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ABSTRACT Activity recognition which aims to accurately distinguish human actions in complex environ-

ments plays a key role in human-robot/computer interaction. However, long-lasting and similar actions will

cause poor feature sequence extraction and thus lead to a reduction of the recognition accuracy. We propose

a novel discriminative deep model (D3D-LSTM) based on 3D-CNN and LSTM for both single-target and

interaction action recognition to improve the spatiotemporal processing performance. Our models have

several notable properties: 1) A real-time feature fusion method is used to obtain a more representative

feature sequence through composition of local mixtures for enhancing the performance of discriminating

similar actions; 2) We introduce an improved attention mechanism that focuses on each frame individually

by assigning different weights in real-time; 3) An alternating optimization strategy is proposed for our model

to obtain parameters with the best performance. Because the proposed D3D-LSTMmodel is efficient enough

to be used as a detector that recognizes various activities, a Real-set database is collected to evaluate action

recognition in complex real-world scenarios. For long-term relations, we update the present memory state

via the weight-controlled attention module that enables the memory cell to store better long-term features.

The densely connected bimodal modal makes local perceptrons of 3D-Conv motion-aware and stores better

short-term features. The proposed D3D-LSTMmodel has been evaluated through a series of experiments on

the Real-set and open-source datasets, i.e. SBU-Kinect and MSR-action-3D. Experimental results show that

the proposed D3D-LSTM model achieves new state-of-the-art results, including pushing the average rate of

the SBU-Kinect to 92.40% and the average rate of the MSR-action-3D to 95.40%.

INDEX TERMS Human action recognition, RGB-D, attention mode, real-time feature fusion, dataset.

I. INTRODUCTION

Human action recognition has gained more interest in the

research community and has become a fundamental task in

many applications, such as monitoring security [1], gaming

entertainment [2], complex object movements [3], [4], smart

indoor security systems [5], video streaming [6]–[8], and

healthcare [9]. Generally, RGB data, depth data, skeleton

data, and mixed data are used to represent human actions.

The associate editor coordinating the review of this manuscript and

approving it for publication was Mohammad Ayoub Khan .

The emergence of sensors/cameras achieves efficient

action tracking by providing target trajectory and skele-

ton joints points. Puwein et al. proposed wide baselines-

based cameras which can accurately record human pose and

estimate human action [10]. Slimani et al. proposed an auto-

mated recognitionmodel for human interaction activities esti-

mation [11]. Zhao et al. proposed the SDG model for human

action estimation without sufficient labeled and collected a

novel skeleton-based dataset [12]. Many effective real-time

human tracking systems based on body parts features were

proposed by Jalal et al. [13], [14], and they also proposed
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a human feature representation and extraction method for

depth and skeleton data [15].

Since the CNN has achieved great success in image pro-

cessing, many CNN-based effective networks have been

proposed, such as VGG [16], GoogleNet [17], BN-In-

ception [18] and ResNet [19]. While there are also many deep

networks with great performance for action recognition, for

example, LSTM for long-term feature modeling [20]; dual-

stream neural networks that can process still images and video

frames, including spatial and temporal streams [21]; optical

flow networks and these improved methods [22]–[24]. The

above studies are all for RGB data. Since the Kinect sensor

can easily acquire depth data, efforts on the RGB-D dataset

have been widely developed.

In recent years, some promisingmethods for RGB-D-based

human action recognition have emerged. Wu et al.

designed a deep dynamic neural network (DDNN) to

implement gesture recognition for multimodal input data.

This network can extract spatiotemporal features from

depth images [25]. Wang et al. proposed a scene flow

dynamic model to extract features from RGB-D images

by using the ConvNets network [26]. Kim et al. pro-

posed a circulatory neural network (PRNN) based on priv-

ileged information for deep sequences recognition [27].

Wang et al. adapted the DMM to a pseudo-RGB image

which converted its spatiotemporal data into texture infor-

mation, and the model trained by merging three indepen-

dent ConvNets. They also extracted features in depth image

sequences by constructing three different dynamic depth

images, namely dynamic depth images, dynamic depth con-

ventional images, and dynamic depth motion conventional

images [28], [29]. Rahmani et al. proposed a model with

infinite sequence learning view-invariant. Each depth image

was input into a specific CNN to learn advanced features,

and then the action data was transmitted to the model

for training [30]. However, these studies have three main

limitations: 1) Complex actions recognition is a challenge,

such as the combination of several simple actions and long-

lasting actions; 2) Poor performance in distinguishing similar

actions, such as gestures and timing similar actions; 3) Exist-

ing public datasets are not complex enough to represent actual

situations.

In this paper, we propose a discriminative deep model

(D3D-LSTM) for RGB-D based human gesture recogni-

tion to overcome problems that previously mentioned. Our

model is almost immune to illumination and occlusion which

achieves significant performance in different complex envi-

ronments. In particular, the D3D-LSTM model achieves a

high recognition rate for a variety of RGB-D datasets. The

main contributions are summarized as follows.

1) A real-time feature fusion method is proposed by com-

bining RGB and depth features more effectively with-

out losing important features. The method achieves

better performance in feature fusion which improves

recognition accuracy.

2) The proposed D3D-LSTM model can deal with the

long-term and spatial features of actions more effec-

tively, especially for complex and combined actions,

and similar actions recognition.

3) The attention mechanism is further improved by

assigning a corresponding weight to each element in

the feature vector to represent the importance of the

element. Eachweight is determined by the combination

of the upper layer and the current state. This approach

improves the recognition rate of long-term complex

actions.

4) A newRGB-D dataset for action recognition, termed as

Real-set, is designed and collected. It is more complex

than the current available datasets. Data in Real-set

contains changes in illumination intensity, angle, and

occlusion, which is more closer to the actual situation.

The remainder of this paper is organized as follows.

Section II briefly reviews related work about action recogni-

tion methods. Section III introduces the collection process of

the RGB-D action dataset. Section IV describes the proposed

D3D-LSTM model in detail. Section V reports the experi-

mental sets and results analysis. Section VI concludes the

paper and gives the future work.

II. RELATED WORK

A. CONVENTIONAL ACTION RECOGNITION

An ideal recognition model relies on effective learning of

action features. In recent years, many different techniques are

applied to extract and represent both short-term and long-term

spatiotemporal features [31]. For human interaction recog-

nition, the Harris corner points and the histogram [32], and

a compact and discriminative video encoding method [33]

were proposed to extract features. For objects tracking, chain

codingmechanism and centroids point extractionwere extend

to label body parts [9], [34]. Besides, Kamal et al. intro-

duced the hidden Markov model (M-HMM) to fuse spatial

depth shape features and temporal joints features for feature

representation [35].

CNNs and RNNs have been extensively applied in feature

learning. In [16], [17] and [19], the application of CNN to

process images achieved great success. Ji et al. extended

CNN and proposed 3D-CNN [36] that enables CNN to deal

with time information. D.Tran et al. [37] proposed the opti-

mal convolution kernel size of 3D-CNN, applied to the C3D

network of the large-scale datasets, improved the residual net-

work of 3D-CNN, and proposed a Res3D network superior to

C3D . Chen et al. proposed a lightweight multi-fibre network

that optimized network performance [38]. Yang et al. pro-

posed an asymmetric 3D-CNNnetwork that combined optical

flow frames and RGB features to improve network perfor-

mance [39]. While Hussein et al. improved the 3D-CNN to

extract temporal features of action more efficiently [40].

Owing to the poor performance of the CNN extrac-

tion temporal features, researchers introduced the LSTM to

improve the performance of processing complex actions.
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Wang et al. proposed a dynamic model for target tracking,

which combined the attention mechanism with CNN and

LSTM to improve the recognition rate [41]. Ullah et al.

proposed a two-way LSTM combined with CNN to recognize

long-term actions, mainly used sequence stacking in forward

and backward propagation, which deepened the ability to

understand action intentions [42].

B. SKELETON BASED ACTION RECOGNITION

The skeleton-based method mainly acquires 3D dynamic

features, including line features, surface features, and body

features. Yang et al. determined the classes of actions by cal-

culating the position of 3D joint points, which can effectively

recognize static and dynamic actions, used the PCA algo-

rithm for dimensionality reduction, and applied the NBNN

algorithm for classification [43]. In the description of static

action features, the time domain pyramid covariance descrip-

tor, the sparse coding and the pyramid histogram method

were all effective [44]–[46].Surface-features-based method

was mostly inspired by Tang et al. They used 3D normal

vectors to construct 2D histograms to describe the shape of

the target [47]. Recently, Yang et al. proposed an adaptive

space-time pyramid to divide the depth image and then used

the aggregate hypersurface to describe the actions [48].

C. DENSE CONNECTION

DenseNets has been proposed by Corn Huang et al. in 2017,

which was inspired by the ideas of highway networks and

ResNet [19], [49], [50]. The shortcut connection method is

a cross-layer connection rather than a sequential connection

which is used in all three networks. The purpose is to solve the

problem of existing gradient divergence. The shortcuts used

in DenseNets are the most efficient. Usually, every 2 or 3

layers would be directly connected using the shortcut. This

method can transfer information from the shallow part of

the network to the deep part. In particular, partially dense

connections can avoid some problems, such as oversized

models, excessive parameters, and poor training efficiency,

it is shown as Fig.1.

FIGURE 1. Shortcut connection method.The two blue areas use dense
connections independently to share data. Generally, the two areas are
connected by pooling layers and convolution layers.

In this paper, we extend the traditional DenseNets for

static image recognition to 3D-CNN, which can extract the

spatiotemporal features of actions. The operation is to extend

the convolution kernel from d × d to k × d × d . Using

the DenseNets connection method, the output characteristics

of each layer can be reused, which significantly reduces

the amount of calculation. Although the densely connected

3D-CNN is more complex than the C3D, it can improve the

recognition accuracy, and it is much simpler than the method

base on ResNet.

D. ATTENTION MODE

Attention Mode provides an effective idea for natural lan-

guage, image recognition, and big data mining, which is a

more popular idea recently [51], [52]. Attention Mode draws

on the human visual system, it can quickly scan, lock tar-

gets and focus on global images [53]. In action recognition

study, the idea of attention mode is to aggregate multiple

feature vectors to obtain aggregated features (h). For the

first time, Sharma et al. introduced attention mechanism

into human action recognition, where they focused on the

body, clothes and backpacks [54]. Bahdanau et al. proposed

attention mechanism in the time dimension, and used a

weighted summation method [51]. Li et al. proposed an end-

to-end sequence method for action recognition in video [23].

However, these methods cannot be extended to other studies,

and how to comply with the novel model is not addressed.

In the previous studies, the weighted average method was

used to obtain the feature weight αi. Although this method

focused on global features, it did not allow the model to

know the key element in the feature, and the performance

was rarely improved. Therefore, we assign each element a

corresponding weight to represent the importance of that

element in the feature, which is shown as

xi =

k×k
∑

i=1

exp(Wiht−1)
∑k×k

j=1 exp(Wjht−1)
Xt,i. (1)

III. REAL-SET

In this section, we describe our RGB-D human action dataset

which is named Real-set. This dataset is collected to train

the proposed model in a real environment. By analyzing the

public datasets, we find that although these datasets are large

in scale, they ignore the interference that exists in the real

world, and the data preprocessing is not sufficient. In this

paper, we design and collect a dataset, that is, Real-set, to deal

with these problems.

A. DATASET COLLECTION

We collect the RGB-D dataset by applying Kinect 2 which

is an RGB-D sensor from Microsoft, and Figure 2 shows

the dataset collection process. This sensor can simultane-

ously capture the RGB data and depth data. Depth data

can detect the target from the complex background and be

not affected by lighting conditions. The acquisition speed is

30 fps/S, the resolution of the image is 640 × 480, and the

sensor’s acquisition range is 0.8 m to 3.5 m. All the actions

were finished by five volunteers (3 males and 2 females),

each action performed at different light intensities, differ-

ent angles, different backgrounds, and partial occlusions.

The dataset combined single-person actions and interac-

tion actions, including horizontal-waving, high-swinging,

beating, punching, approaching, kicking, hugs, and shaking

hands. Each actionwas collectedwith 4000 samples, of which
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FIGURE 2. Real-set collection. In the Kinect 2.0 sensor, a colour camera,
a depth camera (based on the infrared acquisition method), and a
microphone are built-in. In theory, the two cameras are acquired
simultaneously, and the pixels in the colour image and the depth image
correspond one-to-one.

FIGURE 3. Real-set.The first line is RGB data, and the second line is depth
data for the corresponding behavior. Each action is performed by
different participants under changing conditions, with the goal of
simulating a real scene.

3000 were used as training samples and 1000 were used for

testing. Therefore, the Real-set has a total of 64,000 video

clips, namely, 4000(samples) × 8(classes) × 2(modes) =

64000, and each sample contains both RGB and depth modes.

Figure 3 shows some samples in the Real-set.

Compared to the existing datasets, the Real-set has three

advantages: 1) More interaction samples: the Real-set has

4000 samples, which ismany times than that of other datasets,

such as MSR-action-3D dataset (567 samples), SBU-Kinect

dataset (300 samples), NTU RGB-D dataset (880 samples);

2) More complex: actors have different body shapes and skin

tones, and the light, angle, and scale in the data collection

scene are constantly changing and occluded; 3) More effec-

tive data: the Real-set has raw data and pre-processed data,

which provides convenience for using data in pixel level to

get better results and researching data processing methods.

The Real-set will be a benchmark dataset for human action

recognition based on multi-modal data. The Real-set and

trained models will be made available to the public when we

finish the skeleton data collection.

B. DATA PREPROCESSING

Most of the public datasets are raw data without prepro-

cessing, which will lead to three problems: both modes of

acquisitions are not synchronized; the depth data is partially

missing; and the colour data is noisy. Therefore, we have

taken three methods to solve the above problems, the data

processing flow is shown in Fig. 4.

The sensor is calibrated before acquisition such that the

three-dimensional coordinates of RGB data and depth data

are in one-to-one correspondence. For Hd = [Xd ,Yd ,Zd ]
T

FIGURE 4. Data processing overall flow. After the Kinect is calibrated,
RGB-D data is collected. Next, RGB data and Depth data are processed
separately: 1) RGB data: after the data is denoised, increasing the fullness
of RGB data by applying histogram equalization; 2) Depth data: after the
data is denoised, filling depth data holes by applying joint bilateral
filtering. Finally, clean-RGB-D data is obtained for model training.

is the coordinates of the depth image, HR = [XR,YR,ZR]
T is

that of RGB image, the relationship between them is HR =

PHd + t , P is the rotation transformation matrix, and t is

the translation vector. By performing a homogeneous trans-

formation on both, Equations (2) and (3) can be obtained.

After experimental measurements, the parameters in the two

equations are obtained, including α = 528.32, β = 527.03,

i0 = 320.10, j0 = 257.57, t = [25, 2, −2]T , and p =

[0.05, −0.01, 0.02]T .
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When the target depth data is recorded by the infrared

camera of the Kinect, the problem of partial area deletion in

the depth data is caused by object reflection and diffraction.

In this paper, joint bilateral filtering is used to denoise and fill

the image to preservemore edge data. Themethod is as shown

in (4), where C(x, y) represents depth data, P(x, y) is a pixel

point,W(x, y) is a weight, andGσ is a Gaussian function. The

change of the histogram of the depth data after preprocessing

is shown in Fig. 5.

B(C(x, y)) =
1

Wx,y

∑

(x ′,y′)∈RD(x
′,y′)

Gσx (‖ Px,y − Px ′,y′ ‖)

×Gσy (‖ Dx,y − Dx ′,y′ ‖) (4)
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FIGURE 5. Depth data preprocessing. Use additional colour data to fill
holes in-depth images. (A) The depth image is empty, some data are
missing, and the curve is close to the X-axis. (B) After filled, the data are
rich, and the curve is increased.

FIGURE 6. RGB data processing. It enhances the contrast between
individual pixels in an image. (a) The contrast is weak and the colour is
poor in each pixel. (b) The contrast is enhanced, and the colour is rich in
each pixel.

The RGB data is processed in a balanced manner. The

histogram data of the R/G/B three colour channels are respec-

tively counted, and then the equalization operation is per-

formed. The original channel data is replaced by the mapping

of the three channels. The method is as shown in (5) and the

effect of preprocessing is shown in Fig. 6.

R(x)→̂Ṙ(x),G(x)→̂Ġ(x),B(x)→̂Ḃ(x) (5)

IV. PROPOSED APPROACH

The traditional 3D-CNN can only perform local short-time

feature extraction. The traditional LSTM network does not

performwell for global long-term feature extraction. To solve

these problems, we propose the D3D-LSTM model based on

3D-CNN and LSTM, which introduces the improved atten-

tion mechanism and feature fusion method. In this section,

we introduce the proposed D3D-LSTM model in detail.

A. NOVEL MODEL STRUCTURE

To better extract the temporal and spatial features of human

action, we design the D3D-LSTM model based on 3D-CNN

and LSTM, the pipeline of our proposed method is shown as

Fig.7. The model consists of three steps, that is, spatiotempo-

ral feature extraction based on 3D-CNN, key temporal feature

extraction based on LSTM, and classification.

The huge scale of 3D-CNN often leads to problems such as

inefficient training of models and incorrect use of parameters.

Therefore, we introduce the idea of dense connection, which

allows parameters to be shared in 3D-CNN and improves

operation efficiency. A real-time fusion method is adopted to

synchronously extract RGB and depth features in 3D-CNN.

Immediately after each extraction, it is merged into elements

FIGURE 7. The overview of the proposed D3D-LSTM framework. The red
area represents spatial features and local short-time feature extraction.
The dual-modal features are merged into a one-dimensional feature
vector in real-time. The green area represents that each element in the
one-dimensional vector is assigned a corresponding weight by attention
mechanism to distinguish the importance of each element so that the
LSTM can finish focused learning. The blue area represents the final
classification and outputs a probability vector.

in the feature vector. Experiments show that this feature

extraction method of real-time fusion can obtain more rep-

resentative feature vectors. Besides, an attention mechanism

is introduced in the LSTM. Each element in the fused feature

vector is assigned a corresponding weight and then input into

the LSTM for training. Finally, the action classification is

finished using the classic softmax classifier.

B. DENSELY CONNECTED 3D-CNN

In 2016, Anguelov et al. proposed using a convolutional

neural network of the same structure to train multiple modal

data separately, and feature fusion at appropriate locations

to obtain more distinguishing features and enhanced feature

robustness [55]. Based on this idea, we design a dual-mode

3D-CNN to train RGB and depth data respectively, and the

structure of 3D-CNN in both modes is the same. Taking the

process of extracting RGB features as an example, themethod

is described in detail.

The network consists of five 3D convolution (3D-Conv)

layers, two Max-pooling layers, five BN layers, and three

dense connection operations. This structure is shown in Fig.8.

We introduce the dense connection to the double-module 3D

CNN model for feature extraction and fusion. For feature

extraction (RGB/Depth), it can speed up model training and

feature transfer, and avoid vanishing gradients. For feature

fusion, it can provide efficiency features for the fusion pro-

cess because the previous outputs can affect the following

layers. To speed up the convergence of the network and

prevent gradient explosion, we add a large number of BN

layers, which improves the training efficiency of D3D-LSTM

networks.

The pipeline of the network is as follows: 1) Using

64 3D-Conv kernels to extract the features of the input data,

and obtain 64 feature maps, and the size of each feature

map does not change, that is, 64@32×112×112; 2) Adopting

a 1×2×2 size kernel to reduce the size of the feature and
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FIGURE 8. Densely connected 3D-CNN network. Each coloured cuboid represents the processed data, and the change in the
size of the cuboid represents the change in the size of the data. The yellow, green, and blue connection lines represent three
dense connections, respectively. The 3D-Conv kernel size and pooling layer size are obtained through comparative
experiments.

the number of parameters, the time dimension is unchanged,

and the output feature map size is 64@32×56×56; 3) The

input feature maps are processed by using 32 3D-Conv ker-

nels; 4) Splicing the feature maps in step 2 and 3 to obtain

features of 96 channels, their size is unchanged, this opera-

tion increases the feature diversity, and reduces the number

of the parameters; 5) The third 3D-Conv operation, using

32 convolution kernels, obtains the feature maps with the

size of 32@32×56×56; 6) Splicing the step 2/3/5 into fea-

ture maps with the size of 128@32×56×56; 7) The fourth

3D-Conv operation for extracting 32 key feature maps from

128 sets; 8) The last layer splicing operation, including the

features in step 2/3/5/7; 9) The last 3D-Conv operation for

extracting 32 feature maps; 10) Selecting a pooled check fea-

ture size of 2×2×2 to reduce the dimension, and outputting

the feature maps with the size of 32@16×28×28.

C. FEATURE EXTRACTION FOR REAL-TIME FUSION

Real-time fusion is more effective than the methods of early-

fusion and post-fusion, and the robustness and discrimination

of the fused features can be enhanced. This is because the

commonality of the RGB and depth features is extracted.

The real-time fusion feature extraction framework is shown

in Fig.9. All the large cubes (color/gray) indicate data transi-

tion paths with 3D-Convs or max-pooling in the densely con-

nected 3D CNN, and small cubes (color/gray) indicate data

fusion operation. After the transition, the output feature maps

f iRGB and f iD are fused into a new feature fi in real-time, while

f iRGB and f iD are also input to the next layer, and so on. Then,

the new features obtained by each fusion are concatenated

into a more representative feature vector (f1, f2, . . . . . . , fn).

Next, the vector is processed by attention-based LSTM to

extract global-temporal features, as shown in Figure 6 (green

area). Where f iRGB represents the RGB feature extracted for

the i times in the model, and f iD is the same. Based on

the differences and commonalities between RGB and depth

FIGURE 9. Real-time fusion feature extraction network.The gray area
represents the dual-modal feature extraction, and the structure is the
same. Each cube (color and gray) represents the feature extracted in each
frame. Every two corresponding cubes are fused into one element in the
feature vector.

features, the following equations are obtained: RGB feature

is disassembled into fR = f1R+ fCM , depth feature is split into

fD = f1D+ fCM , and f1R and f1D, that are differences. The sex-

ual part, fCM is the part with the sameness. Therefore, the real-

time feature fusion can be expressed as f = f1R + f1D + fCM .

To complete the recognition task, it is also necessary to obtain

the real label Lture of the action, which can be obtained by

the regression coefficient matrix. The weights corresponding

for f1R, f1D, and fCM are W 1R, W 1D, and WCM , the Lture is

shown as
〈

W (CM )T ‖ W (1R)T ‖ W (1D)T
〉T

×〈fCM ‖ f1R ‖ f2D〉T =Lture.

(6)

D. ATTENTION MECHANISM BASED LSTM

The attention mechanism allowed the model to focus on the

integrity of the input and improve the performance of the

model [56]. Based on this idea, we configure the correspond-

ing weights for each input frame. This method is to configure
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a larger weight for the frame containing a large amount of

action information, so that these frames get the attention of

the model, thereby improving the recognition rate.

FIGURE 10. Attention mode based flowchart. First, the spatial and local
short-term features of the behaviour are extracted for real-time fusion.
Then, the attention mode is used to process the fused feature vectors,
so that the LSTM has a focused learning process, and the process is
iterated in real-time. Finally, model optimization and output classification
results.

The pipeline of the LSTM based on the attention mecha-

nism is shown in Fig.10. First, the fusion feature fi is extracted

by 3D-CNN, which is formed by the real-time fusion of RGB

and depth features. The fused features are then processedwith

an improved attention mechanism, assigning corresponding

weights to each frame, as shown in (7).Where αti is the weight

of the ith element in the fused feature, and the weighted

sum of all elements is 1. Therefore, αti can represent the

importance of each element. The larger the value, the more

critical it is. Finally, how to choose αti is the key to the model.

xt (f ) =

N
∑

i=1

αti fi (7)

In the LSTM, the key is that the last input can affect the next

output, and the loop operation can focus on global long-term

information. Based on this idea, the choice ofαti is also related

to the output of the last neuron. The activation function tanh

is selected, and the parameters are normalized to obtain the

expression of αti , as shown in (8). Where ht−1 is the output

of the last neuron, and fi is the dual-stream fusion feature.

ha, wa, and ua are the weight matrices obtained during model

training, where wa ∈ R
n×n, ua ∈ R

n×2n, ha ∈ R
n×n.

αti =
exp{tanh(ha,wa, ua) + fiht−1}

∑N
i=1 exp{tanh(ha,wa, ua) + fiht−1}

(8)

These weights are introduced into the input vector so that

the network can focus on each element in the input sequence

by its usefulness.αti is also a kind of dynamicweight, which is

determined by the output ht−1 of the previousmoment and the

input fi of the current state, which can more closely represent

the importance of each element. In summary, the LSTMstruc-

ture based on the improved attention mechanism is obtained,

as shown in Fig.11. After the global long-time feature is

extracted, the vector is input into the softmax classifier for

classification, and a probability vector is obtained. Based

on the above improvements, the proposed model is more

effective for long-term feature processing and improves the

recognition rate.

FIGURE 11. Attention mechanism based LSTM network.The blue area
represents the weights that have been iteratively updated by the
attention model and applied to the input vector. W i is the weight
generated after each iteration and is used for the final classification.

E. MODEL OPTIMIZATION

The proposed D3D-LSTM model is decomposed into two

parts. The 3D-CNN is first optimized and then optimized for

the LSTM.Where the former is responsible for extracting and

real-time merging RGB and depth features, the latter mainly

extracting global long-time features. Comparing with other

optimization models, such as SGD [57] and ADAM [14],

ourmodel applies the alternating optimization strategy, which

uses different methods to update the parameters, including

the multi-modal feature adaptive weight learning method and

SGD method. The dimension of both features is different in

each fusion hierarchy, which would lead to the failure of the

multi-feature fusion.We utilized themappingmodulemethod

to optimize depth and RGB features. First, the original feature

inputs are mapped into the same feature space. Then, each

new feature fi = [f iRGB; f
i
D] is obtained by applying our fea-

ture fusion strategy. Finally, all the fi are listed in temporal

order to be the multi-feature fusion sequence.

Themethod of optimizing the objective function is adopted

to optimize this model. Let the objective function be minS =

SR + SD + SF . Where SR is the cost function of RGB

mode, SD is the cost function of depth mode, and SF is
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the cost function after fusion. When the cost function is

minimized, the 3D-CNNmodel can output the optimal result.

(SR, SD, SF ) are expressed as (9), (10), and (11), respectively.

Where both µ1 and µ2 are the weights in the modal and

satisfies µ1 + µ2 = 1,W is the transformation matrix of

the independent correlation features, f is the characteristic

of each modal extraction, α is the weight coefficient of the

penalty function, g(·) is the penalty function, λ represents the

relationship between feature constraints and supervision in

the fusion feature, and Lture is true label. During the model

optimization, the update of the parameters take place until the

model converges, the loop iteration steps are summarized as

follows. First, initializing with random values for one part of

parameters, including W , W1, W2, f , while µ1 and µ2 are

initialized as 0.5. Next, the weights µ1 and µ2 are updated

in each module (other weights are fixed) by constructing

the Lagrangian objective function. In the following iteration

process, µ1 and µ2 are different because both play different

roles in each feature extraction module. Then, the values

Wi and f are updated (other weights are fixed) through the

gradient descent method.

SR = µ1(‖W1X1 − fR‖
2

F +

∥

∥

∥
W1

T fR − X1

∥

∥

∥

2

F
+ α1g(fR)) (9)

SD = µ2(‖W2X2 − fD‖
2

F+

∥

∥

∥
W2

T fD−X2

∥

∥

∥

2

F
+ α1g(fD)) (10)

SF = λ(

∥

∥

∥
W T f − Lture

∥

∥

∥

2

F
+ α2g(‖W‖2,1)) (11)

Each norm can optimize the objective function. Both (9)

and (10) contain two norms. The first norm represents

the similarity of the feature and the transformation matrix

of the added modal extraction, and the second norm rep-

resents the ability of the improved feature to reconstruct

the original feature in the reverse direction. Equation (11)

takes advantage of the ability to monitor the characteristics

of information fusion. Besides, although SR and SD seem to

be optimized independently of each other in the objective

function, fR and fD in the two equations contain the same

features fCM .

V. EXPERIMENTS AND ANALYSIS

In this section, we conduct numerous experiments and evalu-

ate the proposedD3D-LSTMmodel on two tasks, that is, sim-

ilar activity differentiation and complex action recognition.

First, two sets of experiments were performed using the Real-

set, that is, many conventional algorithms and state-of-the-

art methods are tested. Next, used the public datasets to test

the proposed model, and compared the experimental results

with other advanced results, and comprehensively analyzed

the performance of the model. These experiments verify the

effectiveness and advancement of our model.

A. EXPERIMENTAL SETTINGS

We use the Real-set, SBU-Kinect and MSR-action-3D data

sets, each of which is split into two parts, 70% for train-

ing model and 30% for testing model.For fair comparisons,

we operate the Cross Subject Test , which can verify results

accuracy and generalization. We follow the formulation

technique of [58], which includes three concise settings for

training and two effective settings for testing. The selected

samples for Cross Subject Test are applied to the same sam-

pling strategy as [59].

In this model, the two modes that process RGB and depth

data use the same structure of the network, sharing the

same initialization weights. When training with the Real-

set, the initial learning rate is set to 0.001, the learning rate

attenuation factor is 0.1/5000 times, the network training step

number is 30,000 steps, and the batch value is 16. Since the

framework used is the Tensorflow 1.1.4 GPU, the NVIDIA

GTX1080 graphics card ismainly used for training. The train-

ing epoch is 20, and other parameter settings are empirically

obtained q = 1.5, λ = 1500, α1 = 2, α2 = 10, γ = 0.001.

B. HUMAN ACTION RECOGNITION: REAL-SET

This set of experiments intends to prove the correctness of the

proposed model. In particular, the new model combines the

traditional networks of 3D-CNN and LSTM and introduces

advanced ideas such as attention mechanism and real-time

feature fusion. This combined idea has rarely been studied

before.

TABLE 1. Verification results on the real-set.

In this paper, the D3D-LSTM model is proposed based

on some traditional algorithms, using Real-set to test these

algorithms. We conducted the following six sets of experi-

ments: 1) Testing the proposed model using the RGB data

in the Real-set, namely, RGB-net; 2) Testing the proposed

model using the depth data in the Real-set, namely, Depth-

net; 3) Testing 3D CNN without real-time feature fusion part

using the Real-set, namely, 3D CNN-net. 4) Testing 3D CNN

using the Real-set, namely, New 3D CNN-net; 5) Testing the

proposed D3D-LSTM model without the attention mecha-

nism using the Real-set, namely, LSTM-net; 6) Testing the

proposed D3D-LSTM model using the Real-set. The results

of the six groups are shown in Table 1.

When only a single-modal dataset is input, the recognition

rate based on the depth dataset is higher than that of the RGB

dataset, which proves that the depth data can improve the

performance of the action recognition. Comparing the results

of the groups 4 and 5, it can be concluded that the method

of real-time feature fusion is effective, and its performance

is superior to the early-fusion or post-fusion scheme in the

traditional method. By analyzing the experimental results of

the group 5, it is concluded that adding the LSTM to deal with
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TABLE 2. Experimental results on the real-set.

the global long-time features can improve the performance of

the model, which also proves that the idea of combining the

LSTM is correct. By comparing the experimental results of

groups 5 and 6, it is also possible to derive the introduction

of the attention mechanism, which can improve the ability of

the LSTM to deal with global long-time features. The exper-

imental results of group 6 are better than the other 5 groups,

which indicates that the D3D-LSTM model is effective and

better than other traditional methods.

FIGURE 12. Confusion matrix of the proposed model on the Real-set.

Additionally, the confusion matrix of the proposed

D3D-LSTM model on the Real-set is shown in Fig.12.

By analyzing, it can be concluded that although the model

occasionally misjudges the recognition of interactive actions,

the overall performance is superior. Because, in the process of

double target approach, especially when the target overlaps,

there would be limb contact and large area occlusion, so the

model can occasionally misclassify. The recognition rate for

a single target action is close to 100%, that for interaction

actions with a long duration is above 95%.

In summary, the proposed D3D-LSTMmodel is robust and

feasible. However, the difference between the model and sev-

eral classic algorithms is unknown. Therefore, using the Real-

set to test several classical target recognition approaches,

the experimental results are shown in Table 2. The results

prove the effectiveness and superiority of the proposed

D3D-LSTM method.

C. HUMAN ACTION RECOGNITION: SBU-KINECT

These sets of experiments intend to analyze the perfor-

mance of the proposed D3D-LSTM model on recognizing

interactions. The interaction is more complicated and is a key

TABLE 3. Experimental results on the SBU-Kinect dataset.

role in human action recognition. Each action in the dataset

is long-lasting and is finished by many participants, which is

challenging for the model.

The SBU-Kinect is the first publicly available RGB-D

interactive action dataset, including approach, leave, kick,

punch, push, hug, shake hand, and exchange item. The results

of the proposed D3D-LSTM model and other state-of-the-

art methods on this dataset are shown in Table 3. By com-

parison, the recognition rate of the model is higher than

other methods. Specifically, in [58] and [63], both introduced

attention mechanisms into LSTM, but the recognition rate

of our model is higher due to the improved attention model.

These results show that our model can extract more effective

spatiotemporal features. Besides, by comparing [64] and [65],

it can be obtained that our model is superior to the skeleton-

based methods in terms of recognition rate. It should be

noted that the methods based on different data types have

their advantages. As shown in Fig.13, the confusion matrix

on the SBU-Kinect is given. It can be intuitively concluded

that in addition to the extremely similar behaviours, including

shoving, hugs, and hits (the body shape and action sequence

are almost the same), the recognition rate of other interactions

is about 95%.

FIGURE 13. Confusion matrix of the new fusion model on the SBU-Kinect.

The improved attention mechanism introduced in the pro-

posed D3D-LSTMmodel enhances its ability to extract long-

term features. The unique advantage of the 3D-CNN network
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FIGURE 14. Confusion matrices of the proposed D3D-LSTM model on the MSR-action-3D dataset. AS1 and AS2: Similar
actions, that is, the timing and amplitude of the actions are similar, used to test the model’s ability to distinguish similar
actions. AS3: Complex actions, including actions combined with simple actions and long-lasting actions, are used to test the
model’s ability to recognize complex actions.

is that it can extract local short-term features. The proposed

D3D-LSTM model combines long-short-time features when

processing data. This dramatically enhances the recognition

rate for long-lasting behaviours, such as complex actions and

interactions.

D. HUMAN ACTION RECOGNITION: MSR-ACTION-3D

These sets of experiments intend to analyze the performance

of the model on distinguishing similar actions and recogniz-

ing more complex actions. Both are the most common types

of actions in daily life and are key indicators for evaluating

whether a model has applicability.

The MSR-action-3D is a large dataset containing 20 indi-

vidual actions. Following the complexity and similarity, these

actions are divided into three groups, each group contains

8 actions, where high-injection, croquet and throwing, tennis

serve, and front kick are simultaneously present in different

groups. As shown in Table 4, the first group (AS1) and

the second group (AS2) include some similar actions, and

the third group (AS3) includes some more complex actions.

The biggest advantage of using the dataset is that it can

comprehensively evaluate the performance of the model, that

is, the accuracy of distinguishing similar actions and the

recognition rate of complex actions.

TABLE 4. MSR-action-3D dataset.

The experimental results of the proposed D3D-LSTM

model and other state-of-the-art methods are shown

in Table 5. By comparison, it can be concluded that the

recognition rate of complex actions in the model is better

than other methods, and the recognition rate of most similar

TABLE 5. Experimental results on the MSR-action-3D dataset.

actions is also higher than other methods. This is because,

in the new model, the real-time feature fusion method can

extract more effective space features without losing important

information, thus improving the ability to distinguish similar

actions. The combination of 3D-CNN and LSTM, and the

introduction of an improved attention mechanism, which

allows the model to better process temporal information,

thereby improving the recognition performance of complex

actions.

Figure 14 shows the confusion matrices for the results

of the proposed model. As shown, the recognition rate

of most of the actions is as high as 90%, especially the recog-

nition rate of complex actions in the AS3 is close to 100%.

In other state-of-the-art methods, most models cannot have

a high recognition rate for ‘‘ Pickup throw ’’ in the AS3.

This is mainly because that ‘‘ Pickup throw ’’ is a continuous

long-term combination action, that is, the ball is thrown after

the ball is picked up first. However, other methods have

insufficient ability to process the global long-time feature.

In the AS1 and AS2, in addition to these very similar

actions, the recognition rate of other actions is also close to

100%.The very similar actions recognition rate is also stable

at 90%which is better than other state-of-the-art methods. For

example, in previous studies, the recognition rate of ‘‘Pickup

throw’’ and ‘‘Bend’’ in the AS1 are not good. Especially,

it is noticed that the recognition rate of our model in the

AS2 is not the best, the main reasons are as followed. In [58],

the 3DMTG model was proposed for skeleton joints fea-

ture extraction based on a new histogram projection method

and a novel feature descriptor. The main contribution is to

improve the ability to distinguish similar actions by recording

3D moving trend feature in body joints. However, since the
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model did not fuse RGB and depth features, the recogni-

tion rate for complex, angle-changing or partially occluded

actions is not better than the D3D-LSTM model, and cannot

be widely applied in the real world. In [14], spatiotemporal

multi-fused features-based an online HAR method was pro-

posed for depth and skeleton data action recognition. The

method can track body parts such as arms and legs in case

of multiple actions, which aims to describe in detail the

differences between similar activities. While the method is

able to detect minor differences in action, themodeling ability

of complex spatial features is not better than our model due

to the lack of color information.

TABLE 6. Quantitative evaluation of HMM-based methods on the
MSR-action-3D dataset.

We compare our model with state-of-the-art HMM-based

models on the MSR-action-3D dataset and summarize the

results in Table 6. The hidden Markov model (HMM)

achieves better ability to model temporal feature and have

been extensively used in sequence recognition. We consider

the following state-of-the-art methods: Jalal et al. developed

the multi-fused features codingmethod for training the HMM

model [14], and trained clustered features based on transition

and emission probabilities values [6], and extended HMM by

using robust depth silhouettes context features [71];Wu et al.

combined SVM and HMM for continuous action feature

modeling [72].

In summary, the proposed D3D-LSTM model achieves

great advantages in recognizing complex actions, and the

performance of distinguishing very similar actions is better

than other methods.

VI. CONCLUSION AND FUTURE WORK

We propose the D3D-LSTM model for recognizing human

action based on RGB-D. The proposed D3D-LSTM model

is based on 3D-CNN and LSTM, which also introduces the

idea of dense connection, the improved attention mechanism,

and the real-time feature fusion method. The model has a

strong global long-term feature processing performance and

can extract better spatiotemporal features which increase the

recognition rate of complex actions as well as distinguish

similar actions. We collect a dataset called Real-set with

changing scenes, which currently is a more realistic RGB-D

action dataset.

A series of experiments are conducted to compare the

proposed D3D-LSTM model with other traditional methods,

to prove the correctness of the study ideas. Because the

model improves the extracting ability of global features. The

performance of the model in the Real-set, SBU-Kinect, and

MSR-action-3D data sets is superior to other state-of-the-art

methods. Especially, the recognition rate of complex actions

in MSR-action-3D is about 5% higher than other methods,

and the average accuracy rate is improved by 2% when dis-

tinguishing similar actions. When recognizing interactions in

SBU-Kinect, the recognition rate is increased by about 3%.

These databases are challenging because they contain similar

actions, complex actions, and multiple changes. However,

some limitations should be noted. First, the D3D-LSTM

model has not achieved the best recognition rate for intra-

class similarity actions, such as Tennis serve, Draw X , Hand

catch. Second, our model can extract the keyframes of each

sample, but it cannot automatically extract saliency infor-

mation in the keyframes that would be important for the

recognition rate.

In future work, we will improve the effectiveness of dis-

tinguishing similar actions by adding the skeleton data and

research a more discriminative temporal attention model.

Besides, we also focus on continuous action recogni-

tion to make the proposed method more practical in real

applications.
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