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Abstract—Networked unmanned aerial vehicles (UAVs) have
found an increasing number of applications in recent years. In
this work, we provide an analytical method to evaluate the sensor
coverage performance of a UAV network, where the individual
UAVs can work independently or cooperatively, respectively, to
achieve a common goal. More specifically, we propose a stochastic
model in terms of a Markov chain including approximations
for its parameters. Studying several scenarios using the Markov
chain as well as simulations, we investigate the impact of network
size and area size on the achieved coverage. While the Markov-
based analysis is an approximation, the results are still in good
agreement with the simulations.

Index Terms—UAV networks, wireless sensor networks, mobil-
ity, coverage

I. INTRODUCTION

This paper considers a network of unmanned aerial vehicles

(UAVs). Each UAV is equipped with a certain kind of on-

board sensor, for example, a camera or a different sensor,

taking snapshots of the ground area. The general aim of the

UAV network is to explore a given area, i.e., to somehow

“cover” this area using several snapshots. Such a goal is

relevant to several applications: target or event detection

and tracking in an unknown area; monitoring geographically

inaccessible or dangerous areas (e.g., wildfire, volcano), or

assisting emergency personnel in case of disasters. Recently,

several researchers in the domains of robotics and mobile

networking have focused on designing such UAV networks.

Research takes place in various areas, e.g., control engineer-

ing, communication networking, mission planning, and image

processing. A UAV is sometimes also called drone.

Our objective is to provide a simple analytical method to

evaluate the performance of different UAV mobility patterns

in terms of their coverage distribution. To this end, we propose

a stochastic model using a Markov chain. The states are the

locations of drones, and the transitions are determined by the

mobility model of interest. Such a model can easily be created

for independent mobility models, such as the random walk

and random direction. However, for a cooperative network,

in which each drone decides where to move based on the

information received from other drones in its communication

range, creating a simple Markov model is not straightforward.

Therefore, in this work, in addition to providing the necessary

transition probabilities for random walk and random direction,

we also propose an approximation to these probabilities for a

cooperative network. While we choose intuitive rules for the

movement paths when two or more drones “meet each other,”

the proposed model can be extended such that other rules

can be incorporated. We show the validity of the proposed

tool by comparing the analytical results with simulations

for several scenarios with different network sizes as well

as different geographical area sizes. With this tool, steady-

state coverage distribution, average and full coverage times

for random walk, direction and cooperative mobility models

are evaluated, where the analysis and simulation are in good

agreement.

The remainder of the paper is organized as follows. In

Section II background on analysis of mobility models and

coverage problem in wireless networks and robotics is sum-

marized. The proposed analytical method is presented in

Section III. Transition probability matrices for independent

and cooperative mobility models are provided in Section IV.

Results are given in Section V and the paper is concluded in

Section VI.

II. RELATED WORK

Several mobility models for autonomous agents have been

proposed recently. Some of these are synthetic like the random

walk and random direction others are realistic and, all of them,

are used mainly to describe the movement of the users in a

given environment. In the UAV domain, such models are good

for comparison of different approaches, but can give incorrect

results when UAVs are performing cooperative tasks [1].

Recently, several research works have shown how mobility

can increase throughput [2], energy efficiency [3], coverage

[4], and other network parameters. Therefore, the analysis

of mobility models has become a highlight to design the

mobility of the nodes in a way to improve the network

performance. A tool to analyze mobility models is proposed

in [5], where the authors model random waypoint-like models

as a renewal process to show the steady-state distribution of

the speed, while a spatial analysis of different mobility models

is provided in [6].

Also, the robotics community is involved in problems

related to the coverage of an unknown environment also

known as the sweeping problem [7]. Basically, the problem

can either be solved by providing abilities for localization

and map building first or by directly deriving an algorithm

that performs sweeping without explicit mapping of the area.

In [8], an exploration algorithm that allows multiple robots to
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cooperatively sweep an area is described. Instead of a measure

of coverage, the authors measure the average event detection

time for evaluating their algorithm. In addition, coverage

problem is sometimes referred to as mapping of an unknown

environment and there are useful methods summarized next

for motion control and navigation, but they are not directly

applicable to coverage or sweeping analysis. In [9], the authors

introduce the concept of occupancy grid that is a stochastic

estimate of the obstacle coverage of the cells obtained by

sensing the environment and can be used for both mapping

and navigation. Another technique proposed in [10] permits

not only the mapping, but also the localization of the robot on

the map.

In this work, we focus on the sweeping of an unknown

area by probabilistic mobility patterns. Our contribution is to

provide an analytical tool to represent existing and possibly

new mobility models. We achieve this by providing transition

probabilities among positions on a discrete grid and we give

a means to compare different mobility patterns in terms of

achieved area coverage at a given time or, even better, to design

a new model that is able to achieve a desired coverage.

III. MARKOV CHAIN AND COVERAGE METRICS

A. Markov Chain

We introduce a discrete-time, discrete-value stochastic pro-

cess that can be used to analyze the coverage performance

of a UAV network. Nodes can operate independently or in a

cooperative manner. The system area is modeled as a two-

dimensional lattice where drones move from one grid point

to another in each time step. We assume that a drone can

only move to the 4 nearest neighboring grid points (the von

Neumann Neighborhood of radius 1 [11]). The probability

of moving to a neighboring grid point is determined by the

mobility model of interest. In the following, we present the

two main components of the proposed Markov chain: state

probabilities and transition probabilities.

In our model, the states are defined as [(Current

Location);(Previous Location)] and Fig. 1 illus-

trates the potential states for a 3x3 grid. Depending on the

location, the number of associated states is different. Observe

from Fig. 1 that if the current location is at a corner, boundary,

or middle grid point, there are 2, 3, and 4 associated states,

respectively. The arrows in the figure represent potential

transitions between the states.

As an example, Fig. 2 shows the state transitions for the

state [(1, 1); (0, 1)] in more detail, where PF , PB , PL, and

PR are the probabilities to move forward, backward, left,

and right, respectively. Since the previous location is given

to be (0, 1), there can be a transition from all 3 associated

states of location (0, 1) to [(1, 1); (0, 1)]. For this state, the

corresponding forward direction from [(1, 1); (0, 1)] is toward

(2, 1), then left direction is toward (1, 0), right direction is

toward (1, 2), and finally, backward direction is (0, 1).
We denote the steady state probabilities of this Markov

chain by π = [π(i,j;k,l)] and the transition probability matrix

by T, where the entries of the matrix are the transition

probabilities between the states [(i, j); (k, l)]. Accordingly, we
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Fig. 1. The potential states of the Markov-chain for a 3x3 grid

(1,1);(0,1) (2,1);(1,1)

(1,2);(1,1)

PF

PR

PL

PB

PB

PL

PR

(1,0);(1,1)

(0,1);(0,0)

(0,1);(1,1)

(0,1);(0,2)

……

…
…

Fig. 2. State transition example for state [(1,1);(0,1)]

denote the transient state probabilities by π (n) = [π
(n)
i,j;k,l], at

time step n. Then, we can write the following well-known

relations for the steady-state and transient state probabilities

[12]:

π = πT (for steady-state)

π(n) = π(0)
T

n (for transient state)

lim
n→∞

π(n) = π (1)

where
∑

π(i,j;k,l) = 1 and without loss of generalization

the initial-state π(0) can be chosen to be [1, 0, ..., 0] (since

the solution for π is independent of the initial condition).

From these linear equations, we can obtain the steady and

transient state probabilities, which will be used to determine

the coverage of a given mobility pattern.

B. Coverage Metrics

We denote the steady state coverage probability distribution

for an axa grid by P = [P (i, j)], 1 ≤ i ≤ a,1 ≤ j ≤ a. This

probability matrix represents the percentage of time a given

location (i, j) is occupied and can be computed by adding the

corresponding steady state probabilities obtained from (1):

P (i, j) =
∑

k,l

π(i,j;k;l), (2)



where (k, l) = {(i− 1, j), (i, j − 1), (i + 1, j), (i, j + 1)} for

the non-boundary states. The (k, l)-pairs for boundary-states

can be determined in a straightforward manner.

The transient coverage probability distribution, P
(n) =

[P (n)(i, j)], is computed similarly as:

P (n)(i, j) =
∑

k,l

π
(n)
(i,j;k;l) (3)

Using the obtained P(n), we can compute the probability

that location (i, j) is covered by time step n as follows:

C(n)(i, j) = 1−

n
∏

ν=0

(1− P (ν)(i, j)) (4)

In the case of multiple drones, the state probabilities can

easily be computed. Given the steady-state coverage distribu-

tion matrix of the drone k is Pk (entries obtained using (2))

and assuming independent/decoupled mobility, the steady-state

coverage distribution of an m-drone network can be obtained

as:

Pmulti(i, j) = 1−

m
∏

k=1

(1− Pk(i, j)) (5)

The transient behavior of the m-drone network can be

computed similarly, by substituting the (i, j)-th entry of the

transient coverage probability matrix (P
(n)
k ) (from (3)) into

(5).

We now define some potential metrics of interest besides the

coverage distribution of a mobility model in a grid: average

coverage (E{C (n)}) and full coverage probability (ξ (n)) at

time step n for a grid of size a× a:

E{C(n)} =

∑

i,j C
(n)(i, j)

a2

ξ(n) = Pr(C(n) = 1axa) =
∏

i,j

C(n)(i, j) (6)

where 1axa is an a× a matrix of ones.

These metrics carry some valuable information regarding

the coverage performance, e.g., how well a given point is

covered, how well the whole area is covered, or how much

time would be necessary to cover the whole area.

In the next section, we provide the corresponding state

transition probabilities for some representative independent

and cooperative mobility models.

IV. TRANSITION PROBABILITIES

A. Independent Mobility

In this section, we first shortly provide the state transition

probabilities for the well-known random walk and random

direction mobility models, where the transition probabilities

are very intuitive. Note that for random walk the knowledge

of the previous location is not necessary. Therefore, the states

of the analytical tool (i, j; k, l) can be further simplified to

(i, j), however, we omit this step for consistency with the other

models. For random walk, we assume that at each time step,

the drone can go to any one of the neighboring grid points

with equal probability. Clearly, the number of neighboring

points change depending on the location (see Fig. 3 for a

representation of the different areas). On the other hand, for

random direction model, the direction is changed only when

the drone reaches the boundary of the grid. Therefore, the

previous location, which is also equivalent to direction for

the lattice, needs to be taken into account. For both of these

schemes as well as the cooperative scheme proposed in the

next section, at the boundaries and corners the next location

is chosen randomly among the available neighboring points

with equal probability. Table I shows the forward, backward,

left, and right transition probabilities for random walk and

direction models, respectively. The entries are organized as

[transition probability, location, direction of movement].

Fig. 3. Location classification: corner (Ci), boundary (Bi), and middle (M )

TABLE I
RANDOM WALK (RW) AND DIRECTION (RD)

Corners Boundaries Middle Middle
RW RD

PB 1/2 (Ci ↑→↓←) 1/3 (Bi ↑→↓←) 1/4 0

PF 0 (Ci ↑→↓←) 1/3 (Bi=1,3 ↑↓, 1/4 1
Bi=2,4 ←→)

PL 1/2 (C1 ←, C2 ↑, 1/3 (B1 ←↓, B2 ↑←, 1/4 0
C3 →, C4 ↓) B3 →↑, B4 ↓→)

PR 1/2 (C1 ↑ C2 →, 1/3 (B1 ←↑, B2 ↑→, 1/4 0
C3 ↓, C4 ←) B3 →↓, B4 ↓←)

B. Cooperative Mobility

In this section, we propose a method to approximate the

coverage performance of a cooperative mobile network. In

such a network, the nodes interact with each other (i.e.,

exchange information) whenever they meet. The amount or

content of exchanged information is not within the scope of

this paper. The objective is to come up with an appropriate

transition probability matrix that can be used by the proposed

stochastic tool. Recall that the proposed Markov chain is

for a single drone. For independent mobility, it can easily

be extended to multiple drones. However, for cooperative

mobility this Markov chain is not sufficient to model the

interactions. The states of a Markov-chain that exactly models

all the interactions would grow exponentially with the number

of drones. Therefore, in this paper, we propose an approximate

method to model the behavior of the drones in a way that

would allow us to treat the cooperative mobility as independent

mobility.

To “decouple” the actions of the drones from each other we



define the following for an m-drone network:

PX =

m−1
∑

k=0

PX|k Pr(k+1 nodes meet), X ∈ {B,F, L,R}

(7)

where the backward, forward, left-turn and right-turn probabil-

ities are given by the decision metric (PX|k) of the cooperative

mobility as well as the number of drones that meet. Clearly,

probability of a meeting depends on the mobility model.

However, for simplicity, in this work, we make the strong

assumption that any node can be anywhere in the grid with

equal probability. The implications of such an approximation

will later be quantified by simulations. With this assumption,

from the perspective of a drone at location (i, j) of a grid of

size (a × a), probability that exactly k other nodes out of a

total of m drones will also be at (i, j) is given by the binomial

distribution:

Pr(k+1 nodes meet) =

(

m− 1

k

)(

1

a2

)k (

1−
1

a2

)m−1−k

(8)

The entries of the corresponding transition probability ma-

trix can then be computed using (7) and (8), given the decision

metric (PX|k). If you have a cooperative rule quantified by

decision metric PX|k, these equations along with the analytical

model from Section III can be used to quantify the coverage

performance.

In the following, we provide an application of this method

for simple cooperative mobility. It uses only the previous

locations and number of the meeting drones in the decision

criteria (e.g., as in [13]). The objective is to cover a given area

as fast and as efficiently as possible. With such an objective,

an intuitive rule is that the drones move to a previously

unoccupied location with a high probability. Clearly, since

we consider only the previous direction, the final decision

might be good only locally and might not contribute to

global coverage. The mobility rules at a grid point (i, j) is

summarized in Algorithm 1, where n0 denote the number of

unoccupied neighbors of (i, j) at the previous time step.

Next, we derive the transition probabilities for the middle

grid points. Observe that due to the symmetry of the decisions

PF |k = PL|k = PR|k, when k ≥ 1. Therefore, if we compute

PB|k, all other probabilities would be determined as well.

From the rules above, PB|k is non-zero only when n0 ≤ 1.

To this end, we first compute the probability that n0 = 1 and

n0 = 0 given k + 1 nodes meet.

There are 4k+1 different ways that k + 1 nodes can meet.

Assume that each of these meetings happen with equal proba-

bility 1
4k+1 . Using combinatorics for selection with repetitions,

we can derive the probabilities that n0 = 1 and n0 = 0,

respectively, when k + 1 nodes meet as follows:

Pr(n0 = 1) =

∑k−1
i=1

∑k−i

j=1

(

k+1
i

)(

k+1−i
j

)

4k
(9)

and

Pr(n0 = 0) =
∑k−2

i=1

∑k−i−1
j=1

∑k−i−j

l=1

(

k+1
i

)(

k+1−i

j

)(

k+1−i−j

l

)

4k+1
. (10)

Algorithm 1 Cooperative Mobility Algorithm

1) If (i, j) is not in the boundaries or corners of the grid:

a) If k = 0, i.e., there is only one drone at (i, j), the

drone keeps going forward until it meets another

drone or until it hits the boundary.

b) If k ≥ 1, the drones determine the unoccupied

neighbors, n0, of (i, j) at the previous time step

and

i) If n0 ≥ 2, then the drones move to any one of

the unoccupied grid points with probability 1
n0

ii) If n0 = 1, then the drones move to the unoc-

cupied grid point with probability p0 and the

other 3 occupied grid points with probability
1−p0

3 . Clearly, if p0 = 1, this rule is equivalent

to above rule (i). A non-zero p0 option is given

to prevent all drones from moving into the same

location.

iii) If n0 = 0, then the drones move any one of the

4 neighboring grid points with probability 1/4.

2) If (i, j) is in one of the boundaries or corners of the

grid, then the same rules as the independent random

mobility models are applied regardless of the presence

of a meeting.

Table II presents these probabilities for different k values.

As the number of nodes that meet, i.e., k + 1 increases, as

expected, Pr(n0 = 0) increases and correspondingly, Pr(n0 =
1) starts decreasing after a certain point.

TABLE II
Pr(n0 = 0) AND Pr(n0 = 1)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6

Pr(n0 = 0) 0 0 0.09 0.23 0.38 0.51

Pr(n0 = 1) 0 0.375 0.56 0.59 0.53 0.44

Using (9) and (10), PB|k for m > 3 is given by:

PB|k =

3
∑

i=0

Pr(n0 = i)PB|ki

=

⎧

⎨

⎩

0, k < 2

Pr(n0 = 1)1−p0

3 , k = 2

Pr(n0 = 1)1−p0

3 + Pr(n0 = 0)14 , 2 < k ≤ m− 1
(11)

When m < 3, PB|k = 0, and when m = 3, PB|k = Pr(n0 =

1)1−p0

3 .

Finally, substituting (8) and (11) into (7) we can compute

PB . Similarly, PF , PR, and PL can be computed substituting

the following relations into (7):

PF |k =

{

1, k = 0
1−PB|k

3 , 0 < k ≤ m− 1
(12)

and

PR|k = PL|k =

{

0, k = 0
1−PB|k

3 , 0 < k ≤ m− 1.
(13)



Then, the transition probability matrix for each drone can

be obtained using the derived PX ’s for the middle cells and

the boundary/corner grid behavior described in the previous

subsection. The overall coverage performance of an m-drone

cooperative network can then be determined using (5).

V. COVERAGE PERFORMANCE AND ITS DISCUSSION

In this section, we evaluate the validity of the proposed

analytical method for several different scenarios by comparing

the analysis with Monte Carlo simulations (where the coverage

distributions are obtained by averaging over 10000 runs). For

the cooperative mobility model, we use p0 = 0.25. Different

number of drones (m), grid sizes (axa), and time steps (n) are

evaluated.

First, we evaluate the steady-state coverage distribution,

which corresponds to the percentage of time a given point

would be covered. Fig. 4 (a) and (b) show the average time

coverage versus number of drones m and the grid dimension

a. The steady-state coverage distribution matrix is computed

using (1) and (2). Both the analytical and simulation results in

the figure are then obtained by averaging overall points in the

grid. Observe that the steady-state performance of all schemes

are the same, shown by both simulation and analysis. While

the limiting distributions of all the schemes are the same, the

time required to reach this distribution varies between mobility

models.
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Fig. 4. Average steady-state (time) coverage.

Next, we look at the transient behavior of the mobility

models under study. Fig. 5 shows a snapshot of the coverage

at time step n = 10 for different number of drones and grid

dimensions. As expected, the coverage increases with increas-

ing number of drones and decreases with grid size. While for

a = 5 coverage over 90% can be achieved with 10 drones, the

achievable coverage drops below 40% when the grid size is

increased to 10x10. Observe that the simulation and analysis

results are in agreement in general. The highest deviation is

observed as the number of drones increase. Recall that the

average coverage is computed over all grid points, and hence,

the deviations in the coverage of each grid point, however

small they maybe, propagate and could become significantly

large when added. Therefore, to check the similarity of the

coverage probability distributions obtained from the analysis

and the simulation, we use the following Euclidean distance

metric:

MSE(n) = E
{

(C
(n)
anl(i, j)− C

(n)
sim(i, j))2

}

. (14)

Fig. 6 presents the mean square error obtained using (14),

when n = 10 and a = 10. Observe from these results

that while the average coverage obtained from the analysis

and simulation may deviate from each other, the individual

coverage of the grid points on average deviate around 0.18%.

We are currently in the process of determining a distance

metric that does not suffer from numerical approximation

limitations to better identify the deviations.
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Fig. 5. Average spatial coverage when n = 10 steps.
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Finally, we illustrate the progress of coverage with time.

Fig. 7 shows the MSE, average and full spatial coverages (from

(6)), when a = 5 and m = {1, 5}. The MSE reduces as the

number of time steps increase and is less than 2% for m = 1
and less than 0.4% when m = 5. As a result, the average and

full spatial coverages from analysis and simulation also deviate

from each other less, when m = 5. Comparing average and

full coverages, we observe that while the likelihood that each

point is covered on average can be above 99% around n = 200
(when m = 1), full coverage requires significantly more time.

Therefore, a threshold-based coverage metric can be more

suitable than average or full coverage for some applications.

Nevertheless, the analytical tool can provide some insight



into how much time would be required to achieve a certain

coverage level and allows for testing different performance

metrics of interest.

0 500 1000
0

0.005

0.01

0.015

0.02

n

M
S

E
(n

)

 

 

Cooperative

Random direction

Random walk

0 100 200 300 400 500
0

1

2

3

4
x 10

−3

n
M

S
E

(n
)

 

 

Cooperative

Random direction

Random walk

(a) MSE versus n, when a = 5 and m = 1 (left), m = 5 (right)

0 500 1000
0.2

0.4

0.6

0.8

1

n

E
{C

(n
) }

 

 

Cooperative(Sim)

Cooperative(Anl)

Random direction(Sim)

Random direction(Anl)

Random walk(Sim))

Random walk(Anl)

0 100 200 300 400 500
0.6

0.7

0.8

0.9

1

n

E
{C

(n
) }

 

 

Cooperative(Sim)

Cooperative(Anl)

Random direction(Sim)

Random direction(Anl)

Random walk(Sim))

Random walk(Anl)

(b) E{C(n)} versus n, when a = 5 and m = 1 (left), m = 5 (right)

0 500 1000
0

0.2

0.4

0.6

0.8

1

n

ξ(n
)

 

 

Cooperative(Sim)

Cooperative(Anl)

Random direction(Sim)

Random direction(Anl)

Random walk(Sim))

Random walk(Anl)

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

n

ξ(n
)

 

 

Cooperative(Sim)

Cooperative(Anl)

Random direction(Sim)

Random direction(Anl)

Random walk(Sim))

Random walk(Anl)

(c) ξ(n) versus n, when a = 5 and m = 1 (left), m = 5 (right)

Fig. 7. Transient behavior comparison

VI. CONCLUSIONS

In this work, we proposed an analytical model to evaluate

the coverage performance of a networked UAV system. We

showed the validity and the limitations of the analytical tool

by comparing with simulations for several scenarios. The

performance metrics of interest focused on in this paper were

coverage distribution, average and full coverages. We observed

that while the coverage distributions can be estimated well

with the analytical model, the average and full coverages can

deviate from the simulations for certain system parameters due

to error propagation.
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