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A DISCRETE·TIME TWO·SEX AGE·SPECIFIC STOCHASTIC
POPULATION PROGRAM INCORPORATING MARRIAGE

J. H. Pollard

School of Biological Studies, Macquarie University, North Ryde, N.S.W. 2113 Australia

Abstract-A discrete-time two-sex stochastic population model is dcveloped.
All entities (single males, single females, or couplcs) are grouped accord
ing to their agcs, and during a unit time interval, each entity has a choice
of several outcomes with fixed conditional probabilities. The model as
sumes that the number of marriages between men aged x and women aged
y is equal to the minimum of the number of men aged z desiring marriage
with a woman aged y and the number of women aged y desiring marriage
with a man aged z. It follows that if a large excess of males of a11 ages is
maintained in the population, the female component grows as a multi-type
Galton-Watson process. Under such cireumstances, the females have per
fect freedom in their choice of marriage partner, and the use of a multi
type Galton-Watson proccss is very realistic. The same result is true for
the male component of the population. Ir there are no males (or females) ,
no marriages take place, so the model is realistic on this score also. A
complex computer program is described, and a detailed numerical example
given.

In 1966, a unisexual age-specific dis
crete-time stochastic model for project
ing human populations was developed.
This model evolved from an earlier
discrete-time deterministic model due to
H. Bernardelli (1941), E. G. Lewis
(1942) and P. H. Leslie (1945), but it
may be regarded as a special case of the
multi-type Galton-Watson process (T. E.
Harris, 1963). It was developed from the
population mathematics viewpoint, but
several generalizations were given (J. H.
Po11ard, 1966). Many of the techniques
described are useful for analyzing the
present two-sex model, and we therefore
begin with a summary of earlier results
and include a few extensions of these
results.

The two-sex model is developed in dis
crete time, and entities (single males,
single females, or couples) are grouped
according to their ages. During a unit
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time interval, each entity of a particular
type has fixed conditional probabilities
of following various possible outcomes,
and, except for marriage, the outcome
fo11owed determines the number of enti
ties due to that entity at the end of the
time interval. The number of marriages
between single males aged x and single
females aged y is equal to the minimum
of the number of males agcd x desiring
marriage with a female aged y, and the
number of females aged y desiring mar
riage with a male aged x.

The process is very similar to a multi
type Galton-Watson process with a small
amount of interaction between certain
of the entities. As a model for monogam
ous human populations, the process has
certain desirable features: the model en
sures that if a large excess of males of a11
ages is maintained in a population, the
females have perfect choice in selecting
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their marriage partners, and the female
component of the population grows as a
multi-type Galton-Watson process; a
similar result applies to the males j also
this model (in contrast with certain
other two-sex models) allows no mar
riages to take place if no males (fe
males) exist.

Many mathematical models exist for
human populations, but none of them are
suitable for detailed projection purposes
without certain, rather subjective adjust
ments in the calculations: the two-sex
model described in this paper avoids
many of these difficulties. The demog
rapher is frequently faced with the prob
lem of investigating the effect on a popu
lation of a change in marriage rates, or
of divorce rates, or due to changes in
economic conditions, or due to changes
in government Immigration policy, etc.
It is possible with this model to carry
out objective numerical investigations of
such problems on digital computers.
However it does not seem possible to
derive interesting asymptotic results,
such as those obtained using the simpler
mathematical models.

A computer program of some general
ity has beon developed to use this model
for projection purposes, and a numerical
example is given. One important fact
emerges from the numerical calcula
tions: the probabilities themselves must
be considered as random variables in
any realistic population model.

1. INTRODUCTION

In constructing mathematical models
for human populations ", . . it has
usually been found convenient to ignore
numerical differences between the two
sexes, and to discuss only the growth of
the female population, the male com
ponent being supposed to adjust its num
bers accordingly" (D. G. Kendall, 1949).
Under ideal circumstances, these uni
sexual population models should repre
sent the population quite accurately.
However, in practice, numerical differ-
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ences and age structure differences be
tween the two sexes are important, and
must be borne in mind when analyzing a
population. Furthermore, the various
one-sex models, when applied to the two
sexes separately, usually lead to incom
patible results.

Various bisexual deterministic theories
have been brought forward (e.g, P. H.
Karmel, 1947; A. H. Pollard, 1948). A
two-sex stochastic theory presents a very
difficult problem, and so far only a few
simplified models have been analyzed.
D. G. Kendall [(1949), section 2, (ix)]
mentions the problem of the two sexes
and suggests a few different approaches:

(1) Birtha « men X women (unstable populs
tion; explosion);

(2) Births <X V":'mC:-e=-n""";X..-r--=w:-:Co=m:-::e=n (geometrie
mean);

(3) Births <X (men + women) (somewhat
unrealistic); and

(4) Births <X min (men, women) (perhaps
the most realistic)

Kendall's work inspired L. A. Goodman
(1953) to extend his ideas further. How
ever, in both these discussions an age
structure was ignored. This is clearly an
oversimplification.

In this paper, we describe a discrete
time two-sex stochastic population
model. All entities (single males, single
females, or couples) are grouped accord
ing to their ages, and during a unit time
interval, each entity has a choice of sev
eral out comes with fixed conditional
probabilities. Except for the problem of

marriage, these considerations would
lead us to a multi-type Galton-Watson
process, and the results of an earlier
paper (J. H. Pollard, 1966) would apply.
Our model will assurne that the number
of marriages between men aged x and
women aged y is equal to the minimum

of the number of men aged x desiring
marriage with women aged y and the
number of women aged y desiring mar
riage with men aged x.

This model ensures that if a large ex-
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Two-sex Stochastlc Population Program Incorporatlng Marrlage 187

cess of males of a11 ages is maintained in
a population, the female component of
the population will grow as a multi-type
Galton-Watson process. Similarly, if a
large excess of females of a11 ages is
maintained in a population, the male
component (ignoring illegitimate births)
will grow as a multi-type Galton-Wat
son process. Under such circumstances,
the females (or in the latter esse, the
males) have perfeet freedom in their
choice of marriage partner, and the use
of a multi-type Galten-Watson process
is very realistic,

If there are no males (or females) ,
no marriages take place, so the model is
realistic on this score also. It should be
noted that deterministic means and
stochastic means are not equal for this
type of model, so a stochastic analysis
must be used.

Many results published in an earlier
paper (J. H. Po11ard, 1966) are required
in §6 to analyze the two-sex model.
These are therefore summarized in §2,
and some extensions are given in §3, §4
and §5. A numerical example using the
population projection program is de
scribed in some detail in §6.9.

One important fact emerges from the
numerical example: the calculated vari
ances are much smaller than observed

variances with actual population data,
even when time trends in the probabili
ti es are taken into account. The addi
tional variability must be due to random
fluctuations in the probabilities them
selves. Many mathematical demogra
phers do not realize the importance of
this source of variability, although Z. M.
Sykes (1967) noted the smallnees of the
variances.

2. A SUMMARY OF SoME EARLIER RESULTS

In 1966, the author listed the moments

of the numbers of the various types for

a multi-type Galton-Watson process

in a column vector dimension (k +
k

2 + ... + k"), where k is the number of

types, and n the highest order moment

required. The moments were listed in

this vector m(t) in increasing degree and

dictionary order, and it was shown that

m(t) obeyed a linear recurrence relation

over time of the form:

met + 1) = TMBFm(t). (1)

This linear recurrence relation was de
rived by examining the diagrammatic
representation of such a process. Con
sider, for example, the simple two-type
process described in Figure 1.

Xl (t.)....."z

intermedlar~ X (t+ I)
random variables _ 2 ~ 1

-YI{t)~1=:~-----Y2(t~2§"'" ~·1____ <, ~
Y3 (t. "-I

XZ (t) oe::::::::::::: '25 Y4 (t) <, ~ I ~
'75 ------=::3

branchlnQ -----V5 « ~
probabllltie. transformation Xz (t"l)

constants

TIME t. TIME t+ 1

FIa. l.-Diagrammatic Representation of a Simple Two-type Galten-Watson Process
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188 DEMOGRAPHY, volume 6, number 2, May 19&9

p = .5 0

which is a matrix of dimension tr X ms.

It is now possible to write down T

andB:

two-type example depicted in Figure I,

for example, we define

.2 0

.3 0

(2)

.25

.75

o

o

Q

QXQ

QXQXQ

and

T=

Q = [~ ~ : : ~l
The non-zero elements of P are the

conditional multinomial probabilities for

the individuals involved in the process.

Matrix Q is made up of linear trans

formation constants.

It is necessary to define the Kronecker

product of two matriees Wand Z. Let

W = (W,;) and Z = (Z,;) be matrices of

dimension ( X m and r X s respectively.

Then the Kronecker product of Wand

Z is denoted by W X Z and is defined by

[

WllZ WuZ ... WI"'Z]

W X Z = W:1Z W:2Z.:. W:mZ

WnZ W ,2Z··· W,mZ

(1) The transformation from moments about
the origin to falling factorial moments
is linear. The moments about the origin
are listed in the column vector m(t), so
the factorial moments are listed appro
priately in a column vector F m(t).

(2) The factorial moments of order n of the
intermediary random variables IY, I are
linear functions of the factorial moments
of order n of the random variables IX, (t) I
at time t. It follows that the factorial
moments of the intermediary random
variables IY;} are listed in a vectorBFm(t).

(3) The ordinary moments of the inter
mediary random variables IY,l are linear
functions of the factorial moments of the
IY, I, so the ordinary moments of the
intermediary random variables are listed
appropriately in a vector MBFm(t).

During 80 unit time interval (t, t + 1),
each individual of type 1 has three al
ternatives with fixed multinomial prob
abilities 0.2, 0.3, and 0.5. If the individ
ual follows the first alternative (with
probability 0.2), there will be two in
dividuals of type 1 and one individual
of type 2 at time t + 1 corresponding to
the single individual of type 1 at time t.
Similarly, each individual of type 2 has
two alternatives during the time interval
with probabilities 0.25 and 0.75. If such
an individual follows the first alternative
(with probability 0.25) there will be
three individuals of type 1 and three in
dividuals of type 2 at time t. All the in
dividuals in the process act independ
ently.

The basic steps in the argument for
deriving equation (1) are the following:

(4) The vector random variable at time t + 1
is a linear transformation of the vector
of intermediary random variables. So the
moments at time t are listed appropriately
in the vector m(t + 1) defined by equa
tion (1).

and

B=

P

PXP

PXPXP

(3)

The forms of matrices T and Bare

given in the above reference. For the
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Two·sex Stochastlc Population Program Incorporatlng Marrlage 189

F has no non-zero submatrices above the

Complete details about the matrices F

and M, however, were not given. It was

merely stated that F had the form

I

1 1 1 1 1 1

1 1 1 1 1 2

1 1 1 1 1 3

(i digits) (5)

1 1 1 1 1 k

1 1 1 1 2 1

k k k k k k

The columns of this submatrix may be

represented by similar numbers, except

that these will be j digits:

The element of the Bubmatrix F i i may

be shown to be

1 "
l II s(I", J,,)(J.)! (8)
,. ,,-1

(s(I", J,,) is a Stirling number of the

first kind (J. Riordan, 1958, p. 32)]. To

see that this is true, consider for example

The expectation e[U"y l
] occurs (k + l)!/

kIll times in the section of the moment

vector corresponding to moments of

order (k + l). So the (k + 1) !/k!l! ele

ments in submatrix Fm+...1:+1 correspond

ing to the expectations e[U"y'] are

s(m, k)k!s(n, l)l!/(k + l)! The generaliza

tion of this result is expression (8).

This expression may be regarded as a

general form for an element of any sub

matrix F i i of F. If j > i, at least one J.

.. "
:E :E s(m, k)s(n, l) e[U"y l

]

"-0 1-0

e[U(U - 1)(U - 2) (U - m + 1)

. Y(Y - l)(Y - 2) (Y - n + 1)]

e{[ ~ s(m, k) U" ] [ ~ ß(n, l)Y
I

] }

diagonal. Further, we have fixed the form

of the on-diagonal blocks; therefore i > j.

We now wish to obtain the value of an

element in the F i l submatrix, It is possi

ble to expand its row number in the

form of (5) above, and then count the

number of l's, the number of 2's, ... ,

the number of k's. Let these numbers be

11 , 12 , '" , I" respectively.

SimiIarly, the column number of the

element may be expressed in the form

of (6) above, and we may then count

the number of l's, the number of 2's, "',

the number of k's. Let us call these

numbers J 1 , J 2 , J" respectively.

Clearly,

" "i = :E I", and j = :E J.. (7)

(4)

(j digits) (6)

I X I X I

111

I X I

111

k k k k k k k k k

and that M had a similar form. Let us

now consider F in some detail. Because

of the redundant method of writing

down the moments in the vector m(t),

the form of the matrix is not unique,

and indeed some of the F;; submatrices

have an infinite number of possible

forms, We describe here the form gener

ated by the computer program for

TITAN, the computer of the Mathemati

eal Laboratory at the University of

Cambridge. It is perhaps the most ele

gant form.

The submatrix F i i is of dimension

(k;) X (k'), where k is the number of

types in the branching process. The rows

of this submatrix may be represented by

numbers of the form:

F=
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will be greater than the corresponding I"
and the Stirling number s(I", J,,) will be

zero. The element is therefore zero. To

obtain the elements of the diagonal

blocks, we must consider i = i: formula

(8) does not, however, yield the useful

submatrices I X I, I X I X I, ... .

The results for the submatrix Mif of

the matrix Mare strictly analogous. The

dimensions of Mare (K
i
) X (K f

) , where

K is the number of conditional branch

ing probabilities. Replacing k by K in the

above argument, we obtain
Je Je

i = LI", and ; = L J ". (9)
,,-1 .-1

The element of the submatrix Mi{ may

be shown to be

1 Je

l TI S(I", J,,)(J,,) I (10)
1· ..-I

[S(I", J ..) is a Stirling number of the

second kind (J. Riordan, 1958, p. 32)].

The comments made about formula (8)

also apply to formula (10).

Frequently, expectations and quad

ratic moments are the only moments of

interest. Indeed, these are the only mo

ments required in §6 to analyze the two

sex model. The matrix F then has a very

simple form:

F- [F:l I: Il (11)

The rows of F 2 1 may be expressed as num

ber pairs (1, 1), (1,2), ... , (1, k), ••. ,

(k, k) as in (5) and the columns of Fn

may be denoted by single numbers

1, 2, ... , k. Then a11 the elements of

F21 are zero, except the element in the

Ci,;) rowand the j column (;= 1, 2,"', k).

This element is minus one,

For expectations and quadratic mo

ments, M too has a simple form:

M - [ I 0 J. (12)

Mn I X I

DEMOGRAPHY, volume 6, number 2, May 1969

All the elements of Mn are zero, except
the element in the Ci, j) row and the i
column Ci = 1, 2, •.• , K). This element

IS one,

These results for first and second order

moments are very useful computation

ally, We may list expectations and

second order moments in the vector

met). It is not necessary to store the

matrix F, since premultiplication by F
is equivalent to subtracting each expecta

tion from the corresponding second order

(squared) moment. It is not necessary

to store B, only P, and P may be stored

in a very compact form. Premultiplica

tion of Fm(t) by Bisstraightforward. It
is not necessary to store M, sinee pre

multiplication by M is equivalent to the

addition of each expectation (of an inter

mediary random variable) to the corre

sponding second order (squared) mo

ment. Q needs to be stored (often in a

compact form) but not T, and premulti

plication by T is easily achieved. Pro

gramming the moment analyses for such

processes is straightforward, and numeri

eal results have been obtained in this

manner in several different contexts (e.g.

D. J. Bartholomew, 1968, pp. 51-55;

J. H. Po11ard, 1968a).
It has been shown (J. H. Po11ard,

1966) that if only first and second order
moments are being considered, the mo

ment recurrence relation (l) applies to
expectations and quadratic moments
about the origin. This result simplifies
computation still further.

3. MULTI-TYPE GALTON-WATSON

PROCESSES WITH RANDOM BRANCHING

PROBABILITIES

One possible generalization of the
usual multi-type Galton-Watson process
is obtained by assuming that the condi
tional branching probabilities are them
selves random variables. The probabili
ties, as random variables, sre assumed
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Two-sex Stoehastlc Population Program Incorporatlng Marriage 191

independent of the other random vari
ables which represent numbers of indi
viduals.

lt is not difficult to conceive of situa
tions in which this type of model is ap
plicable. Consider, for example, the
population model analyzed by the author
in 1966. lt is a well-known fact that
mortality rates depend upon westher
conditions: a severe winter will cause
mortality rates (especially at the older
ages, and at the very young ages) to
rise; conversely, a mild winter will mean
that the mortality rates experienced are
lighter than usual, Thus there may be
occasions when it is reasonable to con
sider the mortality probabilities as ran
dom variables. [One could also consider
the linear transformation "constants" in
matrix Q as random variables; how
ever, from the point of view of con
structing population models, there does
not seem to be a case for doing so.]

Brauehing process calculations per
formed with fixed conditional probabili
ties and large populations usually lead to
variances considerably smaller than
those encountered in practical situations.
This fact has been noted by Z. M. Sykes
(1967). The additional variability is
usually due to fluctuations in the prob
abilities themselves.

A numerical example is instructive.
Consider 1,000,000 persons subject to a

mortality rate q"" where q/1J has expected
value .002 and standard deviation .0001.
The varianeo in the number of deaths
due to the finite size of the population
is 1,000,000 X .002 X .998, equal to
1,996, whereas the varianeo in the num
ber of deaths due to fluctuations in the
mortality rate q/1J is approximately (1,

000,000)2 X (.0001)2, equal to 10,000.

Thus the total variability arises from
two main sourees: (i) statistical fluctua

tions due to the finite population size;
and (ii) fluctuations in the conditional

probabilities themselves. With large pop
ulations, the second source of variation is

often the greater, but it is usually neg
lected by mathematical demographers.

When stochastic fluctuations in the
probabilities are taken into account, the
linear recurrence relation (1) is changed
only slightly, and takes the form

met + 1) = TM8(B)Fm(t) (13)

This result was proved by J. H. Pollard

(1968b). For this type of model,

8(P X P) ;;c 8(P) X 8(P),

and consequently, the linear recurrence

relation (13) applies only to moments

about the origin and not to central

quadratic moments.

4. SOME STOCHASTIC PROCESSES PERMIT

TING ANALYSES SIMILAR TO THAT OF THE

GALTON-WATSON PROCESS

lt has been shown that all multi-type
Galton-Watson processes may be repre
sented by diagrams like that in Figure
1. The intermediary random variables
{Y;(t)} conditional on the random var
iables {X;(l)} are multinomial random
variables, and the random variables {XI

(t + I)} are linear multiples of the in
termediary random variables.

It is possible to construct other sto
chastic processes using different condi
tional distributions. Some of these will
have linear moment recurrence relations
over time similar to equation (1).

Example 1. Consider Figure 1, and let

YI (t) Ix, (t) be a Poisson random variable

with mean .2 XI(t);

Ya(t) IXI(t) be a Poisson random variable
with mean .3 XI(t);

Ya(t) IK, (t) be a Poisson random variable

with mean .5 z, (t);

Y4(t) IXa(t) be a Poisson random variable

with mean .25 X 2 (t) ;

Y6 (t) IX 2 (t) be a Poisson random variable

with mean .75 X 2 (t) .

These conditional Poisson distributions
are mutually independent. The random
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variables {Xj(t + I)} are obtained from
the {Y j (t)} by linear transformations,
and the transformation constants are
non-negative. If the transformation con
stants are integers, it is soon apparent
that the process is a special multi-type
Galten-Watson process with an infinite
number of conditional branching prob-

DEMOGRAPHY, volume 6, number 2, May 1969

lation exists for the moments in this type
of process, and it is of the form:

m{t + 1) = TEFEBm(t) (15)

The matrices T, Fand B have their usual

forms, and E (which is used for conver

sion between rising and falling factorial

moments) is defined by

E=

(-I)

o

o

o

(-I) X (-I)

o

o

o

(-I) X (-I) X (-I)

abilities. An examination of the moments
of the conditional random variables re
veals that a linear moment recurrence
relation exists for this type of process,
and it has the form:

m(t + 1) = TMBm(t) (14)

The matrices T, M, and Bare the same

as those defined in §2, and all the results

of §2 and §3 may be applied to this

process.

Example 2. Consider the gamma density

fa(Y) = e-uya-I/r{a)

YI(t) I XI(t) has the gamma density with

a = .2 XI(t);

Y 2(t) I XI(t) has the gamma density with

a = .3 XI(t);

Y 3 (t) I XI(t) has the gamma density with

a = .5 XI(t);

Y,(t) I X 2{t) has the gamma density with

a = .25 X 2 {t) ;

Y 6 {t) I X 2 (t) has the gamma density with

a = .75 X 2 (t) .

These conditional gamma distributions
are mutually independent. The random
variables {Xj(t + I)} are obtained from
the {F, (t)} by linear transformations,
and the transformation constants are
non-negative. An examination of the mo
ments of the intermediary random vari
ables reveals that a linear recurrence re-

For this model, the type random vari
ables {Xj(t)} may take any non-nega
tive values, not necessarily integral. All
the results of §2 and §3 may be applied
to the process.

Example S. This example is obtained
by considering the negative multinomial
distribution (W. Feller, 1957). The dis
tribution is obtained by considering the
numbers of the various types of failure
in a multinomial situation before ob
taining exactly r successes. Let the prob
ability of success at each trial be p, and
the probability of a failure of type j at
each trial be Pi> so that P + ~j=l" pj = 1.

The probability of k l Iailures of type
1, k 2 failures of type 2, ... , k; failures
of type n, before exactly r successes is
equal to

P.(k l , k«, .•• , k..)

(r + L k j - I)! ••
= k

l
! ... k..! (r - I)! PI ... P..'v: (16)

If r is set equal to Xl (t), we may con
struct a trivariate distribution for Y I (t),

Y 2 ( t ) and Ya(t) in Figure 1 by allow
ing these random variables to assume
values k t , k 2 and ka respectively, ac
cording to the above distribution. The
randorn variables Y4(t) and Y 5 ( t ) are
similarly-defined conditional random
variables: r is set equal to X 2 ( t ) , and
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probabilities 1jJ', p( ... , p,.' replaee the

probabilities p, PI, •.. , p,. in Iormula
(16).

An examination of thc moments of the
{Yj(t)} reveals that 80 linear moment re

eurrence relation exists for the process,

and it has the form:

m(t + 1) = TMBEFEm(t). (17)

The matriees T, M, E and F have their

usual forms, and B is modified slightly:

.2, .3, .5, .25, and .75 must be replaeed

by PI/P, P2/P, P3/P, PI' /p' and P2' /p'
respeetively. Onee again, 8011 the results

of §2 and §3 may be applied.

Many other models, permitting the
same type of analysis, are possible. It
should be noted that the product matrix
in equations (14), (15) and (17) is 801

ways of the form:

A 0 0

C21 A X A 0

c.. Cu A X A X A

5. IMMIGRATION

In two earlier papers (J. H. Pollard,
1966, 1967) techniques for dealing with
immigration have becn discussed. In
both cases, the number and age-structure
of immigrants are assumed independent

of the overall population, The basic mo
ment recurrence relation (1) is then

modified to

m(t + 1) = TMBFm(t) + r(t + 1), (18)

where r(t + 1) ia the immigration veetor
of moments. These methods are easily
adapted and incorporated in the two-sex
model of §6. Although not discussed in

detail in §6, Immigration may be readily
incorporated in the two-sex analysis,

6. THE TWO-SEX POPULATION MODEL

We consider at discrete points of time

t = 0, 1, 2, ... 80 population eomposed of

three types of entity: single men, single
women, and couples. The single men and
the single women are grouped into age
groups corresponding to the unit inter
vals of time. The couples are grouped ac
cording to the pair of ages (on the same

discrete age-scale). [Thus, for example,
an artificially simple population might

be composed of the following entities:
men aged 0, men aged 1, men aged 2;
women aged 0, women aged 1, women
agcd 2; and four types of couple with
age pairs (1,1), (1,2), (2,1) and (2,
2) .]

Consider first 80 single man aged z.

During 80 unit time interval, he has vari
ous possible alternatives:

(1) die;

(2) merely survive to be aged x + 1, and
not marry;

(3) wish to marry a woman aged YI, and
survive;

(4) wish to marry a woman aged Y" and
survive;

(5) ete. (for the other marriage possibili-
ties).

The outcome he follows is determined by

fixed conditional multinomial probabili
ties.

A single woman aged y has similar
possibilities, but in addition the possibil
ity of an ilIegitimate birth [There is no

theoretical difficulty in incIuding multi
ple births. However, because one con

finement in about eighty resuIts in a
multiple birth, and we assume a reason
ably small time unit, we shall ignore
them (J. H. Pollard, 1966).]:

(1) die;
(2) have an illegitimate son and survive i

(3) have an illegitimate daughter and sur-
vive;

(4) merely survive to be aged y + 1;

(5) wish to marry man aged z, and survive;
(6) wish to marry man aged z, and survive;
(7) ete. (for the other marriage possibili-

ties) .

A married couple, busband aged x,
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wife aged y, has the following possibili
ties during a unit time Interval :

(1) merely survive as a couple;
(2) husband die and wife survive to be a

single woman aged y + 1 j

(3) wife die and husband survive to be a
single man aged x + 1;

(4) divorce and both survivej

(5) son born and couple survives:
(6) daughter born and couple survives,

[For reasons given above, multiple births
have been ignored.]

For single men, single women, and
couples, certain possibilities involving
probabilities of smaller order have been
ignored [e.g. for a couple, the possibility
of the husband dying and a son being
born during the same time interval].
There is no theoretical difficulty in in
cluding these possibilities, and indeed,
they should be included if the probabili
ties are appreciable.

All the outcomes listed above (except
the "wish to marry" out comes) imme
diately determine the numbers of the
various entities at time t + 1 in a multi
type Galton-Watson fashion. The only

DEMOGRAPHY. volume 6, number 2. May 1969

difficulty is caused by marriage: the
model assumes that the number of mar
riages between men aged x and women
aged y is equal to the minimum of the
number of men aged x desiring marriage
with a woman aged y and the number of
women aged y desiring marriage with a
man aged x.

It is elear that the entities could be
further subdivided according to social
class, race, duration of marriage, number
of previous ehildren, whether unmarried,
widowed or divoreed, etc. No theoretieal
diffieulties arise, but eomputational and
data diffieulties will erop up. The compu
tational diffieulties may soon be a thing
of the past with the large computers of
the (near) future. As long as a single
male (female) in category x may be as
sumed to have a fixed conditional prob
ability of marrying a single fernale
(male) from category y when there is a
large exeess of fernales (males) in all
eategories, this type of model is applic
able. The probabilities of desiring mar
riage must be independent of the num
bers of entities in the population.

Couple.

Minimum (M.W

L O'•
M.n '"Survlve-------------------:::::=-7 Men

Wllh to marMj
(M. law ~ ~ __ ~ C : U __

~
W I S h to marr\l

(W.IO\I)

Wom.n Survlv, -----------l~----_f7_-~Women

01.----

Women dlel---------~~

Gon born-----------........._L

Coupi.. Man dl..------------

OauQhter born ----------~

Couple lurvlvll----------

TIME t
Fm. 2.-The Two-sex Model with No Age Structure

TIME t+ 1
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c

•

•

•

IPositive Part II-"""E::::'"-

•

•

•Wd~:-----------c:::;.
~

b ------C md • 1
Clb
• .............. 1--"----------<:

~ I - - ...----------'--

d,.....-A

M ~I • 1---4.---------......-
~~-- ...--------I"O:::""'-

~ l : : : : - " "
m ~ ~ I

W ~ . • I-....................::::o..e·---------- - . . . . . . ; ; : , , " ' r - . y . . . . . - - ~ Wd--....

TIME t TIME t+l
Fro. 3.-An Alternative Representation of the Two-sex Model with No Age Structure

6.1 The Principai Dijficulty

To simplify the diseussion in this see
tion and in some of the following sec
tions, age-strueture, divoree and illegit
imate births will be ignored. lt is then
possible to represent the model diagram
matieally as in Figure 2. Representing
this type of population with age-strue
ture diagrammatieally is almest impos
sible, but not neeessary beeause it is pos
sible to diseuss the more eomplieated
eases using the simplified diagram in
Figure 2. An alternative representation
is given in Figure 3 and it is soon appar
ent that the two proeesses are identieal.
The representation given in Figure 3 is
the more useful form, and the one used
throughout §6.

lt is elear that the teehniques dis
eussed in §2 are useful for analyzing
stages 1, 2 and 4 of the proeess in Fig
ure 3. The only stage requiring a differ
ent treatment is stage 3 when the mo
ments of the positive part of a random
variable need to be eomputed. [lt should
be noted in passing that for a multi-type
Galton-Watson process, the linear trans-

formation constants are non-negative

integers i the teehniques we use are ap
plicable for any real linear transforma

tions, but only make sense in the present
eontext if they are integers (positive or
negative) .]

In the case of the one-sex stoehastie
model, a linear reeurrenee relation was
derived for expeetations and eentral
quadratie moments. Ideally, we should
like to derive a reeurrenee relation for
the expeetations and quadratie moments
in the two-sex model, or alternatively
produee a numerical reeurrenee method
for these moments. There is one major
diffieulty however: to obtain a reeur
renee method for the two-sex model, it is
neeessary to know something about the
distributions of some of the random vari
ables at stage 3 in Figure 3; sueh knowl
edge was not neeessary for the multi
type Galton-Watson reeurrenee relation.
The moment reeurrenee method for the
two-sex model can be written symbolie
ally as

m(t + 1) - T, • T1MBFm(t}.
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All the symbols have their usual mean
ing (§2), and * represents the moment

process which occurs as the positive part

of a random variable is taken.

Consider two random variables X and

Y with expectations POl and P-2 respec

tively, variances 0'1
2 and U2

2 respectively,

and covariance (KTIU2. We define X+
equal to the positive part of X. (i.e., X+

is equal to X if X is positive, and equal

to zero if X is negative or zero.) The
problem is then the following: knowing
these moments, how accurately can we
compute the first and second order mo
ments 0/X+ and Y?

The following points should be noted:

(1) It seems that the expectation and var
iance of X· will vary very Iittle for a
wide range of possible distributions of
X, all having the same first two mo
ments. This is to be expected, because

DEMOGRAPHY, volume 6, number2, May 1969

moments are averages. [This point is
discussed in some detail in § 6.2.]

(2) When /LI > 3u, (say), the expected
value and variance of X· are approxi
mately /LI and U'I respectively.

(3) When /LI < -3u, (say) , the expected
value and variance of X" are both ap
proximately zero.

(4) For the time interval (0, 1) in the two
sex model, the positive part taken is

that of the difference between two bi
nomial random variables. The difference
is approximately normal for large popu
Iations.

(5) For most populations we consider, the
difference random variables which have
their positive parts taken are usuaUy
small compared with the other random
variables involved. When this is not so,
results (2) and (3) above usually apply,

6.2 The Effect 0/ the Distribution 0/
X on the Moments 0/ X +

Mcan o.f X+

-20' -0' o

Mcan of X

Fm. 4.-Results of the Linear Programming Calculations. (The maximum and minimum values
for the mean of X" are plotted against the mean of X. Also given ia the curve when X is

normal)
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Mcan of X·

197

4

Mcan 0' X..

-30' -20' -f1

30'

o 20' 30'

FIO. 5.-The Mean of X+ as a Funetion of the Mean of X, when X has the Uniform Distri
bution, the Normal Distribution, and the Geometrie Distribution

subiect to

Let us look at the expectation of X+
and investigate the limits between which
it must lie for all possible distributions
of X. In a discrete formulation such as
this, the problem reduces to a linear
programming problem: we wish to maxi
mize and minimize

'"
:E jpi'
i-O

..
:E jpi = 1-'1,

;--00

A suitable pro gram was written for
TITAN, and with 0'1 = 50, this linear
programming problem was solved for
various va lues of P.1. The results of this
investigation are presented graphically
in Figure 4. The results when X is nor
mal are also given in the diagram.

The rather unusual distributions (with
only three non-zero pj) which give rise
to the maxima and minima were avail
able from the computer output. These
unusual distributions (especially near
P.1 = 0) suggest that the bounds given
in Figure 4 are wider than necessary.

The variance may be examined in a

similar manner, but it leads to a non

linear programming problem. No calcu

lations were performed, firstly because of

the greater amount of computer time re

quired, and secondly because this method

would give wide bounds like those ob

tained in the expectation caloulations.(all ,).Pi ~ 0,

..
:E Pi = I,
i--·

..
:E j'Pi = 1-'1

2 + (J/,
i--"

and
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"ariane. of X+

Mcan of X

-2" -tl tI 20' 3O'4a

FrG. 6.-The Variance of X+ as a Function of the Mean of X When X has the Uniform,
Normal and Geometrie Distributions

It is of interest at this stage to exam
ine the expeetation and varianee of X+
when X has a eertain known distribu
tion. Two eases were therefore examined:
(i) X having the diserete uniform distri
bution

1
Pi == n - m + l'

i == m, m + 1, ... ,ni and

(ii) X having the diserete double geo
metrie distribution

Pi == K(X) exp {-li - pI/X},

-oo<i<oo.
Both Aand (n - m) were large, The re-

sults obtained are given in Figures 5
and 6, together with the appropriate
normal eurves.

Neither of these two distributions re
sembles the normal distribution, and yet
the eurves obtained in both eases He
elose to the eurves for the normal ease.
These ealeulations support the remark
number (1) of §6.1; it is to be expeeted
that the expeetation and varianee of X+
vary very little for a wide range of pos
sible distributions of X all having the
same first two moments.

6.S The Approximate Computation
Procedure

In §6.2, two diserete random variables
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The correlation coefficient p will always
be strictly less than one for our problems
(and usually much lessl) so we have no
convergence problems. Note that it is
only necessary to determine F(p./O") and
f(p./oo) once for each random variable
whose positive part is required. Rather
than compute these two functions, values
can be obtained more quickly from tables
of the normal ordinate and integral
stored in the computer. The moments of
the positive parts are then readily eval
uated.

parts taken (X+ and Y+ respectively).
Once again, an approximation to the
product moment is obtained using the bi
variate normal integral, but this integral
is troublesome to evaluate. A computer
can readily perform the calculation, but
a large number of such integrals are re
quired for a reasonably realistic popula
tion model, and the time rcquired would
be prohibitive.

A simple method is available, however,
and it makes use of the Mehler expan
sion of a bivariate normal density (M. G.
Kenda11, 1948,355-356; H. O. Lancaster,
1958):

1

211"yl _ pZ

. exp {2(1-=.-1 p') [X
Z

- 2pxy + y2]}

= 1 exp f_!X Z
}

y211"

.J211" exp {_tyZ}Q(x, y),

where Q(x, y) = 1 + pxy + 1/2! pt (l 
x2) (1 - y2) + 1/31 p3 (x3 - 3x) (y3_

3y) + .... After expanding the bivar
iate density in this manner, integrating,
and subtracting the product of the ex
pectations, we obtain:

Cov (X+, Y+) * plTllTzF(fLl/lTl)F(fLdlTz)

+ [!P'lTllTZ + Ip8fLlfLz]f(fLl/lTl)f(fLdlTz)

(22)+ ....

where

and

..
e(x+) = L ip,

,-0

F(u) = L·... f(x) dx.

An approximation to e(x+)' is found in

a similar manner:

e(x+)Z 9 (lT12 + fL1
2)F(::) + lTlfLd(;:)'

(20)

An approximation to the produce mo

ment of X+ and Y is obtained by con
sidering a bivariate normal integral; the
covariance of X+ and Y then has a very
simple form:

Cov (X+, Y) 9 PlTllTzF(;)' (21)

In Figure 3, there is only one random
variable which must have its positive
part taken. However, for a population
with an age structure, there are many
such variables. It is therefore necessary
to consider the case in which both X and
Y are distributed over a11 the integers,
and both X and Y have their positive

'!a" z exp {-~ [x ~ fLIT}dX

= fL1F(::) + lTd(:) (19)

X and Y were defined with expectations
P.l and f.L2 respectively, variances 0"1

2 and
0022 respectively and covariance pooIoo2' If
X is defined over all integers and Y over
all non-negative integers, and we wish
to take the positive part X+ of X, ap
proximations to the first and second
order moments of X+ may be obtained
as folIows: D
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This approximate procedure depends
heavily on two assumptions (discussed
in some detail in §6.4, §6.5 and §6.6):
(i) the random variables whose positive
parts are required have distributions in
pairs close to bivariate normal; and (ii)
the moments of the positive parts, being
averages, do not depend too heavily on
the actual distributions.

The moments obtained using these
methods are of course approximate, and
the question arises: how good is the ap
proximation? Weshall show that the
approximation is extremely good, and
that the errors involved are negligible.

6.4 Same Monte Carlo Experiments

One possible mcthod of examining the
accuracy of the suggested recurrence
method is to compare results using it
with the results of Monte Carlo experi
ments. We describe here four such ex
periments.

Experiment 1. Consider a population
consisting of three types of entity: men,
women and couples. During a unit time
interval, there are three possible out
comes for men:

(1) man has desire to marry with probabil
ity .3;

DEMOGRAPHY, volume 6, number 2, May 1969

(2) man merely survives with probability
.6; and

(3) man dies with probability .1.

There are also three possibilities for a
woman:

(1) woman has desire to marry with prob
ability .3;

(2) woman merely survives with probability
.65; and

(3) woman dies with probability .05.

For couples, four outcomes are possible:

(1) couple survives and has one son with
probability .105;

(2) couple survives and has one daughter
with probability .1;

(3) couple merely survives with probability
.6; and

(4) couple ceases to exist with probability
.195.

A Monte Carlo experiment was per
formed with this type of population. At
time t = 0, there were 1,000 men, 1,000
women and 1,000 couples, and the ex
periment was performed with 40 obser
vations on the first 100 time units. Over
that long time period, the Monte Carlo
means did not differ significantly from
the (approximate) theoretical means.
Furthermore, the variances were not sig-

TABLE l.-Results from the First Monte Carlo Experiment

THEORETICAL HONTE CARLO

expectations at time t = 10

192.188 321.523 560.473

covariance matrix,

226.534 - 37.366

- 37.366 1064.137

167.573 - 155.012

t .. 10

167.573

-155.012

725.981

means at time t .. 10

193.675 321.300 557.575

observed covariance matrix, t = 10

233.919 140.948 258.737

140.948 783.260 107.428

258.737 107.428 804.544

expectations at time t .. 50

3.97966 37.8253 11.4906

covariance matrix, t = 50

5.90590 - 3.36712 6.67877

-3.36712 127.79124 - 7.47330

6.67877 - 7.47330 24.34680

means at time t .. 50

4.02500 34.32500 11.8250

observed covariance matrix, t - 50

3.97438 - 4.83313 6.95438

-4.83313 134.66937 -13.11813

6.95438 - 13.11813 23.39438
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nificantly large or small. Some of the
results output are given in Table 1. A
comparison of the covariances in Table 1
may be puzzling. The sampIe covariances
have large sampling variances. The co
variances were not themselves tested di
rectly. However, the theoretical covar
iances at time t are used to compute the
theoretical variances at later points of
time. The fact that these variances are
compatible with the Monte Carlo results
is an indirect test of the covariances.

The population under consideration is
rapidly approaching extinction.

Experiment 2. In the above experi
ment, the differences between the num
ber of men desiring marriage and the
number of women desiring marriage be
came large and negative as t increased.
Consequently, we should expect com
ment (3) of §6.1 to apply, and the ap
proximate method of computation to give
good results. It therefore seems desirable
to examine a case in which the popula
tion size remains more or less constant,
and in which the difference between the
numbers of each sex desiring marriage is
always close to zero. Another experiment
was therefore performed using the same
model as Experiment 1. Initially there

were 500 men, 500 women and 1,000
couples. The ten probabilities were: .18,
.79, .03; .18, .80, .02; .105, .1, .705, .09;
enumerated in the same order as in the
first experiment.

The same theoretical calculations were
made, and a Monte Carlo experiment
with 31 observations for t = 0 to 100
performed, Once again, the Monte Carlo
results did not differ significantly from
the (approximate) theoretical calcula
tions. Table 2 contains some of the re
sults output.

In this second experiment, the de
terministic means remain at 500 for men,
500 for women and 1,000 for couples.
The theoretical stochastic means, houi
euer, differ from these, and the Monte
Carlo results seem to bear this out.

Experiment 3. Experiments 1 and 2
each contained one random variable
whose positive part was taken. An ex
periment was therefore performed with
two types of men, two types of women
and one type of couple, and in this ex
periment two random variables had their
positive parts taken.

The Monte Carlo experiment was per
formed with 46 observations on the first
50 time units, and once again, these re-

TABLE 2.-Results from the Second Monte Carlo Experiment

THEORETlCAL MONTE CARLO

expectations at time

516.020 517.670

covariance matrix,

means at time t = 10

observed covariance matrix, t = 10

780.652

- 131.936

176.979

- 131. 936

783.376

152.868

t = 10

978.700

t = 10

176.979

152.868

796.206

517.484

951.411

- 287.624

253.736

521.290

- 287.624

620.142

- 97.081

980;613

253.736

- 97.081

896.495

means at time t = 99

observed covariance matrix, t = 99

expectations at time t = 99

491.230 503.744 924.991

covariance matrix, t = 99

2671.237 6206.332 2986.126

6206.332 3003.016 2860.655

2986.126 2860.655 6363.501

482.452

2356.635

1189.101

2535.185

509.419

1189.101

3276.760

2989.029

929.161

2535.185

2989.029

5222.200
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TADLE 3.-Results from the Third Monte Carlo Experiment

15.081

'l'HEORE'l'ICAL

expectations at time t = 50

29.842 15.078 29.837

covariance matrix at time t = 50

49.899

observed covariance matrix,

5.417 15.337

166.923 9.637

9.637 29.389

9.597 9.509

40.009 43.159

35.580

5.273

16.984

17.125

65.883

14.261

34.454

5.417

15.337

4.748

49.982

5.273

112.577

17.057

15.849

62.143

29.652

16.984

17.057

35.571

5.299

66.132

MONTE CARLO

means at time t = 50

14.957

17.125

15.849

5.299

112.135

61.975

28.717

t = 50

4.748

9.597

9.509

98.724

47.315

65.883

62.143

66.132

61.975

259.851

48.652

49.982

40.009

43.159

47.315

177.749

sults did not differ significantly from the
(approximate) theoretical results. In
Table 3, the theoretical expectations and
covariance matrix for t = 50 are given,
together with the observed means and
observed covariance matrix for t = 50.

Experiment 4. The above three Monte
Carlo experiments suggest that the ap
proximate recurrence method is ex
tremely good. However, as a further test,
one other Monte Carlo experiment was
performed. This experiment used the
same model and data as Experiment 2,
and produced frequency polygons for the
numbers of men, women and eouples at
time t = 10. The polygons, based on a
sample size of 299, are reprodueed in
Figure 7. The normal density eurves in
eluded in Figure 7 have parameters ob
tained from the left hand side of Table
2. The X20

'
va lues of goodness-of-fit are

10.464 for males, 16.633 for females, and
15.515 for eouples (They are not inde
pendent of course). Eaeh of these values
is muoh less than the expeeted value of
X20

2 (and almest signifieantly smallI ) .

The fit is apparently very good.
It should be noted that the determin

istie means are: males-500; females
500; and eouples-1,000. That is, the
stoehastie means are eonsiderably differ
ent from the deterministie means.

6.5 Same Numeriaal Calculations

From the observations made in §6.1,
and also from Figures 4, 5 and 6, it ap
pears that the largest errors made in cal
eulating the first two moments of the
positive part of a random variable oeeur
when the expeeted value of the random
variable lies elose to zero. Furthermore,
beeause we are interested in large popu
lations, many of the conditional binom
ial probabilities may be represented ac
eurately by probabilities of the form:

Pi = K exp {- (j - np)2j(2npq)} (23)

It is of interest to consider the discrete
trivariate distribution

P(X = i, Y = j, Z = k)

= C exp {-(x'V-1x)j2} (24)
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where

x = r; =::] ,
k - Jl.a

and Jl.1, Jl.2 and Jl.a are suitable means, and

V is a suitable covariance matrix of full

rank.
Numerically, it is possible to obtain

the trivariate distribution of X, Y and

Z+, where Z+ = max (Z, 0), and it is

then easy to compute the [oint distribu

tion of

u=X
and

W = Y + Z+.

If one considers the associated (con

tinuous) trivariate normal distribution,

it is soon apparent that U and W have a

reasonably well-behaved bivariate distri

bution when the matrix V is of full rank.

Let us assume that the means Jl.1 and Jl.2

are large and positive. Let us further

assume that these two random variables

must be non-negative. It is then possible

to define two random variables U* and

W*, conditional on U and W, as folIows:

P(U* = i IU = n) = (~)Pli(1 - pS·-i,

(25)

P(W* = i IW = n) = (~)P/(1 - »s:'.

(26)

Using equation (23), it is easy to obtain
an accurate approximation to the joint
distribution of U* and W*. We shall be
interested in the form of this joint dis
tribution.

A glance at Figure 3 shows that we are
in effect examining part of the process
from stage 2 in time interval (t, t + 1)
until stage 2 in the time interval (t + 1,
t + 2). These numerical computations
were carried out with several different
parameters, and the joint distribution of

U* and W* examined. U* and W* were
virtually indistinguishable from bivar
iate normal variables, and when, for ex
arnple, the conditional distribution of
W*IU* was plotted on normal probabili
ity paper, a straightedge was necessary
to distinguish the graph from a straight
line, The random variables V and W, on
the other hand, had a bivariate distribu
tion which would resemble a bivariate
normal density, but for a moderately
pronounced skewness.

These calculations suggest that if the
random variables at stage 2 in Figure 3
have distributions which pairwise re
semble bivariate normal distributions,
the random variables at stage 4 have dis
tributions which pairwise resemble
skewed bivariate normal densities. The
conditional multinomial proeesses at
stage 1 in the following time interval
then have the effect of rectifying the
skewness present, and the random var
iables at stage 2 again have bivariate
distributions similar to bivariate normal
densities.

6.6 Same Analytical Results

It was observed in §6.5 that condi
tional multinomial processes seem to
rectify skewness in a bivariate distribu
tion which otherwise resembles a bivar
iate normal density, In this section,
therefore, analytical results associated
with conditional multinomial processes
are discussed. The following elementary
theorems should first be noted:

Theorem 1. Let U be a random var
iable having the Binomial distribution
B(n, p). Let U* be a random variable
conditional on U and having the condi
tional binomial distribution B (V, p,).
Then U* has the binomial distribution
B (n, pp,), If n is not too smalI, anormal
approximation is accurate.

Theorem 2. Let U be a random var
iable having the Poisson distribution
with mean A. {WJ} (j = 1, 2, ... , k)
are conditional multinomial random var-
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5/6

Male.

Determlnlstlc mean(V

Dcm-mlnlatlc mecrt

(500~

5'8

Femalcs

979

CouplCl

Fro. 7.-Results of the Fourth Monte Carlo Experiment

.Determlnlstl<: mean

1\;
·\:
······•••·•··•

iables conditional on U, and having the
conditional distribution Mult. (Uj Pli

P2, • " ,Pk). Then the {W;} are mutually
independent Poisson variates with means

{APi}'
Both these results assume that U has

a known well-behaved distribution. The
following does not, and is closer to the
situation we need to investigate.

Theorem 3. Let U be a random var
iable taking positive integral values. Let

it have fixed finite variance ~ and a
mean po. U* IU is a conditional binomial
random variable B (U, p). Then if p. ~
00 and P ~ 0 such that p.p ~ A, the lim
iting distribution of U* is Poisson with
mean A.

lf A is not too small, a normal ap
proximation is accurate. Theorem 3 may
be generalized for two dimensions:

Theorem 4. Let U and W be two cor
related random variables taking positive
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integral values and having fixed finite
variances U1% and 0'2% respectively. Let
their respective means be P.1 and P.2. U* IU
is a conditional binomial random var
iable B(U, pd and W*IW is a condi
tional binomial random variable B (W,
P2)' The two conditional distributions
are independent. Then if P.1 ~ 00 and PI

~ 0 such that P.1Pl ~ Al, and P.2 ~ 00

and P2 ~ 0 such that P.2P2 ~ A2, U* and
W* have in the limit independent Pois
son distributions with parameters Al and
A2 respectively. In this case, anormal
approximation will be accurate, provided
Al and A2 are not too small.

The eonditions for the above results
are very similar to the eonditions en
eountered with the two-sex model. How
ever, none of them is eompletely appro
priate to the two-sex situation. Consider
a random variable V* eonditional on V,
and having the eonditional binomial dis
tribution B (U, p). U has the distribution
{Pi} (j = 0, 1,2, ...) with mean P. and
varianee u%. Let us examine the ease in
whieh P is small (less than .1, say), P. is
large (greater than 1,000, say) and q2 is
smaller than p:

The probability that U* is equal to
j (Ph say) is given by

P(U* = 1) = Pi = ~ (~)piq"-ip ... (27)

Let us now assume p. to be an integer;
this assumption simplifies the algebra,
but does not invalidate the final result,

The right-hand side of equation (27)
may be expanded in the form:

(p.) i P-i{[ + (p. + l)q
j p q PP (fJ + 1 _ j) PP+I

(fJ + 1)(p. + 2)q2 J
+ (p. + 1 - j)(p. + 2 _ j) Pp+2 + .,.

+ [(fJ - DPp_1
p.q

(fJ - 1)(p. - 1 - 1) J}+ p.(p. _ 1)q2 Pp-2 + ... .
(28)

Writing (p.p + d) for j, we have:

(p. + r)q

fJ+r-j

= 1 + (d - rp) + (d - rr:)~d - r)
qp. q p.

+ o{(d - ~~~~ - r)2} , (29)

where d is not too large and Irl < 30-.
Taking logarithms, we have:

log ~(~ ~ ~qj}
_ (d - ry) + (d - rP2(d - r) _ (d -.!1ft
- qp. q2p.2 2q2fJ2

+o{(d - rp)(d - r)2 _ (d - rp)2(d - r)}.
q3fJ3 q3p.3

(30)

Summing for r = 1 to k, and neglecting
terms in the sum which are very smaIl,
we obtain:

i: log { (p. + r)q .}
.-1 P. + r - 1

= {(Jd - p)}k _{L}k 2
• (31)

2qp. 2qp.

The same relation is true for the left
hand tail of the distribution. Hence an
approximation for Pi is given by

Pi = (;)piqP-i{ ~ Pk

. exp [{2 ~ ~ P}k - h;}k2J} , (32)

where the summation is from k = 
integer part (30') to k = integer part of
(30'), assuming the {Pi} distribution to
be reasonably well-behaved.

If the {p;} distribution is weII-be

haved and has a distribution not unlike
the shape of the normal density eurve,
we may eonsider a eontinuous density

curve approximately the {Pi} distribu
tion, and expand this eontinuous density
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curve in a Gram-Charlier series (Cra
mer, 1961):

tex) = ; {q)(~) + ~~ q)(3)(~)

+ ~~q)(4}(~) + ...} (33)

where Gs = -P.3/q 3 and G4 = Jl-4/u
4 - 3.

q)(,,)(z) = :~" q)(x)

d" { 1 }= - ---= exp (-x
2
/ 2) . (34)

dx" y211'

Then the sum in equation (32) may be
approximated by

1 1'" [{(2d - p)} k
(1' y211' _'" exp 2qp.

- {~} eJ tex) dx. (35)

Furthermore,

( ~ ) p i q ~ - i

. Y ~ exp (-d
2
/ (2p.pq» . (36)

211' p.pq

Evaluating the integral (35), and com
bining the result with (36), we obtain

DEMOGRAPHY, volume 6, number 2, May 1969

Thus 9 (d) is a constant with an error
term of 0 (G3ud/p.). lf the coefficients of
skewness and excess of the {Pi} distribu
tion are small, 9(d) is elose to unity.
Thus, in this very special case, we have
shown that the distribution of U* is elose
to anormal density curve, indeed the
normal curve with mean p.p and variance
(p.pq + p2(2). It is simple to prove that
p.p is the exact mean of U* and that
(p.pq + p2(2) is the exact variance of U*.

The conditions under which formula

(37) is true should be emphasized:

(1) p. is large (> 1,000, say):
(2) (1'2 < u;

(3) the {Pi} distribution may be accu

rately approximated by a Gram

Charlier series;

(4) pis small « .1, say); and

(5) Idl is moderate in size

« 3 y p.pq + p2(i, say).

It is elear that bivariate formulae
exist corresponding to equations (28),
(31) and (32). However, the simplifica
tion of these formulae is considerably
more difficult than the simplification
of the formula for PJ'

Much work remains to be done for
the analysis of the general situation
when 0'2 may be much larger than p.. The
algebra involved in the preliminary a
nalysis of the above very special case is
very tedious, and it seems likely that the
analysis of the more general situation
will be even more tiring.

One further comment should be made
concerning the distributions of the ran
dom variables in this bisexual model:
the linear transformations at stages 2
and 4 in Figure 3 should, due to the
Central Limit Theorem, encourage nor
mality; the random variables concerned
are not independent, but many of them
are only slightly correlated.

6.7 Some Generalizations of the Model

It was mentioned in §3 that mortality
probabilities, fertility probabilities, etc.
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may themselves be considered as random
variables. For the multi-type Galton
Watson process, the basic moment recur
rence relation is altered only slightly in
this situation. It is soon apparent that
the two-sex computation procedure re
quires a similar minor modification to
allow for this extra complication. We
show later in §6.9 that the probabilities
must be considered as random variables
in any realistic population model.

Immigration is mentioned in §5, and
it is discussed in greater detail elsewhere
(J. H. Pollard, 1966, 1967). The methods
outlined are easily incorporated in the
analysis of the two-sex model.

Time trends in the probabilities (or
distributions of the probabilities) may
be readily incorporated in the model.
The adjustment necessary for the com
putation procedure is straightforward.

6.8 The Basis 0/ ihe General
Computer Program

The computer pro gram discussed in
this section does not include allowances
for

(i) probabilities which are themselves
random variables;
(ii) immigration; and
(iii) time trends for probabilities (or for
distributions of probabilities).
However the basic computer program
can be modified to take all these factors
into account, since the theoretical altera
tions and programming alterations are
fairly trivial. There are a few practical
difficulties, however (mainly associated
with data) , but we shall ignore them for
the moment.

The difficulties encountered with the
basic program are not caused by theo
retical complications, but rather by the
storage limitations of even moderately
large computers. The theoretical calcu
lations are straightforward. Five mag
netic tape decks are required, and it is in
organizing the data within the machine
that skillful programming is required.

The program (used in the numerical ex
ample of §6.9) was written in FOR
TRAN II for the IBM 7094 computer
system at the University of Chicago
Computation Center.

Data are input to the computer by
punched card, and the cards are accepted

in the following order:

(1) Structural Constants Card. This
card gives five integer numbers to the

machine:
(i) the number of types of entity, T (= M

+ F + C);
(ii) the size of the time step and age step;
(iii) the number of male age groups, M;
(iv) the number of femaIe age groups, F;

and
(v) the number of groups of couples, C.

(2) Male Probabilities Cards. For
each age group there may be one, two or
three cards; the first number on each
card is an integer giving the youngest
age of the age group, and the last num
ber is either 1, 2 or 3. The male prob
abilities cards are accepted by the com
puter in any order whatsoever. For each
card, a fractional number is read after
the age group integer, and if the last
number on the card is 1, this fraction is
the probability of the single male merely
surviving, If the last card number is 2 or
3, the fraction is ignored. Five number
pairs lie between the fraction and the
final number on the card; eaoh pair con
sists of an integer (female age group)
and a fraction (probability) , and the
fifteen possible pairs describe the age
preferences for brides of single men in
that age group: the pairs may be in any
order on the cards. The data in Appendix
Table 1 have this format.

(3) Female Probabilities Cards. These
have the same format and obey the
same rules as the Male Probabilities
Cards, except that the last number on
each card must be either -1, -2, or -3.
For females, the first fraction on the
card is not ignored when the final inte
ger is -2 or -3; the fractions here rep-
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resent the probabilities of an illegitimate
son or daughter respeetively. The data
in Appendix Table 2 have this format.

(4) Couple Probabilities Cards. There
is one card for eaeh couple group, and
eaeh eard contains eight numbers:

(i) the age group of the husband (an in
teger) ;

(ii) the age group of the wife( an integer);
(iii) the probability that the eouple merely

survives;
(iv) the probability that the husband dies,

the wife survives and no child is born;
(v) the probability that the wife dies, the

husband survives and no ehild is born;
(vi) the probability that the eouple sur

vives and a son is born;
(vii) the probability that the couple sur-

vives and a daughter is born; and
(viii) the probability of divorce.

The data in Appendix Table 3 have this
format.

(.5) Initial Single Male Population
Cards. There is one card for each male
age group, and eaeh eard contains three
numbers:

(i) the age group involved (an integer);
(ii) the initial number in the population of

that age group (an integer); and
(iii) the integer "1" to indicate "male".

(6) Initial Single Female Population
Cards. The same format and rules apply
as for single males. An integer li-I" in
dieates "female."

(7) Initial Married Population Cards.
There is one card for each couple group,
and each eard contains four numbers:

(i) the age group of the husband;
(ii) the age group of the wife;
(iii) the initial number of couples in that

category; and
(iv) the integer "0" to indicate "couple."

(8) Projection Output Cards. Each
card eontains one integer, and the inte
gers must form a strietly monotonie in
ereasing sequenee. As soon as this rule
is violated, the program is terminated,

DEMOGRAPHY. volume 6, number2, May 1969

and this is the method for stopping. The
integers indicate the points of time at
which the projected population is to be
output by printer.

The random variables representing the
numbers of the various entities are or
dered as a vector in the machine as fol
lows: single males (in aseending age
groups), then single females (in aseend
ing age groups) and finally the eouples
(ordered aeeording to the order of input
of the couple probabilities cards). All
the probabilities are listed in one enor
mous vector, and another list of numbers
indieates how many probabilities are to
be assoeiated with eaeh type of entity.
Marriage-desire probabilities of males
aged x for females aged y and of fe
males aged y for males aged x must be
paired off. Then the linear transforma
tion constants for stage 4 must be deter
mined; the matrix involved is enormous,
but as most of the elements are zero, and
the others are either plus or minus one,
the information required may be stored
in a very compact form.

All these preliminaries take up half
the written pro gram. The recurrenee pro
cedure loop then follows.

6.9 A Numerical Ex·ample

The population projection pro gram of
§6.8 was used to projeet an hypothetieal
human population using a time unit of
two years. The single male population
was divided into thirty age groups 0-,
2-, 4-, ... , 58-, and the single female

population into twenty-five age groups

0-, 2-, 4-, ... , 48-; 160 types of eouple

were considered.

The data for the caleulations were

based on the Australian population in

1960. It was the original intention of the

author to project the Australian popu

lation from 1960, but for two reasons,

this goal was abandoned:

(i) eertain important data were not readily
available to the author; and

(ii) the preparation of the data involved a
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Two-sex Stochastic Population Program Incorporatlng Marrlage

TADLE 4.--Single Male Population

209

Age

Initial
single
male

population

Single male
population at

time t = 1 unit
Expected Variance

Single male
population at

time t = 2 units
Expected Variance

Single male
population at

time t = 3 units
Expected Variance

o
2 •
4
6
8

10
12
14

16
18

20
22
24
26
28

30
32
34
36
38

40
42
44

46
48

50
52
54
56
58

• 228998
227952
220945
213380
212513

208887
203486

• 199595
171708
149634

130472
96624
66991
46999
37802

34558
29905
27232
23872
22202

20203
17247
17112
17842
17537

17711
16236
15621
15443
14887

216300
228309
227596
220698
213158

212332
208701
203252
199256
171217

145297
116304

74490
53055
35076

29949
29543
27112
24993
22630

21479
19876
17155
17102
17925

17606
17650
16013
15270
14975

168347
687
355
247
222

180
186
234
339
490

4293
13621
20224
13583
12234

9043
6677
5069
4713
3818

3492
3147
2794
2502
2371

2073
1726
1292
1011

866

201258
215649
227953
227341
220468

212977
212143
208461
202906
198686

165804
127021

88073
57189
38779

26561
25210
26905
24973
23797

22001
21199
19833
17264
17222

18012
17560
17451
15642
14789

164491
167985

1041
609
476

402
369
425
578
905

5846
21393
37639
32908
26270

20931
13326
10487

9243
8105

6774
6280
5752
5043
4563

4278
3621
2990
2207
1767

194244
200652
215313·
227697
227105

220281
212787
211899
208107
202326

192374
143426

91286
67023
39582

27966
22330
22813
24696
23847

23141
21777
21184
19983
17488

17338
17970
17362
17104
15133

163174
164106
167797

1293
844

662
591
612
777

1153

7137
26872
51274
50628
41561

31287
22915
16287
13835
12347

10745
9170
8612
7927
6915

6208
5690
4741
3903
2867

considerable amount of clerical work,
and the author did not have any com
puting assistance,

Divorce and ex-nuptial births were in
cluded in the calculations, and the 1393
probabilities for the population are listed
in Appendix Tables 1, 2 and 3. The ini
tial population structure, and the pro
jected populations for t = 1, 2 and 3
units (i.e., 2, 4 and 6 years) are given
in Tables 4, 5 and 6. For each time unit,
the projection calculations took 62 min
utes; this is quite a short time when it is
realized that there are (1393)2 = 1.94
million covariances to be calculated, out
put to magnetic tape, and later read
from magnetic tape several times. Much
of the computer time was taken up by
magnetic tape operations; with a time-

sharing maehine, the computing time re

quired should be much less.

The numerical example illustrates the

power of this projection technique. In

practice, a time unit of one year is rec

ommended, and the size of the problem

then increases by a factor of almost 16.
With one exception, the probability of
two or more vital events in one year may
be safely neglected; the exception is the
probability of marriage and a birth in
the one year, and the computer program
should be modijied to deal with this sit
uation. A time unit of two years was
used for the numerical example for
reason (ii) above, and also to save com
puter time at the research stage.

Although expectations and variances
only are given in Tables 4, 5 and 6, the
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210 DEMOGRAPHY, volume 6, number 2, May1969

TABLil 5.-8ingle Female Population

Initial Single fema1e Single female Single fema1e
single population at population at population at
fema1e time t • 1 unit time t • 2 units time t .. 3 units

Age population Expected Variance Expected Variance Expected variance

0 218002 207828 163559 193374 159431 186643 157955
2 218495 217405 '596 207259 163232 192845 159087
4 209040 218228 266 217139 859 207006 163086
6 • 204602 208844 196 218023 471 216935 1061
8 203087 204457 145 208695 344 217868 625

10 199321 202971 116 204340 261 208576 463
12 194014 199213 108 202862 225 204230 371
14 188769 193898 116 199094 227 202740 346
16 160080 188610 158 193735 279 198927 394
18 122108 156176 3809 184010 4638 189010 4875

20 • 77638 105379 14656 134727 21240 158814 25389
22 • 42123 53845 17410 73260 30103 93822 39707
24 24803 22345 14835 28999 25255 41379 41351
26 16905 16482 7344 14864 13908 18937 20024
28 14207 12525 5157 12257 8697 11218 11731

30 14167 11731 4300 10360 6600 10267 8555
32 • 13093 12521 4226 10376 6041 9191 6953
34 •• 13689 12150 3636 11815 6529 9809 6998
36 13785 13260 3575 11886 5970 11744 8238
38 14841 13747 3349 13283 6049 12043 7596

40 15405 15151 3396 14074 5971 13667 7982
42 15146 16037 3298 15860 6353 14794 8199
44 • 16640 15974 3070 17018 6272 16927 9070
46 18984 17724 3122 17148 5882 18366 9034
48 • 20153 20491 3486 .19108 6077 18623 8576

random variables are of course not inde
pendent. The covariances are available
on magnetic tape,

The sma11ness of the variances in a11
age groups should be noted. Consider
single males in age group 0- at time
t = 1 for example: the variance is 168,
347, so that the standard deviation is
410. No demographer would predict
216,300 single males in age group 0- with
a standard deviation of 4101 We con
clude that birth probabilities, marriage
probabilities, divorce probabilities, etc.
must be considered as random variables
themselves. [Their distributions may of
course change with time.]

This important fact, mentioned in §3
appears to have been noticed by only one
other author (Z. M. Sykes, 1967), al
though it is obvious from the simple
numerical example in §3.

Some of the expectations in Table 6
undergo substantial changes from one

time period to the next and these need
explanation. The population being inves
tigated is an hypothetical one; the mar
riage rates etc. are also hypothetical, and
not necessarily the ones experienced in
the past to give the population its pres
ent hypothetical form. Thus, the sub
stantial changes in the expectations in
Table 6 from one time period to the
next are caused by a sudden change in
marriage rates etc. at time t = O.

The results obtained using this model
will be different from those obtained
using the simpler one-sex Leslie ap
proach. It is of interest to compare some
of the numerical results for the two dif
ferent models. The obvious expectation
for comparison purposes is the expected
number of females aged 0 at times t = 1,
2, 3. The one-sex age-specific female
birth rates may be calculated using the
illegitimate female birth rates of Ap
pendix Table 2, the legitimate female
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Two-sex Stochastic Population Program Incorporating Marriage 211

birth rates from Appendix Table 3, the one-sex, age-specific female birth rates
initial single female population of Table means that the expected number of fe-
5 and the initial married population of males aged 0 at time t = 1 for the one-
Table 6. This method of calculating the sex model is the same as the expected

TABLE 6.-Married Population

Initial Married Married Married
llIarried population at population at population at

Ages popu- time t = 1 unit time t = 2 units time t = 3 units
M F 1ation Expected V a r ~ a n c e Expected V a r ~ a n c e Expected Variance

20 18 • • 5998 1079 1072 1271 1263 1306 1297
.20 20 11184 1861 1833 2380 2345 2804 2763
20 22 • 2226 634 629 861 855 1101 1093
20 24 2389 217 215 277 276 376 364
20 26 30 3 3 2 2 3 3

20 28 28 22 22 26 26 30 30
22 18 5595 1311 1300 1545 1532 1587 1573
22 20 22240 11165 5010 7723 7350 9100 8660
22 22 2489 15990 4638 8467 7881 10826 10092
22 24 3043 4274 1978 3268 3132 4444 4283

22 26 36 2475 125 310 308 398 396
22 28 34 238 178 225 162 208 207
22 30 • 28 60 31 57 50 63 53
24 i.8 4769 728 725 858 854 881 877
24 20 13952 10475 4744 7585 7226 8937 8513

24 22 • 15660 30255 7439 22164 14143 21827 18844
24 24 • 16032 8911 5473 24107 11015 19607 16469
24 26 1571 4025 992 5145 2773 4418 4161
24 28 1876 540 483 2944 624 751 741
24 30 217 195 131 380 316 363 299

24 32 • 128 67 40 92 64 86 78
i6 18 3493 359 358 422 421 434 433
26 20 5649 7417 2651 4150 4042 4890 4762
26 22 37286 19180 5064 17632 10976 16778 15015
26 24 38735 19293 3676 34189 10753 26927 17308

26 26 • 11463 17133 1378 10219 6625 25526 12257
26 28 •• _ 15008 1999 457 4478 1491 5677 3313
26 30 3035 1997 163 693 635 3098 828
26 32 • 199 283 71 269 205 463 381
26 34 • 226 127 2 67 40 92 64

28 18 1039 171 171 202 202 207 207
28 20 • 2338 4731 1279 1974 1949 2326 2297
28 22 • 20444 8411 2758 11169 6197 8993 8486
28 24 • 19708 40533 3647 23602 8842 23457 14423
28 26 22107 41161 2342 21656 5443 37158 12479

28 28 24432 12324 1066 17904 2322 10975 7005
28 30 4394 15364 715 2456 908 4893 1899
28 32 •• _ 2176 3290 323 2215 416 898 823
28 34 • 1332 300 105 378 170 347 283
28 36 • 465 250 29 149 27 89 63

30 18 • 370 78 78 92 92 95 9S
30 20 • 733 1683 659 988 728 1121 1016
30 22 • 10944 3751 1430 6634 3175 4402 3464
30 24 11187 22419 2277 11117 5274 14849 8979
30 26 • 21924 21241 1858 41653 5218 25388 10296

3{) 28 • • 24107 22859 1227 41654 3525 22290 6085
30 30 • • • 21102 24798 982 12770 1715 18262 2942
30 32 • 4186 4780 361 15539 1205 2757 1209
30 34 • 3143 2370 220 3458 519 2363 601
'30 36 • 2338 1404 107 376 185 451 246
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TADLE 6.-Married Population (Continued)

Initial Married Married Married
married population at population at population at

Ages popu- time t .. 1 unit time t = 2 units time t = 3 units
M F lation Expected V a r ~ a n c e Expected Variance Expected Variance

30 38 422 481 28 268 53 166 47
32 20 276 491 127 186 185 187 186
32 22 4103 1416 684 2265 1227 1509 1229
32 24 • 7011 12136 1397 5306 2691 7978 4249
32 26 20584 12113 1159 23098 3316 12224 6300

32 28 23978 22458 1073 21763 2733 41824 6116
32 30 29118 24470 1021 23156 2032 41665 4415
32 32 14906 21378 847 24923 1701 13010 2179
32 34 9292 4466 293 5015 667 15582 1546
32 36 4631 3283 176 2498 362 3555 674

32 38 3161 2380 106 1457 186 435 239
32 40 680 436 27 493 53 282 74
34 22 1629 364 94 576 219 260 258
34 24 2139 4560 542 1898 1153 2664 1613
34 26 13600 7565 714 12561 2041 5990 3341

34 28 11499 20904 848 12532 1798 23312 3954
34 30 26171 24204 897 22637 1793 21942 3333
34 32 27308 29294 977 24611 1745 23257 2624
34 34 19676 15134 636 21494 1489 24916 2273
34 36 14779 9412 379 4650 535 5158 920

34 38 4531 4703 192 3373 334 2580 491
34 40 2494 3181 96 2408 187 1493 243
34 42 627 687 28 447 50 502 75
36 24 723 2053 456 923 592 1175 810
36 26 4259 2484 395 4837 904 2309 1556

36 28 6137 13826 585 7862 1166 12751 2474
36 30 24313 11744 571 20960 1450 12704 2227
36 32 26632 26269 836 24248 1556 22658 2336
36 34 26321 27365 818 29302 1733 24613 2321
36 36 24015 19767 627 15250 1141 21507 202'7

36 38 16832 14816 463 9519 734 4802 790
36 40 5113 4613 216 4772 390 3457 502
36 42 3112 2515 99 3191 200 2425 273
36 44 689 632 25 692 54 455 71
38 26 647 929 223 2219 660 1163 835

38 28 3713 4465 321 .2709 667 5003 '1165
38 30 13933 6330 374 13866 1007 7989 1471
38 32 23801 24293 697 11854 988 20898 1924
38 34 25204 26598 749 26224 1505 24174 2098
38 36 24100 26296 663 27295 1499 29193 2384

38 38 25903 23957 580 19773 1124 15295 1567
38 40 15507 16796 414 14802 851 9580 1032
38 42 4513 5161 206 4667 405 4814 567
38 44 • 2063 3110 102 2526 190 3189 299
38 46 739 690 26 633 48 693 78

40 28 1801 805 176 1079 391 2333 816
40 30 8769 3838 242 4556 538 2825 839
40 32 16909 13950 452 6426 646 13820 1345
40 34 21776 23688 631 24160 1281 11875 1324
40 36 • 22408 25114 684 26450 1397 26075 2097

number for the two-sex model (207,828). The expected members aged 0 at times
The one-sex female survivorship prob- t = 1, 2, 3 for the one-sex model are
abilities are obtained by summing the 207,828, 210,137 and 216,766 respect-
relevant entries of Appendix Table 2. ively. The relevant figures for the two-

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://re

a
d
.d

u
k
e
u
p
re

s
s
.e

d
u
/d

e
m

o
g
ra

p
h
y
/a

rtic
le

-p
d
f/6

/2
/1

8
5
/9

0
8
8
2
1
/1

8
5
p
o
lla

rd
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Two-sex Stochastic Population Program Incorporating Marriage 213

sex model are 207,828, 193,374 and 186,
643 respectively. These figures differ
considerably. The main reason for the
difference is the change in marriage rates
mentioned in the previous paragraph,
This factor cannot be dealt with by the
one-sex model. For a population experi
encing near-constant marriage rates, the
figures obtained using the different
models would be very much the same as
each other. Another factor contributing
to the difference is the fact that the pres
ent two-sex model does not aIlow a mar
riage and a birth to occur in the one
time unit. This restriction was imposed
on the model to simplify the initial com
puter program. There is no theoretical
difficulty in eliminating it, and indeed
this must be done in any practical situa
tion.

6.10 A Criticism 01 the Stochastic
Model

The stochastic model (as opposed to
the method of analysis) may be criti
cised because it assumes that an indi
vidual man aged x makes up his mind
that he desircs to marry a woman aged
y during a unit time interval ; if there are
insufficient women aged y desiring to
marry a man aged x, he does not marry
and does not even try to marry, as a sec
ond preference a woman aged (say)
y - 1 during that unit time interval.

This criticism may be valid at the per
sonallevel. However, the model is essen
tiaIly a macroscopic one, and the criti
cism then is not so weIl founded. Con
sider a cohort of young men. When aged
17-22, say, a shortage of slightly younger
women will cause many of the young

TADLE 6.-Married Population (Continued)

Initial Married Married Married
married population at population at population at

Ages popu- time t = 1 unit time t = 2 units time t = 3 units
M F lation Expected Variance Expected Variance Expected variance

40 38 • · · • 22609 24017 633 26178 1255 27141 2100
40 40 • · • 24170 25732 655 23820 1.131 19708 1560
40 42 · • 13533 15427 407 16696 813 14733 1195
40 44 4568 4541 176 5183 383 4698 573
40 46 • · 2511 2070 84 3095 199 2525 275

40 48 • 743 737 27 688 50 632 70
42 30 • 1007 1887 147 895 285 1162 493
42 32 • 7027 8775 298 3901 420 4592 701
42 34 • 14706 16806 461 13889 831 6462 864
42 36 · • 17803 21632 594 23485 1194 23943 1812

42 38 • • 21817 22287 571 24941 1301 26228 1985
42 40 • 22333 22458 624 23855 1221 25982 1817
42 42 · • 21479 23933 62] 25479 1279 23604 1666
42 44 • • 14179 13423 '379 15290 810 16538 1214
42 46 4558 4572 158 4544 334 5178 544

42 48 2511 2503 95 2068 164 3071 294
44 32 1513 1086 115 1934 254 950 359
44 34 • · 7920 7017 242 8728 552 3924 563
44 36 12136 14593 424 16636 879 13769 1175
44 38 • · • 16780 17668 505 21419 1135 23219 1717

44 40 • · • 20883 21625 592 22097 1127 24695 1888
44 42 • 20721 22088 607 22240 1222 23620 1772
44 44 • 18135 21199 575 23626 1236 25153 1893
44 46 • • 13758 13991 405 13267 746 15103 1201
44 48 4212 4535 169 4556 310 4529 482

46 34 • 1246 1558 103 1136 201 1955 339
46 36 • 8061 7865 256 6969 457 8643 783
46 38 • • 1111.2 12029 369 14432 812 16421 1271
46 40 • • · • 16007 16620 483 17478 979 21148 1648
46 42 · · • 18172 '20637 587 21364 1154 21833 1670
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214 DEMOGRAPHY, yolume6, number 2, May 1969

TADLE 6.-Married Population (Continued)

Initial Married Married Married
married population at population at population at

Ages popu- time t - 1 unit time t .. 2 units time t '" 3 units
M F lation Expected Variance EXpected Variance Expected Variance

46 44 19803 20437 598 21775 1201 21948 1806
46 46 22197 17858 533 20853 1144 23247 1841
46 48 13979 13532 413 13760 801 13068 1112
48 36 1323 1284 91 1582 189 1167 271
48 38 8114 7972 258 7777 493 6892 656

48 40 10775 10990 360 11878 719 14224 1185
48 42 13480 15799 502 16395 963 17224 1445
48 44 18432 17917 537 20323 1163 21033 1707
48 46 19973 19472 624 20084 1195 21391 1799
48 48 21004 21760 675 17526 1064 20446 1715

50 38 • 2032 1345 86 1305 169 1590 263
50 40 7365 7993 274 7849 508 7656 723
50 42 10217 10608 372 10817 713 11674 1065
50 44 14113 13256 470 15522 1005 rsrc; 1448
50 46 18084 18084 597 17581 1089 19924 1736

50 48 18876 19550 684 19067 1255 19656 1801
52 40 1070 2025 106 1354 164 1313 239
52 42 6371 7222 274 7831 547 7686 757
52 44 7009 10003 382 10388 745 10589 1069
52 46 • 13403 13797 534 12961 941 15165 1511

52 48 17602 17656 666 17653 1206 17164 1647
54 42 1002 1078 77 2001 205 1349 235
54 44 5722 6215 264 7040 549 7628 822
54 46 • 9001 6847 314 9734 764 10111 1117
54 48 • 12402 13040 551 13413 1067 12604 1412

56 44 • 2373 1000 73 1076 149 1963 301
56 46 5767 5548 268 6019 527 6816 824
56 48 9117 8717 426 6644 625 9413 1146
58 46 2132 2299 134 986 141 1061 215
58 48 5211 5554 303 5342 533 5790 787

men to wait longer before marriage, and
then to choose a bride whose age differs
from his own by a greater amount. This
process will be reflected in the stochastic
model. .

The stochastic model has been con
structed in order to study the behaviour
of the whole population, and conse
quently, this criticism of the model does
not cause us much concern.

7. CONCLUSION

The demographer is frequently faced
with the problem of investigating the ef
Ject on a population of a change in mar
riage rates, or of divorce rates, or due to
changes in economic conditions, or due
to changes in government immigration
policy, etc. The present two-sex model

permits objective numerical investiga
tions of some of these problems to be
carried out on a digital computer. The
demographer need only change some
data constants at specified times, and
then look to see what happens to first
and second order moments. We describe
a recurrence method for expectations
and second order moments, which with a
slight modification for marriage, is the
usual multi-type Galton-Watson recur
rence relation (J. H. Pollard, 1966).

Simpler two-sex models exist (e.g.,
L. A. Goodman, 1968; A. H. Pollard,
1948). These models are useful for prov
ing certain mathematical results, but
they cannot be used for dctailed proj ec
tion purposes. The present model is too
complex to prove sophisticated mathe-
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Two-sex Stochastlc Population Program Incorporatlng Marrlage 215

,ApPENDIX TABLlC l.-Male Probabilities

[The format of this tab1e i8 exp1ained in section 6.8. ]

Age
Merely

Probabilities of desiring marriage
Indi-

survive cator

0 .99699 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
2 .99844 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
4 .99888 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
6 .99896 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
8 .99915 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1

10 .99911 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
12 .99885 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
14 .99830 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
16 .99714 0 .00000 0 .00000 0 .00000 0 .00000 0 .00000 1
18 .92384 16 .02908 18 .03105 20 .00990 22 .00219 24 .00031 1

18 .00000 26 .00015 0 .00000 0 .00000 0 .00000 0 .00000 2
20 .74094 16 .04001 18 .09814 20 .08599 22 .02356 24 .00616 1
20 .00000 26 .00161 28 .00025 0 .00000 0 .00000 0 .00000 2
22 .53447 16 .02954 18 .11985 20 .18598 22 .09505 24 .02320 1
22 .00000 26 .00603 28 .00186 30 .00093 0 .00000 0 .00000 2

24 .52011 16 .09655 18 .17459 20 .12123 22 .05613 24 .01869 1
24 .00000 26 .00663 28 .00213 30 .00102 32 .00001 0 .00000 2
26 .54989 16 .02792 18 .07460 20 .11854 22 .10480 24 .06178 1
26 .00000 26 .03112 28 .01419 30 .00778 32 .00412 34 .00229 2
28 .61182 16 .00429 18 .02378 20 .06353 22 .10095 24 .08925 1

28 .00000 26 .05261 28 .02650 30 .01208 32 .00663 34 .00351 2
28 .00000 36 .00195 0 .00000 0 .00000 0 .00000 0 .00000 3
30 .67297 18 .00360 20 .01999 22 .05341 24 .08487 26 .07504 1
30 .00000 28 .04424 30 .02228 32 .01016 34 .00557 36 .00295 2
30 .00000 38 .00164 0 .00000 0 .00000 0 .00000 0 .00000 3

32 .72347 20 .00304 22 .01685 24 .04504 26 .07156 28 .06327 1

32 .00000 30 .03730 32 .01879 34 .00856 36 .00470 38 .00248 2
32 .00000 40 .00138 0 .00000 0 .00000 0 .00000 0 .00000 3
34 .81564 22·.02253 24 .02414 26 .02448 28 .02368 30 .02207 1
34 .00000 32 .01908 34 .01563 36 .01149 38 .00805 40 .00552 2

34 .00000 42 .00368 0 .00000 0 .00000 0 .00000 0 .00000 3
36 .84215 24 .01913 26 .02050 28 .02079 30 .02011 32 .01874 1
36 .00000 34 .01620 36 .01327 38 .00976 40 .00683 42 .00468 2
36 .00000 44 .00312 0 .00000 0 .00000 0 .00000 0 .00000 3
38 .86316 26 .01638 28 .01755 30 .01780 32 .01722 34 .01605 1

38 .00000 36 .01387 38 .01137 40 .00836 42 .00585 44 .00401 2
38 .00000 46 .00267 0 .00000 0 .00000 0 .00000 0 .00000 3
40 .87973 28 .01416 30 .01517 32 .01539 34 .01488 36 .01387 1
40 .00000 38 .01199 40 .00982 42 .00722 44 .00506 46 .00347 2
40 .00000 48 .00231 0 .00000 0 .00000 0 .00000 0 .00000 3

42 .89152 30 .01276 32 .01367 34 .01387 36 .01341 38 .01250 1
42 .00000 40 .01081 42 .00885 44 .00651 46 .00456 48 .00313 2
44 .90461 32 .01122 34 .01202 36 .01219 38 .01179 40 .01099 1
44 .00000 42 .00950 44 .00778 46 .00572 48 .00401 0 .00000 2
46 .91354 34 .01023 36 .01096 38 .01111 40 .01075 42 .01002 1

46 .00000 44 .00866 46 .00710 48 .00522 0 .00000 0 .00000 2
48 .92166 36 .00938 38 .01005 40 .01019 42 .00986 44 .00919 1
48 .00000 46 .00794 48 .00651 0 .00000 0 .00000 0 .00000 2
SO .93069 38 .00838 40 .00898 42 .00911 44 .00881 46 .00821 1
50 .00000 48 .00710 0 .00000 0 .00000 0 .00000 0 .00000 2

52 .93798 40 .00753 42 .00807 44 .00818 46 .00791 48 .00737 1
54 .94398 42 .00667 44 .00714 46 .00725 48 .00701 0 .00000 1
56 .94730 44 .00595 46 .00638 48 .00647 0 .00000 0 .00000 1
58 .94778 46 .00538 48 .00576 0 .00000 0 .00000 0 .00000 1
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ApPENDIX TADLE 2.-Female Probahilities

[The format of this tab1e is exp1ained in section 6.81

~ r o b a b i 1 i t i e s of desiring marriageAge

o
2
4
6
8

10
12
14
14
14

16
16
16
18
18

18
20
20
20
22

22
22
24
24
24

26
26
26
28
28

Mere1y
survive

.99726

.99878

.99906

.99929

.99943

.99946

.99940

.99636

.00143

.00137

.96111

.00740

.00710

.83096

.01505

.01445

.63723

.02346

.02254

.39074

.03315

.03185

.46321

.04335

.04165

.55335

.04983

.04787

.60809

.05202

o .00000
o .00000
o .00000
Q .00000
o .00000

o .00000
o .00000
o .00000
o .00000
o .00000

18 .00674
28 .00049
o .00000

18 .01524
28 .00535

o .00000
18 .00817
28 .01848
o .00000

18 .00514

28 .05184
o .00000

18 .00011
28 .07094
o .00000

18 .00405
28 .06045
38 .00995
20 .00336
30 .05015

o .00000 0 .00000
o .00000 0 .00000
o .00000 0 .00000
o .00000 0 .00000
o .00000 0 .00000

o .00000 0 .00000
o .00000 0 .00000
o .00000 0 .00000
o .00000 0 .00000
o .00000 0 .00000

20 .00819 22 .00455
o .00000 0 .00000
o .00000 0 .00000

20 .04258 22 .04022
30 .00267 0 .00000

o .00000 0 .00000
20 .06280 22 .10505
30 .01054 32 .00566
o .00000 0 .00000

20 .04899 22 .15289

30 .03124 32 .01813
o .00000 0 .00000

20 .00427 22 .04063
30 .04300 32 .02591
o .00000 0 .00000

20 .01382 22 .02985
30 .04884 32 .03527
o .00000 0 .00000

22 .01147 24 .02477
32 .04052 34 .02926

Indi
cator

o .00000 0 .00000 -1
o .00000 0 .00000 -1
o .00000 0 .00000 -1
o .00000 0 .00000 -1
o .00000 0 .00000 -1

o .00000 0 .00000 -1
o .00000 0 .00000 -1
o .00000 0 .00000 -1
o .00000 0 .00000 -2
o .00000 0 .00000 -3

24 .00224 26 .00107 -1
o .00000 0 .00000 -2
o .00000 0 .00000 -3

24 .02194 26 .01036 -1
o .00000 0 .00000 -2

o .00000 0 .00000 -3
24 .06864 26 .03621 -1
o .00000 0 .00000 -2
o .00000 0 .00000 -3

24 .13881 26 .08553 -1

34 .01049 0 .00000 -2
o .00000 0 .00000 -3

24 .12680 26 .11512 -1
34 .01504 36 .00870 -2
o .00000 0 .00000 -3

24 .04644 26 .05879 -1

34 .02433 36 .01574 -2
o .00000 0 .00000 -3

26 .03853 28 .04877 -1

36 .02018 38 .01306 - ~

matical results, but it is useful for pro
jection purposes. We should expect many
of the multi-type Galton-Watson results
to apply to it, however.

The recurrence method for expecta
tions and central quadratic moments in
volves one approximation, which we
have shown (numerically) to be very
accurate. An analytical study of the error
involved presents an enormous problem,
and the analytical results of §6.6 are
hardly even a beginning.

It has been suggested that we could
calculate the moments of X+ more ac
curately if wc knew the higher-erder mo
ments of X. This is undoubtedly true,
but we need to apply the method recurs
ively and the higher-order moments
themselves are then highly suspect. Fur-

thermore, the additional computation
would be enormous, and there would be
difficulties finding suitable distributions
to effect the approximations.

It could be argued that it would be
better to simulate the population and
hence not need to use an approximate
method of analysis. Clearly it is a ques
tion of computer time, and Monte Carlo
methods are notorious for consuming
time. Possibly the expectations could be
obtained by suitable simulation, but the
time required to get reliable estimates
of the second-order moments would be
prohibitive.

A computer program of some general
ity has been written and used to project
an hypothetical population. The small
ness of the projected variances is noted

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://re

a
d
.d

u
k
e
u
p
re

s
s
.e

d
u
/d

e
m

o
g
ra

p
h
y
/a

rtic
le

-p
d
f/6

/2
/1

8
5
/9

0
8
8
2
1
/1

8
5
p
o
lla

rd
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



Two-sex Stochastlc Population Program Incorporatlng Marrlage 217

in §6.9. This fact leads us to the con
clusion that fluctuations in population
data are caused by two different sources
of variation:

(i) statistical ßuctuations due to the finite
numbers in the population; and

(ii) random ßuctuations in the actual prob
abilities.

Usually the seeond souree of variation
is the greater, although it is generally ig
nored by mathematical demographers. A
simple numerieal example in seetion 6.9
elearly illustrates the importanee of the
seeond souree of variability. The distri
butions of the random probabilities must
be investigated thoroughly before more
accurate projeetions ean be made, The

methods of §3, whieh allow for this
souree of variation, are readily incor
porated in the two-sex model.

Nothing has been said about the avail
ability of suitable demographie data to
be used in this type of analysis. Many
of the probabilities required are at pres
ent available, and indeed the only con
siderable diffieulty is that of obtaining
the age-speeifie probabilities of desiring
marriage. There is no obvious simple
manner of ealeulating such probabilities,
and some 'high-elass cookery' method
will probably be neeessary. (See H. Tet
ley, 1950, Vol. 1, p. 263.) The methods
of preparing life tables are often of this
nature, so such a method for obtaining
age speeifie probabilities of desiring
marriage should not be too distasteful.

Age
Mere1y

survive

ApPENDIX TABLE 2.-Female Probabilities (Continued)

Probabi1ities of desiring marriage Indi
cator

28
30
30
30
32

32
32
34
34
34

36
36
36
38
38

38
40
40
40
42

42
42
44
44
44

46
46
46
48
48
48

.04998

.65824

.05090

.04890

.70685

.04692

.04508

.75261

.04039

.03881

.79570

.03188

.03062

.83297

.0232i

.02229

.86859

.01454

.01396

.89718

.00704

.00676
:91940
.00281
.00269

.93192

.00061

.00059

.94250

.00005

.00005

40 .00826 0 .00000 0 .00000
22 .00280 24 .00955 26 .02063
32 .04176 34 .03374 36 .02437
42 .0068& 0 .00000 0 .00000
24 .00232 26 .00791 28 .01709

34 .03461 36 .02796 38 .02020
44. 00570 0 .00000 0 .00000
26 .00193 28 .00659 30 .01423
36 .02881 38 .02327 40 .01681
46 .00474 0 .00000 ß .00000

28 .00162 30 .00552 32 .01192
38 .02414 40 .01950 42 .01409
48 .00397 0 .00000 0 .00000
30 .00138 32 .00469 34 .01013
40 .02051 42 .01657 44 .01197

50 .00338 0 .O~OOO 0 .00000
32 .00115 34 .00392 36 .00847
42 .01716 44 .01386 46 .01001
52 .00282 0 .00000 0 .00000
34 .00098 36 .00333 38 .00720

44 .01458 46 .01178 48 .00851
54 .00240 0 LOOOOO 0 .00000
36 .00080 38 .00274 40 .00591
46 .01197 48 .00967 50 .00699
56 .00197 0 .00000 0 .00000

38 .00069 40 .00236 42 .00511
48 .01034 50 .00835 52 .00603
58 .00170 0 .00000 0 .00000
40 .00058 42 .00199 44 .00429
50 .00869 52 .00702 54 .00507
o .00000 0 .00000 0 .00000

o .00000 0 .00000 -3
28 .03209 30 .04062 -1
38 .01681 40 .01087 -2
o .00000 0 .00000 -3

30 .02659 32 .03366 -1

40 .01393 42 .00901 -2
o .00000 0 .00000 -3

32 .02213 34 .02802 -1
42 .01159 44 .00750 -2
o .00000 0 .00000 -3

34 .01855 36 .02348 -1
44 .00971 46 .00628 -2
o .00000 0 .00000 -3

36 .01576 38 .01995 -1
46 .00825 48 .00534 -2

o .00000 0 .00000 -3
38 .01318 40 .01668 -1
48 .00690 50 .00447 -2
o .00000 0 .00000 -3

40 .01120 42 .01418 -1

50 .00587 52 .00379 -2
o .00000 0 .00000 -3

42 .00920 44 .01165 -1
52 .00482 54 .00312 -2
o .00000 0 .00000 -3

44 .00794 46 .01005 -1
54 .00416 56 .00269 -2
o .00000 0 .00000 -3

46 .00668 48 .00845 -1
56 .00350 58 .00226 -2
o .00000 0 .00000 -3
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APPENDIX TADLE 3.-Couple Probabilities

Ages
M F

20 18.
20 20.
20 22.
20 24.
20 26.

20 28.
22 18.
22 20.
22 22.
22 24.

22 26.
22 28.
22 30.
24 18.
24 20.

24 22.
24 24.
24 26.
24 28.
24 30.

24 32.
26 18.
26 20.
26 22.
26 24.

26 26.
26 28.
26 30.
26 32.
26 34.

28 18.
28 20.
28 22.
28 24.
28 26.

28 28.
28 30.
28 32.
28 34.
28 36.

30 18.
30 20.
30 22.
30 24.
30 26.

30 28.
30 30.
30 32.
30 34.
30 36.

Mere1y
survive

.18439

.21093

.24070

.28626

.33412

.38354

.21458

.24112

.27090

.31645

.36431

.41374

.45372

.25292

.27947

.30924

.35480

.40265

.45208

.49207

.52833

.28912

.31566

.34544

.39099

.43885

.48828

.52827

.56453

.59799

.33065

.35719

.38697

.43252

.48038

.52981

.56979

.60606

.63951

.65735

.37407

.40061

.43039

.47594

.52380

.57284

.61321

.64948

.68293

.70077

Husband
dies

.00334

.00334

.00334

.00334

.00334

.00334

.00309

.00309

.00309

.00309

.00309

.00309

.00309

.00291

.00291

.00291

.00291

.00291

.00291

.00291

.00291

.00297

.00297

.00297

.00297

.00297

.00297

.00297

.00297

.00297

.00310

.00310

.00310

.00310

.00310

.00310

.00310

.00310

.00310
. { } O ~ 1 0

.00328

.00328

.00328

.00328

.00328

.00328

.00328

.00328

.00328

.00328

Wife
dies

.00118

.00122

.00120

.00127

.00142

.00158

.00118

.00122

.00120

.00127

.00142

.00158

.00184

.00118

.00122

.00120

.00127

.00142

.00158

.00184

.00217

.00118

.00122

.00120

.00127

.00142

.00158

.00184

.00217

.00257

.00118

.00122

.00120

.00127

.00142

.00158

.00184

.00217

.00257

.00302

.00118

.00122

.00120

.00127

.00142

.00158

.00184

.00217

.00257

.00302

Son
born

.42323

.39927

.38363

.35975

.33496

.30916

.39775

.38379

.36815

.34427

.31948

.29368

.27344

.37773

.36377

.34813

.32425

.29946

.27366

.25342

.23493

.35856

.34460

.32896

.30508

.28029

.25449

.23425

.21576

.19854

.33704

.32308

.30744

.28356

.25877

.23297

.21273

.19424

.17702

.16794

.31434

.30038

.28474

.26086

.23607

.21027

.19003

.17154

.15432

.14524

Daughter
born

.39702

.38361

.36859

.34564

.32182

.29704

.38215

.36874

.35371

.33077

.30695

.28216

.26272

.36292

.34950

.33448

.31153

.28772

.26293

.24348

.22572

.34450

.33109

.31606

.29312

.26930

.24451

.22506

.20730
.19075

.32382

.31041

.29538

.27244

.24862

.22383

.20439

.18662

.17008

.16135

.30201

.28860

.27357

.25063

.22681

.20241

.18258

.16481

.14827

.13954

Divorce

.00084

.00163

.00254

.00374

.00434

.00534

.00125

.00204

.00295

.00415

.00475

.00575

.00519

.00234

.00313

.00404

.00524

.00584

.00684

.00628

.00594

.00367

.00446

.00537

.00657

.00717

.00817

.00761

.00727

.00718

.00421

.00500

.00591

.0071l

.00771

.00871

.00815

.00781

.00772

.00724

.00512

.00591

.00682

.00802

.00862

.00962

.00906

.00872

.00863

.00815
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APPENDIX TABLE 3.-Couple Probabilitiee (Continued)

Ages Merely Husband Wife Son Daughter
Divorce

M F survive dies dies born born

30 38. .72468 .00328 .00360 .13294 .12773 .00777
32 20. · .44042 .00356 .00122 .28002 .26904 .00574
32 22. · .47020 .00356 .00120 .26438 .25401 .00665
32 24. .51575 .00356 .00127 .24050 .23107 .00785
32 26. .56361 .00356 .00142 .21571 .20725 .00845

32 28. .61304 .00356 .00158 .18991 .18246 .00945
32 30. .65302 .00356 .00184 .16967 .16302 .00889
32. 32. .68929 .00356 .00217 .15118 .14525 .00855
32 34. .72274 .00356 .00257 .13396 .12871 .00846
32 36. .74058 .00356 .00302 .12488 .11998 .00798

32 38. · .76449 .00356 .00360 .11258 .10817 .00760
32 40. .93179 .00356 .00429 .02692 .02588 .00756
34 22. .51056 .00401 .00120 .24368 .23412 .00643
34 24. .55611 .00401 .00127 .21980 .21118 .00763
34 26. .60397 .00401 .00142 .19501 .18736 .00823

34 28. .65340 .00401 .00158 .16921 .16257 .00923
34 3 0 ~ .69338 .00401 .00184 .14897 .14313 .00867

34 32. .72965 .00401 .00217 .13048 .12536 .00833
34 34. .76310 .00401 .00257 .11326 .10882 .00824
34 36. .78094 .00401 .00302 .10418 .10009 .00776

34 38. .80485 .00401 .00360 .09188 .08828 .00738
34 40. .93156 .00401 .00429 .02692 .02588 .00734
34 42. .95898 .00401 .00520 .01252 .01202 .00727
36 24. .59257 .00472 .00127 .20094 .19306 .00744
36 26. .64043 .00472 .00142 .17615 .16924 .00804

36 28. .68986 .00472 .00158 .15035 .14445 .00904
36 30. .72984 .00472 .00184 .13011 .12501 .00848
36 32. .76611 .00472 .00217 .11162 .10724 .00814
36 34. .79956 .00472 .00257 .09440 .09070 .00805
36 36. .81740 .00472 .00302 .08532 .08197 .00757

36 38. .84131 .00472 .00360 .07302 .07016 .00719
36 40. .93104 .00472 .00429 .02692 .02588 .00715
36 42. .95846 .00472 .00520 .01252 .01202 .00708
36 44. .97402 .00472 .00626 .00404 .00390 .00706
38 26. .66276 .00571 .00142 .16433 .15789 .00789

38 28. .71219 .00571 .00158 .13853 .13310 .00889
38 30. .75218 .00571 .00184 .11829 .11365 .00833
38 32. .78844 .00571 .00217 .09980 .09589 .00799
38 34. .82190 .00571 .00257 .08258 .07934 .00790
38 36. .83973 .00571 .00302 .07350 .07062 .00742

38 38. .86365 .00571 .00360 .06120 .05880 .00704
38 40. .93020 .00571 .00429 .02692 .02588 .00700
38 42. .95762 .00571 .00520 .01252 .01202 .00693
38 44. .97318 .00571 .00626 .00404 .00390 .00691
38 46. .97822 .00571 .00746 .00100 .00098 .00663

40 28. .73402 .00693 .00158 .12688 .12190 .00869
40 30. .77400 .00693 .00184 .10664 .10246 .00813
40 32. .81027 .00693 .00217 .08815 .08469 .00779
40 34. .84372 .00693 .00257 .07093 .06815 .00770
40 36. .86156 .00693 .00302 .06185 .05942 .00722
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APPENDIX TADLE 3.-Couple Probabilities (Continued)

Ages Mere1y Husband Wife Son Daughter
Divorce

M F survive dies dies born born

40 38. · · · , · .88547 .00693 ,00360 .04955 .04761 .00684
40 40. · .92918 .00693 .00429 .02692 .02588 .00680
40 42. · .95660 .00693 .00520 .01252 ..01202 .00673
40 4'4. .97216 .00693 .00626 .00404 .00390 .00671
40 46. · .97720 .00693 .00746 .00100 .00098 .00643

40 48. .97820 .00693 .00887 .00008 .00008 ,00584
42 30. · .78624 .00841 .00184 .09974 .09583 .00794
42 32. · .82251 .00841 .00217 .08125 .07806 .00760
42 34. · · · · · .85596 .00841 .00257 .06403 .06152 .00751
42 36. · .87379 .00841 .00302 .05495 .05280 .00703

42 38. · .89771 .00841 .00360 .04265 .04098 .00665
42 40. · · · · · .92789 .00841 .00429 .02692 .02588 .00661
42 42. · · · · · · · .95531 .00841 .00520 .01252 .01202 .00654
42 44. · · · · · .97087 .00841 .00626 .00404 .00390 .00652
42 46. · · .97591 .00841 .00746 .00100 .00098 .00624

42 48. · .97691 .00841 .00887 .00008 .00008 .00565
44 32. · · · · · · · .83343 .01017 .00217 .07496 .07202 .00725
44 34. · .86688 .01017 .00257 .05774 .05548 .00716
44 36. .88472 .01017 .00302 .04866 .04675 .00668
44 38. · · · · · .90864 .01017 .00360 .03636 .03493 .00630

44 40. · · · · .92648 .01017 .00429 .02692 .02588 .00626
44 42. .95390 .01017 .00520 .01252 .01202 .00619
44 44. .96946 .01017 .00626 .00404 .00390 .00617
44 46. · .97450 .01017 .00746 .00100 .00098 .00589
44 48. · .97550 .01017 .00887 .00008 .00008 .00530

46 34. · · · · · .87429 .01241 .00257 .05300 .05092 .00681
46 36. · · · · · .89212 .01241 .00302 .04392 .04220 .00633
46 38. · · · · · · .91604 .01241 .00360 .03162 .03038 .00595
46 40. · .92459 .01241 .00429 .02692 .02588 .00591
46 42. · .95201 .01241 .00520 .01252 .01202 .00584
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APPENDIX TADLE 3.-Couple Probabilities (Continued)

Ages Mere1y Husband Wife Son Daughter
Divorce

M F survive dies dies born born

46 44. .96757 .01241 .00626 .00404 .00390 .00582
46 46. . .97261 .01241 .00746 .00100 .00098 .00554
46 48. .97361 .01241 .00887 .00008 .00008 .00495
48 36. .89560 .01522 .00302 .04076 .03916 .00624
48 38. .91952 .01522 .00360 .02846 .02734 .00586

48 40. .92187 .01522 .00429 .02692 .02588 .00582
48 42. .94929 .01522 .00520 .01252 .01202 .00575
48 44. .96485 .01522 .00626 .00404 .00390 .00573
48 46. .96989 .01522 .00746 .00100 .00098 .00545
48 48. .97089 .01522 .00887 .00008 .00008 .00486

50 38. .88303 .01872 .00360 .04530 .04354 .00581
50 40. .91842 .01872 .00429 .02692 .02588 .00577
50 42. .94584 .01872 .00520 .01252 .01202 .00570
50 44. .96140 .01872 .00626 .00404 .00390 .00568
50 46. .96644 .01872 .00746 .00100 .00098 .00540

50 48. .96744 .01872 .00887 .00008 .00008 .00431
52 40. . .91449 .02296 .00429 .02692 .02588 .00546
52 42. .94191 .02296 .00520 .01252 .01202 .00539
52 44. .95747 .02296 .00626 .00404 .00390 .00537
52 46. .96251 .02296 .00746 .00100 .00098 .00509

52 48. .96351 .02296 .00887 .00008 .00008 .00450
54 42. .93707 .02795 .00520 .01252 .01202 .00524
54 44. .95263 .02795 .00626 .00404 .00390 .00522
54 46. .95767 .02795 .00746 .00100 .00098 .00494
54 48. .95867 .02795 .00887 .00008 .00008 .00435

56 44. .94720 .03390 .00626 .00404 .00390 .00470
56 46. .95224 .03390 .00746 .00100 .00098 .00442
56 48. .95324 .03390 .00887 .00008 .00008 .00383
58 46. .94552 .04108 .00746 .00100 .00098 .00396
58 48. .94652 .04108 .00887 .00008 .00008 .00337

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://re

a
d
.d

u
k
e
u
p
re

s
s
.e

d
u
/d

e
m

o
g
ra

p
h
y
/a

rtic
le

-p
d
f/6

/2
/1

8
5
/9

0
8
8
2
1
/1

8
5
p
o
lla

rd
.p

d
f b

y
 g

u
e
s
t o

n
 1

6
 A

u
g
u
s
t 2

0
2
2


