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Abstract

In video object classification, insufficient labeled data may
at times be easily augmented with pairwise constraints on
sample points, i.e, whether they are in the same class or
not. In this paper, we proposed a regularized discrimina-
tive learning approach which incorporates pairwise con-
straints into a conventional margin-based learning frame-
work. The proposed approach offers several advantages
over existing approaches dealing with pairwise constraints.
First, as opposed to learning distance metrics, the new ap-
proach derives its classification power by directly modeling
the class boundary. Second, most previous work handles la-
beled data by converting it to pairwise constraints and thus
leads to much more computation. The proposed approach
can handle pairwise constraints together with labeled data
simultaneously so that the computation is greatly reduced.
The performance of the proposed approach is evaluated
on a people classification task with two surveillance video
datasets.

1. Introduction
Learn with insufficient training data in classifying or rec-
ognizing objects/people has recently become an interesting
topic [1, 2]. One solution for this problem is to integrate
new knowledge sources that are complementary to the train-
ing data. In this paper, we are particularly interested in
how to incorporate additional pairwise constraints to im-
prove classification performance in video. More specifi-
cally, a pairwise constraint between two examples describes
whether they belong to the same class or not, which pro-
vides a relationship between the labels rather than labels
themselves. The inherent characteristics, that is, the sequen-
tial continuity and multi-modalities of video streams allow
us to pose different types of constraints to boost the learn-
ing performance. These constraints can at times be obtained
automatically or only with little human effort.

Figure 1 illustrates several examples of pairwise con-
straints in a scenario of classifying people’s identity from
surveillance video. First, constraints can be obtained from
knowledge of temporal relations. For instance, two spa-
tially overlapping regions extracted from temporally ad-
jacent frames can be assumed to share the same labels

Figure 1: Examples of different kinds of pairwise con-
straints. (a) Temporal constraints from a single tracking
sequence, (b) Temporal constraints of different regions ex-
tracted at the same time, (c) Constraints provided by com-
paring faces, (d) Constraints provided by user feedback

whereas two regions appeared simultaneously in a camera
cannot be labeled as the same. Second, we can extract con-
straints from various modalities such as visual(face) and au-
ditory(voice) cues. For example, conventionally, if we want
to automatically identify a person’s face from a video se-
quence, we need to train a model from many training sam-
ples of the same person with different head poses and un-
der different lighting conditions. With the representation of
pairwise constraints, we only need a face comparison al-
gorithm to provide the pairwise relation between examples
without building statistical models for every possible sub-
ject under every possible circumstance. This provides an
alternative framework to aggregate different modalities, es-
pecially when the training examples of people of interest
are limited or not available at all. Finally, constraints can
also come from human feedback. In contrast to relevance
feedback which asks users for label information, providing
pairwise constraints does not necessarily require users to
have prior knowledge or experience with the data set.

In previous research some efforts have been made to
help both supervised and unsupervised learning with pair-
wise constraints [3, 4, 5, 6]. In the context of graph parti-
tioning, S. Yu et al[3] has successfully integrated pairwise
constraints into a constrained grouping framework, leading
to improved segmentation results. In more closely related
work proposed by Xing et al [6], a distance metric learn-
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ing method is proposed to incorporate pairwise information
and solved by convex optimization. However, it contains an
iterative procedure with projection and eigen value decom-
position which is computationally expensive and sensitive
to parameter tuning. By comparison, relevance component
analysis (RCA) [4] is a simple and efficient approach for
learning a full Mahalanobis metric. In this work, a chun-
klet is defined as a subset of points that belong to the same
class but the identity of this class is unknown. An inverse
of the covariance matrix of all the center-points in the chun-
klets is computed as a Mahalannobis distance. However,
only positive constraints could be utilized in this algorithm.
In [4], Shental et al also propose a constrained Gaussian
mixture model which incorporate the positive and negative
pairwise constraints into GMM model using EM algorithm.
More recently, pairwise constraints have been found useful
in the context of kernel learning. Kwok et al[5] formulates
the kernel adaptation problem as a distance metric learn-
ing problem searching for a suitable linear transform in the
kernel-induced feature space, even if it is of infinite dimen-
sionality. Most of the above techniques focus on learning
(Mahalanobis) distance metrics or generative classifiers by
estimating the joint probability ���� ��. However, for the
task of classification, discriminative classifiers which learn
the posterior ������ directly have their own advantages be-
cause the decision boundary might be simple even when
true underlying distance metric is complex. Moreover, for
most of these algorithms the only way of dealing with la-
beled data is to convert the labels into the pairwise con-
straints between every data pair. This drawback makes the
implementation rather inefficient and thus does limit usage
in real applications.

In this work, we propose a new regularized discrimina-
tive learning approach which naturally incorporates pair-
wise constraints into a conventional margin-based learning
framework. The proposed approach allows the classifiers
using additional pairwise constraints with labeled data to
model the decision boundary directly, instead of resorting
to seek an underlying distance metric which could be much
more complex. Analogous to kernel logistic regression [7],
we also derive a kernelized representation of our proposed
pairwise learning framework using a logistic regression loss
function, which is called ”pairwise kernel logistic regres-
sion” in this work. This algorithm is evaluated in the con-
text of classifying people’s identities from the surveillance
video.

2. Discriminative Learning with Pair-
wise Constraints

Formally, the goal of classification is to produce a hypoth-
esis � � � � � , where � denotes the domain of possi-
ble examples, � denotes a finite set of classes. The learn-
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Figure 2: Comparison of loss functions (a) Comparison of
four different loss functions against margin �����. The
losses are misclassification ����	��� �� ��, exponential

�������, support vector �� � ����, logistic regression
����� � 
����������. (b) The pairwise loss function in
Eq(6) against ����� and ������

ing algorithm typically takes a set of training examples
���� ���� � ���� ��� as input, where �� � � is the label
assigned to example �� � � . Moreover, in addition to the
data with explicit labels, there is another set of pairwise
constraints ����� ���� �

�
��    ����� ���� �

�
�� available from

entire data pool including both labeled and unlabeled data,
where ��� � ���� �	 is the pairwise constraint assigned to
two examples ���� ��� � � . For the sake of simplicity,
����� ���� �� will be called the positive constraints which
means the example pair ����� ���� belongs to the same class
and ����� ������� the negative constraints defined similarly.

2.1 Regularized loss function with pair-wise
information

We begin our discussion with the case of binary classifica-
tion. Many machine learning algorithms attempt to mini-
mize the regularized empirical risk

��	
�
������� �

��
���

����� ������ � �
�
�
��� (1)

where � is the empirical loss function, 
��� is some
monotonically increasing regularization function on the do-
main ����� which controls the complexity of the hy-
pothesis space,  denotes a reproducing kernel Hilbert
space(RKHS) generated by some positive definite kernel
�, 
 � 
� the corresponding norm and � is the regular-
ization constant. The empirical loss function ��� �� ������
is usually set to a function of ”margin” ����� [8], i.e.
����� ������ � �����������. With different choices of loss
functions and regularization terms, we can derive a large
family of well-studied algorithms from Eq(1). For exam-
ple, the solution for parameters in a support vector machine
(SVM) is the minimization of the following regularized loss
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function,

��
���

������ �������� �� � �
�

�
� (2)

Therefore, the SVM can be viewed as a binary margin-
based learning algorithm with loss function ����� �
����� � �� �� and regularization factor 
�
��. More ex-
amples can be found in the work of [8]. To illustrate, fig-
ure 2(a) shows a comparison of four different loss functions
against the margin �����.

Within this learning framework, pairwise constraints can
be introduced as another set of empirical loss functions,
which penalize the violation of given constraints,

��
���

����� ��������

��
���

������� ������� ���������
�
�
���

(3)
where we call ������� ������� ������� pairwise loss func-
tions. It is desirable for the pairwise loss function to give a
high penalty when ������ and ��������� have different signs
but low penalty otherwise. Meanwhile, the loss functions
should be robust to noisy data. Therefore, the problem can
be translated into seeking a family of loss functions with
the above properties. Analogous to misclassification loss,
we can choose

������� ������� ������� � ����	������� �� ��	��
�
���������

which gives a unit penalty for violation of pairwise con-
straints, and no penalty at all otherwise. Although mini-
mizing this exact loss may be worthwhile, in this form it
is generally intractable to solve and even worse, it is not ro-
bust to noisy data without the ability to penalize large errors
more heavily. Following the idea of ”margin”, we can also
choose a pairwise loss function to be a monotonic decreas-
ing function of � ��������������, i.e.

������� ������� ������� �
��������������������

However, in most cases this function is not a convex func-
tion and thus finding global optimum is no longer guaran-
teed. Taking all these factors into account, we choose loss
function �� a monotonic decreasing function of the differ-
ence between the predictions of two pairwise constraints
������� �

�
�������, i.e.,

������� ������� ������� �
����������� �����������

which plays a similar role as the residues � � ���� in re-
gression. The intuition is that the prediction difference can
be a ”soft” measure of how possible it is the pairwise con-
straints would be violated. When ��� is convex, most of
these pairwise loss functions have a nice property of con-
vexity to ������ and ������, and thus allows us to apply
standard convex optimization techniques.

Similar to the loss function in regression, the pairwise
loss function should be symmetric for any example pair, i.e.,���������� � ���������� � ������������� � �������. There-
fore, ��� is an even function and could be represented as������ � ����������������, where ���� now can be any mono-
tonic decreasing function � � � � �. To ensure the label
loss function and pairwise loss function are comparable, we
usually choose ���� in the same form as ��. Putting all these
together, our primal optimization problem has the following
form,

��
���

����������� � �
��
���

���������� ����������

��

��
���

������������� ������� � �
�
�
�� (4)

Note that when the number of pairwise constraints 	 is zero,
it trivially degraded to a margin-based learning problem
with only labeled data.

A special case for Eq(4) is to fit a linear decision bound-
ary on the input feature space, i.e., ���� can be expressed
in form of ��� and 
�
� � 
�
 in the �� space. Sub-
stituting ���� � ��� and 
�
� � 
�
 into Eq(4), we
have

��
���

���������� � �
��
���

�������� � ���������

��

��
���

����������� � ������ � �
�
�
� (5)

It can be shown that the objective function of Eq(5) when
� � � is equivalent to the objective function of Eq(1) with
a expanded labeled data set, which includes �	 pseudo-
labeled data ���� � �

�
����� �� and ���� � �

�
�������� in ad-

dition to original labeled data. This property is intriguing
because it allows a quicker implementation for linear kernel
classifiers by means of adding �	 new training examples
without modifying existing algorithms or software pack-
ages.

Note that in our experimental implementation, we adopt
the logistic regression loss function as the empirical loss
function ����� � ����� � 
�	�, yielding

��
���

����� � 
�
���	��� � �

��
���

����� � 
��	����

�

���	����

��

��
���

����� � 


�

���	������	���� � �
�
�
�� (6)

because it can be easily solved by unconstrained optimiza-
tion techniques. However, our discussion can be extended
to other loss functions as well. Figure 2(b) depicts the pair-
wise loss function used in Eq(6).
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2.2 Kernelization

In this section, we present the kernelized representation of
the primal problem Eq(6) using the representer theorem [9].
This representation allows simple learning algorithms to
construct a complex decision boundary by projecting the
original input space to a high dimensional feature space,
even infinitely dimensional in some cases. This computa-
tionally intensive task is achieved through a positive definite
reproducing kernel� and the well-known ”kernel trick”.

To begin, let ���� represent the empirical loss and

�
�
�� � 
�
��. Therefore, the primal problem Eq(6)
can be rewritten as,

��	
���

������ �����	� ��
�
�� ������� ������	� � �
�


�
� (7)

The loss function ���� is pointwise, which only depends
on the value of � at the data points ������� ������� ������	.
Therefore by the representer theorem, the minimizer ����
admits a representation of the form

���� �
���
���

������ ������ (8)

where �� � � � �	, ��� � ����    � ��	 �
�����    � ���	 � �����    � ���	 is a expended training
set including labeled examples �� and examples from every
pairwise constraints ����� ���	.

In the following, denote by � the � � � �� Gram ma-
trix. Moreover, denote by � � an � � �� matrix con-
taining top � rows of � corresponding to � �, i.e., �� �
������ �������� . Similarly, denote by ��� and ��� the
	 ��� matrices containing 	 rows of � corresponding to
��� and ��� respectively. We derive the kernelized repre-
sentation of logistic regression loss function by substituting
Eq(8) into Eq(6),

���� � ��� ����� � 
���� � ���� ����� � 
�
�

��

����� ����� � 
��
�

�� � ����� (9)

where � � ���    �����	, the regressor matrix �� �
�������    ����� and the pairwise regressor matrix��

� �
��� � ������

�
�    �

�
�����.

To find the minimizer �, we derive the parameter esti-
mation method using the Newton-Raphson method to iter-
atively solve the equation. Since the optimization function
is convex, Newton method can guarantee the finding of the
global optimum. The gradient and Hessian are as follows,

�����

��
� ��

� �����
��
� ���

��
� ������������ (10)

������

���
���

���� � �����
� �

��� � ��
� � (11)

where ����� ����� denote the logistic model

���� �

��

� � 
��
������ �


�
�

�

� � 
�
�

�
�

and ���� denote the corresponding weighted matrices
������������� ������� and �������������� ��������.

It can be shown that the Newton updates are � ��

�� ��
����
��

��� ����
�

. In practice, we solve this optimiza-
tion problem with a subspace trust region method based on
the interior-reflective Newton method described in [10]. In
the rest of this paper, we will call this learning algorithm
pairwise kernel logistic regression (PKLR).

2.3 An Illustrative Example

To show the advantages of incorporating pairwise con-
straints into discriminative learning, we prepared a syn-
thetic spiral dataset shown in figure 3(a) which is non-
linearly separable. There are a total of 201 positive exam-
ples and 199 negative examples. 40 training examples are
randomly sampled from each class. Additional 4 pairs of
positive constraints are also provided on the dataset. With
only the labeled data, the conventional kernel logistic re-
gression(KLR) misclassifies the tails of two spirals due to
insufficient labeled data (figure 3(b)). The additional pos-
itive constraints might be useful to correct the bias. How-
ever, applying the RCA algorithm [4] with these constraints
only leads to slightly performance improvement shown in
figure 3(c), since the true distance metric cannot be simply
modeled by a Mahalanobis distance. In contrast, the PKLR
algorithm learns a much better boundary shown in figure
3(d) by using pairwise constraints to model the decision
boundary directly. In this example, we intentionally only
generate the positive constraints to provide a relatively fair
comparison with the RCA algorithm. In fact, negative con-
straints can naturally be applied in the PKLR framework.

3. Extension to Multi-class Classifica-
tion

In the following discussion we extend our learning frame-
work to multi-class classification. As a first step, it is worth-
while to consider how to present pairwise constraints 1 in
the context of a one-against-all classifier, where it means
that the negative class is less-defined anything else. Positive
constraints still hold because if data pairs are considered the
same object they must belong to the same class. However,
negative constraints, which means two examples are not the
same object, can no longer be interpreted as that two ex-
amples are in different classes because it might be the case

1Note that in multi-class object classification, a pairwise constraint in-
dicates whether a pair of examples are the same object or not, instead of
whether they belong to the same class in a one-against-all classifier
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Figure 3: An illustration of pairwise kernel logistic regres-
sion applied to synthetic data (a) The synthetic dataset. ”Æ”
and ”�” denotes positive and negative examples, ”�” denotes
training data and each pair of framed numbers denote pos-
itive constraints. (b) Decision boundary of KLR. (c) Deci-
sion boundary of KLR in the metric space learned by RCA.
(d) Decision boundary of PKLR

they both belong to the negative class. Therefore for nega-
tive constraints, we can only penalize the cases where they
are both labeled as positive. Thus, the modified loss func-
tion can be defined as,

�
����� �
�
�

�������� � �
�

�

�
���

������� � ����

��
�

�

�
��

������� � ���� � ������ � ����� � �
�
�
��� (12)

where �� denotes �����. One-against-all classifiers allow
the learning algorithm to handle new types of objects in the
test set by classifying every unseen objects into the negative
class. This is important especially when the number of the
training examples is small.

With the aid of this one-against-all representation, we
can simply extend our algorithm to multi-class classification
with some output coding schemes. We choose a loss-based
output coding schemes to construct a multi-class classifier
using multiple binary classifiers [11],

�� � �����	
�

��
���

�� ���������� 

where � is the number of binary classification problems, �
is the their indices, � is the class index,��� is the elements

of coding matrix and ����� are the prediction for � using
classifier �. The loss function �� we choose is the same
as �����, i.e. �� ��� � ����� � 
�	�. The one-against-all
coding matrix is adopted in our experiments. Note that if
only positive constraints is available, we can also use the
other coding schemes as long as there are no zero entries in
the coding matricies, such as ECOC coding schemes.

4. Experiments
In the experiments that follow, we applied the PKLR algo-
rithm to the task of classifying people identities with two
real-world surveillance video datasets.

4.1. Data Collections and Preprocessing
To test the performance of the PKLR algorithm, we col-
lected two different datasets from a geriatric nursing home
surveillance video. One of the datasets was extracted from
a 6 hour long, single day and single view video. The other
dataset was extracted from video across 6 consecutive days
from the same camera view. Both collections were sam-
pled at a resolution of ��� � ��� and a rate of 30 frames
per second. The moving sequences of subjects were auto-
matically extracted using a background subtraction tracker.
The silhouette images, each of which corresponds to the ex-
tracted silhouette of a moving subject, are sampled from the
tracking sequence every half second. In this experiment, we
mainly experimented on images that did not have any fore-
ground segments containing two or more people. Finally,
we obtain the single day dataset with 63 tracking sequences
or 363 silhouette images for 6 subjects, and the multiple
day dataset with 156 tracking sequences or 1118 silhouette
images for 5 subjects.

Because of the relative robustness of color histograms to
variations of target appearance, we represent the images us-
ing a histogram of HSV color spaces in the following exper-
iments, where each color channel has a fixed number of 32
bins. Thus we have a total of 96 one-dimensional features in
the color histogram. Some examples of these two datasets
are depicted in figure 4. From these examples, it can be
seen that the silhouette images are collected from various
lighting environments and the subjects walked in arbitrary
directions. For each subject, the color representation is rel-
atively stable in the single day dataset, but it is much more
diverse in the multiple day dataset, which makes learning
harder.

4.2. Selecting Informative Pairwise Constrains
from Video

As mentioned in section 1, there are several types of pair-
wise constraints that can be extracted from a video stream.
In this paper, we pay particular attention to two types of
pairwise constraints:
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(a)

(b)

Figure 4: Examples of images from the datasets collected
from a geriatric nursing home. (a) Examples of 6 subjects
in the single day dataset. Each column refers to a differ-
ent subject, (b) Examples of 5 subjects in the multiple day
dataset.

Temporal Constraints This type of constraints is obtained
by knowing the temporal relation in video sequences.
For example, a sequence of extracted regions gener-
ated from tracking a single moving object can be as-
sumed to indicate a single person. On the other hand,
two regions extracted simultaneously from a camera
cannot be the same person.

Active Constraints In analogy to active learning
paradigms, this type of constraints is obtained
from users’ feedback. Typically, the system gives
users the most ambiguous pair of examples and users
provide the constraint label as feedback.

However, for the video data there are always too many pair-
wise constraints to incorporate. To address this, we would
like to select the most informative pairwise constraints be-
fore applying our learning algorithm. One important ob-
servation is that surveillance video data generally arrive in
the form of image tracking sequences. If the constraint be-
tween every image pair of tracking sequences �� and ��

has to be modeled, the pairwise loss function in Eq(4) will

be expanded to a sum of �������� terms,

������ ������ ������ �

�����
���

�����
���

��������� ��������

for every �� � �� and �� � ��
2. In the case where ei-

ther ���� or ���� is large the computational complexity will
be very large. However, it is reasonable to assume that the
images in a single sequence are similar to each other and
thus the pairwise constraints ���� ���� �� � ��� �� � �� are
likely to be redundant. Based on this assumption, we aggre-
gate all of the sequence constraints using the centroids � �
of every sequence images as an approximation. Therefore,
we have the following pairwise loss function: when �� �

�� � �, ������ ������ ������ �
����

���
�������� � �����,

or when �� �� ��, ������ ������ ������ � �������� �
��������.

Another observation can help to further reduce the num-
ber of pairwise constraints, i.e., it is not necessary to incor-
porate the pairwise constraints for which the KLR algorithm
already provide correct predictions. But this criterion is not
applicable in practice since true constraints are not known
for unlabeled sequence pairs. As an alternative, we first
choose the most ambiguous sequences based on the predic-
tion ambiguity of KLR, and then construct the correspond-
ing pairwise constraints. Since our following experiments
are dealing with multi-class classification, we adopt a selec-
tion strategy called best-worst case model proposed in [2],
of which the rationale is to choose the most ambiguous se-
quences by maximizing the expected loss for the predicted
label,

������
	

��	
���

��
���

�� ���������� (13)

Figure 5 summarizes the learning process with the selection
strategies for pairwise constraints. A kernel logistic regres-
sion algorithm is first applied with only the labeled data.
The top� ambiguous sequences ���� � ��	 are selected
based on Eq(13). For each sequence� �, we add a temporal
constraint ���� ��� �� into constraint set. For any pairs of
sequences that overlap, a negative constraint �� �� �� ����
will be constructed. Moreover, the nearest training se-
quence to �� in terms of kernel distance is coupled with
�� to form a active constraint ���� �� � ����, which pairwise
labeling is requested from users. Finally, the PKLR algo-
rithm is trained with both existing labeled data and addi-
tional pairwise constraints.

4.3. Performance Evaluation
Our experiments are carried out in the following way. Each
dataset is first split into two disjoint sets based on temporal

2Note that �� and �� can be the same sequence �, which refers to
modeling the self-similarity of sequence �.
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Figure 5: The flowchart of learning process. See text for
details.

order. Training images are randomly drawn from the first
set, which contains 50% of the first set’s sequences. The
rest images are used as test images. For every specific pa-
rameter setting, we increase the number of sequence con-
straints from 0 to  until the classification performance is
relatively stable.  was chosen to be 20 in the single day
dataset and 40 in the multiple day dataset. In terms of active
constraints, we simulated the human labeling process using
true pairwise constraints without actually asking a human to
label in each iteration. For each experiment, the training set
is repeatedly re-sampled 10 times to provide a more stable
estimation of performance.

For evaluation, the prediction error rate is reported. The
baseline performance uses the KLR classifiers with ma-
jority voting scheme, i.e. each image is predicted inde-
pendently and for each sequence the majority label is pre-
dicted as true labels. We used the RBF kernel����� ��� �


���	��	��
�

with ! � ��� in all of our experiments,
which was chosen by maximizing the accuracy with cross-
validation in the training set. Also, we empirically set the
regularization parameters � to be 0.001, and pairwise coef-
ficient � to be 1.

The first series of experiments compare the effectiveness
of the PKLR algorithm using different types of pairwise
constraints together with the baseline classifier shown in
figure 6(a) and 6(c). Three different curves are plotted, in-
dicating the performance of the PKLR algorithm using tem-
poral constraints, using active constraints and using both
of them. For both datasets we observed that the error rate
can be considerably reduced even with a small number of
constraints. Learning with temporal constraints is effective
in the single day dataset but unable to get improvement in
the multiple day dataset. This is partially due to the di-
verse color representation in the multi-day data. It degrades
the effectiveness of temporal constraints which cannot cap-
ture long term relations between examples. However, active
constraints, if available from users, can be more effective to
reduce the error in both datasets. Moreover, the combina-
tion of both constraints produced a higher performance. For
the first dataset, it reduces error rate from 20% down to 4%
with 20 pairs of both type of constraints. For the second

dataset, it again reduces error rate from 22% down to 8%
with 40 pairs of both type of constraints.

In figure 6(b) and 6(d), we also compare the performance
of the PKLR algorithm with the RCA algorithm using the
same amounts of pairwise constraints. We use the RCA al-
gorithm to learn a better distance metric before applying the
KLR for prediction. An identity matrix "� is added to the
inner chunklet covariance matrix to make it invertable. Be-
cause RCA can only take the positive constraints as input,
another curve is depicted for PKLR algorithm with the pres-
ence of only positive constraints. A combination of tempo-
ral and active constraints is applied in all three experiments.
The results show that our algorithm achieves superior per-
formance to the RCA algorithm even without negative con-
straints. On the other hand, the experimental results also
demonstrate the usefulness of incorporating negative con-
straints.

5. Conclusion
We have presented a discriminative classification frame-
work which can learn the decision boundary with labeled
data as well as additional pairwise constraints. The ex-
periments with two surveillance video datasets demon-
strated the proposed approach could achieve considerable
improved performance with pairwise constraints, compared
to the baseline classifier which uses labeled data alone and
majority voting scheme. The proposed approach also out-
performs a metric learning algorithm using pairwise con-
straints called RCA algorithm when using the same number
of pairwise constraints.

Future work includes incorporating different types of
noisy multi-modal pairwise constraints, such as face recog-
nition and speaker identification. It would be interesting
to study how these different types of pairwise constraints
can improve the performance of a discriminative classifier.
We would also like to point out that although our learn-
ing framework and previous work on learning distance met-
ric exploit the pairwise constraints in a different way, they
are somehow complementary. It may be possible to apply
the proposed learning framework in a new distance metric
learned from the other algorithms, which would be explored
further.
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