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We analyze a discrete-time ���/�/1 retrial queue with two di�erent types of vacations and general retrial times. Two di�erent
types of vacation policies are investigated in this model, one of which is nonexhaustive urgent vacation during serving and the
other is normal exhaustive vacation. For this model, we give the steady-state analysis for the considered queueing system. Firstly,
we obtain the generating functions of the number of customers in our model.
en, we obtain the closed-form expressions of some
performance measures and also give a stochastic decomposition result for the system size. Moreover, the relationship between
this discrete-time model and the corresponding continuous-time model is also investigated. Finally, some numerical results are
provided to illustrate the e�ect of nonexhaustive urgent vacation on some performance characteristics of the system.

1. Introduction

During the past few decades, retrial queues have been widely
investigated due to their important applications in modeling
many practical problems in computer systems, telecommu-
nication networks, and telephone switching systems. In a
typical retrial queueing model, an arriving customer who
�nds the server unavailable may leave the service area and
joins a retrial group (called orbit) in order to retry to get
the service later aer some random time. For more detailed
review of the main results and the literature on this topic, the
readers are referred to [1–5].

In recent years, there has been a growing interest in
studying retrial queueing systems with vacations. According
to the vacation policy, the retrial queues with vacation can
be divided into two categories: retrial queues with Bernoulli
vacation and retrial queues with exhaustive server vacations.
Particularly, in retrial queues with Bernoulli vacation, the
server will take a single vacation with �xed probability
once the service of a customer is �nished. Li and Yang [6]
�rstly studied a retrial queue with a �nite number of input
sources and Bernoulli vacations. 
ey derived a recursive
formula for the steady-state probability and obtained some
performance measures of the system by using the method of

supplementary variables. Since the work of Li and Yang [6],
the retrial queues with Bernoulli vacations have been studied
bymany authors. For example, Kumar andArivudainambi [7]
considered an �/�/1 retrial queue with Bernoulli vacations
and general retrial times. Using matrix-geometric approach,
Kumar et al. [8] obtained some performance measures
of the �/�/� retrial queue with Bernoulli vacations. In
retrial queues with exhaustive vacations, the server can take
a vacation when there are no customers in the system.
Artalejo [9] �rstly analyzed an �/�/1 retrial queue with
constant repeated attempts and exhaustive server vacations.
He obtained the probability generating function of the queue
size and two stochastic decomposition results for the system
size. Later, Aissani [10] generalized the model of Artalejo [9]
by considering that the retrial time of a customer follows
general distribution. He provided a discrete-event simulation
algorithm which can be used to compute the performance of
themodel. Recently, Chang andKe [11] andKe andChang [12]
studied the �/�/1 retrial queues with � vacations. In their
model, the server takes at most � vacations until at least one
customer is recorded in the orbit as soon as the orbit is empty.

Most of literatures about retrial queues focus on the
continuous-time models. In contrast to the continuous case,
the discrete-time retrial queues received much less attention
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in literatures. However, the discrete-time retrial models are
suitable for the design and analysis of slotted time communi-
cation systems such as asynchronous transfer mode (ATM)
based systems in broadband integrated services digital net-
work (B-ISDN) and circuit-switched time-division multiple
access (TDMA) systems. Yang and Li [13] �rstly studied
some performancemeasures of discrete-time���/�/1 retrial
queues and derived a stochastic decomposition result for
the system size. 
is work was generalized to discrete-time
���/�/1 retrial queue with general retrial times by Atencia
and Moreno [14]. 
e unreliable retrial queues with general
retrial times are studied by Wang and Zhao [15] and Atencia
et al. [16]. For other literatures concerning discrete-time
���/�/1 retrial queue with general retrial times, see Aboul-
Hassan et al. [17, 18],Wu et al. [19],Wang [20], and references
therein. Recently, Zhang et al. [21], Yue and Zhang [22],
and Zhang and Zhu [23] studied the discrete-time retrial
queue with exhaustive vacations. 
e discrete-time retrial
queue with exhaustive single vacations was �rst studied in
Zhang et al. [21]. 
en, the model was generalized to the
case of exhaustive-� vacations by considering that when the
retrial orbit is empty, the server can take at most � vacations
continually. In the work of Zhang and Zhu [23], the case that
the server may break down is considered based on the model
in Yue and Zhang [22].

Most recently, Wu and Yin [24] investigated an unre-
liable �/�/1 retrial �-queue with nonexhaustive random
vacation. In contrast to the literatures mentioned above,
they assumed that the server takes nonexhaustive random
vacations; that is, the server can start a vacation aer an
exponentially distributed time when the server is busy or
idle. To the best of our knowledge, there is no published
work on discrete-time���/�/1 retrial queue with exhaustive
single vacation or nonexhaustive vacations. Although the
discrete-time retrial queue with exhaustive random vacations
[21–23] has been studied in the past, the case that the
server can take nonexhaustive random vacation has not been
studied in discrete-time case. In this work, we combine the
nonexhaustive random vacation policy and exhaustive single
vacation and consider discrete-time retrial queues with two
di�erent types of vacations which is very di�erent from the
previous work [21–23]. However, it should be pointed out
that, in all the aforementioned papers, exhaustive vacation
policy is assumed. Our objective in this paper is to study
the discrete-time retrial queue with both the no-exhaustive
urgent vacation policy and exhaustive single vacation policy.
Due to the fact that the no-exhaustive vacation is introduced
to the model, new e�orts have to be made to overcome
the more involved steady-state analysis which include the
analysis of the stability of our system and the more involved
di�erence equations. Meanwhile, we prove that there is only
one stochastic decomposition property for the system size in
contrast to the model [21, 23]. So, the analysis in this paper is
not a simple repetition of work in [21–23]. 
is motivates us
to investigate such queueing systems in this work.

A possible application of our model is in mobile cellular
networks. For an accurate analysis of a mobile cellular
network, it can not be ignored that blocked calls are able to
redial aer some random time [25–27]. In order to simplify

the mathematical analysis of the model, we consider only
one cell and one channel in the mobile cellular network
cellular retrials. If a fresh call is blocked because the channel
is unavailable, it enters the retrial orbit and retries to get
service aer some random length of time. Aer �nishing
a call, the base station begins a process of search in order
to handle the calls from the retrial orbit in accordance
with an FCFS discipline; that is, only the �rst call in the
retrial orbit is permitted to get the service when the channel
is available. 
is kind of retrial policy arises naturally in
many practical problems in communication and computer
networkswhere the server is required to search for customers;
readers are referred to [28–30]. In order to reduce the energy
consumption of the mobile cellular network, the base station
can be switched o� while there is no call in the retrial orbit.
During the period that the base station is switched o�, the
new arrival fresh calls are deposited in the orbit and the
base station will seek to serve the calls from the retrial orbit
aer the channel is switched on. 
e period when the base
station is switched o� may be considered as normal vacation.
In addition, if the base station receives an urgent inhibiting
signal during serving, it is unavailable for some time and
the call being served enters the orbit. 
is process may be
considered as urgent vacation and the calls in the retrial orbit
are not allowed for access to the server while the server is on
vacations.


e rest of the paper is organized as follows. In Section 2,
the description of our model is given. In Section 3, the
steady-state analysis for the considered queueing system is
presented and the generating functions of the number of
customers in the orbit and in the system are obtained. We
also obtain the closed-form expressions of some performance
measures of the system. We also proved that there is a
stochastic decomposition result for the system size in our
model. In Section 4, relationship between our model and the
continuous-time counterpart is given. Section 5 gives some
numerical results to show the e�ect of some parameters
on several performance measures. Finally, conclusions and
future research are given in Section 6.

2. The Mathematical Model

In this paper, we consider a discrete-time ���/�/1 retrial
queue with two di�erent types of server vacations. It is
assumed that the time axis is segmented into a sequence of
equal intervals, called slots, and all queueing activities occur
at slot boundaries. Let the time axis be marked by 0, 1, 2, . . ..
We assume that the departures and the end of the vacations
occur in the interval (�−, �), while arrivals, retrials, and the
beginning of the vacations occur in the interval (�,�+) in
sequence. 
e detailed description of our model is given as
follows.

Customers arrive according to a geometrical arrival pro-
cess with parameter 	, where 	 (0 < 	 < 1) is the probability
that an arrival occurs in a slot. 
ere is no waiting space
in the system. If an arriving customer �nds the server free,
the customer is served immediately and leaves the system
forever aer service completion. Otherwise, if an arriving
customer �nds that the server is busy or on vacation, in order
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to retry his request aer some random time, the retrial time
is assumed to follow a general probability distribution {
�}∞�=0
with the generating function �(�) = ∑∞�=0 
���, 0 ≤ � ≤ 1.


e service time is assumed to follow a general probability
distribution variable {��}∞�=1 with the generating function

�(�) = ∑∞�=1 ����, 0 ≤ � ≤ 1, the �rst moment �1, and the
second factorial moment �2 = ∑∞�=1 �(� − 1)��.

It is assumed that the server can take two di�erent types
of vacations.
e �rst type of vacation is called nonexhaustive
vacation; that is, the server may take an urgent vacation

with probability � = 1 − �, when the server is serving a
customer, where � is the probability that the server does
not take urgent vacation. If the server takes urgent vacation,
then the customer just being served enters the orbit and
the interrupted customer must restart to receive service. 
e
second type of vacation is called normal exhaustive vacation;
that is, as soon as the orbit is empty, the server takes a
vacation immediately. At the end of both types of vacations,
the server becomes idle and waits for serving the customers
from outside or orbit.


e urgent vacation time (no-exhaustive vacation) is
assumed to follow a general probability distribution {V1,�}∞�=1
with the generating function �1(�) = ∑∞�=1 V1,���, 0 ≤ � ≤
1, the �rst moment �1,1, and the second factorial moment
�1,2 = ∑∞�=1 �(� − 1)V1,�. 
e normal vacation time is assumed
to follow general distribution {V2,�}∞�=1 with the generating

function �2(�) = ∑∞�=1 V2,���, 0 ≤ � ≤ 1, the �rst moment
�2,1, and the second factorial moment �2,2 = ∑∞�=1 �(� − 1)V2,�.

Finally, we suppose that various stochastic processes
involved in the system are assumed to be independent of each
other.

3. The Steady-State Analysis

In this section, we will show the steady-state analysis for
the considered queueing system. Firstly, the Markov chain
underlying the considered queueing system and Kolmogorov
equations of the steady-state probabilities are obtained.
en,
we derive the generating functions of the numbers of cus-
tomers of the system. Finally, someperformancemeasures are
given.

3.1. Markov Chain and Steady-State Equations. At time �+,
let �� be the state of the server, �� = 0, 1, 2 or 3 according
to whether the server is free, busy, on urgent vacation, or on
normal vacation, and let�� be the number of the customers
in the orbit. If �� = 0, �� represents the remaining retrial
time. If �� = 1, �� represents the remaining service time of
the customer currently being served. If�� = 2, �� represents
the remaining urgent vacation time. If �� = 3, �� represents
the remaining normal vacation time. 
us, at time �+, the
system can be described by the process �� = (��, ��, ��).
It can be shown that {��, � = 0, 1, 2, . . .} is a Markov chain
with the following state space:

Ω = {(0, 0)} ∪ {(0, �, �) : � ≥ 1, � ≥ 1}
∪ {(1, �, �) : � ≥ 1, � ≥ 0}

∪ {(2, �, �) : � ≥ 1, � ≥ 1}
∪ {(3, �, �) : � ≥ 1, � ≥ 0} .

(1)

Firstly, we de�ne the stationary probabilities of the
Markov chain {��, � = 0, 1, 2, . . .} as follows:

�0,0 = lim�→∞� {�� = 0,�� = 0} ,
�0,�,� = lim�→∞� {�� = 0, �� = �,�� = �} ;

� ≥ 1, � ≥ 1,
�1,�,� = lim�→∞� {�� = 1, �� = �,�� = �} ;

� ≥ 1, � ≥ 0,
�2,�,� = lim�→∞� {�� = 2, �� = �,�� = �} ;

� ≥ 1, � ≥ 1,
�3,�,� = lim�→∞� {�� = 3, �� = �,�� = �} ;

� ≥ 1, � ≥ 0.

(2)


en, the Kolmogorov equations are obtained as follows:

�0,0 = 	�0,0 + 	�3,1,0, (3)

�0,�,� = 	�0,�+1,� + 	
��1,1,� + 	
��2,1,� + 	
��3,1,�,
� ≥ 1, � ≥ 1, (4)

�1,�,� = �0,�	����0,0 + (1 − �0,�) 	���
∞
∑
�=1

�0,�,�

+ 	����0,1,�+1 + 	����1,1,� + 	
0����1,1,�+1
+ (1 − �0,�) 	��1,�+1,�−1 + 	��1,�+1,�
+ 	
0����2,1,�+1 + (1 − �0,�) 	����2,1,�
+ 	����3,1,� + 	
0����3,1,�+1, � ≥ 1, � ≥ 0,

(5)

�2,�,� = �1,�	�V1,��0,0 + (1 − �1,�) 	�V1,�
∞
∑
�=1

�0,�,�−1

+ 	�V1,��0,1,� + 	�V1,��1,1,�−1
+ 	
0�V1,��1,1,� + (1 − �1,�) 	�2,�+1,�−1
+ 	�2,�+1,� + 	
0�V1,��2,1,�
+ (1 − �1,�) 	�V1,��2,1,�−1 + 	�V1,��3,1,�−1
+ 	
0�V1,��3,1,� + (1 − �1,�) 	�V1,�

∞
∑
�=2

�1,�,�−2

+ 	�V1,�
∞
∑
�=2

�1,�,�−1, � ≥ 1, � ≥ 1,

(6)
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�3,�,� = 	�3,�+1,� + (1 − �0,�) 	�3,�+1,�−1
+ �0,�	V2,��1,1,0, � ≥ 1, � ≥ 0. (7)


e normalizing condition is

�0,0 +
∞
∑
�=1

∞
∑
�=1

(�0,�,� + �2,�,�) +
∞
∑
�=1

∞
∑
�=0

(�1,�,� + �3,�,�) = 1, (8)

where �0,� = 1, if � = 0; otherwise, �0,� = 0 if � ̸= 0.
3.2.�e Generating Functions. To solve (3)–(8), we introduce
the generating functions

$0 (�, %) =
∞
∑
�=1

∞
∑
�=1

�0,�,���%�,

$1 (�, %) =
∞
∑
�=1

∞
∑
�=0

�1,�,���%�,

$2 (�, %) =
∞
∑
�=1

∞
∑
�=1

�2,�,���%�,

$3 (�, %) =
∞
∑
�=1

∞
∑
�=0

�3,�,���%�

(9)

and the auxiliary generating functions

$0,� (%) =
∞
∑
�=1

�0,�,�%�, � ≥ 1,

$1,� (%) =
∞
∑
�=0

�1,�,�%�, � ≥ 1,

$2,� (%) =
∞
∑
�=1

�2,�,�%�, � ≥ 1,

$3,� (%) =
∞
∑
�=0

�3,�,�%�, � ≥ 1.
(10)

Now, we can solve (3)–(8) by using the generating
function technique. We �rst give some lemmas which will be
used later on and their proof which can be readily obtained.

us, they are omitted here.

Lemma 1. �e following inequalities hold:

� (�) ≤ � &�' 0 ≤ � ≤ 1,
�� (�) ≤ � &�' � = 1, 2, 0 ≤ � ≤ 1. (11)

Lemma 2. If 	� + � + �	�1,1 < *1, then the inequality

[% + (1 − %) 	� (	)]Ω (%) − %5 (%) (1 − �5 (%)) > 0 (12)

holds for 0 ≤ % < 1, where
5 (%) = 	 + 	%,

*1 = � (	 + 	� (	))
1 − � (�) ,

Ω (%) = (1 − �5 (%)) � (�5 (%))
+ % [1 − � (�5 (%))] ��1 (5 (%)) .

(13)

Lemma 3. If 	� + � + �	�1,1 < *1, the following limits exist:

lim
�→1

� (%) (1 − �5 (%))
Λ (%) = � [	 (1 − �2,1) − � (	) (	 + �2 (	))]

(1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	)) ,

lim
�→1

(1 − �5 (%)) Γ (%) − (	 + �2 (	))Ω (%)
Λ (%) = � [	 (1 + �2 (	)) − 		�2,1] + (	 + �2 (	)) (1 − � (�)) (	� + � + 	�1,1�)

(1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	)) ,
(14)

where

Γ (%) = 5 (%) (1 + �2 (	)) − 	�2 (5 (%)) ,
� (%) = % (5 (%) − �2 (5 (%))) + � (	) (1 − %) Γ (%) ,
Λ (%) = [% + 	� (	) (1 − %)]Ω (%)

− %5 (%) (1 − �5 (%)) .

(15)

By using Lemmas 1–3, we can obtain the generating
functions of the stationary distribution of the system which
are given by the following theorem.

�eorem4. If 	�+�+�	�1,1 < *1, the stationary distribution
of the Markov chain {��, � = 0, 1, 2, . . .} has the following
generating functions:

$0 (�, %) = � (�) − � (	)
� − 	

⋅ (1 − �5 (%)) Γ (%) − (	 + �2 (	))Ω (%)
Λ (%)�2 (	) 	�%�0,0,

$1 (�, %) = � (�) − � (�5 (%))
� − �5 (%)

� (%) (1 − �5 (%))
Λ (%)�2 (	)

⋅ 	���0,0,
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$2 (�, %) = �1 (�) − �1 (5 (%))
� − 5 (%)

� (%) [1 − � (�5 (%))]
Λ (%) �2 (	)

⋅ 	��%�0,0,
$3 (�, %) = 	� [�2 (�) − �2 (5 (%))]

[� − 5 (%)] �2 (	) �0,0,
(16)

where

�0,0 = (1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	))
�� (�) [	 (1 − �2,1) − � (	) (	 + �2 (	))]

⋅ �2 (	) .
(17)

Proof. Multiplying (4)–(7) by %�, and summing over �, we get
the following equations:

$0,� (%)
= 	$0,�+1 (%) + 	
� ($1,1 (%) + $2,1 (%) + $3,1 (%))

− 	
� (�1,1,0 + �3,1,0) , � ≥ 1,
(18)

$1,� (%)
= 	����0,0 + 	���$0 (1, %) + 	

% ���$0,1 (%)
+ (	 + 	%) �$1,�+1 (%)
+ (	 + 	
0

% ) ��� ($1,1 (%) + $2,1 (%) + $3,1 (%))

− 	
% 
0��� (�1,1,0 + �3,1,0) , � ≥ 1,

(19)

$2,� (%)
= 	%�V1,��0,0 + 	%�V1,�$0 (1, %) + 	�V1,�$0,1 (%)

+ (	 + 	%) $2,�+1 (%)
+ (	% + 	
0) �V1,� ($1,1 (%) + $2,1 (%) + $3,1 (%))
+ %5 (%) �V1,�$1,1 (%) − 	
0��2,� (�1,1,0 + �3,1,0) ,

� ≥ 1,

(20)

$3,� (%) = (	 + 	%) $3,�+1 (%) + 	V2,��1,1,0, � ≥ 1. (21)

Multiplying (21) by ��, summing over �, and letting 5(%) =
	 + 	%, we get

� − 5 (%)
� $3 (�, %) = −5 (%) $3,1 (%) + 	�2 (�) �1,1,0. (22)

Setting � = 5(%) in (22), we get

$3,1 (%) = 	�2 (5 (%))
5 (%) �1,1,0. (23)

Substituting (23) into (22), we obtain

$3 (�, %) = 	� [�2 (�) − �2 (5 (%))]
� − 5 (%) �1,1,0. (24)

Di�erentiating (24) with respect to � and setting � = % = 0,
we get

�3,1,0 = �2 (	) �1,1,0. (25)

Substituting (25) into (3), we get

�1,1,0 = 	�0,0
	�2 (	) . (26)

Multiplying (18)–(20) by ��, summing over �, and using (23),
(25), and (26), we obtain that

� − 	
� $0 (�, %) = 	 (� (�) − 
0) ($1,1 (%) + $2,1 (%))
− 	$0,1 (%) − 	 (� (�) − 
0)
⋅ 5 (%) (1 + �2 (	)) − 	�2 (5 (%))

�2 (	) 5 (%) �0,0,
(27)

� − 5 (%) �
� $1 (�, %) = [	% + 	
0

% �� (�) − �5 (%)]

⋅ $1,1 (%) + 	
% �� (�) $0,1 (%) + 	% + 	
0

% �� (�)
⋅ $2,1 (%) + 	�� (�) $0 (1, %)
+ D (%) − 
05 (%) (1 + �2 (	))

%�2 (	) 5 (%) 	�� (�) �0,0,

(28)

� − 5 (%)
� $2 (�, %) = [(	
0 + 	%) ��1 (�) − 5 (%)]
⋅ $2,1 (%) + 	��1 (�) $0,1 (%)
+ [(	% + 	
0) − (	%2 + 	%)] ��1 (�) $1,1 (%)
+ 	%��1 (�) $0 (1, %) + % (	% + 	) ��1 (�) $1 (1, %)
+ D (%) − 
05 (%) (1 + �2 (	))

�2 (	) 5 (%) 	��1 (�) �0,0,

(29)

where D(%) = %5(%)�2(	) + (	% + 	
0)�2(5(%)).
In order to �nd $0(1, %) in (28), we set � = 1 in (27) and

get

	$0 (1, %)
= 	 (1 − 
0) ($1,1 (%) + $2,1 (%)) − 	$0,1 (%)

− 	 (1 − 
0) 5 (%) (1 + �2 (	)) − 	�2 (5 (%))
�2 (	) 5 (%) �0,0.

(30)



6 Mathematical Problems in Engineering

Substituting (30) into (28), we get

� − 5 (%) �
� $1 (�, %)

= [% + 	
0 (1 − %)
% �� (�) − �5 (%)] $1,1 (%)

+ 	 (1 − %)
% �� (�) $0,1 (%) + % + 	
0 (1 − %)

% �� (�)

⋅ $2,1 (%) − % [5 (%) − �2 (5 (%))] + 
0 (1 − %) Γ (%)
%�2 (	) 5 (%)

⋅ 	�� (�) �0,0.

(31)

Note that, by setting � = 1 in (31), we can get $1(1, %); then
substituting $0(1, %) and $1(1, %) into (29), we get

� − 5 (%)
� $2 (�, %) = [% + 	
0 (1 − %)

1 − �5 (%) ��1 (�) − 5 (%)]

⋅ $2,1 (%) + 	 (1 − %)
1 − �5 (%)��1 (�) $0,1 (%)

+ (	% + 	
0) (1 − %)
1 − �5 (%) ��1 (�) $1,1 (%)

− % [5 (%) − �2 (5 (%))] + 
0 (1 − %) Γ (%)
�2 (	) 5 (%) (1 − �5 (%)) 	��1 (�)

⋅ �0,0,

(32)

where Γ(%) = 5(%)(1 + �2(	)) − 	�2(5(%)).
Setting � = 	 in (27), � = �5(%) in (31), and � = 5(%) in

(32), respectively, we can get the equations for $0,1(%), $1,1(%),
and $2,1(%). By solving these equations, we get the generating
functions as follows:

$0,1 (%) = 	% (� (	) − 
0)
⋅ (1 − �5 (%)) Γ (%) − (	 + �2 (	))Ω (%)

Λ (%)�2 (	)
�0,0
	 ,

$1,1 (%) = � (%) (1 − �5 (%)) 	� (�5 (%))
Λ (%)�2 (	) 5 (%) �0,0,

$2,1 (%) = � (%) % [1 − � (�5 (%))] 	��1 (5 (%))
Λ (%)�2 (	) 5 (%) �0,0.

(33)

Using Lemmas 1–3, it is easy to show that $0,1(%), $1,1(%),
and $2,1(%) are de�ned for % ∈ [0, 1) and can be extended by

continuity in % = 1, if 	� + � + �	�1,1 < *1. Now substituting
(26) into (24) we can get $3(�, %). Similarly, substituting (33)
into (27), (31) and (32), we obtain $0(�, %), $1(�, %), and$2(�, %). Using the normalizing condition, we can �nd the
unknown constant �0,0. 
is completes the proof.

3.3. Performance Measures. In this subsection, we give some
performance measures based on 
eorem 4. 
e results are

summarized in the following corollary and the proof is
omitted here. For convenience, we de�ne variable � as the
orbit size and H as the system size.

Corollary 5. (1) �e marginal generating function of the
number of customers in the orbit when the server is idle or on
vacation is given by

�0,0 + $0 (1, %) + $2 (1, %) + $3 (1, %)

= [(	� + �) � (�5 (%)) − 	�%]� (%)
Λ (%)�2 (	) �0,0.

(34)

(2) �e marginal generating function of the number of
customers in the orbit when the server is busy is given by

$1 (1, %) = [1 − � (�5 (%))] � (%)
Λ (%)�2 (	) 	��0,0. (35)

(3) �e marginal generating function of the number of
customers in the orbit when the server is on urgent vacation
is given by

$2 (1, %)
= 1 − �1 (5 (%))

1 − %
� (%) [1 − � (�5 (%))]

Λ (%) �2 (	) �%�0,0.
(36)

(4) �e marginal generating function of the number of
customers in the orbit when the server is on vacation is given
by

$3 (1, %) = 1 − �2 (5 (%))
(1 − %)�2 (	)�0,0. (37)

(5) �e generating function of the number of customers in
the orbit is given by

Ψ (%) = �0,0 + $0 (1, %) + $1 (1, %) + $2 (1, %)
+ $3 (1, %)

= [�� (�5 (%)) + 	� (1 − %)] � (%)
Λ (%)�2 (	) �0,0.

(38)

(6) �e probability generating function of the number of
customers in the system is given by

Φ (%) = �0,0 + $0 (1, %) + %$1 (1, %) + $2 (1, %)
+ $3 (1, %)

= [� + 	� (1 − %)] � (�5 (%)) � (%)
Λ (%)�2 (	) �0,0.

(39)

Corollary 6. (1) �e probability that system is empty is

�0,0

= (1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	))
�� (�) [	 (1 − �2,1) − � (	) (	 + �2 (	))]

⋅ �2 (	) .

(40)
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(2) �e probability that the server is idle is

�0,0 + $0 (1, 1) + $2 (1, 1) + $3 (1, 1)
= 1 − 	� (1 − � (�))

�� (�) . (41)

(3) �e probability that the server is busy is

$1 (1, 1) = 	� (1 − � (�))
�� (�) . (42)

(4) �e probability that the server is on urgent vacation is

$2 (1, 1) = 	�1,1 (1 − � (�))
� (�) . (43)

(5) �e probability that the server is on normal vacation is

$3 (1, 1) = 	�2,1

⋅ (1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	))
�� (�) [	 (1 − �2,1) − � (	) (	 + �2 (	))] .

(44)

(6) �e mean number of customers in the orbit is

K (�) = Ψ	 (%)LLLLL�=1 =
2	� (��	 (�) − 1) [	 (1 − �2,1) − � (	) (	 + �2 (	))] + 2�� (�)O − 	2�2,2

2�� (�) [	 (1 − �2,1) − � (	) (	 + �2 (	))]

− � (1 − � (�)) 	2�1,2 + 2 [1 − 	� (	)]P + 2Q
2 (1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	)) .

(45)

(7) �e mean number of customers in the system is

K (H) = Φ	 (%)LLLLL�=1 =
2	� (��	 (�) − 1) [	 (1 − �2,1) − � (	) (	 + �2 (	))] + 2�� (�)O − 	2�2,2

2�� (�) [	 (1 − �2,1) − � (	) (	 + �2 (	))] + 	� (1 − � (�))
�� (�)

− � (1 − � (�)) 	2�1,2 + 2 [1 − 	� (	)]P + 2Q
2 (1 − � (�)) (	� + � + 	�1,1�) − � (	 + 	� (	)) ,

(46)

where

O = 	 (1 − �2,1) − � (	) (	 + 	�2 (	) − 		�2,1) ,
P = � (1 + 	�1,1) (1 − � (�)) − 	�� (�) ,
Q = � (1 − � (�)) 	�1,1 − 2	��	 (�) (	� + � + 	�1,1�)

− 	 (� − � − 	�) .

(47)

Remark 7. Consider some special cases.
(i) When 
0 = 1, that is, the case of no retrial, Φ(%)

reduces to

Φ (%)

= [� + 	� (1 − %)] � (�5 (%)) [� − (1 − � (�)) (	� + � + 	�1,1�)]
Ω (%) − % (1 − �5 (%))

× 1 + �2 (	) (1 − %) − �2 (5 (%))
	�1 + �2 (	) ,

(48)

which is the generating function of the number of customers
in the orbit for the���/�/1 queue with two di�erent types of
vacations without retrial customers.

(ii) When � = 1, that is, the case of no urgent vacation,
Φ(%) reduces to

Φ (%)
= � (%)

[% + 	� (	) (1 − %)] � (	 + 	%) − % (	 + 	%)
⋅ 	 + 	� (	) − 	�1
(	 + �2 (	))� (	) + 	�2,1 − 	,

(49)

which is the generating function of the number of customers
in the orbit for the discrete-time ���/�/1 general retrial
queue with single vacation. 
e stochastic decomposition
property for the system size was proposed by Fuhrmann
and Cooper [31] in the queueing systems with vacations.

e property of stochastic decomposition can be applied to
study the proximity between the steady-state distribution
for the standard queueing system without vacations and the
corresponding queueing system with vacations. Artalejo and
Falin [32] obtained a similar stochastic decomposition result
for a retrial queue. In this section, we obtain the property of
stochastic decomposition of the system size for our model,
which is given by the following theoremandwe�nd that there



8 Mathematical Problems in Engineering

is only one stochastic decomposition property for the system
size in contrast to the model [21, 23].

�eorem 8. �e total number of customers (H) in the system
can be decomposed as the sum of two independent random
variables H = H1 + �1. H1 is the number of customers in the
���/�/1/queue with urgent vacation and�1 is the number of
repeated customers given that the server is idle or on normal
vacation.

Proof. Aer some algebra operation, Φ(%) can be expressed
by

Φ (%) = Φ1 (%)Φ2 (%) , (50)

where

Φ1 (%)
= (1 − �5 (%)) � (�5 (%)) (1 − %)

(1 − �5 (%)) [� (�5 (%)) − %] + % [1 − � (�5 (%))] ��1 (5 (%))

× �� (�) − (1 − � (�)) [	� + 	��1,1]
�� (�)

(51)

is the generating function of ���/�/1 queue with urgent
vacation and Φ2(%) is given by

Φ2 (%)

= (1 − �5 (%)) [� (�5 (%)) − %] + % [1 − � (�5 (%))] ��1 (5 (%))
(1 − %) Λ (%)�2 (	)

⋅ �0,0 × �� (�) � (%)
�� (�) − (1 − � (�)) [	� + 	��1,1]

.
(52)

It is easy to verify that

Φ2 (%) = �0,0 + $0 (1, 1) + $3 (1, %)
�0,0 + $0 (1, 1) + $3 (1, 1) , (53)

which is the generating function given that the server is idle
or on normal vacation.

In order to prove that Φ1(%) is the generating function
of ���/�/1 queue with urgent vacation, we use the same
notations as in the previous sections; then we can get the
following equations:

�0,0 = 	�0,0 + 	�1,1,0,
�1,�,� = �0,�	����0,0 + 	����1,1,� + 	����1,1,�+1

+ (1 − �0,�) 	��1,�+1,�−1 + 	��1,�+1,�
+ 	����2,1,�+1 + (1 − �0,�) 	����2,1,�

� ≥ 1, � ≥ 0,

�2,�,� = �1,�	�V1,��0,0 + 	�V1,��1,1,�−1 + 	�V1,��1,1,�
+ (1 − �1,�) 	�2,�+1,�−1 + 	�2,�+1,�
+ 	�V1,��2,1,� + (1 − �1,�) 	�V1,��2,1,�−1
+ (1 − �1,�) 	�V1,�

∞
∑
�=2

�1,�,�−2

+ 	�V1,�
∞
∑
�=2

�1,�,�−1 � ≥ 1, � ≥ 1,
(54)

with the normalizing condition

�0,0 +
∞
∑
�=1

∞
∑
�=0

�1,�,� +
∞
∑
�=1

∞
∑
�=1

�2,�,� = 1. (55)

Solving the above equations, we can get that the generat-
ing function of the system size is

Φ1 (%)
= (1 − �5 (%)) � (�5 (%)) (1 − %)

(1 − �5 (%)) [� (�5 (%)) − %] + % [1 − � (�5 (%))] ��1 (5 (%))

× �� (�) − (1 − � (�)) [	� + 	��1,1]
�� (�) .

(56)


is completes the proof.

4. Relation to Corresponding
Continuous-Time Model

In this section, we prove that our model can be used
to approximate the corresponding continuous-time �/�/1
general retrial queueing system with two di�erent types
of vacations. For this continuous-time model, we give the
corresponding assumption. Speci�cally it is assumed that the
arrival process of customers is a Poisson process with rate
M. If an arriving customer �nds the server free, he begins
his service immediately. Otherwise, if the server is busy or
on vacation, the customer joins the orbit. Once the system
becomes empty, the server takes a normal exhaustive single
vacation immediately. In addition, the server may take an

urgent vacation with probability � = 1 − � when the server
is serving a customer. 
e retrial times, the service times,
the urgent vacation times, and the normal vacation times
have general distributions denoted by N(�), �(�), �1(�), and�2(�), respectively, and their Laplace-Stieltjes transforms are

denoted by Ñ(�), �̃(�), �̃1(�), and �̃2(�), respectively, and
their �nite means are denoted by N1, �1 and �1,1 and �2,1,
respectively.

Suppose that the time is divided into intervals of equal
length Δ. Using the technique given by Yang and Li [13],
the continuous-time �/�/1 retrial queue model can be
approximated by a discrete-time model.
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Let

	 = MΔ,

� = ∫(�+1)Δ

�Δ
SN (�) ,

�� = ∫�Δ
(�−1)Δ

S�� (�) ,

V�,� = ∫�Δ
(�−1)Δ

S�� (�) , T = 1, 2.

(57)

By using the de�nition of Lebesgue integration, we can get
the following results:

lim
Δ→0

	��,1 = M��,1, � = 1, 2,

lim
Δ→0

� (�5 (%)) = �̃ [M (1 − %) + �] ,
lim
Δ→0

* = MK (�) ,
lim
Δ→0

�� [5 (%)] = �̃� [M (1 − %)] , � = 1, 2,
lim
Δ→0

�2 (	) = �̃2 (M) ,
lim
Δ→0

� (	) = � (M) .
(58)

From the above relations, we obtain the generating functions
of the number of customers in the orbit for the corresponding
continuous-time�/�/1 retrial queuemodel with two di�er-
ent types of vacations which is given as follows:

lim
Δ→0

Φ (%) = % (1 − �̃2 [M (1 − %)]) + Ñ (M) (1 − %) [1 + �̃2 (M) − �̃2 (M (1 − %))]
[V (%) �̃ [V (%)] + % [1 − �̃ [V (%)]] ��̃1 [M (1 − %)]] [Ñ (M) (1 − %) + %] − %V (%)

× �Ñ (M) − [1 − �̃ (�)] [M + � + M�1,1�]
[M�2,1 + Ñ (M) �̃2 (M)] ��̃ (�) V (%) �̃ [V (%)] ,

(59)

where V(%) = � + M(1 − %).
5. Numerical Results

In this section the results of some numerical examples are
given to illustrate the e�ect of some parameters on the
characteristics of the system. Speci�cally we consider two
performance measures: the probability that the system is
empty �0,0 and the mean orbit size K(�).

We assume that the retrial times, the service time, the
urgent vacation, and the normal vacation time are all geomet-
ric distributions with parameters ', W, V1, and V2, respectively.

eir generating functions are given by

� (�) = 1 − '
1 − '� ,

� (�) = (1 − W) �
1 − W� ,

�1 (�) = (1 − V1) �
1 − V1� ,

�2 (�) = (1 − V2) �
1 − V2�

(60)

for 0 ≤ � ≤ 1.
For convenience, we choose the arrival rate 	 = 0.2, the

retrial rate ' = 0.1, and the service rate W = 0.3 in all the
numerical examples. In Figures 1 and 2, the probability �0,0
that the system is empty is plotted against the parameter �,
where � is the probability that the server does not take urgent
vacation. We choose �1,1 = 5/4, 5/3, and 2 and �2,1 = 2 in

Figure 1, and we choose �2,1 = 2, 5, and 10 in Figure 2. From
Figures 1 and 2, we observe that �0,0 increases signi�cantly
with parameter �.

For di�erent values of themean urgent vacation time�1,1,
we observe that �0,0 decreases with increasing values of �1,1
in Figure 1. As the mean urgent vacation time increases, the
expected waiting time for a customer increases, and therefore
the probability that the system is empty �0,0 decreases. In
Figure 2, it is observed that �0,0 decreases with the increasing
values of �2,1.

In Figures 3 and 4, the mean number K(�) of customers
in the orbit is plotted against the parameter �. Speci�cally, we
choose�1,1 = 5/4, 5/3, and 2 in Figure 3, andwe choose�2,1 =2, 5, and 10 in Figure 4. From Figures 3 and 4, we observe
that K(�) exhibits a stable decreasing with the increasing
of parameter �. In addition, we can observe in Figure 3 that
K(�) increases with �1,1. As the mean urgent vacation time
increases, themean sojourn time for a customer increases and
therefore the number of customers in the system increases.
Moreover, the parameter � a�ects K(�) more apparently
when the value of the parameter � is getting small. In other
words, the parameter � hardly a�ects K(�) when � goes to 1.

It is observed in Figure 4 that the mean orbit size K(�)
also increases with increasing values of �1,1. Moreover,
when � is getting small the parameter � a�ects K(�) more
apparently.

6. Conclusions and Future Research

In this work, we study discrete-time retrial queues with
two di�erent types of vacations in which the server can
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Figure 1: �0,0 versus � for 	 = 0.2, ' = 0.1, W = 0.3, and V2 = 0.5.
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Figure 2: �0,0 versus � for 	 = 0.2, ' = 0.1, W = 0.3, and V1 = 0.5.

take exhaustive single vacation and nonexhaustive urgent
vacation. We �rstly analyze the Markov chain underlying the
considered queueing system and present some performance
measures of the system such as the generating functions
of system state distribution, the mean orbit size, and sys-
tem size. Secondly, a stochastic decomposition result and
the relationship between our model and the corresponding
continuous-timemodel are given. Finally, we show the e�ects
of di�erent parameters on some of the main performance
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Figure 3: K(�) versus � for 	 = 0.2, ' = 0.1, W = 0.3, and V1 = 0.5.
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Figure 4: K(�) versus � for ' = 0.1, W = 0.3, 	 = 0.2, and V2 = 0.9.

measures through some numerical examples. 
e waiting
time and busy period in our model are quite di�cult to
obtain due to the possible nonexhaustive vacations of the
server. In case of server’s nonexhaustive vacation, the service
process of a customer may be interrupted and the customer
enters the orbit. 
is complicates the analysis of waiting time
distribution of a tagged customer in the orbit. 
us, the
waiting time distribution and the busy period deserve further
investigation in the future.
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Appendix

Proof of Lemma 2

Proof. De�ne the functions &(%) = 	�(	)(1 − %)Ω(%) +
%�52(%) and \(%) = %5(%) for 0 ≤ % < 1. It is easy to verify

that &	(1) = (1 − �(�))(	� + � + 	�1,1�) − 1 − 	� − �	�(	)
and \	(1) = 1 + 	. 
us &	(1) < \	(1) is equivalent to

	� + � + �	�1,1 < *1. Since &		(%) = [1 − 	�(	)]Ω(%) +
[% + 	�(	)(1 − %)]Ω	(%) + �52(%) + 2	�%5(%) > 0 and
\		(%) = 2	 > 0, we have that &(%) and \(%) are convex. So,
we have &(%) > \(%) for 0 ≤ % ≤ 1.
RemarkA.1. Let�0,0 > 0; we obtain that	�+�+�	�1,1 < *1 is
a necessary condition for the stability of our system.Whenwe
consider the special case that “the server can not take urgent
vacation” the above condition can be rewritten as 	�1 − 	 <
	�(	), where the le-hand side is the expected number of
external customers who arrive per service interval and the
right-hand side represents the expected number of repeated
customers who enter service at the epoch at which a service
starts on average. 
is condition agrees with the result in the
discrete-time general retrial queue with exhaustive vacation.
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