXT
(𝑚,𝑛)

𝐅non−free
(𝑚,𝑛)

𝟎

] (C2) 

Some manipulations give 

 

𝛏free−edge
(𝑚,𝑛) = −[𝐊free−edge

free−edge
]
−1
[𝐊lumped−mass

free−edge
𝐊non−free
free−edge

] [
𝛏lumped−mass
(𝑚,𝑛)

𝛏non−free
(𝑚,𝑛)

] 

≜ −𝚲FREE−EDGE [
𝛏lumped−mass
(𝑚,𝑛)

𝛏non−free
(𝑚,𝑛)

] 

(C3) 
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[
𝐅EXT
(𝑚,𝑛)

𝐅non−free
(𝑚,𝑛)

] 

= {[
𝐊lumped−mass
lumped−mass

𝐊non−free
lumped−mass

𝐊lumped−mass
non−free 𝐊non−free

non−free
] − [

𝐊free−edge
lumped−mass

𝐊free−edge
non−free

] 𝚲FREE−EDGE
(𝑚,𝑛)

} [
𝛏lumped−mass
(𝑚,𝑛)

𝛏
non−free

(𝑚,𝑛)
] 

≜ 𝐊NON−FREE [
𝛏lumped−mass
(𝑚,𝑛)

𝛏boundary
(𝑚,𝑛)

] 

(C4) 

Appendix D 

Displacement responses are given first on SV-300 under a 180m regular wave for five incident angles 

(180°, 210°, 225°, 240° and 270°). Fig. D1 gives the vertical displacement along 5 specific locations, that is, 

P, C and S indicated in Fig. 14 and two additional ones, 𝑌 = 75 and 𝑌 = 225. Fig. D2 presents vertical 

displacement distribution along the whole structure. 
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Fig. D1. Vertical displacement distribution on P (𝒀 = 𝟎), 𝒀 = 𝟕𝟓, C (𝒀 = 𝟏𝟓𝟎), 𝒀 = 𝟐𝟐𝟓, S (𝒀 = 𝟑𝟎𝟎) of SV-300 

under a 180m regular wave for five incidence angles labeled on the right-side of each sub-figure. The grey square in 

each subfigure represents SV-300 and the arrow indicates wave incidence angle. 
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(a) 180m 180degree 

 

(b) 180m 210degree 

 

(c) 180m 225degree 
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(d) 180m 240degree 

 

(e) 180m 270degree 

Fig. D2. Vertical displacement distribution along the whole structure under a 180m regular wave for 5 incidence 

angles. The wave length and wave incidence angle is shown on the left high corner of each subfigure. 

Bending moment results are presented below on SV-300 under regular waves with 225° incidence angle 

for four wave lengths (120m, 180m, 240m and 300m). Fig. D3 gives bending moment 𝑀𝑦 along P, C and S 

indicated in Fig. 14. Fig. D4 presents bending moment distribution along the whole structure. 
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Fig. D3. Bending moment distribution 𝑴𝒚 on SV-300 under regular waves with a 225-degree incidence angle and 

four wavelengths (120m, 180m, 24m and 300m), which are shown on the right-side of each subfigure. 

 

(a) 120m 225degree 
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(b) 180m 225degree 

 

(c) 240m 225degree 

 

(d) 300m 225degree 

Fig. D4. Bending moment distribution along SV-300 for four wave lengths, which are shown on the left high 
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corner of each subfigure. 

Appendix E 

Say a total of 𝑝  nodes enter the calculation, which means an amount of 𝑝  shear force values 

𝑁𝑞𝑦
(𝑚,𝑛)(𝑥𝑖 , 𝑦𝑖), 𝑞 = 1,⋯ , 𝑝 and bending moment values 𝑀𝑞𝑦

(𝑚,𝑛)(𝑥𝑞, 𝑦𝑞), 𝑞 = 1,⋯ , 𝑝 are known. (𝑥𝑞, 𝑦𝑞) 

is the coordinate of Node 𝑞 in the body-fixed coordinate system. Construct 𝐿𝑀 and 𝐿𝑁 as  

 

{
 
 
 

 
 
 
𝐿𝑀(𝑎1, … , 𝑎10) = ∑(∑𝑎𝑗𝜑𝑗(𝑥𝑞, 𝑦𝑞)

10

𝑗=1

−𝑀𝑞𝑦
(𝑚,𝑛)

(𝑥𝑞, 𝑦𝑞))

𝑝

𝑞=1

2

𝐿𝑁(𝑎1, … , 𝑎10) = ∑(∑𝑎𝑗
𝜕

𝜕𝑥

10

𝑗=1

𝜑𝑗(𝑥𝑞, 𝑦𝑞) − 𝑁𝑞𝑦
(𝑚,𝑛)(𝑥𝑞, 𝑦𝑞))

𝑝

𝑞=1

2 (E1) 

Apparently, the sum of 𝐿𝑀 and 𝐿𝑁 should satisfy 

 
𝜕

𝜕𝑎𝑗
(𝐿𝑀 + 𝐿𝑁) = 0,      𝑗 = 1,2,… ,10 (E2) 

Eq. E2 not only ensures coincidence between the distribution surface 𝑀𝑦
(𝑚,𝑛)(𝑥, 𝑦) and bending moment 

values at specific boundary nodes, but regulate its trend at these locations with its partial derivative to 𝑥 

equals to the shear force values. 

It can be calculated that  

 

1

2

𝜕

𝜕𝑎𝑘
𝐿𝑀 =∑(∑𝑎𝑗𝜑𝑗(𝑥𝑞, 𝑦𝑞)

10

𝑗=1

−𝑀𝑞𝑦(𝑥𝑞, 𝑦𝑞))𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

 

=∑𝑎𝑗∑𝜑𝑗(𝑥𝑞, 𝑦𝑞)𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

10

𝑗=1

−∑𝑀𝑞𝑦(𝑥𝑞, 𝑦𝑞)𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

 

(E3) 
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1

2

𝜕

𝜕𝑎𝑘
𝐿𝑁 =∑(∑𝑎𝑗

𝜕

𝜕𝑥

10

𝑗=1

𝜑𝑗(𝑥𝑞, 𝑦𝑞) − 𝑁𝑞𝑦(𝑥𝑞, 𝑦𝑞))
𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

 

=∑𝑎𝑗∑
𝜕

𝜕𝑥
𝜑𝑗(𝑥𝑞, 𝑦𝑞)

𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

10

𝑗=1

−∑𝑁𝑞𝑦(𝑥𝑞, 𝑦𝑞)
𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

 

(E4) 

It is defined for brevity that 

 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 

(𝜑𝑘, 𝜑𝑗) = (𝜑𝑗(𝑥𝑞, 𝑦𝑞), 𝜑𝑘(𝑥𝑞, 𝑦𝑞)) = ∑𝜑𝑗(𝑥𝑞, 𝑦𝑞)𝜑𝑘(𝑥𝑞 , 𝑦𝑞)

𝑝

𝑞=1

(𝜑𝑘,𝑀𝑞) = (𝑀𝑞𝑦(𝑥𝑞, 𝑦𝑞), 𝜑𝑘(𝑥𝑞 , 𝑦𝑞)) =∑𝑀𝑞(𝑥𝑞, 𝑦𝑞)𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

(𝜕𝜑𝑘, 𝜕𝜑𝑗) = (
𝜕

𝜕𝑥
𝜑𝑗(𝑥𝑞 , 𝑦𝑞),

𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)) =∑

𝜕

𝜕𝑥
𝜑𝑗(𝑥𝑞, 𝑦𝑞)

𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

(𝜕𝜑𝑘, 𝑁𝑞) = (𝑁𝑞𝑦(𝑥𝑞, 𝑦𝑞),
𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)) =∑𝑁𝑞(𝑥𝑞, 𝑦𝑞)

𝜕

𝜕𝑥
𝜑𝑘(𝑥𝑞, 𝑦𝑞)

𝑝

𝑞=1

 (E5) 

Substitution of Eq. E5 into Eq. E3 gives 

 
1

2

𝜕

𝜕𝑎𝑘
𝐿𝑀 =∑𝑎𝑗(𝜑𝑘, 𝜑𝑗)

10

𝑗=1

− (𝜑𝑘 ,𝑀𝑞𝑦)       𝑘 = 1,2,⋯10 (E6) 

Similarly, with Eq. E5 substituted into Eq. E4 

 
1

2

𝜕

𝜕𝑎𝑘
𝐿𝑁 =∑𝑎𝑗(𝜕𝜑𝑘 , 𝜕𝜑𝑗)

10

𝑗=1

− (𝜕𝜑𝑘, 𝑁𝑞𝑦)       𝑘 = 1,2,⋯10 (E7) 

Define 𝐆𝑀, 𝐆𝑁, 𝛗𝑀 and 𝛗𝑁 as follows: 
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 𝐆𝑀 =

[
 
 
 
 
 
 
 
 
 
 
(𝜑1, 𝜑1) (𝜑1, 𝜑2) (𝜑1, 𝜑3) (𝜑1, 𝜑4) (𝜑1, 𝜑5) (𝜑1, 𝜑6) (𝜑1, 𝜑7) (𝜑1, 𝜑8) (𝜑1, 𝜑9) (𝜑1, 𝜑10)

(𝜑2, 𝜑1) (𝜑2, 𝜑2) (𝜑2, 𝜑3) (𝜑2, 𝜑4) (𝜑2, 𝜑5) (𝜑2, 𝜑6) (𝜑2, 𝜑7) (𝜑2, 𝜑8) (𝜑2, 𝜑9) (𝜑2, 𝜑10)

(𝜑3, 𝜑1) (𝜑3, 𝜑2) (𝜑3, 𝜑3) (𝜑3, 𝜑4) (𝜑3, 𝜑5) (𝜑3, 𝜑6) (𝜑3, 𝜑7) (𝜑3, 𝜑8) (𝜑3, 𝜑9) (𝜑3, 𝜑10)

(𝜑4, 𝜑1) (𝜑4, 𝜑2) (𝜑4, 𝜑3) (𝜑4, 𝜑4) (𝜑4, 𝜑5) (𝜑4, 𝜑6) (𝜑4, 𝜑7) (𝜑4, 𝜑8) (𝜑4, 𝜑9) (𝜑4, 𝜑10)

(𝜑5, 𝜑1) (𝜑5, 𝜑2) (𝜑5, 𝜑3) (𝜑5, 𝜑4) (𝜑5, 𝜑5) (𝜑5, 𝜑6) (𝜑5, 𝜑7) (𝜑5, 𝜑8) (𝜑5, 𝜑9) (𝜑5, 𝜑10)

(𝜑6, 𝜑1) (𝜑6, 𝜑2) (𝜑6, 𝜑3) (𝜑6, 𝜑4) (𝜑6, 𝜑5) (𝜑6, 𝜑6) (𝜑6, 𝜑7) (𝜑6, 𝜑8) (𝜑6, 𝜑9) (𝜑6, 𝜑10)

(𝜑7, 𝜑1) (𝜑7, 𝜑2) (𝜑7, 𝜑3) (𝜑7, 𝜑4) (𝜑7, 𝜑5) (𝜑7, 𝜑6) (𝜑7, 𝜑7) (𝜑7, 𝜑8) (𝜑7, 𝜑9) (𝜑7, 𝜑10)

(𝜑8, 𝜑1) (𝜑8, 𝜑2) (𝜑8, 𝜑3) (𝜑8, 𝜑4) (𝜑8, 𝜑5) (𝜑8, 𝜑6) (𝜑8, 𝜑7) (𝜑8, 𝜑8) (𝜑8, 𝜑9) (𝜑8, 𝜑10)

(𝜑9, 𝜑1) (𝜑9, 𝜑2) (𝜑9, 𝜑3) (𝜑9, 𝜑4) (𝜑9, 𝜑5) (𝜑9, 𝜑6) (𝜑9, 𝜑7) (𝜑9, 𝜑8) (𝜑9, 𝜑9) (𝜑9, 𝜑10)

(𝜑10, 𝜑1) (𝜑10, 𝜑2) (𝜑10, 𝜑3) (𝜑10, 𝜑4) (𝜑10, 𝜑5) (𝜑10, 𝜑6) (𝜑10, 𝜑7) (𝜑10, 𝜑8) (𝜑10, 𝜑9) (𝜑10, 𝜑10)]
 
 
 
 
 
 
 
 
 
 

 (E8) 

Notice that 𝜕𝜑1 = 𝜕𝜑3 = 𝜕𝜑6 = 𝜕𝜑10 = 0 

 𝐆𝑁 =

[
 
 
 
 
 
 
 
 
 
0 0 0 0 0 0 0 0 0 0
0 (𝜕𝜑2, 𝜕𝜑2) 0 (𝜕𝜑2, 𝜕𝜑4) (𝜕𝜑2, 𝜕𝜑5) 0 (𝜕𝜑2, 𝜕𝜑7) (𝜕𝜑2, 𝜕𝜑8) (𝜕𝜑2, 𝜕𝜑9) 0
0 0 0 0 0 0 0 0 0 0
0 (𝜕𝜑4, 𝜕𝜑2) 0 (𝜕𝜑4, 𝜕𝜑4) (𝜕𝜑4, 𝜕𝜑5) 0 (𝜕𝜑4, 𝜕𝜑7) (𝜕𝜑4, 𝜕𝜑8) (𝜕𝜑4, 𝜕𝜑9) 0

0 (𝜕𝜑5, 𝜕𝜑2) 0 (𝜕𝜑5, 𝜕𝜑4) (𝜕𝜑5, 𝜕𝜑5) 0 (𝜕𝜑5, 𝜕𝜑7) (𝜕𝜑5, 𝜕𝜑8) (𝜕𝜑5, 𝜕𝜑9) 0
0 0 0 0 0 0 0 0 0 0
0 (𝜕𝜑7, 𝜕𝜑2) 0 (𝜕𝜑7, 𝜕𝜑4) (𝜕𝜑7, 𝜕𝜑5) 0 (𝜕𝜑7, 𝜕𝜑7) (𝜕𝜑7, 𝜕𝜑8) (𝜕𝜑7, 𝜕𝜑9) 0

0 (𝜕𝜑8, 𝜕𝜑2) 0 (𝜕𝜑8, 𝜕𝜑4) (𝜕𝜑8, 𝜕𝜑5) 0 (𝜕𝜑8, 𝜕𝜑7) (𝜕𝜑8, 𝜕𝜑8) (𝜕𝜑8, 𝜕𝜑9) 0

0 (𝜕𝜑9, 𝜕𝜑2) 0 (𝜕𝜑9, 𝜕𝜑4) (𝜕𝜑9, 𝜕𝜑5) 0 (𝜕𝜑9, 𝜕𝜑7) (𝜕𝜑9, 𝜕𝜑8) (𝜕𝜑9, 𝜕𝜑9) 0
0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

 (E9) 

 

 𝛗𝑀 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 
(𝜑1, 𝑀𝑞)

(𝜑2, 𝑀𝑞)

(𝜑3, 𝑀𝑞)

(𝜑4, 𝑀𝑞)

(𝜑5, 𝑀𝑞)

(𝜑6, 𝑀𝑞)

(𝜑7, 𝑀𝑞)

(𝜑8, 𝑀𝑞)

(𝜑9, 𝑀𝑞)

(𝜑10, 𝑀𝑞)]
 
 
 
 
 
 
 
 
 
 
 
 
 

 (E10) 

 

 𝛗𝑁 =

[
 
 
 
 
 
 
 
 
 
 
 

0
(𝜕𝜑2, 𝑁𝑞)

0
(𝜕𝜑4, 𝑁𝑞)

(𝜕𝜑5, 𝑁𝑞)

0
(𝜕𝜑7, 𝑁𝑞)

(𝜕𝜑8, 𝑁𝑞)

(𝜕𝜑9, 𝑁𝑞)

0 ]
 
 
 
 
 
 
 
 
 
 
 

 (E11) 
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The undetermined coefficients are expressed as  

 𝐚 =

[
 
 
 
 
 
 
 
 
 
𝑎1
𝑎2
𝑎3
𝑎4
𝑎5
𝑎6
𝑎7
𝑎8
𝑎9
𝑎10]

 
 
 
 
 
 
 
 
 

 (E12) 

Substitutions of Eqs. E8-E12 into Eq. E2 gives 

 [𝐆𝑀 + 𝐆𝑁]𝒂 = [𝛗𝑀 +𝛗𝑁] (E13) 

Then the coefficients are given by 

 𝐚 = [𝐆𝑀 + 𝐆𝑁]
−1[𝛗𝑀 +𝛗𝑁] (E14) 
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