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Abstract 
 

Realized volatility affords the ex-post empirical measurement of the latent notional 
volatility. However, the time-varying returns autocorrelation induced by microstructure 
effects represents a challenging problem for standard volatility measures. In this study, a new 
nonparametric volatility measures approach based on the Discrete Sine Transform (DST) is 
proposed. We show that the DST exactly diagonalizes the covariance matrix of MA(1) 
process. This original result provides us an orthonomal basis decomposition of the return 
process which permits to optimally disentangle the underlying efficient price signal from the 
time-varying nuisance component contained in tick-by-tick return series. As a result, two 
nonparametric volatility estimators which fully exploit all the available information contained 
in high frequency data are constructed. Monte Carlo simulations based on a realistic model for 
microstructure effects show the superiority of DST estimators, compared to alternative local 
volatility proxies for every level of the noise to signal ratio and a large class of noise 
contaminations. These properties make the DST approach a  nonparametric method able to 
cope with time-varying autocorrelation, in a simple and efficient way,  providing robust and 
accurate volatility estimates under a wide set of realistic conditions. Moreover, its 
computational efficiency makes it well suitable for real-time analysis of high frequency data. 
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1 Introduction

Asset returns volatility is a central feature of many prominent financial problems such as asset
allocation, risk management and option pricing. But, despite its key role, it is still an ambiguous
term for which there are different concepts and definitions.

In a frictionless continuous-time no arbitrage price process framework, three different condi-
tional volatility concepts can be defined1:

(i) the Notional, actual or integrated ex-post volatility over a non-vanishing interval,

(ii) the ex-ante Expected volatility over a non-vanishing interval,

(iii) the Instantaneous volatility.

The notional volatility refers to the ex-post cumulative sample-path return variability over a
discrete time interval which under very general conditions corresponds to the increments in the
quadratic variation of the return process.

In practice the approaches for empirically quantifying the concept of volatility fall in to two
distinct types of categories:

• estimation of Parametric models,

• direct Nonparametric methods.

So far, most of the studies have focused on the parametric approach considering volatility as
an unobservable variable and using a fully specified functional model for the ex-ante expected
volatility2 . Modelling the unobserved conditional variance was one of the most prolific topics in
the financial literature which led to all ARCH-GARCH models and stochastic volatility models.
In general this kind of models suffer from a twofold weakness: first, they are not able to replicate
main empirical features of financial data; second, the estimation procedures required are often
rather complex (especially in the case of stochastic volatility models).

This study focus instead on a nonparametric approach to develop ex-post observable proxies
for the notional volatility (rather than the expected one) through a new methodology which
fully exploits intraday information.

Within the class of nonparametric volatility measurement we can distinguish between the
ARCH Filters or Smoothers and the Realized Volatility measures . The first heavily rely on a
continuous sample paths assumption on the price process in order to evaluate the instantaneous
volatility. Filters exploit only the information contained in past returns while smoothers also
use ex-post future returns (thus they can be seen as two-sided filters). These instantaneous
volatility measures require that as the length of the time interval goes to zero the number
of observations tends to infinity. However this strong condition (which implies a double limit
theory and excludes jumps from both return and volatility processes) are virtually never fulfilled
in empirical data, making this approach unfeasible in practice.

On the contrary, realized volatility affords the empirical measurement of the latent notional
volatility on the discrete time interval [t−h, t], with h a strictly positive non-vanishing quantity
(typically one day). Similarly to the instantaneous volatility measures, realized volatilities may
be classified according to whether the estimation of the notional volatility only exploits returns
observations falling in the interval [t − h, t], which we call Local, or also incorporates returns

1See Andersen, Bollerslev and Diebold (2002).
2Also the Implied Volatility approaches can be included in this category since they are based on a parametric

model for the returns together with an option pricing model.
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outside [t−h, t]. Local measurements have the advantage to be asymptotically unbiased and fast
adapting but the disadvantage to neglect potentially useful information contained in adjacent
intervals. The most obvious local measure for daily volatility is the daily absolute return.
However, as clearly shown by Andersen and Bollerslev (1998) this proxy can be extremely noisy.
The inadequacy of volatility proxies obtained with daily observations clearly suggests the use of
intraday data to obtain more accurate volatility estimates. In fact, in its standard form realized
volatility is nothing more than the sum of squared high-frequency returns over a given time
interval [t−h, t], i.e. the second uncentered sample moment of the high-frequency returns. This
idea traces back to the seminal work of Merton (1980) who showed that the integrated variance
of a Brownian motion can be approximated to an arbitrary precision using the sum of intraday
squared returns. More recently a series of papers (Andersen, Bollerslev, Diebold and Labys
2001a,b and Barndoff-Nielsen and Shepard 2001a, 2002a,b,c and Comte and Renault 1998) has
formalized and generalized this intuition by applying the quadratic variation theory to the broad
class of special (finite mean) semimartingales3. In fact, under very general conditions the sum of
intraday squared returns converges, as the maximal length of returns go to zero, to the notional
volatility over the fixed time interval [t−h, t]. Thus, as the sampling frequency from a diffusion is
increased, realized volatility provides us, in principle, with a consistent nonparametric measure
of the notional volatility.

In practice, however, empirical data differs in many ways from the frictionless continuous-
time price process assumed in those theoretical studies. Beside the obvious consideration that
a continuous record of prices is not available, other reasons prevent the applications of the limit
theory necessary to achieve consistency of the realized volatility estimator. In fact, because of
market microstructure effects4 the assumption that log asset prices evolve as a diffusion process
becomes less and less realistic as the time scale reduces.

The main sources of microstructure effects are the bid-ask bounce and price discreteness.
Studies on the bid-ask spread are largely developed within the framework of quote-driven mar-
kets. However, the bid-ask spread is not unique to the dealer markets: Cohen et al. (1981)
establish the existence of the bid-ask spread in a limit-order market when investors face transac-
tion costs in assessing information, monitoring the market, and conveying orders to the market;
Glosten (1994) shows that limit-order markets have a positive bid-ask spread arising from the
possibility of trading on private information. As already noted by Roll (1984) and Blume and
Stambaugh (1983), bid-ask spreads produce negative first-order autocovariances in observed
price changes. Similarly, if one makes the assumption that observed prices are obtained by
rounding underlying true values, Glottlieb and Kalay (1985) and Harris (1990) showed that
price discreteness induces negative serial covariance in the observed returns.

Market microstructure generates a transitory effect on the dynamics of the informationally
efficient price. This perturbation of the underlying price induces a non-zero autocorrelation
in the returns process which makes no longer true that the variance of the sum is the sum of
the variances. Thus, the volatility computed with short time intervals becomes a potentially
highly biased estimator of the daily volatility. A significant negative autocorrelation induces
a bias of positive sign, i.e. the expectation of daily realized volatility computed with high
frequency observed returns is systematically larger than the volatility of the true unobservable
process. Such a bias increases with the sampling frequency. Therefore, a trade-off arises: on one
hand, efficiency considerations suggest a very high number of return observations to reduce the
stochastic error of volatility estimation. On the other hand, market microstructure introduces

3This class encompasses processes used in standard arbitrage-free asset pricing applications, such as Ito diffu-
sions, jump processes, and mixed jump diffusions.

4For a good empirically oriented overview of market microstructure effects, see Hasbrouck (1996).
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a bias that grows as the sampling frequency increases.
Given such a trade-off between efficiency and bias, a simple approach to overcome this

problem is to choose, for each financial instruments, the shortest return interval at which the
resulting volatility is still not significantly affected by the bias. This approach exploits the
different aggregation properties between the integrated process of the efficient price and the
non-scaling behaviour of the pricing error term. Thus, as the aggregation of returns increases
the impact of the transitory component on the volatility decreases, reducing the size of the bias.
This approach is simple, fully nonparamentric and robust to any source of microstructure effect.
On the other hand, in practice this “unbiased return frequency” turns out to be fairly low5,
leaving us with only few return observations per day.

An alternative approach would be to directly try to correct for the microstructure effects at
the tick-by-tick level. Along this line are the first order serial covariance correction proposed
by French and Roll (1984), Harris (1990) and Zhou (1996) and the exponential moving average
(EMA) filtering of Corsi, Zumbach, Müller and Dacorogna (2001). However, the first estimator
suffers from the possibility to become negative while the second one is a non-local estimator
which adapts only slowly to changes in the properties of the pricing error component. Moreover,
both estimators correct only for the bias deriving from the first lag of the return autocorrelation
function, while they are very sensitive to non zeros higher lags coefficients.

The presence of significant autocorrelation at lags length greater than one and the possibility
that each trading day may be characterized by different autocorrelation structures makes the
filtering problem rather complex. In theory, this problem could be tackled by a fully parametric
approach where several ARMA models are first estimated every day. Then the best model is
chosen on the basis of some loss criteria and finally an estimate for the daily volatility could be
obtained from the residuals of the selected model. This approach has been proposed, for instance,
by Bollen and Inder (2002) with the so called VARHAC estimator which makes use of a series
of AR models selected on the basis of the Schwarz BIC criteria. However, such a parametric
approach is, beside being very cumbersome in practice, much dependent on the loss criteria
chosen and, relaying on the estimation of (possibly many) parameters, it conveys the estimation
errors of those parameters to the volatility estimator, amplifying its variance. Moreover, Bustos
and Yohai (1986) show how even very few outlying observations can largely increase the variance
of the estimated residuals. What we are looking for is, instead, a nonparametric approach
capable to deal with time-varying autocorrelation (with possibly several significant lags) in a
simple and efficient way, providing robust and accurate volatility estimates.

In this paper two new alternative realized volatility measures based on the Discrete Sine

Transform (DST) are presented. The motivation for this approach rests on the ability of the
DST to decorrelate signal for data exhibiting MA(1) type of behaviour. To our knowledge this is
an original result in signal theory. MA(1) processes arise naturally in microstructure models of
tick-by-tick returns. Hence, this nonparametric DST approach, turns out to be very convenient
as it provides an orthonormal basis which permits to optimally6 extract the volatility signal
from the noisy tick-by-tick return series. As a result, new nonparametric realized volatility esti-
mators which fully exploit all the available information contained in high frequency data can be
constructed. Moreover, we show that this approach provides robust and accurate results also in
case of microstructure effects which lead to more general MA(Q) processes for the tick-by-tick
returns. It is then robust against a wide class of noise contaminations and model misspecifi-
cations. Finally, being simple and computationally fast, it is perfectly suitable for real-time

5The answer to this question also depends on the interpolation scheme employed when a regular time series is
constructed.

6In a linear sense.
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analysis of high frequency data.
The rest of the paper is organized as follows. Section 2 reviews a model for the tick-by-

tick observed price process, shows how this process can be diagonalized by the DST approach,
describes the volatility estimators based on the DST filter and analyzes their robustness with re-
spect to model misspecification. Section 3 outline the setup for the Monte Carlo simulations and
shows the superiority of DST estimators compared to alternative realized volatility estimators.
Section 4 concludes.

2 Definitions of the DST volatility estimators

2.1 Price process with microstructure effects

In order to motivate the subsequent definitions of volatility, we briefly review a standard model
for the tick-by-tick price process. As described in Hasbrouk (1993, 1996), a general way to
model the impact of various sources of microstructure effects is to decompose the observed
price in to the sum of two unobservable components: a martingale component representing the
informationally efficient price process and a stationary pricing error component expressing the
discrepancy between the efficient price and the observed one. The pricing error term impounds
the diverse microstructure imperfections which are not explicitly modelled. The price evolution
is described in the “intrinsic transaction time”7 denoted with the integer index n; so that
∆tn = tn − tn−1 is the “intertrade duration” process which is also not explicitly modelled here.

The observed logarithmic prices in tick time pn are then given by

pn = p̃n + ηωn

where p̃n is the unobserved efficient price which follows a stochastic process with unforecastable
changes, and ηωn represents the pricing error component with η the size of the perturbation.
Depending on the structure imposed on the pricing error component, many structural model for
microstructure effect could be recovered. Here we take a more statistical perspective assuming
ωn to simply be a (possibly non-spherical) zero mean nuisance component independent of the
price process.

The observed (logarithmic) price return rn at time n can then be decomposed as

rn = σε̃n + η (ωn − ωn−1)

where ε̃n (the unobserved innovation of the efficient price) and ωn (the pricing error) are inde-
pendent stochastic processes such that

ε̃n ∼ IID (0, 1)

ωn ∼ IID (0, 1)

Hence the r-process is MA (1) with E (rn) = 0 and autocovariance function given by

ρ (k) = E (rn+krn) =
(

σ2 + 2η2
)

δk,0 − η2 (δk,+1 + δk,−1)

where δ is the discrete Kronecker delta function.

7That is a time scale having the number of trades as its directing process, which maps the intrinsic time to
the calendar time.
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2.2 The Discrete Sine Transform

We now develop a discrete form of a Karhunen-Loéve expansion8 for the representation of a
random vector whose elements are a finite sequence of returns.

Let us consider a vector of length M

R (M,n) =
[

rn rn−1 · · · rn−M+1

]>

and the associated correlation matrix

Ω(M) = E

(

R (M,n) R (M,n)>
)

which is a tridiagonal matrix of the form

Ω(M) =













σ2 + 2η2 −η2

−η2 σ2 + 2η2 . . .
. . .

. . . −η2

−η2 σ2 + 2η2













Let us now solve the eigenvalues equation

Ω(M)ϕ(M)
m = λ(M)

m ϕ(M)
m m = 1, 2, . . . ,M

It can be easily shown that the eigenvalues of Ω(M) are given by

λ(M)
m = σ2 + 4η2 sin2 πm

2 (M + 1)
m = 1, 2, . . . ,M

with

λ
(M)
m+1 − λ(M)

m = 4η2 sin
π

2 (M + 1)
sin

π (2m + 1)

2 (M + 1)
> 0

and λ
(M)
1 < λ

(M)
2 < · · · < λ

(M)
M . The corresponding eigenvectors are

ϕ(M)
m (k) =

√

2

M + 1
sin

πmk

M + 1
k = 1, 2, . . . ,M

The remarkable fact is that, unlike common situations, the eigenvectors (ϕ
(M)
m ) of a MA (1)

process are universal as they are given by the orthonormal basis used in the Discrete Sine
Transform (DST). Moreover the eigenvalues of the DST components are ordered, separated and
all non degenerate. Given that the Karhunen-Loéve expansion represents the optimal solution to
a linear filtering problem, this nonparametric property can be very useful for real-time analysis
of high frequency return data as it provides an universal basis to optimally decorrelate the price
signal.

According to the Karhunen-Loéve expansion, the simple and computationally fast DST of
the returns

c(M)
m (n) =

M
∑

k=1

ϕ(M)
m (k) rn−k+1

8Also known as Hotelling transformation or Principal Component Analysis.
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acts as a projector of the signal into its principal components. The autocovariance functions of
the DST components are directly the eigenvalues of the correlation matrix:

E

(

c(M)
m (n) c(M)

m (n)
)

=
(

ϕ(M)
m

)T

Ω(M)ϕ(M)
m = λ(M)

m = σ2 + 4η2 sin2 πm

2 (M + 1)

Since we are interested in the permanent component of the volatility the idea is to consider the
projection of the returns on the minimal principal component which is the one less contaminated
by the transient volatility coming from the microstructure noise. Therefore, an asymptotically
unbiased estimator of the instantaneous volatility σ2 is given by the mean value of the square

of the DST component associated with the minimal eigenvalue of the correlation matrix (c
(M)
1 )

in the limit of a large window M :

σ2
M = E

(

c
(M)
1 (n) c

(M)
1 (n)

)

= σ2 + 4η2 sin2 π

2 (M + 1)
(1)

since for large M the effect of the price error vanishes as

σ2
M ' σ2 + η2 π2

M2

The last equation clearly shows how the aggregation on the minimal component decreases the
impact of the pricing error at a much higher speed compared with the standard aggregation of
returns. In fact in this second case the bias is reduced at the rate M while on the minimal DST
component the bias is cut down at rate M 2, allowing to substantially increase the “unbiased
return frequency” and then improving the precision of the volatility estimation. We term this
volatility measure Minimal DST estimator.

Another way to construct a simple volatility estimator from the DST decomposition, is
to evaluate σ2

M for different values of M and then perform a simple linear regression on the
equation (1). Then the intercept is an unbiased (not only asymptotically but also in finite
sample) estimator of the instantaneous volatility. We call this measure Fitted DST estimator.
This approach would be particularly useful when the number of observations is not very high
and thus sufficiently large values of M are not attainable.

2.3 Stability and robustness

To judge the stability of the DST filter with respect to misspecification of the underlying model,
let us consider an MA(Q) process

rn = σε̃n +

Q
∑

q=1

ηq

(

ω(q)
n − ω

(q)
n−q

)

where

ε̃n ∼ IID (0, 1)

ω(q)
n ∼ IID (0, 1) q = 1, . . . , Q

It can be shown that the autocorrelation of the Minimal DST component is given by

σ2
M = E

(

c
(M)
1 (n) c

(M)
1 (n)

)

= σ2 +

Q
∑

q=1

η2
qF (M, q)
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where

F (M, q) =
2

M + 1

[

M + 1 − (M + 1 − q) cos
πq

M + 1
− cot

π

M + 1
sin

πq

M + 1

]

Because

F (M, q) = π2 q2

M2
− 2π2 q3

M3

(

1 +
3

q
−

1

q2

)

+ O

(

q4

M4

)

for M/Q → ∞, we obtain

σ2
M ' σ2 +

π2

M2

Q
∑

q=1

(q ηq)
2

which makes clear that also the bias coming from higher order autocorrelations is cut down at
the same rate M 2, guaranteeing the robustness of the DST estimators respect to a wide class of
model misspecifications.

3 Monte Carlo Simulations

In this section we analyze the model proposed by Hasbrouck (1999) and recently employed in
Alizadeh et al. (2002). The model views the discrete bid and ask quotes as arising from the
efficient price plus the quote-exposure costs (information and processing costs). Then the bid
price is the efficient price less the bid cost rounded down to the next tick; the ask quote is
the efficient price plus the ask cost rounded up to the next tick. As in Alizadeh et al. (2002)
we simplify the model by assuming that the bid cost and the ask cost are both equal to the
minimum tick size. Then assuming a gaussian logarithmic random walk for the log price

p̃n = p̃n−1 + σεn

with un ∼ NID (0, 1), the bid and ask prices are

Bn = ∆
⌊

P̃n/∆ − 1
⌋

An = ∆
⌈

P̃n/∆ + 1
⌉

where ∆ represents the ticksize, bxc is the floor function, dxe the ceiling one and the unobserved
efficient price is P̃n = ep̃n . Then the observed price is given by the following bid-ask model

Pn = Bnqn + An (1 − qn)

with qn ∼ Bernoulli (1/2). Hence the observed logarithmic return can be written

rn = ln
Pn

Pn−1
= ln

dPn/∆ + 1e

dPn−1/∆ + 1e
+ qn ln

bPn/∆ − 1c

dPn/∆ + 1e
− qn−1 ln

bPn−1/∆ − 1c

dPn−1/∆ + 1e

which is an MA(1) process.
Following Hasbrouck and Alizadeh et al. we first take P0 = 25, ∆ = 1/16 and σ = 0.0011,

which implies an annualized 30% volatility, and simulate one-day sample paths of five-minute
log price (which means 288 returns observations per day) for 10,000 days. This choice of the

7



2 4 6 8 10 12 14 16 18 20
20

30

40

50

60

70

80

90

100

110

M

A
nn

ua
liz

ed
 V

ol
at

ili
ty

True Value
Simulated Data
Model Fit

Figure 1: Comparison of the minimal DST annualized volatility predicted by the DST model for different

value of M and the ones obtained by simulations
(

√

σ̂2

M · 288 · 250
)

.

parameters implies a strong price fluctuation between bids and asks, inducing a highly negative
first order-autocorrelation ρ(1) ≈ 48% for the process rt and a noise to signal ratio ( η

σ
) of about

3.5. This values reflect a microstructure impact on the return process which is remarkably large
and rarely observed on real data. However, such an extreme setting provides a useful stress test
for realized volatility measures and harden the competition versus range-based estimators which
are favourite under this circumstances.

We compute the Minimal DST estimator for M = 20. While, for the Fitted DST we first
construct a series of minimal eigenvalues of the Karhunen-Loéve expansion, using a sequence
of DST windows from M = 2 to M = 20 and then fit (by simple OLS) the eigenvalues to the
equation (1) which we report here:

σ2
M = σ2 + η24 sin2 π

2 (M + 1)

figure 1 shows the perfect fit of the model predictions to the simulated data.
For comparison purposes we compute the daily absolute return, the daily range9 and two

alternative realized volatility measures: the one obtained with a local EMA filter (i.e. calibrated
on a single day) which then simply corresponds to a daily MA(1) filter and the one calculated
with 30 minutes returns as suggested by Andersen et al. (2001b).

Table 1 reports the mean, standard deviation and Root Mean Square Error (RMSE) of the
five volatility estimators and figure 2 shows their probability density functions. Given the high
level of noise and the relatively small number of observations per day, the estimation of the first
order autocorrelation required to calibrate the EMA filter, is very noisy and does not always
satisfy the theoretical bound for MA(1) process | ρ(1) |< 1/2 (in the 30% of the cases), leading
to a complex MA(1) coefficient θ. In such cases the EMA filter would fail and we are then

9Developed by Parkinson (1980) and recently advocated by Alizadeh et al. (2002) in the contest of stochastic
volatility models estimation.
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Figure 2: Comparison of the pdf of the different volatility estimators obtained at 5 minutes (left panel) and
30 seconds (right panel) frequency with η

σ
=3.5 (true value for the annualized volatility: 30%).

forced to impose an artificial floor to ρ(1). But besides its arbitrariness, this procedure induces
unreasonably low volatility estimates (responsible for the left bump close to zero presents in the
EMA estimator pdf of figure 2). Moreover, under these conditions, the variance of the estimator
is extremely large. For the 30 minutes realized volatility, the fact that the aggregation from 5
minute to half an hour returns is not able to eliminate all the negative autocorrelation, makes
this estimator strongly upward biased (with an annualized mean value of 66% against a true
value of 30%). In the case of the Minimal DST estimator instead, the aggregation works much
better but, due to a relatively low M = 20, a small upward bias of about 12% is still present.
Even the daily range10 suffers a bias of a similar size (17%) but with a much larger variance
(two times respect to the Minimal DST one). Under this extreme setting, the only measure
which is still able to be unbiased and sufficiently precise is the Fitted DST estimator, which has
in fact a much lower RMSE. Summarizing, even in the most unfavorable setting for the realized
volatilities, the DST estimators are still quite accurate and posses a RMSE 42% to 47% smaller
than that of the daily range.

Keeping the same level of noise we repeat the simulation at 30 seconds frequency (which
means 2880 observations per day). With ten times more data the realized volatility measures
are much more precise: the local EMA filter has less failings (5%) and lower variance, while the
30 min realized volatility (thanks to the longer aggregation period) has a smaller bias. DST
estimators are now both unbiased and equally very accurate, remaining by far the best choices
among the estimators considered.

But real financial time series present a noise to signal ratio at tick-by-tick level usually
comprises between 1 and 2. However, even with such a moderate level of noise, a naive high
frequency realized volatility measure would be from two to three times the actual one. We then
repeat the simulation with a more realistic noise to signal ratio of 1.5 for both frequency. Table
2 and figure 3 summarize the results. At the five minute frequency the daily range and the local

10Evaluated on the price process observed at the highest frequency (i.e. five minute in this case).
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VOLATILITIES ESTIMATES WITH
η

σ
=3.5

5 min 30 sec

mean std RMSE mean std RMSE

Fitted DST 30.239 5.055 5.057 29.932 2.223 2.227

Minimal DST 33.745 4.381 5.598 30.467 2.271 2.303

EMA filter 35.200 20.811 20.871 30.147 9.995 10.114

30 minutes 66.251 5.798 36.482 35.220 3.561 6.177

Daily Range 35.354 8.800 9.778 31.675 8.582 8.597

Daily | r | 31.217 18.970 19.665 30.221 18.306 19.246

Table 1: Comparison of daily volatility estimation performances of the DST estimators (Fitted DST and
Minimal DST), the EMA filter and 30 minutes realized volatility, the daily range and the daily absolute return
for the 5 minutes and 30 seconds frequency when the true value of the annualized volatility is 30% and the
noise to signal ratio η

σ
=3.5 .

EMA filter are unbiased but quite inaccurate while the realized volatility based on 30 minutes
has a large bias. Again the DST estimators are the more accurate, with the Fitted DST having
a slightly smaller variance than the Minimal DST. At the 30 seconds frequency, with a moderate
level of noise and a large number of data, the EMA filter start to become competitive compares
to the DST ones; while the 30 minutes measure (even if less biased) has a much larger variance.

Empirical studies on the autocorrelation of tick-by-tick data often show significative val-
ues not only for the first order but also for the second order lag (though of much smaller
amplitude). A possible explanation, and way to model it, is by assuming a correlation in
the sequence on which ask and bid prices arrive11. Hence, instead of having an “unbiased”
Bernoulli(1/2) for the qn process, we construct a Bernoulli process which produces an autocor-
relation in qn. This “biased” Bernoulli is obtained by taking qn = Bernoulli (1/2 + b) if qn−1 = 1
and qn = Bernoulli (1/2 − b) if qn−1 = 0. We choose b = −0.10 which induces a second order
autocorrelation of about −6%. Now the local EMA filter, which was unbiased and very precise
at 30 seconds frequency, becomes highly biased at both frequency (see figure 4). On the con-
trary DST estimators remain unbiased and accurate as before, clearly showing their robustness
against model mispecifications (as analytically described in the previous section).

11Hasbrouck and Ho (1987) suggest that positive autocorrelation at lag lengths greater than one may be
the results of traders working an order: “a trader may distribute purchases or sales over time”. However also
significantly negative autocorrelation at lag two are often observed.
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Figure 3: Comparison of the pdf of the different volatility estimators obtained at 5 minutes (left panel) and
30 seconds (right panel) frequency with η

σ
=1.5 (true value for the annualized volatility: 30%).

10 20 30 40 50 60 70
0

0.02

0.04

0.06

0.08

0.1

Annualized Volatilty

P
d
f

Fitted DST
Minimal DST
30 min
EMA Filter
Range

10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

0.25

Annualized Volatility

P
d
f

Fitted DST
Minimal DST
30 min
EMA Filter
Range

Figure 4: Comparison of the pdf of the different volatility estimators obtained at 5 minutes (left panel) and
30 seconds (right panel) frequency with η

σ
=1.5 and biased Bernoulli process (true value for the annualized

volatility: 30%).
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VOLATILITIES ESTIMATES WITH
η

σ
=1.5

Unbiased Bernoulli

5 min 30 sec

mean std RMSE mean std RMSE

Fitted DST 29.678 3.843 3.880 29.832 2.146 2.160

Minimal DST 30.336 4.353 4.353 29.936 2.238 2.243

EMA filter 30.078 7.970 8.027 29.986 2.157 2.159

30 minutes 40.289 3.897 10.863 31.153 3.151 3.303

Daily Range 31.443 8.715 8.718 30.514 8.627 8.657

Daily | r | 30.784 18.314 19.042 30.312 18.303 19.211

Biased Bernoulli

Fitted DST 30.735 3.781 3.815 29.931 2.175 2.179

Minimal DST 30.736 4.319 4.342 30.070 2.270 2.270

EMA filter 39.1621 5.026 10.176 39.079 1.542 9.176

30 minutes 40.237 3.932 10.796 31.203 3.138 3.307

Daily Range 31.336 8.743 8.743 30.522 8.567 8.596

Daily | r | 30.599 18.422 19.241 30.170 18.173 19.111

Table 2: Comparison of daily volatility estimation performances of the DST estimators (Fitted DST and
Minimal DST), the EMA filter and 30 minutes realized volatility, the daily range and the daily absolute return
for the 5 minutes and 30 seconds frequency when the true value of the annualized volatility is 30% and the
noise to signal ratio η

σ
=1.5 .
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4 Conclusions

The autocorrelation induced by microstructure effects represents a challenging problem for re-
alized volatility measures. It makes the naive realized volatility computed at short time interval
highly biased. While the time-varying behavior of the autocorrelation makes non-local filters
misspecified. Local filters based on first order covariance correction are also prone to misspeci-
fication (due to the occasional significance of higher order lags) and suffer from the unpleasant
possibility to become negative.

In this study, a new nonparametric volatility measures approach based on the Discrete

Sine Transform (DST) is proposed. This approach is justified by the new theoretical result on
the ability of the DST to exactly diagonalize an MA(1) process. Hence, we utilize the DST
orthonomal basis decomposition to optimally disentangle the underlying efficient price signal
from the time-varying nuisance component contained in tick-by-tick return series. As a results
two nonparametric realized volatility estimators which fully exploit all the available information
contained in high frequency data are constructed.

Monte Carlo simulations based on a realistic model for microstructure effects, show the
superiority of DST estimators compared to alternative local volatility proxies such as the daily
range, the EMA filter and 30 minutes realized volatility and the daily absolute return. DST
estimators results to be the most accurate daily volatility measures for every level of the noise to
signal ratio, and highly robust against the presence of significant autocorrelation at lags greater
than one in the return process.

Those properties make the DST approach a nonparametric method able to cope with time-
varying autocorrelation, (with possibly several significant lags) in a simple and efficient way,
providing robust and accurate volatility estimates under a very wide set of conditions. Moreover,
its computational efficiency, makes it well suitable for real-time analysis of high frequency data.

An obvious direction for future research would be to empirically analyse the forecasting
performance of parametric and nonparametric volatility models fed by the DST volatility esti-
mates. A thorough investigation of the performance of the DST estimators applied to various
type of financial time-series and their use in conjunction with adaptive Kalman filter models,
are currently pursed by the authors.

References

Alizadeh, S., Brandt, M. W. and Diebold, F. X.: 2002, Range-based estimation of stochastic
volatility models, Journal of Finance LVII(3), 1047–90.

Andersen, T. G. and Bollerslev, T.: 1998, Answering the skeptics: Yes, standard volatility
models do provide accurate forecasts, International Economic Review 39, 885–905.

Andersen, T. G., Bollerslev, T. and Diebold, F. X.: 2002, Parametric and nonparametric volatil-
ity measurement, in Y. Ait-Sahalia and L. P. Hansen (eds), Handbook of Financial Econo-

metrics, North Holland, Amsterdam.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P.: 2001a, The distribution of
exchange rate volatility, Journal of the American Statistical Association 96, 42–55.

Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P.: 2001b, Modeling and forecasting
realized volatility, NBER Working Paper 8160. The National Bureau of Economic Research,

Cambridge, MA. .

13



Barndoff-Nielsen, O. E. and Shepard, N.: 2001, Non-gaussian ornstein-uhlembech-based mod-
els and some of their uses in financial economics, Journal of the Royal Statistical Society

63, 167–241.

Barndoff-Nielsen, O. E. and Shepard, N.: 2002a, Econometric analysis of realized volatility and
its use in estimating stochastic volatility models, Journal of the Royal Statistical Society

64, 253–280.

Barndoff-Nielsen, O. E. and Shepard, N.: 2002b, Estimating quadratic variation using realized
variance, Forthcoming in Journal of Applied Econometrics .

Barndoff-Nielsen, O. E. and Shepard, N.: 2002c, How accurate is the asymptotic approximation
to the distribution of realized volatility?, in D. W. F. Andrews, J. L. Powell, P. A. Ruud
and J. H. Stock (eds), Identification and Inference for Econometric Models, forthcoming.

Blume, M. and Stambaugh, S.: 1983, Biases in computed returns, Journal of Financial Eco-

nomics 12, 387–404.

Bollen, B. and Inder, B.: 2002, Estimating daily volatility in financial markets utilizing intraday
data, Journal of Empirical Finance 186.

Bustos, O. and Yohai, V. J.: 1986, Robust estimates for arma models, Journal of the American

Statistical Association 81, 155–68.

Cohen, K., S., M., R., S. and D., W.: 1981, Transaction costs, order placement strategy, and
existence of the bid-ask spread, Journal of Political Economy 89, 287–305.

Comte, F. and Renault, E.: 2001, Long memory in continuous time stochastic volatility models,
Mathematical Finance 8, 291–323.

Corsi, F., Zumbach, G., Müller, U. A. and Dacorogna, M.: 2001, Consistent high-precision
volatility from high-frequency data, Economic Notes 30(2), 183–204.

French, K. R. and Roll, R.: 1984, Stock return variances : The arrival of information and the
reaction of traders, Journal of Financial Economics 17(1), 5–26.

Glosten, L.: 1994, Is the electronic open limit-order book inevitable?, Journal of Finance

49, 1127–1161.

Glottlieb, G. and Kalay, A.: 1985, Implication of the discreteness of observed stock prices,
Journal of Finance 40, 135–153.

Harris, L.: 1990, Estimation of stock price variances and serial covariances from discrete obser-
vations, Journal of Financial and Quantitative Analysis 25(3), 291–306.

Hasbrouck, J.: 1993, Assessing the quality of a security market: a new approach to transaction-
cost measurement, Review of Financial Studies 6(1), 191–212.

Hasbrouck, J.: 1996, Modelling market microstructure time series, in G. S. Maddala and C. R.
Rao (eds), Statistical Methods in Fianance, Vol. 14 of Handbook of Statistics, North Holland,
Amsterdam, pp. 647–692.

Hasbrouck, J.: 1999, The dynamichs of discrete bid and ask quotes, Journal of Finance 54, 2109–
42.

14



Hasbrouck, J. and Ho, T.: 1987, Order arrival, quote behavior, and the return-generating pro-
cess, Journal of Finance 42, 1035–48.

Merton, R. C.: 1980, On estimating the expected return on the market: An exploratory inves-
tigation, Journal of Financial Economics 8, 323–61.

Parkinson, M.: 1980, The extreme value method for estimating the variance of the rate of return,
Journal of Business 53, 61–65.

Roll, R.: 1984, A simple implicit measure of the effective bid-ask spread in an efficient market,
Journal of Finance 39, 1127–1139.

Zhou, B.: 1996, High-frequency data and volatility in foreign-exchange rates, Journal of Business

& Economic Statistics 14(1), 45–52.

15


