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A freak wave is a wave of very considerable height, ahead of which there is a deep trough. A

case study examines some basic properties developed by performing wavelet analysis on a

freak wave. We demonstrate several applications of wavelets and discrete and continuous

wavelet transforms on the study of a freak wave. A modeling setting for freak waves will

also be mentioned.

1. Introduction

In the past few years, wavelet methods have been applied in coastal and ocean current data

analysis [2, 5, 6]. These new tools have better performance than the traditional Fourier

techniques. They localize the information in the time-frequency space and are capable of

trading one type of resolution for the other, which renders them suitable for the analysis

of nonstationary signals. It was first introduced in [5, 6] that the wavelet transform is

a powerful tool for coastal and ocean engineering studies. An analysis of applying con-

tinuous wavelet transform spectrum analysis to the result of laboratory measurement of

landslide-generated impulse waves was presented in [2]. In fact, the measured results are

understandably unsteady, nonlinear, and nonstationary, hence the application of time-

localized wavelet transform analysis is shown to be a suitable as well as a useful approach.

The analysis of correlating the time-frequency wavelet spectrum configurations in con-

nection with the ambient parameters that drive the impulse wave process, with respect to

time and space, leads to interesting and stimulating insights not previously known. In [7],

an analysis of a set of available freak wave measurements gathered from several periods

of continuous wave recordings made in the Sea of Japan during 1986–1990 by the Ship

Research Institute of Japan was presented. The analysis provides an ideal opportunity

to catch a glimpse of the incidence of freak waves. The results show that a well-defined

freak wave can be readily identified from the wavelet spectrum, where strong energy den-

sity in the spectrum is instantly surged and seemingly carried over to the high-frequency

components at the instant the freak wave occurs. Thus for a given freak wave, there ap-

pears a clear corresponding signature shown in the time-frequency wavelet spectrum.
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In fact, there is a considerable interest in understanding the occurrence of freak waves.

There are a number of reasons why freak wave phenomena may occur. Often, extreme

wave events can be explained by the presence of ocean currents or bottom topography

that may cause wave energy to focus on a small area because of refraction, reflection,

and wave trapping [3]. In this paper, we study wavelet analysis for a given time series,

namely, we examine various wavelet tools on a given signal. We present several different

aspects of wavelet analysis, for example, wavelet decomposition, discrete and continuous

wavelet transforms, denoising, and compression, for a given signal. A case study exam-

ines some interesting properties developed by performing wavelet analysis in greater de-

tail. We present a demonstration of the application of wavelets and wavelet transforms

on waves. Here we use Daubechies wavelet (db3) in most of our applications unless oth-

erwise specified in the context.

2. Wavelet transform

2.1. 1D continuous wavelet transforms. First, we review the standard continuous

wavelet transforms. The continuous wavelet transform of a function f (x) ∈ L2(R) with

respect to ψ(x)∈ L2(R) is defined by

(W f )(a,b)=
∫∞

−∞
f (x)ψa,b(x)dx, (2.1)

where a,b ∈R, a �= 0, and ψa,b(x) is obtained from the function ψ(x) by translating and

dilating:

ψa,b(x)= |a|−1/2ψ

(

x− b

a

)

. (2.2)

This transform is useful when one wants to recognize or extract features of the function

f (x) from the transform domain.

2.2. 1D discrete wavelet transforms (DWTs). Suppose φ(x) and ψ(x) are the scaling

function and the corresponding wavelet, respectively, with finite support [0, l], where l

is a positive number. It is well known that φ(x) and ψ(x) satisfy the following dilation

equation:

φ(x)=
√

2
l
∑

s=0

hsφ(2x− s), (2.3)

ψ(x)=
√

2
l
∑

s=0

gsφ(2x− s), (2.4)

where the hs’s and gs’s are constants called lowpass and highpass filter coefficients, respec-

tively [8].
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We will use the following standard notations:

φ j,k = 2 j/2φ
(

2 j − k
)

, (2.5)

ψ j,k = 2 j/2φ
(

2 j − k
)

. (2.6)

Consider the subspace V j of L2 defined by

V j = Span
{

φ j,k, k ∈ Z
}

, (2.7)

and the subspace W j of L2 defined by

W j = Span
{

ψ j,k, k ∈ Z
}

, (2.8)

where the subspaces V j ’s,−∞ < j <∞, form a multiresolution of L2 with the subspace

W j being the difference between V j and V j−1. In fact, the L2 space has an orthonormal

decomposition as

L2 =V j

⊕

−∞
∑

k= j

Wk. (2.9)

The projection of an L2 function f (x) onto the subspace V j is defined by

f j(x)=
∑

k

α j,kφ j,k(x), (2.10)

where

α j,k =
∫

f (x)φ j,k(x)dx. (2.11)

Similarly, we can project f (x) onto W j by

w j(x)=
∑

k

β j,kφ j,k(x), (2.12)

where

β j,k =
∫

f (x)ψ j,k(x)dx. (2.13)

Therefore, the function f (x) can be decomposed by

f (x)= f j(x) +
−∞
∑

i= j

wi(x). (2.14)

The projection f j(x) is called the linear approximation of the function f (x) in the sub-

space V j .
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From (2.3)–(2.6), the projection coefficients α j,k and β j,k of f (x) in the subspaces V j

and W j can be easily computed by the so-called fast wavelet transform:

α j,i =
l
∑

s=0

hsα j+1,2i+s, β j,i =
l
∑

s=0

gsα j+1,2i+s. (2.15)

Unlike in the continuous case where the wavelet transform is applied to the L2 function

f (x), in the discrete case, we start by considering a set of discrete numbers which are the

low-frequency coefficients of the L2 function f (x) at a fine-level subspace V j+1.

In practice, DWTs are very useful. It is a tool that cuts up data, functions, or operators

into different frequency components, and then studies each component with a resolution

matched to its scale.

Assume that {hk, k ∈ Z} and {gk, k ∈ Z} are lowpass and highpass filter coefficients,

respectively, which satisfy (2.3) and (2.4); then for a discrete signal {ak, k ∈ Z}, the low-

frequency part {ck, k ∈ Z} and the high-frequency part {dk, k ∈ Z} of the DWT of {ak}
are

ck =
∑

l

hl−2kal, dk =
∑

l

gl−2kal; (2.16)

and the inverse DWT will give back {ak} from the knowledge of {ck} and {dk}:

ak =
∑

l

(

h̃k−2lcl + g̃k−2ldl
)

, (2.17)

where {h̃k, k ∈ Z} and {g̃k, k ∈ Z} are the reconstruction lowpass and highpass filter

coefficients, respectively, and they can be obtained from the following equations:

gk = (−1)kh̃−k+1, g̃k = (−1)kh−k+1. (2.18)

Based on the above fundamental backgrounds and some additional concepts, we will

present several practical applications in the next section which will also indicate some

advantages or disadvantages of different wavelet-based methods.

3. A case study

To examine statistics of signals and signal components is a very important task in studying

the analysis of the well-known 1995 New Year’s Day freak wave at the Draupner platform

in the North Sea. In what follows, we will perform various wavelet analysis examinations

on a given signal. We perform a multilevel wavelet decomposition, continuous wavelet

transform with various wavelets, compression, denoising, as well as graphical examina-

tional analysis of the corresponding wavelet coefficients which can be found in Figures

3.1, 3.2 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 3.10, 3.11, 3.12, 3.13, 3.14, 3.15, 3.16, and 3.17.

More precisely, we describe our studies of wavelet analysis for the given signal in more

detail as follows.
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Figure 3.1. Decomposition of time series at level 5 with db3.

3.1. Multilevel decomposition. A multiresolution decomposition of the signal is per-

formed in Figures 3.1 and 3.2. As indicated in (2.9) and (2.14) and shown in those figures

as well, the higher level is more coarser, while the lower level is more finer and close to

the original signal. The higher-level approximation shows a more smoother version of the

signal, while the lower-level decomposition is less smoother and has similar smoothness

to the original signal. Multilevel decomposition in the details indicates different natures

of the signal. Wavelet decomposition produces a family of hierarchical decompositions.

The selection of a suitable level for the hierarchy usually depends on the signal and ex-

perience. At each level j, the j-level approximation A j and a deviation signal called the

j-level detail D j are the decompositions of the lower-level approximation A j−1. For ex-

ample, in Figure 3.1, the signal is decomposed as A0 = A1 +D1 = A2 +D2 +D1 = ··· =
A5 +D5 +D4 +D3 +D2 +D1. Perhaps it is of most interest that the freak wave effect, the

one single unusually high wave, only appeared at low scales D1 and D2. So the freak wave

is basically a time localized event not affected by higher scales or low-frequency wave

processes.
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Figure 3.2. Approximation and details at level 5.

3.2. Compression. The compression of the signal is shown in Figure 3.4. Basically, the

wavelet decomposition of the signal at level 5 is computed. For each level from 1 to 5, a

threshold (0.3490) is selected and hard thresholding is applied to the detail coefficients as

described in Section 2. The residual and reconstruction from compression are also shown

in the figure. Essentially the idea of compression is that some small detail components

can be thrown out without appreciably changing the signal. Only the significant com-

ponents need to be transmitted, and significant data compression can be achieved. The

way to choose small detail components depends on the threshold chosen for a particular

application.

3.3. Reconstruction. Computation results of wavelet reconstruction at level 5 with db3

and the modified detail coefficients of levels from 1 to 5 are shown in Figures 3.2 and

3.3. The corresponding reconstruction and approximation are plotted in those figures. A

reconstruction algorithm was used so that the compressed signal can be rebuilt in terms

of the basic elements generated by certain a scaling function (Figure 3.4).
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Figure 3.3. Reconstruction and approximation at level 5. (a) Original signal X . (b) A0: reconstructed

from the multilevel wavelet decomposition. (c) Sum of approximation and details: A5 + D5 + D4 +

D3 +D2 +D1. (d) X −A0. (e) X-Sum. (f) A0-Sum.
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Figure 3.4. Compression with global thresholding.
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Figure 3.5. Continuous wavelet transform with db3.
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Figure 3.6. Continuous wavelet transform with morlet wavelet.
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Figure 3.7. Continuous wavelet transform with Coiflet3.
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Figure 3.8. Wavelet spectrum with db3.
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Figure 3.9. Wavelet spectrum with morlet.
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Figure 3.10. Wavelet spectrum with Coiflet3.

Original signal

0 200 400 600 800 1000 1200
−10

0

10

20

0 200 400 600 800 1000 1200
−10

0

10

20
Denoised signal

0 200 400 600 800 1000 1200
−2

−1

0

1

N
o

is
e

Figure 3.11. Denoising thr. db3 with global thresholding. (Zero Coefficients: 50%, 2-norm recon-

struction: 90.8868%.)
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Figure 3.12. Denoised signal/basic /unscaled /nonwhite noise with db3.
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Figure 3.13. Best-level decomposition tree.
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Figure 3.15. Wavelet packet with db3.
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3.4. Wavelet coefficients. Performing continuous wavelet transforms, we obtain several

results. Wavelet coefficients of analyzed signals with db3 are shown in Figure 3.5. The

corresponding spectrum is shown in Figure 3.8. Wavelet coefficients of analyzed signals

with Morlet wavelet are shown in Figure 3.6. The corresponding spectrum is shown in

Figure 3.9. Wavelet coefficients of analyzed signals with Coiflet3 are shown in Figure 3.7.

The corresponding spectrum is shown in Figure 3.10. The performances by using dif-

ferent wavelets can be viewed and compared while one searches for different natures and

features of the corresponding wavelets. Again, the primary feature of freak waves is shown

clearly at low scales in both discrete and continuous wavelet transform results. In Figures

3.5 to 3.10, Ca, b is defined as (2.1).

3.5. Denoising. The denoising results based on wavelet decomposition with different

noise assumptions are shown in Figures 3.11 and 3.12. The denoised signal in Figure 3.11

is obtained by wavelet coefficient thresholding using global threshold 1.9482. The thresh-

old used in Figure 3.12 is a mixture of Stein’s unbiased risk estimate and the square root

of the signal length. The three denoising methods used are general basic model (one),

basic model with unscaled noise (sln), and basic model with nonwhite noise (mln). As

one can see from the resulting signals, comparing with the original wave, it turned out

that the method with unscaled noise is a better denoising method.

3.6. Wavelet packet. The wavelet packet method is a generalization of wavelet decom-

position as shown above. Wavelet packet atoms are waveforms indexed by three parame-

ters: position, scale, and frequency. For a given signal with respect to a given orthogonal

wavelet, we generate a library of bases called wavelet packet bases. Each of these bases of-

fers a particular way of coding signals, preserving global energy, and reconstructing exact

features. We obtain numerous expansions of a given signal by using wavelet packets. We

then select the most suitable decomposition of a given signal with respect to an entropy-

based criterion. We analyze our signal into a decomposition tree with db3 as shown in

Figure 3.13. We then select an optimal basis with the best level (Figure 3.14). The cor-

responding compression and denoising are shown in Figures 3.16 and 3.17, respectively.

Some coefficients of subtrees are shown in Figure 3.15.

4. Concluding remarks

While this study is a first attempt in applying wavelet tools to exhaust various analyses

on a set of freak wave data, it would be interesting to compare results for further studies

on other waves or using different wavelets. It is also interesting to develop other studies

by using interpolation methods [4] as well. Freak waves are a major threat to ships and

offshore structures such as oil rigs, but they are difficult to predict. It seems that freak

waves exist even in the ocean far away from strong current gradients. A wave must be at

least 2.2 times the height of the largest 33% of the waves. Some freak waves are caused

by strong currents or the chance reinforcement of two large waves, and a so-called “self-

focusing” effect could also create outside waves [1]. The modeling of the waves from the

point of view of the nonlinear Schrodinger equation was developed by several authors [1].
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It would be interesting to construct a model and compare some simulations which will

be compatible with the results derived from this paper.
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