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Abstract—Discretization, as a preprocessing step for data mining, is a process of converting the continuous attributes of a data set

into discrete ones so that they can be treated as the nominal features by machine learning algorithms. Those various discretization

methods, that use entropy-based criteria, form a large class of algorithm. However, as a measure of class homogeneity, entropy

cannot always accurately reflect the degree of class homogeneity of an interval. Therefore, in this paper, we propose a new measure of

class heterogeneity of intervals from the viewpoint of class probability itself. Based on the definition of heterogeneity, we present a new

criterion to evaluate a discretization scheme and analyze its property theoretically. Also, a heuristic method is proposed to find the

approximate optimal discretization scheme. Finally, our method is compared, in terms of predictive error rate and tree size, with Ent-

MDLC, a representative entropy-based discretization method well-known for its good performance. Our method is shown to produce

better results than those of Ent-MDLC, although the improvement is not significant. It can be a good alternative to entropy-based

discretization methods.

Index Terms—Data mining, data preparation, discretization, entropy, heterogeneity.
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1 INTRODUCTION

DATA mining is an extremely powerful approach to
extracting meaningful information from large and

unwieldy databases. However, the successful application
of data mining tools relies heavily on the quality of the
databases. Therefore, data preparation is a crucial research
topic in the data mining field [24], [25]. Discretization, as
one of the basic data preparation techniques, has received
more and more research attention. The reason is that many
existing data mining algorithms focus on learning only in
nominal feature space [12], while real-world classification
and data mining tasks often involve continuous features.
Those continuous features have to be discretized before
using such algorithms.

Discretization is a process that transforms continuous
attributes into a finite number of intervals, where each
interval is associated with a numerical discrete value.
Discretized intervals can then be treated in a similar way
to nominal values during induction and deduction. There
are many advantages of using discrete values over con-
tinuous ones. The most important is that data can be
reduced and simplified through discretization. In general,
results obtained through decision trees or induction rules
using discretized data are usually more compact, shorter,
and more accurate than results derived using continuous
values [15]. Discretization of data thus has the effect of
increasing the speed and accuracy of machine learning.

Much research has taken place in the area of discretiza-
tion. In the early days, simple discretization techniques
were used such as equal-width and equal-frequency
methods. In these methods, continuous ranges are divided
into subranges by user-specified width (range of values) or

frequency (number of instances in each interval). Since they
do not make use of class information, these are usually
called unsupervised methods. In contrast, discretization
methods that consider class information are called super-
vised methods. Among the various supervised methods,
there are two prominent classes of criteria. One is the Chi-
square-based criteria that focus on the viewpoint of
statistics. The other is the entropy-based criteria that focus
on the viewpoint of information.

Statistics-based algorithms include ChiMerge [10], Chi2
[16], Modified Chi2 [22], StatDisc [19], Khiops [2], and so
forth. The ChiMerge method [10], [16], [22] searches for the
best merge of adjacent intervals by minimizing the Chi-
square criterion applied locally to two adjacent intervals
that are merged according to statistical similarity. Like
ChiMerge, StatDisc [19] considers merging up to N adjacent
intervals at a time where N is a user-specified parameter.
Khiops [2] evaluates all merges between adjacent intervals
and selects the best one according to the Chi-square
criterion applied to the whole set of intervals.

There are also many entropy-based discretization meth-
ods. Representative algorithms include Maximum entropy
[23], D2 [3], and Entropy-MDLC [8], etc. Maximum entropy
[23] discretizes the continuous attributes using a minimum
loss of information criterion. D2 [3] chooses a threshold T to
partition the set of values into two subsets that maximize
the information gain after binary partition. Entropy-MDLC
[8] uses the class information entropy of candidate parti-
tions to select threshold boundaries for discretization. It
finds a single threshold that minimizes the entropy function
over all possible thresholds and recursively applies this
strategy to both induced partitions. The Minimum Descrip-
tion Length criterion is employed to determine a stopping
rule for the recursive discretization strategy. We refer to this
as Ent-MDLC in this paper. Other algorithms use class-
attributes interdependency information as the criterion [5],
[13], [14]. These methods try to maximize the interdepen-
dence between the discretized attributes and class labels
based on information theory.
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Discretization methods may be categorized according to
whether they are supervised or unsupervised, or they may be
grouped in terms of dynamic versus static, local versus global,
splitting versus merging, or direct versus incremental methods
[15]. A dynamic method would discretize continuous values
when a classifier is being built, such as C4.5 [18]. The static
approach, on the other hand, is used prior to the classifica-
tion task, such as in the methods mentioned above: equal-
width, equal-frequency, entropy-basedmethods [3], [8], [17],
[23], Chimerge [10], and so forth. For a comparison between
dynamic and static methods, see Dougherty et al. [7].

The difference between local and global discretization
methods is in how many attributes are discretized
simultaneously. The methods that restrict discretization to
a single continuous attribute are termed local, whereas
methods that simultaneously convert all continuous attri-
butes are considered global, such as the Zeta method [9].
Dougherty et al. list some of the global algorithms in [7],
and later Chmielewski [6] proposed a method of transform-
ing any local discretization method into a global one.

Splitting versus merging methods are differentiated by
their search strategy and can therefore also be termed top-
down or bottom-up methods. ChiMerge is one well-known
example of a merging method. Another dimension of
discretization methods is whether they are direct or
incremental. If the number of intervals is defined prior to
discretization, such methods are called direct, for example,
equal-width and equal-frequency methods. Incremental
methods begin with a simple discretization and pass
through an improvement process, requiring an additional
criterion to know when to stop discretizing [4]. A
hierarchical framework for discretization methods is pro-
posed in [15]. In this paper, we focus on entropy-based,
supervised discretization methods.

In the discretization problem, a tradeoff must be made
between information quality and statistical equality that
indicates good predictive accuracy and sufficient sample size
in every interval. The entropy-based criteria considers the
information quality. Entropy [21] is used tomeasure the class
homogeneity of intervals, which is a symmetric function of
the class probability. When there are only two classes, it is
undoubtedly an excellent indicator of the class homogeneity
of intervals. But, when there are more than two classes,
entropy is sometimes unable to discriminate the class
homogeneity between two intervals. (We will give an
example of this in the next section.) Therefore, we propose a
new measure of class heterogeneity of intervals from the
viewpoint of the class probability itself. Based on the
definition of heterogeneity, we present a new criterion to
evaluate a discretization scheme and give a heuristic method
to find the approximate optimal discretization scheme.

The rest of this paper is organized as follows: Section 2
presents our measurement of the heterogeneity of an
interval and analyzes its property theoretically, then gives
a criterion to evaluate a discretization scheme. The detailed
discretization algorithm is described in Section 3. In
Section 4, we compare our method with Ent-MDLC using
the benchmark data sets. C4.5 [18] is chosen for evaluation
and comparison. Finally, Section 5 concludes the paper with
a brief discussion and future extension of this study.

2 DISCRETIZATION CRITERION

The quality of discretization methods involves a tradeoff
between simplicity and predictive accuracy. The goal of our

proposed method is to reduce the number of intervals while
maximizing the accuracy of the information. The basic
presentation and definitions used in this paper are
introduced first in this section, and then the new discretiza-
tion criterion is described.

2.1 Basic Presentation and Definitions

Suppose for a supervised classification task with s class
labels, the training data set consists of M instances, where
each instance belongs to only one of s classes. Let A be any
of the continuous attributes from the mixed-mode data.
Next, there exists a discretization scheme D on the attribute
A, which discretizes the continuous range of the attribute A
into n discrete intervals bounded by the pairs of numbers:

D : f½b0; b1�; ðb1; b2�; . . . ; ðbn�1; bn�g;

where b0 and bn, respectively, are the minimal and the
maximal values of the attribute A, and the values in D are
arranged in ascending order. The discretization schemeD is
called an n-scheme. These values constitute the boundary
set BD ¼ fb0; b1; � � � ; bng of the discretization scheme D.
Since each boundary set corresponds to a discretization
scheme, we use either BD or D to indicate a discretization
scheme in this paper. For a given n-scheme discretization,
D, we can obtain a 2D discretization quanta matrix as
follows.

In Table 1, qji denotes the total number of observed
instances belonging to class cj whose values of the attribute
A fall into the ith interval. The sum of the jth row qjþ
denotes the total number of observed instances belonging to
cj. The sum of the ith column qþi denotes the total number
of observed instances whose values of the attribute A fall
into the ith interval.

2.2 Heterogeneity Discretization Criterion

For the ith interval ðbi�1; bi�, we can get a conditional class

probability ppðiÞ ¼ ðpðiÞ1 ; . . . ; p
ðiÞ
j ; . . . ; pðiÞs Þ, where p

ðiÞ
j ¼ qji=qþi

and satisfy
Ps

j¼1 p
ðiÞ
j ¼ 1.

This is the conditional probability distribution of the
class in the ith interval. The Shannon entropy of this interval
can be expressed as follows:

Eðinterval iÞ ¼ �
Xs
j¼1

p
ðiÞ
j log p

ðiÞ
j : ð1Þ

When each class label occurs at an equal probability in the
interval, entropy of this interval gets the maximum value.
When all the instances falling into the interval belong to
one class, the entropy gets the minimum value 0. Therefore,
entropy can be used as the measurement of class homo-
geneity. In general, the smaller the entropy value, the worse
the homogeneity, and the better the classification ability of
an interval. Among the various discretization methods,
entropy-based criteria are used in a large class of algo-
rithms. When there are only two classes in a classification
task, entropy undoubtedly is an excellent measurement of
class homogeneity. However, when there are more than
two classes in a classification problem, entropy sometimes
cannot accurately reflect the class homogeneity, or the
classification ability of an interval. As an example, for a
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classification task with three classes c1; c2; c3, there are
three intervals I1; I2; I3. The class probability vectors of the

three intervals are respectively ppð1Þ ¼ 1
2 ;

1
2 ; 0

� �
, ppð2Þ ¼ 1

6 ;
2
3 ;

1
6

� �
,

and ppð3Þ ¼ 1
8 ;

3
4 ;

1
8

� �
. If the base of the logarithm in (1) is

specified as 2, then the entropy value of each interval is

easily calculated as follows:

EðI1Þ ¼ 1

EðI2Þ ¼ 1:25

EðI3Þ ¼ 1:06:

ð2Þ

From the viewpoint of entropy, the smaller entropy value is
preferred. Therefore, the first interval is better than the last
two in terms of classification ability. But, from the view-
point of predictive accuracy, the last two intervals are better
than the first. Based on the analysis above, we propose the
following new criterion to measure the degree of class
heterogeneity of an interval with better classification ability.

Let Q be the set of probability vector space with s

dimensions,

Q ¼ fppjpp ¼ ðp1; p2; � � � ; psÞ 2 Rs;
Xs
i¼1

pi

¼ 1; 0 � pi � 1; i ¼ 1; 2; � � � ; sg:
ð3Þ

This set consists of all the possible conditional class
probability vectors in an interval. If ppi ¼ 1

s for each i,
denoted by pp0 ¼ 1

s ;
1
s ; � � � ; 1s

� �
, it is called the barycenter

probability vector. For the ith interval, if the conditional class
probability vector ppðiÞ ¼ ðpðiÞ1 ; � � � ; pðiÞj ; � � � ; pðiÞs Þ ¼ pp0, then the
class heterogeneity of the interval is the lowest, and so is the

classification ability of the interval. Naturally, the distance
between any conditional class probability vector ppðiÞ and the
lowest point pp0 can be used to indicate the class

heterogeneity of an interval as follows.

Definition 2.1. For a conditional class probability vector

pp ¼ ðp1; � � � ; pj; � � � ; psÞ 2 Q, its heterogeneity is defined as

the distance between the vector pp and the barycenter

probability vector pp0, denoted by dðppÞ,

dðppÞ ¼ pp� pp0j j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

pj �
1

s

� �2
vuut : ð4Þ

Heterogeneity is symmetric, that is, the ordering of the
probabilities p1; � � � ; ps does not influence the value of
heterogeneity. From the above definition, it is easy to get
the following theorem:

Theorem 2.1. For any s-dimensional class probability vector pp,

0 � dðppppÞ �
ffiffiffiffiffiffi
s�1
s

q
.

It is apparent that heterogeneity reaches the minimal
value when pp ¼ pp0 and reaches the maximal value when
pp ¼ ð0; � � � ; 0; 1; 0; � � � 0Þ, that is, all the instances falling into
the interval belong to the same class. The larger the
heterogeneity value of an interval, the stronger the
classification ability of the interval.

Fig. 1 gives the geometrical explanation of heterogeneity

when s ¼ 3. The vertex of the triangle denotes the event in

which only one class label occurs. The barycenter O ¼
1
3 ;

1
3 ;

1
3

� �
denotes that each class label occurs at the equal

probability. The farther away the point moves from O, the

higher the degree of the class heterogeneity. The hetero-

geneity value increases along each radial beginning with O.

It is easy to see that the contours of heterogeneity are

composed of the points on the circles centered at the

barycenter O that fall into the interior of the triangle.

We compare the contours of three criteria, entropy,

heterogeneity, and predictive accuracy, in Fig. 2b. The
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criterion of predictive accuracy uses the maximal compo-

nent of the conditional class probability as the measurement

of interval quality [20]. The maximal component of the class

probability indicates the predictive accuracy rate of the

interval. The criterion of accuracy rate only considers the

dominating class information in an interval, whereas the

entropy criterion takes into account all the class information

and evaluates the interval according to the whole class

distribution. But, it seems to prefer the points that are close

to the boundary of the triangle in Fig. 2a. For example, from

the viewpoint of entropy, point 1
2 ;

1
2 ; 0

� �
is better than point

1
8 ;

3
4 ;

1
8

� �
. But, from the viewpoint of predictive accuracy, the

latter is much better than the former. The heterogeneity

criterion also considers all the class information, but lifts the

effect of the dominating class as compared to the entropy

criterion. It is shown in Fig. 2b that the entropy criterion

prefers the points that are close to the boundary of class

probability vector space than the heterogeneity criterion.

The heterogeneity criterion also has less of a computational

workload than the entropy criterion.
After the definition of the heterogeneity of an interval is

given, the following is the heterogeneity of a discretization

scheme D:

Definition 2.2. The heterogeneity �dd of an n-schemeD is defined as

�ddD ¼
Xn
i¼1

qþi

M
dðppðiÞÞ: ð5Þ

For any two discretization schemes D and D0, we denote

their corresponding boundary sets by BD and BD0 . If

BD0 � BD, then we say D0 can be generated from D. That

is, D0 can be obtained by adding some boundary points into

the boundary set of D. The following theorem gives the

relationship between the heterogeneity values of D and D0.

Theorem 2.2. For any two discretization schemes D and D0, if

BD0 � BD, then �ddD0 � �ddD.

Proof. We only consider the case that BD0 contains one

more point than BD. Suppose D has n intervals

f½b0; b1�; ðb1; b2�; � � � ; ðbn�1; bn�g, and D0 is generated by

splitting the ith interval ðbi�1; bi� into two subintervals,

which are denoted by interval i1 and i2, then

�ddD ¼
Xn

j¼1;j6¼i

qþj

M
dðppðjÞÞ þ qþi

M
dðppðiÞÞ;

�ddD0 ¼
Xn

j¼1;j 6¼i

qþj

M
dðppðjÞÞ þ qþi1

M
dðppði1ÞÞ þ qþi2

M
dðppði2ÞÞ:

Therefore, �ddD0 � �ddD is equivalent to the following
inequation:

qþi1

M
dðppði1ÞÞ þ qþi2

M
dðppði2ÞÞ � qþi

M
dðppðiÞÞ: ð6Þ

Square both sides of the above inequation, then the right
side is equal to

qþi

M
dðppðiÞÞ

� �2
¼ qþi

M

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

qji
qþi

� 1

s

� �2
vuut

0
@

1
A

2

¼ 1

Ms

� �2

�
Xs
j¼1

ðsqji � qþiÞ2

¼ 1

Ms

� �2

� s2
Xs
j¼1

q2ji � sq2þi

 !
;

ð7Þ

and the left side is

qþi1

M
dðppði1ÞÞ þ qþi2

M
dðppði2ÞÞ

� �2
¼

1

Ms

� �2

� s2
Xs
j¼1

q2ji1 � sq2þi1
þ s2

Xs
j¼1

q2ji2 � sq2þi2

 !

þ 1

Ms

� �2

�2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðsqji1 � qþi1Þ
2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðsqji2 � qþi2Þ
2

vuut :

ð8Þ
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Subtract (7) from (8) and make use of qþi ¼ qþi1 þ qþi2

and qji ¼ qji1 þ qji2 ; j ¼ 1; � � � ; s, then the following ex-

pression is obtained:ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðsqji1 � qþi1Þ
2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðsqji2

vuut � qþi2Þ
2

� s2
Xs
j¼1

qji1qji2 � sqþi1qþi2 :

ð9Þ

According to Cauchy’s inequation,

Xn
i¼1

aibi

 !2

�
Xn
i¼1

a2i

 !
�
Xn
i¼1

b2i

 !
;

then ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðsqji1 � qþi1Þ
2

vuut �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXs
j¼1

ðsqji2 � qþi2Þ
2

vuut
�
Xs
j¼1

ðsqji1 � qþi1Þðsqji2 � qþi2Þ

¼ s2
Xs
j¼1

qji1qji2 � sqþi1qþi2 :

Thus,

�ddD0 � �ddD � 0:

The equation holds in the above inequation if and only if

qji1 ¼ kqji2 for all j ¼ 1; � � � ; s, where k is a constant. tu
Considering that we prefer the smaller number of

intervals, we give the evaluation criterion for the quality

of a discretization scheme.

Definition 2.3. Let D, D0 be different discretization schemes

with n and m intervals, respectively. If

�ddD
n
�ddD0
m

¼
�ddD
�ddD0

�m
n

� 1; ð10Þ

it is said that the discretization scheme D is better than D0 and
m
n is called the effect factor of the number of intervals.

The goal of our discretization criterion is to find the best

one among all possible discretization schemes. When

two discretization schemes have the same number of

intervals, then the larger the heterogeneity value, the better

the discretization scheme. But, if they have different

numbers of intervals, in general, the heterogeneity is higher

when the number of interval is larger. When each instance

falls into an interval in a discretization scheme, the

heterogeneity value is the highest among all the schemes.

However, the number of intervals should be reduced

through discretization. Therefore, the ratio of the numbers

of intervals between two discretization schemes, i.e., m
n , is

added into Definition 2.3 to control the number of intervals.

In general, the effect factor of the number of intervals can be

specified as a constant or other function of the number of

intervals.

3 HETEROGENEITY-BASED DISCRETIZATION

ALGORITHMS

In our discretization criterion, the effect factor of the
number of intervals is the ratio of the numbers of intervals
between two discretization schemes. So, our discretization
criterion can be transformed into the following criterion
function:

CF ðDÞ ¼
�ddD
n

; ð11Þ

where n is the number of intervals in the discretization
scheme D. The optimal discretization scheme can be found
by searching the space of all possible discretization schemes
to find the one with the highest CF ðDÞ value. Since the
space of all possible discretization schemes grows exponen-
tially with the number of possible boundary points, a
heuristic method to find an approximate optimal scheme is
a natural choice.

Let M, s, A, and m denote the number of instances in a
data set, the number of class labels, the attribute needed to
be discretized, and the number of distinct values of A,
respectively. First, sorting the m distinct attribute values of
the attribute A in ascending order, a0; a1; � � � ; am, we denote
it by B ¼ fa0; a1; � � � ; amg. If the instances that fall into the
intervals ðai�1; ai� and ðai; aiþ1� belong to the same class,
remove ai from the set B until there are instances that fall
into two adjacent intervals but do not belong to the same
class. Then, we get a boundary set BS ¼ fb0; b1; � � � ; bng,
where n � m, bi < bj for i < j. Arbitrary boundary subset
S � BS corresponds to a discretization schemeD. If scheme
D0 is obtained by adding a boundary point from BS into the
boundary subset with respect to scheme D, then we say D0

is generated from D. We denote the scheme set generated
from D by GD, and the set composed of the schemes
satisfying our criterion is called the candidature set,
denoted by CD. The Globalopt is the current optimal
scheme value. Then, our discretization algorithm has the
following structure:

Algorithm 3.1 Heterogeneity-based discretization

Algorithm (Heter-Disc)

Initial boundary set BS ¼ fb0; b1; � � � ; bng;
Initial discretization scheme D ¼ f½b0; bn�g;
CD ¼ D;

Globalopt ¼ CF ðDÞ;
While CD 6¼ f g;
Generate GD from CD;

CD ¼ fDjD 2 GD;CF ðDÞ > Globaloptg
Globalopt ¼ Max

D2CD
CF ðDÞ;

End

If the class distribution of the whole data set is
homogeneous, then in the first step, all the 2-schemes
enter into CD. That is the worst case. After the optimal
2-scheme value is obtained from CD, it can be used as a
threshold to generate the new CD in the second step. The
cardinality of CD will decrease considerably because of
the high threshold. Then, the GD generated from the new
CD in the third step also has a small cardinality. That is
to say, whatever the initial class distribution of the data
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set is, the number of the schemes we search in our
algorithm decreases considerably. In the whole process, it
is assumed that the global best k-scheme can be generated
from ðk� 1Þ-schemes in the set of CD with higher CF
values. It is clear that the proposed algorithm is reason-
ably heuristic. Thus, our searching space can be reduced
remarkably compared to the whole scheme space.

4 EXPERIMENT RESULTS

In this section, we compare a number of discretization
methods as a preprocessing step to C4.5 [18]. The reason for
our choice is that C4.5 is a state-of-the-art decision-tree
learner algorithm, and decision-tree learners are the most
commonly used type of machine learning algorithm.

We examine the effect of discretization on C4.5 through
comparisons before and after discretization. The classifica-
tion quality is measured using predictive error rate and tree
size, i.e., the number of nodes. Since the evaluation function
in our algorithm is proposed based on the heterogeneity
compared to the entropy criterion, our method would be
compared with Ent-MDLC, which is a well-known repre-
sentative of entropy-based discretization methods. Its good
performance has often been shown in previous research [7],
[12], [15], [22]. It is recommended as the first choice when
other things are equal, such as user need, class information,

and other considerations [15]. Here, our method is denoted
by Heter-Disc. The data sets are taken from the University
of California at Irvine repository of machine learning data
sets [1]. Table 2 gives a summary of data sets used in our
experiments.

To compare the efficacy of these methods, the predictive
error rate and the tree size of C4.5 on the undiscretized data
sets is presented, denoted by “continuous” in Tables 3 and
4. To get more reliable results, the 10-fold cross-validation
test method was applied to all data sets. Each data set was
divided into 10 parts of which nine parts were used as the
training set and the remaining one part as the test set. The
experiments were repeated 10 times. The final predictive
error rate was taken as the average of the 10 predictive error
rate values.

All seven data sets were discretized using the original
discretization algorithms, and the discretized data sets were
classified using C4.5. The predictive error rate and its
standard deviation of those methods are presented in
Table 3. The tree size using C4.5 with different discretization
methods is presented in Table 4. Averages in the bottom rows
of Tables 3 and 4 give an indication of how the discretization
methods affect predictive error rate and tree size.

From Table 3, it can be seen that, in terms of predictive
error rate, the results obtained by Heter-Disc are more
accurate than those of Ent-MDLC on average. In six out of
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seven data sets, our method obtained better results than Ent-
MDLC. For data set Wine, the result of Heter-Disc is slightly
less accurate than that of Ent-MDLC. However, the results of
our method are more reliable than those of Ent-MDLC
according to standard deviations. It can be seen that our
method and Ent-MDLC both reduce the tree size compared
to C4.5 except for data set Wine in Table 4. Our method only
outperformed Ent-MDLC in four out of seven data sets with
regard to tree size. But, in the average of the tree sizes, our
method is still a little better than Ent-MDLC.

5 CONCLUSIONS

In this paper, a new method, Heter-Disc, for discretization
of continuous values has been introduced. Our method has
been compared, in terms of predictive error rate and tree
size, with Ent-MDLC, the entropy-based method that is
known for its good performance [7], [12], [15], [22].

In order to evaluate the discretization scheme, an
evaluation function has been proposed in our method,
which is based on the measure of heterogeneity. The
heterogeneity measurement has the stronger ability of
discriminating between two intervals than the entropy
criterion, where the class probability vectors of an interval
are close to the boundary of the class probability vector
space (see Section 2.2). It should be noted that such points,
closing to the boundary of the class probability vector space,
occupy a very small percentage in the whole space. And, for
other points, our approach gets results similar to the
entropy criterion. However, overall, the results of our
method are more accurate than the results of Ent-MDLC.
Therefore, the proposed method in this paper offers a good
alternative to entropy-based discretization methods.

We are aware that there is much research yet to be done
regarding our method. To begin with, from Fig. 1, it can be
seen that the degree of heterogeneity increases along the
radial beginning with the barycenter. But, the increasing
speed of each radial is different. Therefore, we plan to
consider the effect of the increasing speed in a future study.
In addition, because of the high combinatorial complexity of

the discretization problem, we use a hill-climbing heuristic
method to search the optimal discretization scheme.
Though the final results are satisfactory, this kind of search
strategy cannot guarantee the global optimal solution.
Sometimes they fall into a local optimal discretization
scheme. Therefore, we will consider a random search
strategy in the future to avoid such a problem. Moreover,
our method deals with only one continuous attribute at a
time, so the globalization of our discretization method is
also of future interest. Furthermore, in the future, we will
apply the method in this paper to real-world, real-time,
financial data analysis. We believe that such application
will be the best test bed for our method.
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