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Abstract 

A lane changing event involves up to five vehicles: the subject vehicle, preceding and 

following vehicles in the original lane, and the preceding and following vehicles in the target 

lane.  Understanding the behavior of the subject vehicle with respect to the surrounding vehicles 

is fundamental to the study of the safety of a lane change maneuver and for the modeling of lane 

changing behavior. First, the statistical properties of 10 lane changing parameters were defined 

and studied using the Next Generation SIMulation (NGSIM) vehicle trajectory data collected at 

the I-80 Freeway in Emeryville, California, and then tested with data collected at the U.S. 

Highway 101 in Los Angeles, California. The results show that all the parameters are positively 

correlated with each other; the gaps and distance are best described by the log-normal 

distribution; the time to collisions are best described by the Laplace probability distribution; the 

speed is best described by the logistic distribution. This dissertation then presents a Fuzzy 

Inference System (FIS) which models a driver’s binary decision to or not to execute a 

discretionary lane changing move on freeways.  It answers the following question “Is it time to 

begin to move into the target lane?” after the driver has decided to change lane and have selected 

the target lane. The system uses four input parameters: the gap between the subject vehicle and 

the preceding vehicle in the original lane, the gap between the subject vehicle and the preceding 

vehicle in the target lane, the gap between the subject vehicle and the following vehicle in the 

target lane, and the distance between the preceding and following vehicles in the target lanes. 

The input parameters were selected based on the outcomes of a drivers survey, and can be 

measured by sensors instrumented in the subject vehicle. The FIS was trained with NGSIM 

vehicle trajectory data collected at the I-80 Freeway in Emeryville, California, and then tested 

with data collected at the U.S. Highway 101 in Los Angeles, California.  The test results show 

that the FIS system made lane change recommendations of “yes, change lane” with 82.2% 

accuracy, and “no, do not change lane” with 99.5% accuracy. These accuracies are better than 

the same performance measures given by the TRANSMODELER’s gap acceptance model for 
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discretionary lane change, which is also calibrated with NGSIM data. The developed FIS has a 

potential to be implemented in lane change advisory systems, in autonomous vehicles, as well as 

microscopic traffic simulation tools. 
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Chapter 1: Introduction 

 

1.1 Background 

A vehicle’s two-dimensional motion on a highway surface may be decomposed into the 

longitudinal and lateral movements. The longitudinal movement in the same lane, in the presence 

of vehicles ahead (the preceding vehicle) and behind (the following vehicle), is termed by traffic 

flow researchers as car-following. On the other hand, the lateral movement, which is always 

accompanied with a longitudinal movement, is known as lane changing. Lane changing model is 

as important as car-following model as the fundamental building blocks in microscopic traffic 

simulation tools [FHWA, 1995; PTV 2007; Quadstone 2009; TSS 2002; Caliper 2011]. The 

impact of lane change on traffic safety has been frequently investigated [Winsum et al. 1999; 

Hunt 1994; Thiemann 2008; Zheng et al. 2014]. Obviously, driver workload and stress are likely 

to significantly increase during the lane change; this makes driving more error-prone, and thus, 

more dangerous. For instance, approximately 539,000 two-vehicle lane change crashes occurred 

in the U.S. in 1999 [Li et al. 2006]. The microscopic driving behavior is also related to 

macroscopic property of traffic flow [Laval and Daganzo 2006; Zhao et al. 2013]. In the advent 

of semi-autonomous and autonomous vehicles, the understanding and accurate modeling of car-

following and lane changing behavior is critical to the safe operations of these vehicles and the 

surrounding traffic. Although car-following has been studied by researchers in more than 50 

years, relatively fewer examinations on lane changing behavior have been made. The reason 

could be due to the facts that (i) a lane change involves two-dimensional motions; and (ii) there 

are relatively more (up to five) vehicles involved in a lane changing event. In contrast, car-

following involves two vehicles, one following another in the same lane. Therefore, the study of 

lane change is more complex and challenging than car-following. 

In general, there are two types of lane change in freeways: mandatory and discretionary. 

Mandatory lane change is also known as forced or necessary lane change. It occurs when a 
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vehicle is trying to move from the left or center lane to the rightmost lane in order to exit the 

freeway. Mandatory lane change also happens when a vehicle has just entered the freeway from 

an on-ramp and is trying to move to the center or left lane to travel at a faster speed or to avoid a 

downstream exit lane. Discretionary lane change is also known as free lane change or desired 

lane change. It occurs when a driver is following another vehicle at a speed slower than his/her 

desired speed and therefore seeks to increase its speed by moving to an adjacent lane. Obviously, 

the motivations and resulting driving behavior for the two types of lane change are different. 

Therefore, a driver is expected have different decision rules and/or risking taking behavior for 

the two types of lane change.  

A discretionary lane change might be modeled as a four-step process: (1) motivation; (2) 

selection of target lane; (3) checking for opportunity to move; and (4) the actual move, as shown 

in Figure 1.1 [Caliper 2011]. The beginning and end of the four steps are marked by times t1, t2, 

t3, t4 and t5, respectively, where t1<t2<t3<t4<t5.  At time t1, the driver begins to feel uncomfortable 

driving in the original lane.  Between t1 and t2, external stimulus motivates him/her to want to 

change lane.  At t2, he/she has made up his mind to change lane, and begins to look for a target 

lane (on the left or on the right).  At t3, the target lane is selected.  From t3 onwards, the driver 

actively seeks an opportunity in the target lane to make a move.  He/she begins the lateral move 

at t4.  The lateral move is completed at time t5.  

 

        Step 1  Step 2                  Step 3               Step 4 
 

           𝑡!   (Motivation)     𝑡! (Selection of target lane)   𝑡!     (Checking the opportunity)     𝑡!   (Lateral move)     𝑡! (Finish) 

 

Figure 1.1: Steps in a discretionary lane change 

 The traditional lane changing decision models rely mainly on deterministic mathematical 

equations and/or rules to replicate drivers’ decisions. These models do not consider the 

uncertainties of drivers’ perception and decisions [McDonald et al. 1997; Das and Bowels 1999]. 
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Traditional lane changing decision models are based on crisp magnitudes of parameters [Das and 

Bowels 1999; Das et al. 1999]. This is in contrast to the real world in which drivers make their 

decisions based on imprecise perceptions of the surrounding traffic [Ma 2004]. In recent years, 

several approaches have become popular to address the inadequacies of traditional models. 

Because of their theoretical benefits and proven performance, there is strong interest in 

approaches which are based on Artificial Intelligence (AI), particularly fuzzy logic. Fuzzy logic 

incorporates a degree of uncertainty in the decision making process and therefore, reflects the 

drivers’ natural or subjective perceptions of the inputs which influence their decisions. 

Therefore, the fuzzy logic approach is used in this research to model the lane changing decision 

process from t3 to t4.  

There are several issues in the existing lane changing models. The first issue is that the 

models are largely based on how the modelers perceive drivers would make lane changing 

decisions, rather than on the general user’s driving experience. Only a few developers of the 

existing lane changing models have identified factors and developed lane changing rules based 

on video evidence e.g., Hidas, [2002, 2005], or by interviewing drivers e.g., [Sun and 

Elefteriadou 2010]. 

A second issue is that a lane change decision is often modeled as a one-player (the lane 

changer) decision-making process. However, our observations and experience tell a different 

story: in heavy traffic, a typical lane change decision making process involves at least two 

players – the lane changer and the follower in the target lane. This is because the follower in the 

target lane is often required to make decisions as a result of someone else’s lane change decision. 

Thus, at least two decision making players and processes are involved in the lane changing 

process in heavy traffic. 

Another issue with the existing models is that failed lane changing attempts are often 

ignored in calibrating and validating the models due to the lack of data; thus, current lane change 

models do not have the capability of reproducing failed attempts [Laval and Leclercq 2006]. 
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A final note on lane changing modeling is that a proposed model should be developed for 

either for freeways or for urban streets. Although lane changes on freeways and those on urban 

streets have different necessities, few models are developed specifically for either freeways or 

urban streets.  

In this dissertation, the issues of driver feedback, failed lane changing attempts will be 

addressed. A lane changing decision model will be developed for freeways driving. 

 

1.2 Objective 

The objective of this research is to develop an improved discretionary lane changing 

decision model using the fuzzy logic approach. More specifically, a Fuzzy Inference System 

(FIS) is constructed to replicate a driver’s decisions in the third step to the four-step discretionary 

lane changing process; that is, from t3 to t4, checking for an opportunity in the target lane to begin 

a lateral move. The model will answer the question “Is it time to start moving into the target 

lane?”  

 

1.3 Significance of Research 

Compared to past researches, this research will be the first one to conduct a driver survey 

to select drivers’ discretionary lane changing decision parameters, and construct fuzzy sets, fuzzy 

rules based on the results of the questionnaire survey. This research will also be the first one to 

construct fuzzy membership functions using the statistics of vehicle interactions during 

discretionary lane changing maneuvers extracted from a national database of vehicle trajectories 

(NGSIM database). With these approaches, the developed FIS model is expected to be more 

accurate than the past models.  

This research will demonstrate the potential of FIS in modeling discretionary lane 

changing decisions on freeways. In addition, the FIS will outperform the existing 

TRANSMODELER’s gap acceptance model (which is developed for discretionary lane change, 
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and calibrated with the same data sets used in this research). This research will demonstrate that 

FIS has better accuracy than this competitor in making “yes, change lane” and “no, do not 

change lane” recommendations. 

Once developed, the model may be programmed into traffic simulation models as part of 

the lane changing module, or in lane changing advisory systems in actual vehicles. It also has the 

potential to be programmed into autonomous vehicles. The research has the potential to improve 

freeway safety by reducing the number of crashes due to incorrect lane changing decisions. 

 

1.4 Scope 

This research is limited to the following scope: 

1. The FIS developed so far is for passenger cars as the subject vehicles; 

2. It only concerns with discretionary lane change; 

3. In this research, only NGSIM database will be used. Because the NGSIM data does not 

include demographic and psychological information of the drivers, the developed lane 

changing decision model does not include the motivation to change lane and the selection of 

the target lane. However the motivation will be included as part of the questionnaire survey 

(and the target lane can be infer from the stated motivation). This additional information will 

be collected but not analyzed as part of this dissertation. It may be used for future research. 

 

1.5 Outline of Dissertation 

In Chapter 2, the existing lane changing models are classified into models in microscopic 

traffic simulation tools, conventional lane changing models and fuzzy logic based lane changing 

models, according to their characteristics and applications. The lane changing decision models 

are reviewed and the general procedure for model development and the parameters considered by 

each model are identified. In addition, the strengths and weaknesses of the lane changing 
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decision models are summarized. Finally, the major limitations of the existing lane changing 

decision models are highlighted.  

This literature review is followed by a description of the NGSIM database used in this 

research in Chapter 3 and the processing of the NGSIM database. Furthermore, the data is 

analyzed statistically. The statistical correlations and probability distributions of the data later 

help the author in selecting the parameters, the maximum and minimum value of the fuzzy 

membership functions. 

An exclusive FIS lane changing model is introduced and developed in Chapter 4. This 

chapter first reports a survey conducted to understand drivers’ lane changing behavior and to 

understand the important lane changing parameters used by drivers in practice. This chapter then 

outlines the approach for developing a fuzzy logic lane changing model by defining fuzzy sets, 

fuzzy membership functions, fuzzy rules, composition of rules and defuzzification to have crisp 

outputs. 

The FIS lanes changing models is tested in Chapter 5 with the use of two data sets 

(Datasets A and B) derived from the processed NGSIM database. Furthermore, a comparison of 

performance between the developed FIS model and the lane changing model in the 

TANSMODELER simulation tool is made.  

Finally, Chapter 6 summarizes the findings of this dissertation, potential applications, 

contributions, limitations and discusses future research directions. 
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Chapter 2: Literature Review 

 This chapter reviews discretionary lane changing models, with special focuses on 

driver’s decision making process and the parameters used to make a decision. This first sub-

section reviews lane changing models in microscopic traffic simulation tools. Conventional and 

fuzzy lane changing models are reviewed in the next sub-sections. At the end of this chapter the 

lane changing parameters are summarized.  

 

2.1 Lane Changing Models in Microscopic Traffic Simulation Tools  

This section reviews the lane changing models in popular microscopic traffic simulation 

tools: FRESIM, VISSIM, PARAMICS, AIMSUN and TRANSMODELER. 

The lane changing model in FRESIM [FHWA 1995] is described in its predecessor 

INTRAS’s development report [Wicks and Lieberman 1980]. There are two types of lane change 

in FRESIM: free lane change and forced lane change. A free lane change is sought when a 

subject vehicle is traveling below its desired speed and it can gain speed by moving to an 

adjacent lane. If the above condition is met, a binary decision to change lane is generated 

according to a pre-defined probability and assigned to the subject vehicle. Once a decision has 

been made to change lane, to successfully execute a free lane change, the subject vehicle must 

satisfy the following rules: (i) the lead headway in the target lane must satisfy a “non-collision 

constraint”; and (ii) the lag headway in the target lane must also satisfy the non-collision 

constraint. Considering only two lane changing parameters without giving any scientific reason 

could be the other weakness.  

VISSIM [PTV 2007] classifies lane changes into free lane change and necessary lane 

change. In the case of a free lane change, the VISSIM’s lane changing model checks if the 

available distance between the subject vehicle and the following vehicle in the target lane 

satisfies the “desired safety distance”. It also checks to make sure that the time headway between 

the subject vehicle and the following vehicle in the target lane exceeds the “minimum time 
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headway”. For a lane change in a queue, the model also checks the time headway between the 

subject vehicle and the preceding vehicle in the target lane.  

PARAMICS does not distinguish between mandatory lane change and discretionary lane 

change. The lane changing model in PARAMICS is based on the gap acceptance theory [Duncun 

n.d.]. A vehicle is allowed to move from its original lane to the target lane if both (i) the gap (in 

distance unit) between the subject vehicle and the preceding vehicle in the target lane; and (ii) 

the gap (in distance unit) between the subject vehicle and the following vehicle in the target lane 

must exceed their respective minimum threshold values. The minimum threshold values are 

functions of relative speed of the following and preceding vehicle in the target lane and desired 

headway. PARAMICS requires considerable input data. 

 AIMSUN [TSS 2002] describes a vehicle’s lane changing decision making process in 

terms of necessity, desirability and possibility to change lane. The necessity to change lane 

includes the need to overtake the existing leader to travel at a faster speed. Therefore it is broader 

than the causes of mandatory lane change. If it is necessary to change lane, the AIMSUN’s logic 

checks if an adjacent lane’s speed and gap are desirable (i.e., faster speed, and longer gap 

between the preceding and following vehicles). If the conditions are both necessary and 

desirable, the logic next looks for a gap in the target lane to make a safe maneuver. To 

distinguish between discretionary and mandatory lane changes, AIMSUN divides a freeway 

segment upstream of an off-ramp into three zones, where discretionary lane changes take place 

in the most upstream zone. The length of the zones is a function of the speed limit and individual 

vehicle’s desired speed. AIMSUN was found to be highly sensitive to the reaction time value.  

TRANSMODELER [Caliper 2011] uses the discrete choice approach in the modeling of 

a driver’s lane changing decision. The TRANSMODELER software considers two types of lane 

change: discretionary and mandatory. A discretionary lane change is considered when a driver is 

dissatisfied with the current speed. There are two discretionary lane changing models: 

neighboring lane model and target lane model. The neighboring lane model, as its name 

suggests, has the target lanes adjacent to the original lane. In contrast, the target lane model 
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moves the subject vehicle by more than one lane. In the neighboring lane model, the logit model 

calculates the probabilities of a driver selecting each available lane (left or right adjacent lane). 

Once a target lane has been selected, the subject vehicle seeks a suitable gap in the target lane to 

merge into. The gap acceptance parameters (attributes) considered are lead gap and lag gap. The 

coefficients of the gap acceptance parameters have been calibrated with NGSIM data [Caliper 

2011].  

The gap acceptance model was the only one that could be compared to the FIS because 

this model determines t4 (the moment of start of lane changing move) and calibrated with 

NGSIM data. Once a vehicle has decided to change lanes, it will look for a gap in the selected 

target lane and decide whether it is safe to execute the lane change. Whether the gap is 

considered acceptable by the subject vehicle is determined by a gap acceptance model that 

compares the measured gap against the minimum “acceptable” gap required. The gap acceptance 

model divides the gap in the target lane into two gaps: a lead gap (𝐺!") and a lag gap (𝐺!"). 

There are three gap acceptance models in TRANSMODELER. The first is a linear model 

and the second is a non-linear model. The third is a model developed and calibrated with NGSIM 

data. All the three models are a function of the lead and lag gaps. The third model is described in 

detail here because it will be used to compared with the proposed FIS model. 

The model calibrated with NGSIM data is based on the gaps between the subject vehicle 

and the lead and lag vehicles in the target lane. The critical gaps are calculated by the following 

formula [Choudhury 2007]: 

 

𝐺
!

!
= exp (𝛽!𝑋! + 𝛼!𝑉! + 𝜀!)         (2.1) 

 

where: 

𝐺
!

!
 = Minimum acceptable lead or lag gap g for driver i; 

g = {lead, lag}; 

i = time instance; 
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which the formula could be rewritten as: 

 

𝐺!
!"#$

= exp (𝛽!
!"#$

+ 𝛽!
!"#$

𝑋!
!"#$

+ 𝛽!
!"#$

𝑋!
!"#$

+ 𝛽!
!"#$

𝑋!
!"#$

+ 𝛼
!"#$

𝑉! + 𝜀!)   (2.2) 

 

𝐺
!

!"#
= exp (𝛽

!

!"#
+ 𝛽

!

!"#
𝑋
!

!"#
+ 𝛽

!

!"#
𝑋
!

!"#
+ 𝛼

!"#
𝑉! + 𝜀!)      (2.3) 

 

where: 

𝛽!
!"#$ = Constant = 1.0; 

𝛽
!

!"#
 = Constant = 1.5; 

𝛽!
!"#$ = Coefficient of 𝑋!

!"#$  = 1.541; 

𝛽
!

!"#
 = Coefficient of 𝑋

!

!"#
 = 1.426; 

𝛽!
!"#$ = Coefficient of 𝑋!

!"#$ = 6.21; 

𝛽
!

!"#
 = Coefficient of 𝑋

!

!"#
 = 0.64; 

𝛽!
!"#$ = Coefficient of 𝑋!

!"#$= 0.13; 

𝑋!
!"#$ = Max {0, (𝑉! − 𝑉!")}; 

𝑋
!

!"#
 = Max {0, (𝑉! − 𝑉!")}; 

𝑋!
!"#$ = Min {0, (𝑉! − 𝑉!")}; 

𝑋
!

!"#
 = 𝑉!"; 

𝑋!
!"#$ = 𝑉!; 

𝑉! = Speed of the subject vehicle; 

𝑉!" = Speed of the following vehicle after lane changing; 

𝑉!" = Speed of the preceding vehicle after lane changing; 

𝛼
!"#$ = Coefficient of the individual driver-specific variable 𝑉! = -0.008; 

𝛼
!"# = Coefficient of the individual driver-specific variable 𝑉! = -0.205; 

𝑉! = Individual driver-specific random variable which is assumed to have a normal distribution 

with mean 0 and variance 1. 𝑉! is the same for one vehicle and different with the other 

vehicles. −3 ≤ 𝑉! ≤ 3, 
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 𝜀! = Random term associated with the driver at i. which is assumed to have a normal distribution 

with mean 0 and variance 0.854.  

Critical lead and lag gaps calculated from the above formulas are called 𝐺!
!"#$ and 𝐺

!

!"#
, 

respectively. On the other hand, lead and lag gaps measured from the actual driving are denoted 

by 𝐺!"and 𝐺!", respectively. These two gaps should be compared to make a lane changing 

decision. 

  IF 

𝐺!" >𝐺!
!"#$  AND  𝐺!" > 𝐺

!

!"#
 

  THEN 

Decision = 1 or “yes, change lane” 

  ELSE 

Decision = 0 or “no, do not change lane” 

 

2.2 Conventional Lane Changing Models  

Gipps [1986] is perhaps one of the earliest to document a lane change study in a 

signalized street. The driver’s decision making framework consists of the possibility, necessity 

and desirability to change lane. He then proposed a lane changing model encompassing 

mandatory and discretionary lane changes. The decision parameters for discretionary lane change 

included the subject vehicle’s safe speed, the relative speed between the following and preceding 

vehicles in the target lane, and gap (headway between preceding and following vehicle). The 

contribution of Gipps is in the formulation of the decision process. The decision making 

framework is later used in AIMSUN. However, he only conducted an experiment via computer 

simulation. Gipps did not mention why he only considered distance and speed as lane changing 

parameters and even no framework for estimation of the model’s parameters was proposed. He 

assumes that the lane changing occurs when a gap of sufficient length is available and it is safe to 

change lane which causes some limitations in congested traffic conditions. 
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After observing video recordings of 73 lane changing maneuvers in arterials in Sydney, 

Australia, Hidas [2005] concluded that the accepted gaps in the target lane is closely related to 

the relative speed between the preceding and following vehicles. He classified lane changes into 

free, forced and cooperative lane changes based on the space gap in front and space gap behind 

the subject vehicle in the target lane. Regardless of the type of lane change, the logic proposed 

by Hidas [2005] makes use of space gap in front and space gap behind. He considered gap as the 

main important parameter for his model only with no reason. 

Kesting et al. [2007] used a linear combination of accelerations of the subject vehicle, the 

follower in the original lane and the follower in the target lane to form an incentive criterion for 

lane change. This lane changing model is based purely on acceleration rates. 

Yeo et al. [2008] proposed an oversaturated freeway flow algorithm which consists of a 

lane change model. The algorithm has two types of lane change: mandatory and discretionary. 

The purpose of a discretionary lane change is for the subject vehicle to increase speed or to 

improve its position in the traffic stream. The parameters for discretionary lane change are 

average speed difference, average speed of vehicles in the target lane, free-flow speed of subject 

vehicle and speed of the subject vehicle. 

Schakel et al. [2012] combined incentives to follow a route, to gain speed and to keep 

right into a single lane change desire value, from which three types of lane change (free, 

synchronized and cooperative) are distinguished. The proposed lane changing model, which is 

based on the gap acceptance concept, incorporates car-following acceleration/deceleration in 

decision making. The lane change decision making process included seven parameters: relax 

headway, route desire, anticipated speed, speed desire, keep-right desire, combine desires, and 

gap-acceptance. The model has been calibrated with loop detector data collected at the A20 

Motorway near Rotterdam, Netherlands.  

Hill and Elefteriadou [2013] studied the lane changing behavior of drivers in 

instrumented vehicles driving on I-4 Freeway in Orlando, Florida, and I-95 Freeway in 

Jacksonville, Florida. The time for a lane changing maneuver, desired speed, lead gap (defined 
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as the distance between the subject vehicle and the preceding in the target lane) and lag gap 

(defined as the distance between the subject vehicle and the following in the target lane) were 

recorded for 321 discretionary lane changes. They found that the Gamma distribution provided 

the best fit for the lag gap. However, the Johnson SI distribution provided the best fit for the lead 

gap. 

Hou et al. [2014] proposed a model of mandatory lane change using Bayes classifier and 

decision trees. Vehicle trajectory data from the NGSIM database were used to develop and to test 

the model. Time mean speed was the only parameter that the author used to make the model.  

 

2.3 Fuzzy Logic Lane Changing Models  

The models reviewed in Sections 2.1 and 2.2 do not incorporate the inconsistencies and 

uncertainties of drivers’ perception and decisions. These models are based on crisp parameters 

magnitudes. Most of the traditional lanes changing decision models (as reviewed above) use 

crisp mathematical equations and conventional logic to represent drivers’ knowledge of the 

surrounding traffic and to model the drivers’ lane changing decisions. Random terms are 

included in some of these models to capture the variation of the parameters. The random terms 

are mainly Gumbel or normally distributed [Ahmed 1999; Choudhury et al. 2007; Toledo 2009]. 

However, drivers make decisions based on their imprecise perceptions of the surrounding 

traffic. In recent years, fuzzy logic based approaches have been applied to lane change models 

because they overcome the shortcoming of rigid conventional models. One of the benefits of 

fuzzy logic is that it incorporates uncertainty in the model and therefore, reflects the natural or 

subjective perception of real parameters [Ma 2004]. 

Das and Bowles [1999] and Das et al. [1999] proposed a fuzzy logic lane changing model 

in a new microscopic simulation methodology called Autonomous Agent SIMulation Package 

(AASIM). The major motivation of using a fuzzy knowledge based approach to model drivers’ 

decisions is that fuzzy models provide an effective means to change highly nonlinear systems 
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into IF-THEN rules. In addition, fuzzy logic is well equipped to handle uncertainties in real 

world traffic situations. They classified the lane changing maneuvers as MLC (Mandatory Lane 

Change) and DLC (Discretionary Lane Change). The DLC rules of AASIM reflect a binary 

decision (to change lane or not) which is based upon two explanatory parameters. These two 

explanatory parameters are the driver’s speed satisfaction level, and the level of congestion in the 

left or right adjacent lanes. The inputs to the fuzzy rules are gap size and vehicle speed in the 

target lane, and headway to the front vehicle in the current lane. In AASIM, no specific lane 

changing decision model was considered for each vehicle type. 

Moridpour et al. [2009; 2012] proposed a fuzzy logic model of lane changing for heavy 

vehicles. Front space gap, rear space gap and the average speed of the surrounding vehicles in 

the current lane are the parameters which used in the model. The microscopic analysis of the lane 

changing maneuvers has showed that the fuzzy logic model more accurately replicated the 

microscopic lane changing behavior of the heavy vehicle drivers. Not considering light vehicles 

(cars) besides of not considering the parameters in the target lane could be the weaknesses of the 

study. 

McDonald et al. [1997], Brackstone et al. [1998] and Wu et al. [2000] have developed a 

fuzzy logic motorway lane changing simulation model and have established fuzzy sets and 

systems for their model. To model the lane changing decision, they classified the lane changing 

maneuvers into two categories: (a) lane changes to the near-side (shoulder) lane, mainly 

performed to prevent disturbing the fast-moving vehicles that approach from the rear; and (b) 

lane changes to the off-side (median) lane, mainly performed with the aim of gaining speed 

advantages. Their decision model uses two parameters: (a) pressure from the rear, which is the 

time headway of the rear vehicle; and (b) gap satisfaction in the near-side lane, the period of time 

during which it would be possible for the subject vehicle driver to stay in the selected gap in the 

near-side lane, without reducing speed. To establish the off-side lane-changing decision model, 

they defined two parameters: (a) overtaking benefit, the speed advantage when an off-side lane-

changing maneuver is executed; and (b) opportunity, which reflects the safety and comfort of the 
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lane-changing maneuver, measured by the time headway to the first lag vehicle in the off-side 

lane. They estimated the number of lane changing maneuvers and the percentage of lane 

occupancy for each lane at different traffic flow rates. The estimated results were then compared 

with the observations in the field data. The results showed that the differences between the 

observed and estimated measurements are in the range of 0–11%. Fuzzy rules are constructed to 

make use of time headways of the rear vehicle, and time headway to the first lag vehicle in the 

faster lane as inputs.  

 

2.4 Lane Changing Parameters 

After considering the mentioned studies on lane changing, the lane changing parameters 

are summarized in Table 2.1. This table does not included parameters such as tailgated, gap 

(headway between preceding and following vehicle) and speed limit of highway that are only 

used only in one model. The acceleration terms are excluded because it is difficult for a driver to 

perceive a second order term in making a lane change decision. The remaining parameters are 

renamed to make the terms more consistent in this dissertation. Seven of the eight parameters 

may be derived from the NGSIM vehicle trajectory data. The maximum, safe or desired speed of 

vehicle (or driver) cannot be deduced from the NGSIM data and therefore this parameter is not 

used in the dissertation.  
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Table 2.1: Summary of Lane Changing Parameters Reviewed. 

 

Simulation 

model and/or 

reference 

Front gap 

(distance) 

Rear gap 

(distance) 

Lead 

time to 

collision 

Lag time 

to 

collision 

Distance 

in target 

lane 

Max, 

safe, 

free-

flow or 

desired 

speed 

Current 

speed 

of 

subject 

vehicle 

Relative 

speed 

FRESIM   Yes Yes  Yes   

VISSIM  Yes  Yes     

PARAMICS Yes Yes      Yes 

AIMSUN     Yes Yes Yes  

TransModeler Yes Yes       

Gipps (1986)     Yes  Yes Yes 

McDonald 

(1997)；
Brackstone 

(1998)；Wu 

(2000) 

   Yes Yes    

Das (1999)； 

Das and 

Bowles (1999) 

  Yes  Yes   Yes 

Hidas (2005) Yes Yes       

Yeo (2008)      Yes Yes Yes 

Schakel(2012)   Yes Yes Yes Yes Yes Yes 

Moridpour 

(2009; 2012) 
Yes Yes      Yes 

Hill and 

Elefteriadou 

(2013) 

Yes Yes    Yes   
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As mentioned in Introduction, there are five vehicles in a lane change scenario. The 

active player is the subject vehicle S. This vehicle moves from its original lane to the target lane. 

Figure 2.5 shows the critical instant in a lane changing maneuver when S crosses the lane 

markers. The vehicle in front of S in the original lane is called the preceding vehicle before lane 

change, denoted as PB. The vehicle behind S in the original lane is called the following vehicle 

before lane change, denoted as FB. After the lane change, the subject vehicle inserts itself in the 

target lane between the preceding vehicle (denoted as PA) and the following vehicle (denoted as 

FA). The longitudinal positions of S, PB, FB, PA, FA, measured with reference to the center of 

each vehicle, are represented by YS, YPB, YFB, YPA, YFA, respectively. The lengths of S, PB, FB, PA 

and FA are denoted as LS, LPB, LFB, LPA and LFA respectively. There are 10 possible parameters 

which are described below. 

 

 

 

Figure 2.1: Vehicles and their positions during a lane change. 
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The following parameters are of interest and are defined in this dissertation as: 

 

• Front gap before lane change (in meters): 
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• Rear gap before lane change (in meters): 
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• Front gap after lane change (in meters): 
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• Rear gap after lane change (in meters): 
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• Lead time-to-collision before lane change (in seconds): 
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• Lag time-to-collision before lane change (in seconds): 
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• Lead time-to-collision after lane change (in seconds): 
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• Lag time-to-collision after lane change (in seconds): 
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• Distance (in meters): 
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The speed of the subject vehicle VS (in meter/second) is also analyzed. 

 In defining the gaps and headways, the subscript P denotes the preceding vehicle, F 

denotes the following vehicle; while B represent the lane before lane change (the original lane), 

and A represent the lane after lane change (the target lane). In addition to the parameters 

identified in the literature review, the gaps and headways before a lane change are added in the 

analysis so as to study the proximity of the three associated vehicles (S, PB, FB) immediately 

before the subject vehicle leaves its original lane. The headways are defined such as a positive 

value indicates a risk of collision. This is similar to time-to-collision in traffic conflict analysis. 

Ten potential parameters are listed in Table 2.2. 
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Table 2.2: Parameters that describe vehicle interactions in a lane change. 

 

Notation Definition Unit Range 

GPB Gap between vehicle S and vehicle PB m ≥0 

GFB Gap between vehicle S and vehicle FB m ≥0 

GPA Gap between vehicle S and vehicle PA m ≥0 

GFA Gap between vehicle S and vehicle FA m ≥0 

D Distance between vehicle PA and FA m ≥0 

TPB Time-to-collision between vehicle S and vehicle PB s -∞ to +∞ 

TFB Time-to-collision between vehicle S and vehicle FB s -∞ to +∞ 

TPA Time-to-collision between vehicle S and vehicle PA s -∞ to +∞ 

TFA Time-to-collision between vehicle S and vehicle FA s -∞ to +∞ 

V Speed of vehicle S m/s ≥0 

 

 

2.5 Summary 

There are several issues with the current lane changing models. The first issue is that the 

models are largely based on how the modelers perceive drivers would make lane changing 

decisions, rather than drivers’ personal experience. Very few articles describe how the input 

parameters for the lane changing models were selected and of the few which reported the 

parameter selection process and the reasons of their selection, none was based on feedback 

provided by drivers. Among the existing lane change models, only a few have identified 

parameters and developed lane changing rules based on video evidence, e.g., Hidas, [2002, 

2005], or by interviewing drivers e.g., Sun and Elefteriadou, [2011, 2012]. 

Another issue with the existing models is that failed lane changing attempts are often 

ignored in the model calibration and validation processes. Thus, current lane change models may 
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not have the capability of reproducing failed attempts with sufficient accuracy [Laval and 

Leclercq, 2008]. At the minimum, the capability has not been validated and reported. 

A final note on lane change modeling is that a proposed model should be developed 

specifically either for freeways or for urban streets. This is because lane changes on freeways 

and those on urban streets have different motivations. 

Additional important findings from the literature review, which affect the decisions on 

the FIS design in the subsequent chapters are (i) some of the parameters (e.g., desired speed) 

cannot be estimated autonomously by sensors embedded in vehicles, or are related to the driver’s 

psychology which render the model implementation difficult if not impossible; (ii) some models 

use relative speed as an input, which is not a direct measure of risk compared to time-to-

collision; (iii) different models use of different sets of input parameters, some of which are not 

available, or can be derived from available data, such as the NGSIM database; (iv) for most of 

the models, the computational steps or knowledge base necessary for the implementation are not 

clearly described, which causes difficulty in implementing these models for comparative 

evaluation.   

Because of the complexity of the lane changing behavior, all of the above research issues 

cannot be addressed in this dissertation. This dissertation focuses on: 

1- Conducting a survey to ask respondents (drivers) about the parameters used and to 

understand which parameters are the most important ones; 

2- Developing model for one player and the player is the subject vehicle; 

3- Developing a model only for freeways; 

4- Using parameters which are available and can be computed from the NGSIM directly. 
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Chapter 3: Vehicle trajectory dataset 

 The NGSIM database used in this research is explained in this chapter. The database 

provides sufficient vehicle lane changing maneuvers to support the development of a lane 

changing decision model on freeways. In this chapter, the available passenger car lane changing 

maneuvers are processed and the parameters (as defined in Chapter 2) analyzed statistically. 

Also, a correlation analysis is performed to find out which lane changing parameters are related 

to each other. At the end, probability distributions are fitted to the data to later help the author in 

selecting the maximum and minimum value of the fuzzy membership function. 

 

3.1 NGSIM Database 

The vehicle trajectory data analyzed in this chapter and later used to develop the FIS was 

taken from the NGSIM database. The NGSIM project is a data collection effort funded by 

Federal Highway Administration (FHWA) for the development and/or validation of new traffic 

models. In this research, the vehicle trajectory date collected at a segment of I-80 Freeway 

(Eisenhower Highway) in Emeryville, California [Cambridge 2005a] and a segment of U.S. 

Highway 101 (Hollywood Freeway) in Los Angeles, California [Cambridge 2005b] was used. 

For each of the freeway segments, vehicle motions were captured by several video cameras 

located on top of a tall building. The video images were post-processed to extract vehicle 

trajectory data at 0.1 second intervals. The data was downloaded from the NGSIM project 

website for further processing as described in Section 3.2. 

 

The I-80 Dataset, as shown in Figure 3.1, was collected over a 1650 ft. segment, in the 

northbound direction between the Powell Street on-ramp and Ashby Street off-ramp. This 

segment of the freeway has six lanes between the ramps.  The available data was collected on 

April 13, 2005 from 4:00-4:15 p.m., 5:00-5:15 p.m. and 5:15-5:30 p.m.  In this dissertation, the 
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data from 4:00-4:15 p.m. was used because it has the highest number of lane changes among the 

three 15-minute periods. 

 The U.S. 101 data was collected over a 2100 ft. segment, in the southbound direction 

between the Ventura Boulevard on-ramp and Cahuenga Boulevard off-ramp. This segment of the 

freeway also has six lanes between the ramps. The available data was collected on June 15, 2005 

from 7:50-8:05 a.m., 8:05-8:20 a.m. and 8:20-8:35 a.m. In this dissertation, the data from 7:50-

8:05 a.m. was used because it also has the highest number of lane changes among the three 15-

minute periods. 

For each of the freeway segments, vehicle motions were captured by several video 

cameras placed on top of a tall building. The video images were post-processed to extract vehicle 

trajectory data at 0.1 second intervals, and make available to researches via the NGSIM project 

website [Cambridge 2005a, 2005b]. 
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Figure 3.1: The I-80 Dataset Collection Site. 

[http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm] 
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Figure 3.2: The US 101 Dataset Collection Site. 

[http://ops.fhwa.dot.gov/trafficanalysistools/ngsim.htm] 

 

 



 26 

3.2 Data Processing 

The NGSIM data was processed by means of MATLAB (MathWorks 2014). The vehicle 

trajectory data was processed as follows: 

• Only passenger cars were selected as the subject vehicles. Trucks and motorcycles, which 

were believed to have different lane changing behavior, and also have smaller sample sizes, 

were not considered. 

• Only the subject vehicles originally travelled in lanes 2, 3 and 4 were considered. Vehicles in 

lanes 5 and 6 were not considered so as to eliminate the possibility of drivers executing 

mandatory lane changes after entering from the upstream on-ramp or to exit at the 

downstream off-ramp. Similarly, subject vehicles in lane 1 were not considered as it is a high 

occupancy vehicle lane. 

• Vehicles making multiple lane changes were excluded. This was because any lateral 

movement of more than one lane is more likely a mandatory move. 

• For each identified S, the time t4 was taken as the first instance when the front center of the S 

had lateral velocity of at least 0.2 m/s.  This criteria is taken from Wang et al. [2014]. 

• Once t4 has been determined, the positions of vehicles PB, FB, PA, FA, that surrounded S 

were identified, and the input parameters were calculated at t4-0.4, t4-0.3, t4-0.2, t4-0.1 and t4 

seconds respectively, according to the procedure recommended by Punzo et al. [2011].  The 

average parameter values from t4-0.4 to t4 (five 0.1 second intervals) were used as the values 

perceived by the driver at t4. The reasons for taking the average value over 0.5 second are (i) 

to reduce the error caused by using instantaneous values in the NGSIM data; (ii) to be more 

consistent with driver’s perception time; and (iii) to be consistent with other research that has 

used NGSIM data, for example Siuhi and Kaseko [2010].   

• The method of averaging data was repeated at 0.5 second intervals at, before and after t4.  

Therefore, every S has multiple input vectors for the FIS at 0.5 second intervals.   
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• The Observed Maneuver (OM) was coded as 1 for lane change at t4, and 0 for all other 

vectors. The observed maneuvers of OM= {0, 1} were used to compare with FIS’s 

recommendations to evaluate the FIS’s performance. 

• The above steps were repeated for passenger cars in lanes 2, 3 and 4 that did not change lane. 

Because a lane changing event involves five vehicles (as shown in Figure 2.1), not all the 

five vehicles may appeared in the data collection segment and captured by the video cameras. 

Therefore, it may not be possible to calculate all the parameters for a lane change from the 

available NGSIM data. For example, if a subject vehicle changed lane near the downstream end 

of a freeway segment, the preceding vehicles (PB and PA) may already have left the camera 

view.  

In this case, it is impossible to calculate the parameters associated with these two 

vehicles.  

3.3 Descriptive Statistics 

Table 3.1 lists the descriptive statistics of the 10 parameters analyzed. The gaps and 

distance are processed to 0.001 m precision; headways are processed to 0.1 second precision 

while speed is processed to 0.01 m/s precision. After data processing, the I-80 Dataset and U.S. 

101 Dataset each has approximately sample size of 160 (from 15 minutes of video). The sample 

sizes for the different parameters are different, because not all the five vehicles involved in a lane 

change appear in NGSIM’s camera view. For the same parameter, the mean and maximum 

values obtained from the I-80 Dataset are smaller than the corresponding values in the U.S. 101 

Dataset. For example, for GFA, the rear gap after lane change, the I-80 Dataset has a mean of 

16.377 m while the U.S. 101 Dataset has a mean of 21.77 m. This is because the traffic condition 

in the I-80 data set was more congested than the traffic condition in the U.S. 101 Dataset. In the 

I-80 Dataset, the traffic volume was 8144 vph and the average space mean speed was 17.86 mph. 

In the U.S. 101 Dataset, the volume was 8642 vph and the average space mean speed was 25.66 
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mph. With using @RISK software [Palisade 2013], the processed data was fitted with a 

probability distribution.  

Table 3.1: Descriptive statistics of lane changing parameters 

 

(a) I-80 Dataset 4:00 p.m. to 4:15 p.m. 

Parameters GPB GFB GPA GFA TPB TFB TPA TFA D VS 

Unit m m m m s s s s m m/s 

Sample size 163 158 153 146 163 149 161 153 149 163 

Min value 3.032 0.697 0.101 0.166 -185.2 -183.7 -179.0 -77.54 5.12 1.503 

Max value 76.893 46.705 105.45 57.741 182.61 182.52 75.92 81.98 153.61 13.879 

Mean 15.867 14.166 12.76 16.377 -0.190 1.59 -2.66 4.29 30.00 7.885 

Median 13.906 13.244 8.75 12.806 3.34 0.828 -0.732 3.44 25.82 7.788 

Std deviation 9.325 7.490 13.37 12.379 39.49 48.03 23.77 20.73 18.72 2.256 

 

 

 

 

 

(b) U.S. 101 Dataset 7:50 a.m. to 8:05 a.m. 

Parameters GPB GFB GPA GFA TPB TFB TPA TFA D VS 

Unit m m m m s s s s m m/s 

Sample size 152 163 140 159 141 144 141 155 141 171 

Min value 2.650 3.976 0.700 0.310 -117.8 -118.0 -142.5 -177.9 10.49 6.311 

Max value 82.948 101.351 116.67 122.01 180.55 157.56 167.44 143.61 139.48 23.692 

Mean 19.712 26.286 19.29 21.77 6.80 -7.51 -0.100 -4.25 43.45 14.953 

Median 14.998 22.748 13.39 17.90 5.74 -11.17 -3.81 -1.95 38.54 14.833 

Std deviation 13.585 16.048 18.30 17.71 39.86 40.61 34.60 36.68 22.40 3.602 
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3.4 Correlation Analysis 

A correlation analysis was performed for all the parameters in each data set. The purpose 

of the correlation analysis was to examine if there is any strong relationship between any two 

parameters so that some of the parameters that have strong correlations with each other may be 

excluded as subsequent input to the FIS lane changing decision model. In a correlation analysis, 

all the parameters must have the same sample size and be paired. The data was then filtered such 

that only the lane changes which produced all the parameter values were used in the correlation 

analysis. This filtering resulted in sample sizes of 122 for the I-80 Dataset and 142 for the U.S. 

101 Dataset. The correlation coefficients, or r value, calculated by MINITAB [2010], are 

presented in Table 3.2.  All the r values are significantly different from 0, with p-values all less 

than 0.001. 

The minimum r value for both I-80 and U.S. 101 Datasets are 0.736. This indicates that 

some of the 10 parameters in both dataset are strongly correlated. The differences in the 

correlation matrices between the two data sets are indications that drivers in these two sites have 

different lane changing behavior. 

 

Figure 3.2 shows the scatter plots of the parameters produced by MINITAB. The scatter 

plots of two parameters in each data set are presented in a 10 by 10 matrix. The diagonal 

elements of the matrix indicate the parameter names in the horizontal and vertical axles. The 

scatter plots visualize the correlations as listed in Table 3.2. Visually, all gap parameters for the 

I-80 Dataset and U.S. 101 Dataset are strongly correlated.  
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Table 3.2: Correlation matrices of lane changing parameters 

(a) I-80 Dataset 4:00 p.m. to 4:15 p.m. 

Parameters GPB GFB GPA GFA TPB TFB TPA TFA D VS 

GPB 1 0.996 0.995 0.984 0.942 0.867 0.889 0.935 0.871 0.979 

GFB 0.996 1 0.993 0.976 0.942 0.843 0.884 0.918 0.856 0.981 

GPA 0.995 0.992 1 0.985 0.917 0.875 0.857 0.934 0.879 0.966 

GFA 0.984 0.976 0.985 1 0.891 0.932 0.860 0.975 0.921 0.939 

TPB 0.942 0.942 0.917 0.891 1 0.741 0.948 0.836 0.739 0.982 

TFB 0.867 0.843 0.875 0.932 0.741 1 0.754 0.980 0.957 0.790 

TPA 0.889 0.884 0.857 0.860 0.948 0.754 1 0.846 0.736 0.935 

TFA 0.935 0.918 0.934 0.975 0.836 0.980 0.846 1 0.957 0.879 

D 0.871 0.856 0.879 0.921 0.739 0.957 0.736 0.957 1 0.796 

VS 0.979 0.981 0.966 0.939 0.982 0.790 0.935 0.879 0.796 1 

 

(b) U.S. 101 Dataset 7:50 a.m. to 8:05 a.m. 

Parameters GPB GFB GPA GFA TPB TFB TPA TFA D VS 

GPB 1 0.984 0.994 0.974 0.912 0.871 0.932 0.780 0.974 0.947 

GFB 0.984 1 0.972 0.995 0.895 0.898 0.893 0.821 0.944 0.980 

GPA 0.994 0.972 1 0.958 0.936 0.853 0.957 0.760 0.989 0.922 

GFA 0.974 0.995 0.958 1 0.891 0.925 0.877 0.857 0.925 0.991 

TPB 0.912 0.895 0.936 0.891 1 0.889 0.980 0.821 0.958 0.846 

TFB 0.871 0.898 0.853 0.925 0.889 1 0.846 0.973 0.833 0.915 

TPA 0.932 0.893 0.957 0.877 0.980 0.846 1 0.753 0.981 0.823 

TFA 0.780 0.821 0.760 0.857 0.821 0.973 0.753 1 0.736 0.860 

D 0.974 0.944 0.989 0.925 0.958 0.833 0.981 0.736 1 0.880 

VS 0.947 0.980 0.922 0.991 0.846 0.915 0.823 0.860 0.880 1 
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(a) I-80 Dataset 

 

 

 
(b) U.S. 101 Dataset 

 

Figure 3.2: Matrix plots of lane changing parameters 
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3.5 Probability Distributions 

The processed data as reported in Table 3.1 had been fitted with probability distributions 

using @RISK [Palisade, 2013]. For each parameter, at least 10 distributions were considered. 

The Akaike Information Criterion (AIC) was used to select the distributions that provide the best 

fit to the observed data. AIC is an indicator for the goodness of fit that takes into account the 

number of estimated distribution parameters. For each lane changing parameter, the top three 

distributions that best fit the observed data are listed in Table 3.3. All the distributions listed in 

Table 3.3 provide good fit to the data, with p-values all smaller than 0.01.  

From the results of distribution fitting presented in Table 3.3, the 10 lane changing 

parameters studied have different probability distributions that provide the best fit. It is 

preferably to have one probability distribution that can describe the gaps (GPB, GFB, GPA, and 

GFB), times to collision (TPB, TFB, TPA, TFB), distance (D) and speed (VS) respectively. Laplace 

distribution provides the best fit to all the times to collision. Therefore, it is chosen as the 

recommended distribution. To select one probability distribution for the gaps, a numeric scoring 

system was used, in which the distributions that provide the best, second best and third best fits 

were assigned scores of three, two and one, respectively. The distribution that has the highest 

total score was recommended. Both the log-logistic and lognormal distributions have the same 

total score. The lognormal distribution is recommended because it appears in the top three lists 

for all the gap parameters. As for distance D, there is a clear winner which is the lognormal 

distribution. As for the subject vehicle’s speed VS, the logistic distribution is selected as it 

appears in the top three distribution list of both the I-80 Dataset and U.S. 101 Dataset. The 

recommended probability distributions are listed in Table 3.3. The distribution parameters, 

calculated from the method of moment, are also listed in the table.  
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The lognormal distribution has a probability density function of 

 

              𝑓 𝑥|𝜆, 𝜁 =
!

!!𝜁𝑥
𝑒
!
!

!

!"!!!

𝜁

!

     𝑋 > 0                                                (3.1) 

Where 𝜆 𝜆 > 0  is the location parameter while 𝜁 𝜁 > 0  is the scale parameter. The Laplace 

distribution has a probability density function of  

 

             𝑓 𝑥|𝜇, 𝑏 =
!

!!
𝑒

!!!

!      −∞ ≤ 𝑋 ≤ ∞                                                 (3.2) 

which is symmetrical about its mean 𝜇. The variable 𝜇 is known as the location parameter while 

𝑏 (𝑏 > 0) is known as the scale parameter. The part of the Laplace distribution with 𝑋 ≥ 𝜇 has 

the same shape as the exponential distribution. The logistic distribution has a probability density 

function of  

 

            𝑓 𝑥|𝜇, 𝑆 =
!
!
!!!
!

! !!!
!
!!!

!

!       𝑋 > 0                                                       (3.3) 

The logistic distribution has two parameters: 𝜇, the location parameter, and 𝑠 (𝑠 > 0), the scale 

parameter. The recommended probability distributions are listed in Table 3.3.  
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Table 3.3: Fitted probability distributions of lane changing parameters 

(a) I-80 Dataset 4:00 p.m. to 4:15 p.m. 

Parameters GPB GFB GPA GFA TPB TFB TPA TFA D VS 

Unit m m m m s s s s m m/s 

Best fit 
Log-

logistic 

Log- 

normal 
Gamma Weibull Laplace Laplace Laplace Laplace 

Log-

normal 
Logistic 

2
nd

 best fit 
Pearson 

5 

Pearson 

5 

Inverse 

Gaussian 

Log- 

normal  Logistic Logistic Logistic Logistic 
Pearson 

5 
Normal 

3
rd

 best fit 
Log-

normal 

Inverse 

Gaussian 

Log- 

normal 
Gamma Normal 

Log-

logistic 
Weibull 

Log-

logistic 

Log-

logistic 
Weibull 

Recommended 
Log-

normal 

Log-

normal 

Log-

normal 

Log-

normal 
Laplace Laplace Laplace Laplace 

Log-

normal 
Logistic 

Log-normal 

location 

parameter 𝜆 

2.616 2.528 2.176 2.57 - - - - 3.237 - 

Log-normal 

scale 

parameter 𝜁 
0.545 0.497 0.861 0.672 - - - - 0.573 - 

Laplace 

location 

parameter 𝜇 

- - - - -0.190 1.59 -2.66 4.29 - - 

Laplace scale 

parameter 𝑏 
- - - - 27.92 33.96 16.81 14.66 - - 

Logistic 

location 

parameter 𝜇 

- - - - - - - - - 7.885 

Logistic scale 

parameter 𝑠 
- - - - - - - - - 1.243 
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(b) U.S. 101 Dataset 7:50 a.m. to 8:05 a.m. 

Parameters GPB GFB GPA GFA TPB TFB TPA TFA D VS 

Unit m m m m s s s s m m/s 

Best fit 
Pearson 

5 

Log- 

normal 

Inverse  

Gaussian 

Log-

logistic 
Laplace Laplace Laplace Laplace 

Log-

normal 
Logistic 

2
nd

 best fit 
Log- 

logistic 

Pearson 

5 

Log-

normal 

Log-

normal 

Log-

logistic 

Log-

logistic 

Log-

logistic 
Logistic 

Pearson 

5 

Pearson 

5 

3
rd

 best fit 
Log- 

normal 

Inverse 

Gaussian 

Pearson 

5 

Pearson 

5 
Logistic Logistic Logistic Normal 

Pearson 

5 
Normal 

Recommended 
Log- 

normal 

Log- 

normal 

Log-

normal 

Log-

normal 
Laplace Laplace Laplace Laplace 

Log-

normal 
Logistic 

Log-normal 

location 

parameter 𝜆 

2.78 3.11 2.639 2.827 - - - - 3.654 - 

Log-normal 

scale 

parameter 𝜁 

0.634 0.563 0.801 0.713 - - - - 0.485 - 

Laplace 

location 

parameter 𝜇 

- - - - 6.80 -7.51 -0.100 -4.25 - - 

Laplace scale 

parameter 𝑏 
- - - - 27.48 28.72 24.47 25.94 - - 

Logistic 

location 

parameter 𝜇 

- - - - - - - - - 14.953 

Logistic scale 

parameter 𝑠 
- - - - - - - - - 1.986 
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The histogram distributions of all the parameters were next plotted. Figure 3.3 plots the 

histogram distribution of GFA, taken from I-80 Dataset, and the fitted distribution is lognormal. 

Visually, the distribution is well fitted. To ensure that the lognormal distribution chosen for GFA 

is appropriate, the cumulative ascending fit was determined using @RISK. Figure 3.4 plots the 

cumulative ascending curve. The histogram distribution of TFA, is shown in Figure 3.5, and the 

fitted distribution is Laplace. Visually, the distribution is well fitted. To ensure that the Laplace 

distribution is appropriate, the cumulative ascending fit was determined and is shown in Figure 

3.6.  

 

 

Figure 3.3: Observed and fitted probability distributions of GFA from I-80 Dataset 
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Figure 3.4: Observed and fitted cumulative ascending of GFA from I-80 Dataset 

 

Figure 3.5: Observed and fitted probability distributions of TFA from U.S. 101 Dataset 
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Figure 3.6: Observed and fitted cumulative ascending of TFA from U.S. 101 Dataset 

 

As has been shown above, each parameter has its own distribution. Knowing the 

distribution of each lane changing parameter helps to find the maximum and minimum value to 

construct the fuzzy membership functions for each parameter.  

3.6 Data Sets for Developing and Testing of Lane Changing Models 

The processed data are then organized into two data sets as shown in Table 3.4. In 

Dataset A, all the vectors were used as the training data for the FIS. Dataset B was reserved as 

the test data. As has been shown in Table 3.4, the number of vehicles that have observed lane 

changing maneuvers is 163 for Dataset A. This corresponding number for Dataset B is 171. 

Furthermore, each vehicle has more than 60 vectors in different frame IDs at 0.5 second interval, 

that is why the number of vectors is much more than the number of subject vehicles. For 

example, the total number of the vehicles for Dataset A is 3,365 and these vehicles have 232,656 

vectors or rows.  
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Table 3.4: Summary of Datasets A and B. 

 

Dataset A B 

Source 
I-80 Freeway 

April 13, 2005, 4:00-4:15 p.m. 

U.S. Highway 101 

June 15, 2005, 7:50-8:05 a.m. 

 

Lane 

change 

(OM=1) 

No lane 

change 

(OM=0) 

Total 
Lane 

change 

No lane 

change 
Total 

No. of vehicles 163 3,202 3,365 171 2,612 2,783 

No. of vectors  163 232,493 232,656 171 209,681 209,852 

 

Each vector of both data sets has 18 columns which are Vehicle ID, Frame ID, Total 

Frames, Global Time, Local X and Y, Global X and Y, Vehicle Length, Width, Class, Velocity 

and Acceleration, Lane Identification, Preceding and Following Vehicle, Spacing and Headway. 

This information used to calculate the 10 parameters defined in Equations (2.4) to (2.12) and in 

Table 2.2. Column 14 was used to find out which vehicle had changed lane and to label the 

vectors with OM=1 and OM=0.  

3.7 Summary 

  The NGSIM database used in this research has been explained in this chapter. After 

processing the downloaded data into the I-80 Dataset and US 101 Dataset, the lane changing 

parameters in both data sets were analyzed statistically. From the results of the correlation 

analysis, it was obvious that there were strong relationships between some of the parameters. 

Also, the best fit distribution for each parameter was determined. The lognormal distribution was 

the recommended for the gap parameters while the Laplace distribution was recommended for 

the time to collision parameters. Besides, lognormal and logistic distributions were best fit for 

the distance and speed of the subject vehicle, respectively. Then, the data sets were organized 

into the Dataset A and Dataset B. Dataset A was used to train the FIS model while Dataset B was 

used to test the FIS model and for comparative evaluation. 
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Chapter 4: Proposed Methodology 

Lane changing decisions between 𝑡! and 𝑡! (checking the opportunity to make a move), 

on urban freeways is modelled in this chapter by means of FIS. A survey was first conducted to 

understand drivers’ lane changing behavior and to find out the most important lane changing 

decision parameters. This chapter then explains the concept of fuzzy logic and describes the 

development of a FIS lane changing model by defining fuzzy sets, fuzzy membership functions, 

fuzzy rules, composition of rules and defizzificatiom. The last section of this chapter describes 

the training of the model with Dataset A. 

 

4.1 Survey 

To make the FIS use the input parameters as close to what drivers would use in real life, a 

questionnaire survey was conducted. The purpose of this survey was to select a few input 

parameters most frequently used by drivers in making lane change decisions. 

 The survey instrument consisted of multiple choice questions concerning the 

respondent’s demographic information, his/her motivation to make a discretionary lane change, 

and the parameters listed in Table 2.2. For each of the parameters, the respondent was asked to 

select if the parameter was use all the time, most of the time, sometimes, seldom or never in 

making his/her lane changing decisions. Technical terms of lane change and parameters are 

described in simple language, English. The survey was administered to students, staff and faculty 

members on campus at The University of Texas at El Paso, drivers in local households and 

shopping malls from January to September 2014. A total of 443 useful responses were collected. 

The answers to the questions pertaining to the 10 parameters were analyzed and are presented in 

Table 4.1. The survey instrument is attached in Appendix A. 

After collecting 100 responses, the results of the survey did not change significantly and 

they were almost as the same as the result of the Table 4.1.  
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Table 4.1: Results of drivers survey. 

 

 Reported frequency of use (% distribution) 

Input 

parameters 
All the 

time 

Most of 

the time 
Sometimes Seldom Never Total 

All or 

most of 

the time 

 (a) (b) (c) (d) (e) 
(a)+(b)+(c) 

+(d)+(e) 
(a)+(b) 

GPB 56% 25% 13% 4% 2% 100% 81% 

GFB 21% 21% 27% 18% 13% 100% 42% 

GPA 61% 27% 9% 2% 1% 100% 88% 

GFA 78% 16% 6% 0% 0% 100% 94% 

D 68% 22% 7% 1% 2% 100% 90% 

TPB 7% 15% 29% 22% 27% 100% 22% 

TFB 17% 24% 31% 11% 17% 100% 41% 

TPA 21% 28% 21% 11% 19% 100% 49% 

TFA 23% 28% 23% 12% 14% 100% 51% 

V 40% 32% 18% 7% 3% 100% 72% 

 

Table 4.1 shows the percentage distribution of responses for each of the parameters. The 

last (rightmost) column lists the percentage of the respondents who answered that they used each 

parameter all the time or most of the time. From the tabulated results, it is obvious that gaps and 

distance are used more frequently than times to collision. This may be because it is easier for 

drivers to judge and estimate physical distance than time to collision. Of the 10 parameters 

surveyed, GFA is used all or most of the time by 94% of the respondents, followed by at D with 
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90%, GPA at 88% and GPB at 81%. These four parameters were therefore selected as the inputs to 

the FIS. 

 

4.2 Fuzzy Logic 

Fuzzy logic was introduced by Zadeh as a mathematical method to represent the 

imprecision in everyday life [Zadeh 1965, 1994]. Since then, fuzzy logic has emerged as a 

powerful method for solving a wide variety of problems relating to estimation, control, pattern 

recognition and decision making based on imprecise information. Fuzzy logic relies on several 

important concepts, of which fuzzy set, fuzzy membership and fuzzy rule are important for this 

research. 

One way of dealing with the real world phenomena is qualitative and non-numerical in 

nature. In decision-making processes as in advanced precision manufacturing metrology, masses 

of numerical data are converted into some qualitative form and thus are dealt with only in 

aggregation, e.g., visual perception. This form of aggregation gives rise to a set of linguistic 

labels and is sometimes referred to as information granules. This aggregation of information 

makes the partition of space more manageable for further processing. All cognitive and 

inferential processing is then carried out at the level of the granules. This process of aggregation 

or granulation implies that we deal with the relationships of functions between linguistic labels 

rather than with numerical quantities. To cope with this style of cognition, a suitable modelling 

technique is developed using the theory of fuzzy sets, since this theory deals with granularity 

typical of our perception. 

Fuzzy logic is introduced to describe situations in which there is imprecision due to 

vagueness rather than randomness in everyday life. Furthermore, in our daily life, common terms 

are always vague e.g., tall man, good weather, intelligent animal.  In other words, this research is 

implemented with fuzzy logic because fuzzy logic is dealing with human reasoning and 

uncertainties. The term uncertainty here refer to vagueness, not randomness. These fuzzy 
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linguistic terms can be regarded as sets of singletons, the grades of which are ranging from 0 to 

1. Therefore, these fuzzy linguistic terms are called fuzzy sets. 

4.3 Fuzzy Sets 

A classical set is a collection of distinct objects. In a classical (non-fuzzy) set theory, an 

element either belongs to or does not belong to a set. Therefore, the membership of each element 

is crisp and binary. In other words, the membership of an element X is either yes (belong to the 

set) or no (does not belong to the set). The characteristic function 𝜇!(x) of a classical set, A, in 

the entire set, U, takes its values in {0, 1}. µA (x) is 1 if x is a member of A (i.e. x ∈ A) and 0 

otherwise (i.e. x ∉ A):  

 

 

( )
⎩
⎨
⎧

∉

∈
=

Ax

Ax
x

A

 if0

 if1
µ                                                                                                   (4.1) 

 

A fuzzy set is defined as a set without a crisp, clearly defined boundary. It contains 

elements with only a partial degree of membership [Jang and Gulley 2008]. A fuzzy set permits a 

degree of membership for each element which ranges over the unit interval [0, 1]. The most 

important difference between the classical and fuzzy sets is that classical sets have two unique 

membership functions while the fuzzy sets may have an infinite number of membership 

functions. Furthermore, fuzzy sets could be considered as a generalization of classical set theory 

[Zadeh 1965]. 

A fuzzy set defines several linguistic values that are used to describe a parameter.  For 

examples, the fuzzy set for GFA may be defined as 
FAG
~

= {close, medium, far}, the fuzzy set for 

D may be defined as D
~

= {close, medium, far}, and the fuzzy set for lane change decision, C, 

may be defined as C
~

= {yes, no}.   

From the drivers survey described in Section 4.1, the four decision parameters selected 

were GFA, D, GPA and GPB. The number of linguistic values in the fuzzy set for each parameter 
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affects the number of fuzzy rules in the FIS. A useful fuzzy set would produce a meaningful 

expression, in terms of a single fuzzy set, of the overall performance of the model. The number 

of fuzzy sets which could be used for any of the input parameters in the lane changing model is 

restricted to drivers’ perception capabilities. To keep the number of fuzzy rules to a manageable 

level, a decision was made to have a fuzzy set of three linguistic values for each of the input 

parameters, i.e., {close, medium, far}.   

 The FIS has only one output parameter for lane change, denoted as C. The fuzzy set for 

the output parameter is C
~

= {yes, no}. Obviously, the list of the fuzzy sets of the parameters are: 

 

FAG
~

= {close, medium, far} 

D
~

= {close, medium, far} 

PA
G
~

= {close, medium, far} 

PB
G
~

= {close, medium, far} 

C
~

= {yes, no} 

 

4.4 Fuzzy Membership Functions 

Fuzzy membership functions are used to map the crisp value of an input parameter into 

the membership value (also known as degree of membership) for each linguistic value in the 

fuzzy set. The membership functions may comprise different shapes. Figures 2.1 and 2.2 below 

are some examples of fuzzy membership functions.  
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Figure 4.1: Different types of linear membership functions [from Ross [2004]]. 

 

 

Figure 4.2: Different types of Gaussian membership functions [from Ross [2004]]. 
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The triangular membership functions are commonly used in applications in the traffic and 

transportation domain. For example, triangular membership functions have been specifically 

used in modelling car-following and lane changing behavior of drivers [McDonald et al. 1997; 

Brackstone et al. 1998; Wu et al. 2000; Moridpour et al. 2009]. These triangular membership 

functions have also been used in long term prediction models of freeway travel times [Li 2006]. 

According to the Association of Car Rental Industry Systems Standards (ACRISS) car 

classification code [Moridpour et al. 2009]: 

 

 

Table 4.2: The ACRISS car classification code 

 

Length of Vehicle (L) 
Small Midsize Large 

L < 4.57 (m) 4.57< L <4.95 (m) L > 4.95 (m) 

 

Therefore, 5 m is considered as the unit length of a car. According to the Texas Driver 

Handbook [www.dps.texas.gov], the minimum distance between two vehicles is 63 feet or 

almost 20 m. The above conditions, in addition to the range of parameter values obtained from 

the probability distributions, helped to define the membership functions. 

The membership functions for 
FAG
~

 and D
~

 may be defined as in Figure 4.1. According 

to Figure 4.1(b), for example, when D=20 m, ( )20
,
~
closeD

µ =0.5, ( )20
,
~
mediumD

µ =0.5 and 

( ) .020
,
~ =
farD

µ  
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(a) Gaps 

 

 
(b) Distance 

 

Figure 4.3: Fuzzy membership functions for gap and distance. 

Since there are four input parameters and each of them has a fuzzy set of three linguistic 

values, 4x3=12 membership functions were necessary. The most popular triangular function was 

used for medium, while the trapezoidal functional form was used for close and far. The 

membership functions for GFA, GPA and GPB are shown in Figure 4.3(a) while those for D are 

shown in Figure 4.3(b). The base and tip of the triangles and trapezoid were set at multiples of 5 

m so as to approximate integer number of car length.   
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In the above example, a crisp value of GFA=x is mapped by the respective membership 

functions, namely ( )x
closeGFA,

~µ , ( )x
mediumGFA,

~µ  and ( )x
farGFA ,

~µ  into [0, 1]. Likewise, a crisp 

value of D=y is mapped by ( )y
closeD,

~µ , ( )y
mediumD,

~µ  and ( )y
farD,

~µ  into their respective range 

of [0, 1].  

4.5 Fuzzy Inference Rules 

Fuzzy rules are normally expressed in the IF-THEN format. The antecedent of a rule may 

include more than one fuzzified parameters, combined with logical operator AND or OR. A 

simple example of a rule which makes use of two fuzzified parameters is 

 

  IF [(
FAG
~

 is close) AND (D
~

 is close)] THEN (C
~

 is no) 

This rule combines fuzzified inputs of GFA and D to infer a fuzzified output of C. 

Mathematically, the membership values of the antecedent of the rule, ( )x
closeGFA,

~µ  and  

( )x
closeD,

µ  are combined using the fuzzy set operator AND, which then fires the consequent of 

the rule to give an output value. There are several ways to mathematically calculate the fuzzified 

output of a rule. The two most commonly used methods are the Mamdani and Sugeno’s fuzzy 

inference methods [Jang et al. 1997]. 

In Mamdani FIS [Mamdani and Assilian 1975], the consequent of a rule is characterized 

by fuzzy sets which are presented as follows: 

 

j!" rule: IF [(𝐼! is 𝐴!!) AND… (𝐼!  is 𝐴!") AND (𝐼! is 𝐴!")] THEN (𝑂 is 𝐵!)  (4. 2) 

where 

I     = f (I1, I2, ..., In) = input parameters; 

𝐴!"   = fuzzy linguistic value for input Ij; 

O   = output; and 

B j  = fuzzy subsets for output O. 
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The other type of FIS is Sugeno system in which the consequent of rule is the linear 

combination of crisp inputs [Sugeno 1985]. The important characteristic of the Sugeno system is 

that its output membership function is linear. A typical rule in a Sugeno fuzzy system has the 

following form: 

 

If 𝐼𝑛𝑝𝑢𝑡 1 = 𝑥 and 𝐼𝑛𝑝𝑢𝑡 2 = 𝑦 , then(𝑂𝑢𝑡𝑝𝑢𝑡 is 𝑧 = 𝑎𝑥 + 𝑏𝑦 + 𝑐)    (4. 3) 

 

In this dissertation the Mamadani system was used because the crisp outputs will be 

binary, either 1 (yes, change lane) or 0 (no, do not change lane). 

The application of fuzzy IF-THEN rules involves a three stage process: 

1.  Determine a degree of membership between 0 and 1 for all fuzzy statements in the 

antecedent. 

2.  Apply the fuzzy logic operators (e.g. AND, OR) when the antecedent comprises multiple 

parts. Then, determine a single degree of membership between 0 and 1 for the antecedent. 

This operation provides the degree of support for the rule. 

3.  The consequent of a fuzzy rule assigns a fuzzified value to the output.  

Given that each rule in the FIS has four input parameters, each parameter has three 

linguistic values; the maximum number of rules was 34=81. Two examples of the rules are: 

 

IF [(
FAG
~

 is close) AND (
PAG
~

 is close) AND (D
~

 is close) AND (
PBG
~

 is close)] THEN (C
~

 is no) 

 

IF [(
FAG
~

 is close) AND (
PAG
~

 is far) AND (D
~

 is far) AND (
PBG
~

 is close)] THEN (C
~

 is yes) 

 

The numerical output of each rule is assigned a binary value of {0, 1}, with C=1 for C
~

=yes and C=0 for C
~

=no.  This is equivalent to the first-order Sugeno fuzzy model [Jang et al. 

2007]. 

It has been mentioned above that there could be up to 81 fuzzy rules. However, certain 

combinations of fuzzified inputs are infeasible. For example, it is impossible to have 
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Rule 1 Rule 2 Rule 51 

Rule 1 Rule 2 Rule 51 

 [(
FAG
~

 is close) AND (
PAG
~

 is close) AND (D
~

 is far) AND (
PBG
~

 is close)] 

  

because when (
FAG
~

 is close) AND (
PAG
~

 is close), D
~

 cannot be far. This can also be inferred 

from the results of the correlation analysis in Section 3.4. After removing the infeasible rules, 

only 51 rules remained in the rule base. All the rules are listed in Appendix B. 

4.6 Composition 

Since there are 51 valid rules, and each rule is expected to produce a binary output of C= 

{0, 1}, the purpose of this composition stage is to combine the 51 binary output values into a 

single value.  

There are two common forms of the composition operation; one is called the max–min 

composition and the other the max–product also referred to as max–dot composition. Each 

method of composition of fuzzy relations reflects a special inference and has its own significance 

and applications. The max–min method is most commonly used by Zadeh in his original paper 

on approximate reasoning using IF-THEN rules [Ross 2008]. Many have claimed, since Zadeh’s 

introduction, that this method of composition effectively expresses the approximate and 

interpolative reasoning used by humans when they employ linguistic propositions for deductive 

reasoning. 

The Mamadani fuzzy model assigns a weight to each rule, and then computes the 

normalized weighted average of the outputs [Jang et al. 2007]. For our FIS, all the rules are given 

equal weight and therefore, the composition process is equivalent to averaging the 51 binary 

output values to produce a single value of C*∈[0, 1]. 

Max–min:         

Max {Min {µ1, µ2, µ3, µ4}, Min {µ1, µ2, µ3, µ4}… Min {µ1, µ2, µ3, µ4}} 

 

Max–product: 

Max {{µ1.µ2.µ3.µ4}, {µ1.µ2.µ3.µ4}… {µ1.µ2.µ3.µ4}} 
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4.7 Defuzzification 

Defuzzification is the conversion of a fuzzy quantity to a crisp quantity, just as 

fuzzification is the conversion of a crisp quantity to a fuzzy quantity.  

Then C*∈[0, 1] should be converted to a binary decision or recommendation of yes or no 

to change lane, by comparing C* with a threshold value τ, to come out with a FIS’s 

Recommendation FR which has a crisp binary value of {0, 1}: 

 

⎩
⎨
⎧

<

≥
=

τ

τ
*

*

 iflane" changenot  do no,:"0

 iflane" change yes,:"1
 

C

C
FR                                                                      (4.8) 

4.8 Fuzzy Inference System 

 A FIS is a collection of membership functions and fuzzy IF-THEN rules that are mainly 

used to model human knowledge and perception. A typical FIS comprising two inputs, four rules 

and one output is shown in Figure 4.4. A typical FIS comprises four stages: fuzzification, 

inference, composition and defuzzification [Li 2006]. The input data is usually crisp in nature. In 

the fuzzification stage, the crisp input is fuzzified using fuzzy sets and membership functions. 

The fuzzification stage involves applying membership functions associated with the input 

parameters to crisp magnitudes of parameters in order to determine the fuzzy inputs for the fuzzy 

rules. The inference is a group of logic rules which provides the relationship between the 

fuzzified inputs and output [Li 2006]. In the inference stage, the degree to which the antecedent 

of each rule has been satisfied is computed, and then applied to the consequent of fuzzy rule. In 

the composition stage, a single fuzzy set is assigned to each output parameter. Since a crisp 

output is more desired as the final output, the fuzzy set is then converted to a crisp value in the 

defuzzification stage [Li 2006]. The crisp output will be either 1 or 0 which represents “yes, 

change lane” or “no, do not change lane”, respectively. 
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Figure 4.8: A fuzzy inference system with two inputs, four rules and one output  

[from Moridpour 2010]. 

 

4.9 Training 

4.9.1. Max-Min Composition 

The proposed FIS was implemented in MATLAB’s Fuzzy Logic Designer [MathWorks 

2014]. The FIS was “trained” with the training vectors in Dataset A to determine an appropriate 

τ value.   

To help to select the τ value, the training vectors of Dataset A was presented to the FIS. 

Figure 4.5 shows the cumulative frequency distributions of C* values derived at the various τ 

values. Figure 4.5(a) plots the cumulative frequency of F(C*>τ|ΟΜ=0), while Figure 4.5(a) plots 
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the cumulative frequency of F(C*<τ|ΟΜ=1). F(C*>τ|ΟΜ=0) is the number of training vectors 

which have no observed lane change in the NGSIM data, but the FIS (with the given τ value) 

recommends a lane change (FR=1). On the other hand, F(C*<τ|ΟΜ=1) is the number of training 

vectors which have observed lane changes, but the FIS (with the given τ value) did not 

recommend a lane change (FR=0). The optimal τ value should ideally minimize the total number 

of errors, i.e., minimize F(C*>τ|ΟΜ=0) +F(C*<τ|ΟΜ=1). An alternative is to use the objective 

function: 

 

  Minimize ω1 F(C*>τ|ΟΜ=0) + ω2 F(C*<τ|ΟΜ=1)        (4.9) 

 

where ω1 and ω2 are the expected cost of committing each type of error, respectively. ω1 is the 

probability of a collision (when the FIS recommends a lane change when it is not supposed to) 

multiplied by the cost of a collision. ω2 is the delay cost of not changing lane in the next 0.5 

second. ω1 is expected to be very high compared to ω2. However, from our data sets and from 

Figures 4.5(a) and 4.5(b), it can be observed that F(C*>τ|ΟΜ=0) occurs much less frequently 

than F(C*<τ|ΟΜ=1). In the absence of the costs of errors, it is possible to rely on 

F(C*>τ|ΟΜ=0) +F(C*<τ|ΟΜ=1), i.e., ω1=ω2=1 to make a decision on the τ value. However, 

from Figures 4.5(a) and 4.5(b), it is clear that the minimum F(C*>τ|ΟΜ=0) +F(C*<τ|ΟΜ=1) 

occurs when τ≈0.1, which is in practice undesirable. Therefore, an alternate heuristic was 

employed to decide the τ value. First, we set 0.5 <≤τ 1 because higher τ value will reduce the 

error of FR=1 when in fact OM=0. However, increase τ beyond 0.5 will not reduce 

F(C*>τ|ΟΜ=0) significantly (see Figure 4.2(a)) but instead will increase F(C*<τ|ΟΜ=1) (see 

Figure 4.2(b)). It was therefore decided thatτ=0.5 be used for the purpose of subsequent test. If 

this FIS is eventually implemented in practice, the designer may select to set a different τ value. 
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(a) F(C*>τ|ΟΜ=0)	

 

 
(b) F(C*<τ|ΟΜ=1) 

 

Figure 4.9:  Cumulative frequency distributions of C* from training vectors (max-min) 
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4.9.2. Max-Product Composition 

As mentioned in the composition section, max-product is the other composition method. 

As can be inferred from Figure 4.10, the numerical values of max-product fuzzy outputs are 

smaller than max-min fuzzy outputs. In other words, the decisions based on the max-product 

composition are more conservative than the results of max-min composition. Based on the 

frequency plots in Figure 4.10, it is really impossible to immediately recognize the best τ value. 

As mentioned above, max-product is more conservative than max-min, therefore 0.4 is chosen 

for τ. 

 
τ	

F(C*<τ|ΟΜ=1) 

 
τ	

(b) F(C*<τ|ΟΜ=1) 

Figure 4.10:  Cumulative frequency distributions of C* from training vectors (max-product) 
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4.10 Summary 

A survey was conducted to understand drivers’ lane changing behavior and to find out 

more important lane changing decision parameters. The result of the survey was presented in this 

chapter. 

A FIS was used in this research to model the lane changing decisions of passenger 

vehicle drivers on freeways. This chapter explained the different components of the FIS such as 

fuzzification, fuzzy inference rules, composition and defuzzification. GFA, D, GPA and GPB were 

chosen as the input parameters based on the survey results. Although 81 fuzzy inference rules 

were constructed, 51 of them were feasible in practice and were used in the FIS. The FIS 

produces a crisp out which could be either 1 or 0 which meant “yes, change lane” or “no, do not 

change lane”, respectively.  After presenting the FIS with Dataset A, it was decided that τ=0.5 

for the max-min composition method and τ=0.4 for the max-product composition method. 
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Chapter 5: Results 

The FIS model is tested in this chapter by presenting two data sets (Datasets A and B) 

and the results are analyzed by means of classification matrix.  

In Chapter 3, the NGSIM database was processed and organized into Dataset A and 

Dataset B. In Chapter 4, the FIS was developed and trained to determine a τ value.  In this 

chapter, the FIS was evaluated with the entire Dataset A, with the selected the τ value. The FIS 

with the selected τ value was then tested with Dataset B. The test with Dataset B serves as a 

transferability test, to see if the internal parameters (including the τ value) of the FIS is sensitive 

to different driving behavior in a different city. Furthermore, a comparison between the results of 

the FIS model and the TRANSMODELER’s gap acceptance model is made, using Dataset B. 

 

5.1 Dataset A 

5.1.1 Max-Min Composition 

The FIS, with τ=0.5, was evaluated using the entire Dataset A using max-min 

composition. The classification matrix used in Moridpour et al. (2012) is adopted to present the 

results in Table 5.1. In total, there were 232,656 vectors in the Dataset A in which 163 vectors 

have observed lane changes (OM=1). As it has been shown in the Table 5.1, the number of 

vectors that have changed lane (OM=1) and the FIS model recommended that they made lane 

changes is 134. However, 29 vectors had observed maneuver (OM=1) but the FIS model 

recommended no lane change (FR=0). On the other hand, there were 227,869 vectors with no 

observed maneuvers (OM=0) and the FIS model decided with no lane change. There were 4,624 

vectors with OM=0 which were given wrong decisions by the FIS. From the classification 

matrix, it was initially concluded that the overall accuracy of the FIS recommendations was 

134+227,869=228,003 out of 232,656 vectors, equivalent to 98.0%.   
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Table 5.1: Initial classification matrix for Dataset A (max-min) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
134 29 163 82.2% 

Maneuver 

OM 

Do not 

change lane 

OM=0 

4,624 227,869 232,493 98.0% 

 

 
Total 4,758 227,898 232,656 

 
 

Despite this apparently high overall accuracy, there were still 4,624 instances when FR=1 

while OM=0, which may potentially lead to a collision. Upon careful examination on these set of 

4,624 vectors, it was found that most of them happened at a fraction to a few seconds before the 

instant of an observed lane change. When Dataset A was set up, for each S, OM was labeled 1 

only once at t4 while the rest of the vectors for this vehicle had OM=0. It was possible that the 

opportunity for a lane change presented itself 0.5 to a few seconds before t4. However, due to 

perhaps the perception-reaction delay, or conservatively took time to double check the 

surrounding vehicles, the driver did not make an observable lateral move until t4. Therefore, for 

the 163 subject vehicles that changed lane, those vectors before t4 which were labeled OM=0 but 

the FIS recommended FR=1 were considered as correct and retagged as FR=0 because it is 

impossible to change the actual behavior by labeling OM=0 to OM=1. Table 5.2 presents the 

matrix after this reclassification of the FIS’s outputs.  
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Table 5.2: Revised classification matrix for Dataset A (max-min) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
134 29 163 82.2% 

Maneuver 

OM 

Do not 

change lane 

OM=0 

669  231,824   232,493 99.7% 

 

 
Total 803 231,853 232,656 

 
 

Comparing Table 5.1 with Table 5.2, 3,955 vectors with OM=0 were reclassified from 

FR=1 to FR=0.  As has been shown in the Table 5.2, 134 out of 163 vectors with OM=1 decided 

to change the lane correctly and 134/163 is equal to 82.2%. The overall accuracy of FIS 

recommendations has increased to 134+231,824=231,958 out of 232,656 vectors, or 99.7%.   

5.1.2 Max-product Composition 

The FIS, with τ=0.4, was evaluated using the entire Dataset A using max-product 

composition. In total, there were 232,656 vectors in the Dataset A in which 163 vectors have 

observed lane changes (OM=1). As it has been shown in the Table 5.3, the number of vectors 

that have changed lane (OM=1) and the FIS model recommended that they made lane changes is 

120. However, 43 vectors had observed maneuver (OM=1) but the FIS model recommended no 

lane change (FR=0). On the other hand, there were 223,193 vectors with no observed maneuvers 

(OM=0) and the FIS model decided with no lane change. There were 9,300 vectors with OM=0 

which were given wrong decisions by the FIS. From the classification matrix, it was initially 
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concluded that the overall accuracy of the FIS recommendations was 120+223,193=228,003 out 

of 232,656 vectors, equivalent to 96.0%. 

 

Table 5.3: Initial classification matrix for Dataset A (max-product) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
120 43 163 73.6% 

Maneuver 

OM 

Do not 

change lane 

OM=0 

9,300 223,193 232,493 96.0% 

 

 
Total 9,420 223,236 232,656 

 

Despite this apparently high overall accuracy, there were still 9,300 instances when FR=1 

while OM=0, which may potentially lead to a collision. Upon careful examination on these set of 

9,300 vectors, it was found that most of them happened at a fraction to a few seconds before the 

instant of an observed lane change. When Dataset A was set up, for each S, OM was labeled 1 

only once at t4 while the rest of the vectors for this vehicle had OM=0. It was possible that the 

opportunity for a lane change presented itself 0.5 to a few seconds before t4. However, due to 

perhaps the perception-reaction delay, or conservatively took time to double check the 

surrounding vehicles, the driver did not make an observable lateral move until t4. Therefore, for 

the 163 subject vehicles that changed lane, those vectors before t4 which were labeled OM=0 but 

the FIS recommended FR=1 were considered as correct and retagged as FR=0 because it is 

impossible to change the actual behavior by labeling OM=0 to OM=1. Table 5.4 presents the 

matrix after this reclassification of the FIS’s outputs.  
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Table 5.4: Revised classification matrix for Dataset A (max-product) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
120 43 163 73.6% 

Maneuver 

OM 

Do not 

change lane 

OM=0 

6,510 225,983 232,493 97.2% 

 

 
Total 6,630 226,026 232,656 

 

5.2 Dataset B 

5.2.1 Max-Min Composition 

The FIS was then tested with Dataset B using max-min composition. Unlike Dataset A 

which was collected at I-80 Freeway in Emeryville, California, Dataset B was collected at U.S. 

Highway 101 in Los Angeles, California. Thus, the test with Dataset B served as a validation of 

the trained FIS.  It also tested the transferability of the FIS, developed using one city’s data, to 

another.   

Initially, the process of training was repeated for Dataset B to see if it would give a 

different τ value, that is, there is a need to retrain τ. Graphs similar to Figures 4.5(a) and 4.5(b) 

were plotted with Dataset B. As has been shown in Figure 5.1, both (a) and (b) figures show 

similar trends and it was determined that τ=0.5 was still suitable. Therefore, it can be said that 
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the FIS trained with Dataset A is transferable to Dataset B. The evaluation result with Dataset B 

is presented in Table 5.3. 
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τ	

(b) F(C*<τ|ΟΜ=1) 

 

Figure 5.1: Cumulative frequency distributions of C* from Dataset B (max-min) 

Table 5.5: Initial classification matrix for Dataset B (max-min) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
141 30 171 82.5% 

Maneuver 

OM 

Do not change 

lane 

OM=0 

6,285   203,396 209,681 97.0% 

 

 
Total 6,426 203,426 209,852 

 

 

 The initial classification outcomes with Dataset B resulted in an accuracy of 97%. As it 

has been shown in the Table 5.3, the number of vectors that have changed lane and the FIS 

model recommended that they have the lane changing maneuver is 141 while 30 vectors had 

observed maneuver (OM=1) but the FIS model recommended no lane changing maneuver. On 

the other hand, there were 203,396 vectors with no observed maneuvers (OM=0) and the FIS 

decided no lane change correctly. Also there were 6,285 with OM=0 but they were given wrong 

decisions by the FIS. In total, there were 209,852 vectors in Dataset B which 171 vectors have 

changed lane. From the classification matrix, it was initially concluded that the accuracy of the 

FIS recommendations was 97.0%.   

After the FIS’s recommendations of FR=1 were reclassified as FR=0, for the vectors of 

the subject vehicles immediately before t4, the revised result is presented in Table 5.4.  The 

accuracy of FIS has improved to 99.5%. 
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Table 5.6: Revised classification matrix for Dataset B (max-min) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
141 30 171 82.5% 

Maneuver 

OM 

Do not change 

lane 

OM=0 

1,020 208,661 209,681 99.5% 

 

 
Total 1,161 208,691 209,852 

 

As has been shown in the Table 5.4, the FIS recommendation is 141 out of 171 vectors 

with OM=1. This correct decision is equal to 82.5%. 

5.2.2 Max-product Composition 

The FIS, with τ=0.4, was also tested with Dataset B using the max-product composition.  

Initially, the process of training was repeated for Dataset B to see if it would give a 

different τ value. As has been shown in Figure 5.2, both (a) and (b) figures show similar trends 

like in Figure 4.10, and it was determined that τ=0.4 was still suitable. Therefore, it can be said 

that the FIS with max-product composition trained with Dataset A is transferable to Dataset B. 

The evaluation result with Dataset B is presented in Table 5.7. 
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 (a) F(C*<τ|ΟΜ=1) 

 

Figure 5.2: Cumulative frequency distributions of C* from Dataset B (max-product) 

Table 5.7: Initial classification matrix for Dataset B (max-product) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
127 44 171 74.2% 

Maneuver 

OM 

Do not change 

lane 

OM=0 

12,161   197,520 209,681 94.2% 

 

 
Total 12,288 197,564 209,852 

 

The initial classification outcomes with Dataset B resulted in an accuracy of 94.2%. As it 

has been shown in the Table 5.7, among the 171 vectors that have changed lane (OM=1) , the 

FIS model recommended that 127 make the lane changing maneuver  (FR=1),while 44 vectors 

had observed lane changing maneuver (OM=1) but the FIS model recommended no lane change 

(FR=0). On the other hand, there were 197,520 vectors with no observed maneuvers (OM=0) and 

the FIS decided no lane change correctly. Also, there were 12,161 vectors with OM=0 but they 

were given wrong decisions to change lane (FR=1) by the FIS. From the classification matrix, it 

was initially concluded that the accuracy of the FIS recommendations was 94.2.0%.   

After the FIS’s recommendations of FR=1 were reclassified as FR=0, for the vectors of 

the subject vehicles immediately before t4, the revised result is presented in Table 5.8. The 

accuracy of FIS has improved to 96.1%. 
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Table 5.8: Revised classification matrix for Dataset B (max-product) 

 

  FIS Recommendation FR 

  
Change lane 

FR=1 

Do not change 

lane 

FR=0 

Total 
Accuracy 

(%) 

 

Observed 

Change lane 

OM=1 
127 44 171 74.2% 

Maneuver 

OM 

Do not change 

lane 

OM=0 

8,178 201,503 209,681 96.1% 

 

 
Total 8,305 201,547 209,852 

 

  Comparing the classification matrices of the FIS with Dataset B, between the max-min 

and max-product composition methods, the FIS with the max-min composition has better 

accuracy. Therefore this FIS was selected to compare with the TRNSMODELER’s gap 

acceptance lane changing model in the next section. 

5.3 Comparative Performance 

This section compares the performance of the FIS, in terms of classification accuracy, 

against the performance of the gap acceptance model in TRANSMODELER. The gap 

acceptance model in TRANSMODELER has been described in Section 2.1. The parameter 

values in the gap acceptance model has been calibrated with NGSIM data [Caliper 2011], and 

coded into the TRANSMODELER simulation program. The details of the model calibration are 

not documented.  The calibration process can either use the data from the I-80 Freeway in 

Emeryille, U.S. Highway 101 in Los Angeles, or both.  In our case, we have trained the FIS, with 
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the max-min composition, with Dataset A and tested with Dataset B both resulted in the same 

decision of τ=0.5 and the classification matrices (Tables 5.1 to 5.4) have the same level of 

accuracy. Therefore, it is expected that the gap acceptance model, whether calibrated with 

Dataset A, B, or both, will achieve the same level of performance. With this assumption, 

Equations (2.2) and (2.3) were applied directly to Dataset B. The gap acceptance model is also a 

binary decision model. Its recommendation is either “yes, change lane” (GR=1) or “no, do not 

change lane” (GR=0). Based on the classification outcomes, some vectors with OM=0 but the 

gap acceptance model’s initial recommendations of GR=1 immediately before 𝑡! were 

reclassified as GR=0, in the same fashion as described in Section 5.1. The results after 

reclassification are reported in Table 5.5. The accuracy of the gap acceptance model for vectors 

which belong to OM=1 is only 58.5%, while that for vectors which belong to OM=0 is only 

66.7%. Compare to the results in Table 5.4 (which has 82.5% and 99.5% respectively); the FIS 

has much better accuracy. This means that the FIS makes recommendations on the lane changing 

move much closer to what is observed in Dataset B. 

 

Table 5.9: Revised classification matrix for Dataset B, from the gap acceptance model. 

 

  Gap Acceptance Model Recommendation GR 

  
Change lane 

GR=1 

Do not 

change lane 

GR=0 

Total 

 

Accuracy 

(%) 

 

Observed 

Changed lane 

OM=1 
    100    71 171 58.5% 

Maneuver 

OM 

Did not change lane 

OM=0 
    69,810    139,871    209,681 66.7% 

 

 
Total     69,910    139,942   209,852  
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5.4 Summary 

Datasets A and B are presented to the FIS model to train and test the model, respectively. 

The initial lane changing decision accuracies for Datasets A and B were 98% and 97%, 

respectively, which were the minimum accuracies that could be achieved. Then after retagging 

FR=0 to FR=1 before t4, the classification matrices showed that higher accuracies of 99.7% and 

99.5% were obtained for the Datasets A and B, respectively. These percentages represent the 

maximum accuracy that could be achieved. At the end, the gap acceptance model in 

TRANSMODELER, when tested with Dataset B, resulted in 66.7% maximum overall accuracy. 

The FIS outperformed the existing TRANSMODELER’s gap acceptance model. 
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Chapter 6: Conclusions, Potential Applications, Contributions, Limitations 

and Future Studies 

6.1 Conclusions on Research Performed 

This research has defined 10 parameters that describe vehicle interactions during a lane 

change, analyzed the probability distributions of these parameters, correlation behavior of the 

parameters, using actual vehicle trajectory data extracted from the NGSIM database. It is found 

that, overall,  

- The parameters related to gap (in distance unit) and distance can be described by 

the Log-normal distribution. 

- The parameters related to time of collision (in time unit) can be described by the 

Laplace distribution. 

- The parameter related to speed can be described by the Logistic distribution. 

The distributions fitted to the NGSIM data collected at the I-80 Freeway in Emeryville, 

California, and the U.S. Highway 101 were compared. Although the same distribution was fitted 

to the same lane changing parameter, the fitted distribution parameter values were different for 

the two sites. This indicates that the driving behaviors are different at the two data collection 

sites. Besides the maximum, minimum and the mean of each parameter in descriptive analysis 

were used in defining fuzzy membership functions.  

From the correlation analysis, it appears that many parameters are highly correlated. 

Therefore it is highly possible to use fewer parameters to quantify a lane changing event.  
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This research has developed a FIS to recommend to the driver if an opportunity has 

opened up for him/her to perform a discretionary lane changing move to the adjacent target lane. 

GFA, D, GPA and GPB were chosen as the input parameters based on the survey results. Although 

81 fuzzy inference rules were initially constructed, only 51 of them are feasible in practice and 

were used in the FIS. The FIS has only one crisp output which could be either 1 or 0 which 

meant “yes, change lane” or “no, do not change lane”, respectively. The accuracy of the FIS’s 

lane changing recommendations ranges from 98.0% to 99.7% for Dataset A (collected at I-80 

Freeway in Emeryville, California, in which part of the data was used in training), and 96.7% to 

99.5% for Dataset B (collected at U.S. Highway 101 in Los Angeles, California). The FIS model 

has achieved very encouraging results in the independent validation and transferability test using 

Dataset B. At the end, the comparative performance made to compare the FIS and the gap 

acceptance model in TRANSMODELER with Dataset B yielded 66.7% maximum overall 

accuracy for the TRANSMODELER. Thus, the FIS outperformed the existing 

TRANSMODELER’s gap acceptance model. 

  

6.2 Potential Applications 

The FIS takes four inputs parameters most frequently used by drivers in making lane 

changing decisions. These parameters may be estimated by sensors instrumented in the subject 

vehicle, avoiding the necessity of vehicle-to-vehicle communications. The FIS can be 

programmed as part of a microscopic traffic simulation tool, or a lane change assist system. It is 

envisioned that the lane change assist system will function as follows: (i) the driver of the subject 

vehicle indicates his/her desire to change lane and have selected the target lane by turning on the 

vehicle’s turn indicator (turn signal); (ii) the sensors in the subject vehicle estimate the distances 

and relative speeds between itself and the surrounding vehicles, and compute the crisp values of 

the input parameters; (iii) the input parameters are fed into the FIS, and the FIS recommends a 

decision; (iv) the recommendation is communicated to the driver by voice, audio signal and/or 
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visual indicator on the instrument penal. The U.S. Federal Highway Administration has 

estimated that between 8.4% and 13.7% of vehicle-to-vehicle collisions on highways occurred 

during merging or changing lanes [FHWA 1996]. The occurrence of collisions during lane 

changes may be reduced with the implementation of lane change assist systems embedded with 

this FIS. This is the potential application of this research. 

 

 

6.3 Contributions 

This research has demonstrated the potential of FIS in modeling discretionary lane 

changing decisions on freeways. The FIS outperformed the existing TRANSMODELER’s gap 

acceptance model (which is developed for discretionary lane change, and calibrated with the 

same NGSIM database). The FIS has better accuracies than this competitor in making “yes, 

change lane” and “no, do not change lane” recommendations. 

In this research, the lane changing behavior of a driver has been characterized as a 

sequence of four steps which are motivation to change lane, selection of the target lane, checking 

the opportunity to move and a lateral move. As mentioned before, the FIS to be developed in this 

research replicates the driver’s decision at the beginning of the third step; that is, checking for 

opportunity in the target lane for actual lateral movement of the vehicle. The model answers the 

question “Is it the time to start moving into the target lane?” 

This research has provided an improved model of lane change which is explained below: 

1. The survey has showed which lane changing parameters are more important than the others 

(which are used by drivers in making decisions) which should be the inputs to the FIS. 

2. Fuzzy sets and membership functions of the parameters has been decided based on the 

ACRISS table and the Texas Drive Handbook. 
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6.4 Limitations 

The major limitations of this research are: 

- The subject vehicles are cars. The probability distributions of the parameters for other types 

of vehicles are likely to be different. However, sample sizes for other types of vehicles are 

much smaller and therefore they were not studied in this dissertation. 

- The FIS model was developed and tested with NGSIM data which is from moderate to heavy 

volume (1200 to 1600 vphpl, and 15 to 30 mph).  

- For each lane changing event, the parameter values were taken at the time when the subject 

vehicle has 0.2 m/s lateral velocity. Obviously this is in the middle of lane change execution.  

The driver of the subject vehicle usually makes his/her decision to change lane a fraction of a 

second to a few second ago. However, it is impossible to tell when he/she makes this 

decision and measure the decision parameters at this point in time. 

- A successful lane changing event may be preceded by several unused (or unsafe) lane change 

opportunities. This is synonymous to the gap acceptance scenario where there are more 

rejected gaps than accepted gaps. The distributions of the same parameters without an 

observed lane change are yet to be studied.  However, the unused opportunities may not be 

easily observable.   

- For the distinctions between mandatory and discretionary lane changes, and between 

different road types, integrating the FIS with the vehicle’s map matching/navigation system 

will be necessary  

 

 6.5 Future Studies 

Although promising, there exist several limitations in the FIS which should be addressed 

in future research: 
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• The FIS developed so far is for passenger cars as the subject vehicles. Similar model, with 

different fuzzy membership functions and τ values may be developed for trucks, for 

mandatory lane change, and for arterial roads.  

• Although the current version of FIS has very high accuracy, the model may further be 

improved by adjusting the bases and tips of the triangular and trapezoidal fuzzy membership 

functions, and/or by assigning different weights to the fuzzy rules.   

• A more objective way could be developed to determine the τ value. One possibility is to 

estimate and include the w1 and w2 values in the objective function. 

• Due to budget constraint, the drivers’ survey was conducted only in El Paso, Texas. The 

results of the survey may be biased towards the local behavior. In future, the survey should 

be expanded to cover other cities, especially the cities where the vehicle trajectory data was 

collected and used to calibrate and test the FIS. 

• The FIS model was developed and tested with NGSIM data which is from moderate to heavy 

volume (1200 to 1600 vphpl, and 15 to 30 mph). The performance of the FIS in low volume, 

high speed traffic should be tested when data is available.   

The real test of the FIS is user acceptance of its recommendations, and the resulting safe 

maneuver during actual freeway driving. Therefore, conducting laboratory test (using a driving 

simulator) and field test (with an instrumented vehicle) with a sample of drivers should be two of 

the major tasks in future research.  
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Appendix A 

 

 

Transportation Survey on Lane Changing 
 

UTEP is conducting research into how drivers change lane on highways and freeways.  We want 

to understand how drivers make decisions on when to change lanes.  Your answers will help us 

to understand lane changing motivation and behavior. 

 

This survey has 3 parts and a total of 16 questions. 

 

 

 

Suppose you are driving on a long stretch of a 2-lane highway with no entrance and exit.  The 

following figure illustrates a lane changing scenario and you are the subject vehicle (vehicle S).  

You can be surrounded by up to 4 vehicles (vehicles 1 to 4). 

 

 

 
 

 

 

Part 1 – Motivation  
1 - When you want to change the lane from lane 1 to lane 2, what are usually your main 

reasons for changing lane? (You may select more than 1 choice) 

� Vehicle 4 is too fast 

� Vehicle 3 is too slow 

� Vehicle 1 is too fast 

� Vehicle 2 is too slow  

� Vehicle 2 is too far 

� Vehicle 4 is too near 

� To reach a higher speed 

� Others (please specify): ___________________________________________ 
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Part 2 – Safety Checks (Please circle 1 answer per question) 

 

 
2 - When you want to move from lane 1 to lane 2, how often do you check the distance 

between your vehicle (S) and vehicle 1? 

a- All the time    

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

3 - When you want to move from lane 1 to lane 2, how often do you check the distance 

between your vehicle (S) and vehicle 2? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

4 - When you want to move from lane 1 to lane 2, how often do you check the distance 

between your vehicle (S) and vehicle 3? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

5 - When you want to move from lane 1 to lane 2, how often do you check the distance 

between your vehicle (S) and vehicle 4? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

6 - When you want to move from lane 1 to lane 2, how often do you check the distance 

between vehicle 1 and vehicle 2? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 
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e- Never 

7 - When you want to move from lane 1 to lane 2, how often do you check the speed of your 

vehicle (S)? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

It is written in the Texas Driver’s Handbook that  

 

“A good driver always keeps a safe distance from the car in front of him/her. A good 

rule is to stay at least 2 to 4 seconds behind the vehicle ahead of you.” 

Other states also have similar guideline. 

 

8 - How often do you check this time (2 to 4 seconds) between your vehicle (S) and 

 vehicle 3 before lane changing? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

9 - How often do you check this time (2 to 4 seconds) between your vehicle (S) and 

 vehicle 4 before lane changing? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

10 - How often do you check this time (2 to 4 seconds) between your vehicle (S) and 

 vehicle 1 after lane changing? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 
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11 - How often do you check this time (2 to 4 seconds) between your vehicle (S) and 

 vehicle 2 after lane changing? 

a- All the time 

b- Most of the time 

c- Sometimes 

d- Seldom 

e- Never 

 

 

Part 3 – About yourself 

 
12 - Please tell us your age: ______ years   

                

13 - Please circle your gender:  Male / Female  

 

 

14 -  Year when you first received your driving license (e.g. 2012): ________ 

 

 

15 - What type of vehicle do you drive most often? (Please circle only 1 answer) 

a- Sedan 

b- SUV 

c- Van 

d- Pickup Truck 

e- Other (please specify):___________________ 

 

16 - How often do you drive on highway or freeway? (Please circle only 1 answer) 

a- Everyday 

b- Almost every day (4-6 times a week) 

c- Sometimes (1-3 times a week) 

d- Seldom (less than once a week) 

e- Never 

 

 

 

 

End of survey. Thank you! 
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Appendix B 

 

Fuzzy inference rules 
 

1- If GFA is close and GPA is close and D is close and GPB is close Then No Lane 

Change. 

2- If GFA is close and GPA is medium and D is close and GPB is close Then Lane 

Change. 

3- If GFA is close and GPA is far and D is close and GPB is close Then Lane Change. 

(impossible) 

4- If GFA is close and GPA is close and D is medium and GPB is close Then Lane 

Change. 

5- If GFA is close and GPA is close and D is far and GPB is close Then Lane Change. 

6- If GFA is close and GPA is close and D is close and GPB is medium Then No Lane 

Change. 

7- If GFA is close and GPA is close and D is close and GPB is far Then No Lane Change. 

8- If GFA is close and GPA is medium and D is medium and GPB is medium Then Lane 

Change. 

9- If GFA is close and GPA is far and D is far and GPB is far Then Lane Change. 

10- If GFA is close and GPA is close and D is far and GPB is far Then Lane Change. 

(impossible) 

11- If GFA is close and GPA is close and D is medium and GPB is medium Then No Lane 

Change. 

12- If GFA is close and GPA is close and D is medium and GPB is far Then Lane Change. 

13- If GFA is close and GPA is close and D is far and GPB is medium Then Lane Change. 

14- If GFA is close and GPA is medium and D is close and GPB is medium Then No Lane 

Change. 

15- If GFA is close and GPA is far and D is close and GPB is far Then No Lane Change. 

(impossible) 

16- If GFA is close and GPA is medium and D is far and GPB is close Then No Lane 

Change. 

17- If GFA is close and GPA is medium and D is far and GPB is medium Then Lane 

Change. 

18- If GFA is close and GPA is medium and D is far and GPB is far Then Lane Change. 

19- If GFA is close and GPA is medium and D is medium and GPB is close Then No Lane 

Change. 

20- If GFA is close and GPA is far and D is far and GPB is close Then Lane Change. 

21- If GFA is close and GPA is medium and D is medium and GPB is far Then No Lane 

Change. 

22- If GFA is close and GPA is far and D is medium and GPB is close Then Lane Change. 

(impossible) 
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23- If GFA is close and GPA is far and D is medium and GPB is medium Then Lane 

Change. (impossible) 

24- If GFA is close and GPA is medium and D is close and GPB is far Then No Lane 

Change. 

25- If GFA is close and GPA is medium and D is medium and GPB is far Then Lane 

Change. 

26- If GFA is close and GPA is far and D is close and GPB is medium Then No Lane 

Change. (impossible) 

27- If GFA is close and GPA is far and D is far and GPB is medium Then Lane Change. 

28- If GFA is close and GPA is far and D is medium and GPB is far Then Lane Change. 

29- If GFA is medium and GPA is medium and D is medium and GPB is medium Then 

Lane Change. 

30- If GFA is medium and GPA is far and D is medium and GPB is medium Then Lane 

Change. (impossible) 

31- If GFA is medium and GPA is close and D is medium and GPB is medium Then Lane 

Change. 

32- If GFA is medium and GPA is medium and D is far and GPB is medium Then Lane 

Change. 

33- If GFA is medium and GPA is medium and D is close and GPB is medium Then Lane 

Change. (impossible) 

34- If GFA is medium and GPA is medium and D is medium and GPB is far Then Lane 

Change. 

35- If GFA is medium and GPA is medium and D is medium and GPB is close Then Lane 

Change. 

36- If GFA is medium and GPA is far and D is far and GPB is far Then Lane Change. 

37- If GFA is medium and GPA is medium and D is far and GPB is far Then Lane 

Change. 

38- If GFA is medium and GPA is medium and D is close and GPB is close Then No Lane 

Change. (impossible) 

39- If GFA is medium and GPA is close and D is medium and GPB is close Then Lane 

Change. 

40- If GFA is medium and GPA is far and D is medium and GPB is far Then Lane 

Change. (impossible) 

41- If GFA is medium and GPA is close and D is close and GPB is medium Then No Lane 

Change. (impossible) 

42- If GFA is medium and GPA is far and D is far and GPB is medium Then Lane 

Change. 

43- If GFA is medium and GPA is medium and D is far and GPB is close Then Lane 

Change. 

44- If GFA is medium and GPA is close and D is far and GPB is close Then No Lane 

Change. 

45- If GFA is medium and GPA is close and D is far and GPB is medium Then Lane 

Change. 



 88 

46- If GFA is medium and GPA is close and D is medium and GPB is far Then Lane 

Change. 

47- If GFA is medium and GPA is close and D is far and GPB is far Then No Lane 

Change. (impossible) 

48- If GFA is medium and GPA is far and D is medium and GPB is close Then Lane 

Change. (impossible) 

49- If GFA is medium and GPA is medium and D is close and GPB is far Then No Lane 

Change. (impossible) 

50- If GFA is medium and GPA is close and D is close and GPB is far Then No Lane 

Change. 

51- If GFA is medium and GPA is far and D is close and GPB is close Then No Lane 

Change. (impossible) 

52- If GFA is medium and GPA is far and D is close and GPB is far Then No Lane 

Change. (impossible) 

53- If GFA is medium and GPA is far and D is far and GPB is close Then Lane Change. 

54- If GFA is medium and GPA is far and D is close and GPB is medium Then No Lane 

Change. (impossible) 

55- If GFA is medium and GPA is close and D is close and GPB is close Then No Lane 

Change. 

56- If GFA is far and GPA is far and D is far and GPB is far Then Lane Change. 

57- If GFA is far and GPA is medium and D is medium and GPB is medium Then Lane 

Change. 

58- If GFA is far and GPA is close and D is far and GPB is far Then Lane Change. 

59- If GFA is far and GPA is medium and D is far and GPB is far Then Lane Change. 

60- If GFA is far and GPA is far and D is close and GPB is far Then Lane Change. 

(impossible) 

61- If GFA is far and GPA is far and D is medium and GPB is far Then Lane Change. 

62- If GFA is far and GPA is far and D is far and GPB is close Then Lane Change. 

63- If GFA is far and GPA is far and D is far and GPB is medium Then Lane Change. 

64- If GFA is far and GPA is far and D is close and GPB is close Then No Lane Change. 

(impossible) 

65- If GFA is far and GPA is far and D is medium and GPB is medium Then Lane 

Change. 

66- If GFA is far and GPA is close and D is far and GPB is close Then Lane Change. 

67- If GFA is far and GPA is medium and D is far and GPB is medium Then Lane 

Change. 

68- If GFA is far and GPA is close and D is close and GPB is far Then No Lane Change. 

(impossible) 

69- If GFA is far and GPA is medium and D is medium and GPB is far Then Lane 

Change. (impossible) 

70- If GFA is far and GPA is medium and D is far and GPB is close Then Lane Change. 

71- If GFA is far and GPA is medium and D is medium and GPB is close Then Lane 

Change.  (impossible) 
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72- If GFA is far and GPA is medium and D is close and GPB is medium Then No Lane 

Change. (impossible) 

73- If GFA is far and GPA is close and D is medium and GPB is close Then Lane Change. 

74- If GFA is far and GPA is close and D is close and GPB is medium Then NO Lane 

Change. (impossible) 

75- If GFA is far and GPA is close and D is medium and GPB is medium Then Lane 

Change. 

76- If GFA is far and GPA is far and D is medium and GPB is close Then Lane Change. 

(impossible) 

77- If GFA is far and GPA is far and D is close and GPB is medium Then Lane Change. 

(impossible) 

78- If GFA is far and GPA is medium and D is close and GPB is close Then No Lane 

Change. (impossible) 

79- If GFA is far and GPA is medium and D is close and GPB is far Then No Lane 

Change. (impossible) 

80- If GFA is far and GPA is close and D is medium and GPB is far Then Lane Change. 

(impossible) 

81- If GFA is far and GPA is close and D is close and GPB is close Then No Lane Change. 

(impossible) 
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