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We present a discriminative model for polyphonic piano transcription. Support vector machines trained on spectral features are
used to classify frame-level note instances. The classifier outputs are temporally constrained via hidden Markov models, and the
proposed system is used to transcribe both synthesized and real piano recordings. A frame-level transcription accuracy of 68% was
achieved on a newly generated test set, and direct comparisons to previous approaches are provided.
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1. INTRODUCTION

Music transcription is the process of creating a musical score
(i.e., a symbolic representation) from an audio recording.
Although expert musicians are capable of transcribing poly-
phonic pieces of music, the process is often arduous for com-
plex recordings. As such, the ability to automatically generate
transcriptions has numerous practical implications in musi-
cological analysis and may potentially aid in content-based
music retrieval tasks.

The transcription problem may be viewed as identify-
ing the notes that have been played in a given time period
(i.e., detecting the onsets of each note). Unfortunately, the
harmonic series interaction that occurs in polyphonic music
significantly obfuscates automated transcription. Moorer [1]
first presented a limited system for duet transcription. Since
then, a number of acoustical models for polyphonic tran-
scription have been presented in both the frequency domain,
Rossi et al. [2], Sterian [3], Dixon [4], and the time domain,
Bello et al. [5].

These methods, however, rely on a core analysis that as-
sumes a specific audio structure, namely, that musical pitch
is produced by periodicity at a particular fundamental fre-
quency in the audio signal. For instance, the system of Kla-
puri [6] estimates multiple fundamental frequencies from
spectral peaks using a computational model of the human
auditory periphery. Then, discrete hidden Markov models
(HMMs) are iteratively applied to extract melody lines from
the fundamental frequency estimations, Ryynänen and Kla-
puri [7].

The assumption that pitch arises from harmonic com-
ponents is strongly grounded in musical acoustics, but it is
not necessary for transcription. In many fields (such as au-
tomatic speech recognition) classifiers for particular events
are built using the minimum of prior knowledge of how they
are represented in the features. Marolt [8] presented such a
classification-based approach to transcription using neural
networks, but a filterbank of adaptive oscillators was required
in order to reduce erroneous note insertions. Bayesian mod-
els have also been proposed for music transcription, Godsill
and Davy [9], Cemgil et al. [10], Kashino and Godsill [11];
however, these inferential treatments, too, rely on physical
prior models of musical sound generation.

In this paper, we pursue the insight that prior knowl-
edge is not strictly necessary for transcription by examin-
ing a discriminative model for automatic music transcrip-
tion. We propose a supervised classification system that in-
fers the correct note labels based only on training with la-
beled examples. Our algorithm performs polyphonic tran-
scription via a system of support vector machine (SVM) clas-
sifiers trained from spectral features. The independent clas-
sifications are then temporally smoothed in an HMM post-
processing stage. We show that a classification-based sys-
tem provides significant advantages in both performance and
simplicity over acoustic model approaches.

The remainder of this paper is structured as follows. We
describe the generation of our training data and acoustic
features in Section 2. In Section 3, we present a frame-level
SVM system for polyphonic pitch classification. The classi-
fier outputs are temporally smoothed by a note-level HMM
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Figure 1: Note distributions for the training and test sets.

as described in Section 4. The proposed system is used to
transcribe both synthesized piano and recordings of a real
piano, and the results, as well as a comparison to previous
approaches, are presented in Section 5. Finally, we provide a
discussion of the results and present ideas for future devel-
opments in Section 6.

2. AUDIO DATA AND FEATURES

Supervised training of a classifier requires a corpus of labeled
feature vectors. In general, greater quantities and variety of
training data will give rise to more accurate and successful
classifiers. In the classification-based approach to transcrip-
tion, then, the biggest problem becomes collecting suitable
training data. In this paper, we investigate using synthesized
MIDI audio and live piano recordings to generate training,
testing, and validation sets.

2.1. Audio data

MIDI was created by the manufacturers of electronic musi-
cal instruments as a digital representation of the notes, tim-
ing, and other control information required to synthesize a
piece of music. As such, a MIDI file amounts to a digital mu-
sic score that can be converted into an audio rendition. The
MIDI data used in our experiments was collected from the
Classical Piano MIDI Page, http://www.piano-midi.de/. The
130 piece data set was randomly split into 92 training, 25 test-
ing, and 13 validation pieces. Table 5 gives a complete list of
the composers and pieces used in the experiments.

The MIDI files were converted from the standard MIDI
file format to monaural audio files with a sampling rate of
8 kHz using the synthesizer in Apple’s iTunes. In order to
identify the corresponding ground truth transcriptions, the
MIDI files were parsed into data structures containing the

relevant audio information (i.e., tracks, channels numbers,
note events, etc.). Target labels were determined by sampling
theMIDI transcript at the precise times corresponding to the
analysis frames of the synthesized audio.

In addition to the synthesized audio, piano recordings
were made from a subset of the MIDI files using a Yamaha
Disklavier playback grand piano. 20 training files and 10 test-
ing files were randomly selected for recording. The MIDI
file performances were recorded as monaural audio files at a
sampling rate of 44.1 kHz. Finally, the piano recordings were
time-aligned to the MIDI score by identifying the maximum
cross-correlation between the recorded audio and the syn-
thesized MIDI audio.

The first minute from each song in the data set was se-
lected for experimentation which provided us with a total of
112 minutes of training audio, 35 minutes of testing audio,
and 13 minutes of audio for parameter tuning on the vali-
dation set. This amounted to 56497, 16807, and 7058 note
instances in the training, testing, and validation sets, respec-
tively. The note distributions for the training and test sets are
displayed in Figure 1.

2.2. Spectral features

We applied the short-time Fourier transform to the audio
files using N = 1024 point discrete Fourier transforms (i.e.,
128 milliseconds), an N-point Hanning window, and an 80
point advance between adjacent windows (for a 10-milli-
second hop between successive frames). In an attempt to re-
move some of the influence due to timbral and contextual
variation, the magnitudes of the spectral bins were normal-
ized by subtracting the mean and dividing by the standard
deviation calculated in a 71-point sliding frequency window.
Note that the live piano recordings were down-sampled to
8 kHz using an anti-aliasing filter prior to feature calculation
in order to reduce the spectral dimensionality.

http://www.piano-midi.de/
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Separate one-versus-all (OVA) SVM classifiers were
trained on the spectral features for each of the 88 piano keys
with the exception of the highest note, MIDI note number
108. For MIDI note numbers 21 to 83 (i.e., the first 63 piano
keys), the input feature vector was composed of the 255 coef-
ficients corresponding to frequencies below 2 kHz. For MIDI
note numbers 84 to 95, the coefficients in the frequency range
1 kHz to 3 kHz were selected, and for MIDI note numbers 95
to 107, the frequency coefficients from the range 2 kHz to
4 kHz were used as the feature vector. In [12] by Ellis and
Poliner, a number of spectral feature normalizations were at-
tempted for melody classification; however, none of the nor-
malizations provided a significant advantage in classification
accuracy. We have selected the best performing normaliza-
tion from that experiment, but as we will show in the fol-
lowing section, the greatest gain in classification accuracy is
obtained from a larger and more diverse training set.

3. FRAME-LEVEL NOTE CLASSIFICATION

The support vector machine is a supervised classification sys-
tem that uses a hypothesis space of linear functions in a high-
dimensional feature space in order to learn separating hy-
perplanes that are maximally distant from all training pat-
terns. As such, SVM classification attempts to generalize an
optimal decision boundary between classes of data. Subse-
quently, labeled training data in a given space are separated
by a maximum-margin hyperplane through SVM classifica-
tion.

Our classification system is composed of 87 OVA binary
note classifiers that detect the presence of a given note in a
frame of audio, where each frame is represented by a 255-
element feature vector as described in Section 2. We took
the distance-to-classifier-boundary hyperplane margins as a
proxy for a note-class log-posterior probability. In order to
classify the presence of a note within a frame, we assume
the state to be solely dependent on the normalized frequency
data. At this stage, we further assume each frame to be inde-
pendent of all other frames.

The SVMs were trained using sequential minimal opti-
mization, Platt [13], as implemented in the Weka toolkit,
Witten and Frank [14]. A radial basis function (RBF) kernel
was selected for the experiments, and the γ and C parameters
were optimized over a global grid search on the validation set
using a subset of the training set. In this section, all classifiers
were trained using the 92 MIDI training files and classifica-
tion accuracy is reported on the validation set.

Our first classification experiment was to determine the
number of training instances to include from each audio ex-
cerpt. The number of training excerpts was held constant,
and the number of training instances selected from each
piece was varied by randomly sampling an equal number of
positive and negative instances for each note. As displayed
in Figure 2, the classification accuracy begins to approach an
asymptote within a small fraction of the potential training
data. Since the RBF kernel requires training time on the order
of the number of training instances cubed, 100 samples per
note class, per excerpt was selected as a compromise between
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Figure 2: Variation of classification accuracy with number of ran-
domly selected training frames per note, per excerpt.

training time and performance for the remainder of the ex-
periments. A more detailed description of the classification
metrics is given in Section 5.

The observation that random sampling approaches an
asymptote within a couple of hundred samples per excerpt
(out of a total of 6000 for a 60-second excerpt with 10-
millisecond hops) can be explained by both signal processing
and acoustic considerations. Firstly, adjacent analysis frames
are highly overlapped, sharing 118 milliseconds out of a
128-millisecond window, and thus their feature values will
be very highly correlated (10 milliseconds is an unneces-
sarily fine time resolution to generate training frames, but
it is the standard used in evaluation). Furthermore, musi-
cal notes typically maintain approximately constant spectral
structure over hundreds of milliseconds; a note shouldmain-
tain a steady pitch for some significant fraction of a beat to
be perceived as well-tuned. As we noted in Section 2, there
are on average 8 note events per second in the training data.
Each note may contribute a few usefully different frames due
to variations in accompanying notes. Thus, we expect many
clusters of largely redundant frames in our training data, and
random sampling down to 2% (roughly equal to the median
prior probability of a specific note occurrence) is a reason-
able approximation.

A second experiment examined the incremental gain
from adding novel training excerpts. In this case, the num-
ber of training excerpts was varied while holding constant the
number of training instances per excerpt. The dashed line in
Figure 3 shows the variation in classification accuracy with
the addition of novel training excerpts. In this case, adding
an excerpt consisted of adding 100 randomly selected frames
per note class (50 each positive and negative instances). Thus,
the largest note classifiers are trained on 9200 frames. The
solid curve displays the result of training on the same num-
ber of frames randomly drawn from the pool of the entire
training set. The limited timbral variation is exhibited in the
close association of the two curves.
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Figure 3: Variation of classification accuracy with the total number
of excerpts included, compared to sampling the same total number
of frames from all excerpts pooled.

4. HIDDENMARKOVMODEL POST-PROCESSING

An example “posteriorgram” (time-versus-class image show-
ing the pseudo-posteriors of each class at each time step) for
an excerpt of Für Elise is displayed in Figure 4(a). The poste-
riorgram clearly illustrates both the strengths and weaknesses
of the discriminative approach to music transcription. The
success of the approach in estimating the pitch from audio
data is clear in the majority of frames. However, the result
also displays the obvious fault of the approach of classifying
each frame independently of its neighbors: the inherent tem-
poral structure of music is not exploited. In this section, we
attempt to incorporate the sequential structure that may be
inferred from musical signals by using hidden Markov mod-
els to capture temporal constraints.

Similarly to our data-driven approach to classification,
we learn temporal structure directly from the training data.
We model each note class independently with a two-state,
on/off, HMM. The state dynamics, transition matrix, and
state priors are estimated from our “directly observed” state
sequences—the ground-truth transcriptions of the training
set.

If the model state at time t is given by qt, and the clas-
sifier output label is ct, then the HMM will achieve tempo-
ral smoothing by finding the most likely (Viterbi) state se-
quence, that is, maximizing

∏

t

p
(
ct | qt

)
p
(
qt | qt−1

)
, (1)

where p(qt | qt−1) is the transition matrix estimated from
ground-truth transcriptions. We estimate p(ct | qt), the
probability of seeing a particular classifier label ct given a true
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Figure 4: (a) Posteriorgram (pitch probabilities as a function of
time) for an excerpt of Beethoven’s Für Elise. (b) The HMM
smoothed estimation (dark gray) plotted on top of the ground truth
labels (light gray; overlaps are black).

pitch state qt, with the likelihood of each note being “on” ac-
cording to the output of the classifiers. Thus, if the acoustic
data at each time is xt, we may regard our OVA classifier as
giving us estimates of

p
(
qt | xt

)∝ p
(
xt | qt

)
p
(
qt
)
, (2)

that is, the posterior probabilities of each HMM state given
the local acoustic features. By dividing each (pseudo-) poste-
rior by the prior of that note, we get scaled likelihoods that
can be employed directly in the Viterbi search for the solu-
tion of (1).

HMM post-processing results in an absolute improve-
ment of 2.8% yielding a frame-level classification accuracy
of 70% on the validation set. Although the improvement in
frame-level classification accuracy is relatively modest, the
HMM post-processing stage reduces the total onset tran-
scription error by over 7%, primarily by alleviating spuri-
ous onsets. A representative result of the improvement due
to HMM post-processing is displayed in Figure 4(b).

5. TRANSCRIPTION RESULTS

In this section, we present a number of metrics to evaluate
the success of our approach. In addition, we provide empir-
ical comparisons to the transcription systems proposed by
Marolt [8] and Ryynänen and Klapuri [7]. It should be noted
that the Ryynänen-Klapuri system was developed for general
music transcription, and the parameters have not been tuned
specifically for piano music.
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Table 1: Frame-level transcription results on our full synthesized-
plus-recorded test set.

Algorithm Acc Etot Esubs Emiss Efa

SVM 67.7% 34.2% 5.3% 12.1% 16.8%

Ryynänen and Klapuri 46.6% 52.3% 15.0% 26.2% 11.1%

Marolt 36.9% 65.7% 19.3% 30.9% 15.4%

5.1. Frame-level transcription

For each of the evaluated algorithms, a 10-millisecond
frame-level comparison was made between the algorithm
(system) output and the ground-truth (reference) MIDI
transcript. We start with a binary “piano-roll” matrix, with
one row for each note considered, and one column for each
10-millisecond time frame. There is, however, no standard
metric that has been used to evaluate work of this kind: we
report two, one based on previous piano transcription work,
and one based on analogous work in multiparty speech ac-
tivity detection. The results of the frame-level evaluation are
displayed in Table 1.

The first measure is a frame-level version of the metric
proposed by Dixon [4], defined as overall accuracy:

Acc = TP
(FP+FN+TP)

, (3)

where TP (true positives) is the number of correctly tran-
scribed voiced frames (over all notes), FP (false positives) is
the number of unvoiced note-frames transcribed as voiced,
and FN (false negatives) is the number of voiced note-frames
transcribed as unvoiced. This measure is bounded by 0 and
1, with 1 corresponding to perfect transcription. It does not,
however, facilitate an insight into the trade-off between notes
that are missed and notes that are inserted.

The secondmeasure, frame-level transcription error score,
is based on the “speaker diarization error score” defined
by NIST for evaluations of “who spoke when” in recorded
meetings, National Institute of Standards Technology [15].
A meeting may involve many people, who, like notes on
a piano, are often silent but sometimes simultaneously ac-
tive (i.e., speaking). NIST developed a metric that consists
of a single error score which further breaks down into sub-
stitution errors (mislabeling an active voice), “miss” errors
(when a voice is truly active but results in no transcript), and
“false alarm” errors (when an active voice is reported with-
out any underlying source). This three-way decomposition
avoids the problem of “double-counting” errors where a note
is transcribed at the right time but with the wrong pitch; a
simple error metric as used in earlier work, and implicit in
Acc, biases systems towards not reporting notes, since not
detecting a note counts as a single error (a “miss”), but re-
porting an incorrect pitch counts as two errors (a “miss” plus
a “false alarm”). Instead, at every time frame, the intersec-
tion of Nsys reported pitches and Nref ground-truth pitches

counts as the number of correct pitches Ncorr; the total error
score integrated across all time frames t is then

Etot =
∑T

t=1 max
(
Nref (t),Nsys(t)

)−Ncorr(t)
∑T

t=1Nref (t)
(4)

which is normalized by the total number of active note-
frames in the ground-truth, so that reporting no output will
entail an error score of 1.0.

Frame-level transcription error is the sum of three com-
ponents. The first is substitution error, defined as

Esubs =
∑T

t=1 min
(
Nref (t),Nsys(t)

)−Ncorr(t)
∑T

t=1Nref (t)
(5)

which counts, at each time frame, the number of ground-
truth notes for which the correct transcription was not re-
ported, yet some note was reported—which can thus be con-
sidered a substitution. It is not necessary to designate which
incorrect notes are substitutions, merely to count how many
there are. The remaining components are “miss” and “false
alarm” errors:

Emiss =
∑T

t=1 max
(
0,Nref (t)−Nsys(t)

)

∑T
t=1Nref (t)

,

Efa =
∑T

t=1 max
(
0,Nsys(t)−Nref (t)

)

∑T
t=1Nref (t)

.

(6)

These equations sum, at the frame level, the number of
ground-truth reference notes that could not be matched with
any system outputs (i.e., misses after substitutions are ac-
counted for) or system outputs that cannot be paired with
any ground truth (false alarms beyond substitutions), respec-
tively. Note that a conventional false alarm rate (false alarms
per nontarget trial) would be bothmisleadingly small and ill-
defined here, since the total number of nontarget instances
(note-frames in which that particular note did not sound) is
very large, and can be made arbitrarily larger by including
extra notes that are never used in a particular piece.

The error measure is a score rather than some probability
or proportion—that is, it can exceed 100% if the number of
insertions (false alarms) is very high. In line with the univer-
sal practice in the speech recognition community we feel this
is the most useful measure, since it gives a direct feel for the
quantity of errors that will occur as a proportion of the total
quantity of notes present. It aids intuition to have the errors
broken down into separate, commensurate components that
add up to the total error, expressing the proportion of errors
falling into the distinct categories of substitutions, misses,
and false alarms.

As displayed in Table 1, our discriminative model pro-
vides a significant performance advantage on the test set
with respect to frame-level accuracy and error measures—
outperforming the other two systems on 33 out of the 35
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Figure 5: (a) Variation of classification accuracy with number of notes present in a given frame and relative note frequency. (b) Error score
composition as a function of the number of notes present.

test pieces. This result highlights the merit of a discriminative
model for note identification. Since the transcription prob-
lem becomes more complex with the number of simultane-
ous notes, we have also plotted the frame-level classification
accuracy versus the number of notes present for each of the
algorithms in Figure 5(a); the total error score (broken down
into the three components) with the number of simultane-
ously occurring notes for the proposed algorithm is displayed
in Figure 5(b). As expected, there is an inverse relationship
between the number of notes present and the proportional
contribution of false alarm errors to the total error score.
However, the performance degradation is not as severe for
the proposed method as it is for the harmonic-based mod-
els.

In Table 2, a breakdown of the transcription results is re-
ported between the synthesized audio and piano recordings.
The proposed system exhibits the most significant disparity
in performance between the synthesized audio and piano
recordings; however, we suspect this is because the greatest
portion of the training data was generated using synthesized
audio. In addition, we show the classification accuracy results
for SVMs trained on MIDI data and piano recordings alone.
The specific data distributions perform well on more similar
data, but generalize poorly to unfamiliar audio. This clearly
indicates that the implementations based only on one type
of training data are overtrained to the specific timbral char-
acteristics of that data and may provide an explanation for
the poor performance of neural network-based system.How-
ever, the inclusion of both types of training data does not
come at a significant cost to classification accuracy for either
type. As such, it is likely that the proposed system will gener-

Table 2: Classification accuracy comparison for the MIDI test files
and live recordings. The MIDI SVM classifier was trained on the 92
MIDI training excerpts, and the Piano SVM classifier was trained
on the 20 piano recordings. Numbers in parentheses indicate the
number of test excerpts in each case.

Algorithm Piano (10) MIDI (25) Both (35)

SVM (piano only) 59.2% 23.2% 33.5%

SVM (MIDI only) 33.0% 74.6% 62.7%

SVM (both) 56.5% 72.1% 67.7%

Ryynänen and Klapuri 41.2% 48.3% 46.3%

Marolt 38.4% 40.0% 39.6%

Table 3: Frame-level transcription results on recorded piano only
(ours and Marolt test sets).

Algorithm / test set Acc Etot Esubs Emiss Efa

SVM / our piano 56.5% 46.7% 10.2% 15.9% 20.5%

SVM / Marolt piano 44.6% 60.1% 14.4% 25.5% 20.1%

Marolt / Marolt piano 46.4% 66.1% 15.8% 13.2% 37.1%

Ryynänen and Klapuri/
Marolt piano

50.4% 52.2% 12.8% 21.1% 18.3%

alize to different types of piano recordings when trained on a
diverse set of training instances.

In order to further investigate generalization, the pro-
posed system was used to transcribe the test set prepared
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Table 4: Note onset transcription results.

Algorithm Acc Etot Esubs Emiss Efa

SVM 62.3% 43.2% 4.5% 16.4% 22.4%

Ryynänen and Klapuri 56.8% 46.0% 6.2% 25.3% 14.4%

Marolt 30.4% 87.5% 13.9% 41.9% 31.7%

by Marolt [8]. This set consists of six recordings from the
same piano and recording conditions used to train his neu-
ral net and is different from any of the data in our train-
ing set. The results of this test are displayed in Table 3.
The SVM system commits a greater number of substitu-
tion and miss errors compared to its performance on the
relevant portion of our test set, reinforcing the possibil-
ity of improving the stability and robustness of the SVM
with a broader training set. Marolt’s classifier, trained on
data closer to his test set than to ours, outperforms the
SVM here on the overall accuracy metric, although inter-
estingly with a much greater number of false alarms than
the SVM (compensated for by many fewer misses). The sys-
tem proposed by Ryynänen and Klapuri outperforms the
classification-based approaches on the Marolt test set; a re-
sult that underscores the need for a diverse set of training
recordings for a practical implementation of a discriminative
approach.

5.2. Note onset detection

Frame-level accuracy is a particularly exacting metric. Al-
though offset estimation is essential in generating accurate
transcriptions, it is likely of lesser perceptual importance
than accurate onset detection. In addition, the problem of
offset detection is obscured by relative energy decay and ped-
aling effects. In order to account for this and to reduce the
influence of note duration on the performance results, we
report an evaluation of note onset detection.

To be counted as correct, the system must “switch on”
a note of the correct pitch within 100 milliseconds of the
ground-truth onset. We include a search to associate any un-
explained ground-truth note with any available system out-
put note within the time range in order to count substi-
tutions before scoring misses and false alarms. We use all
the metrics described in Section 5.1, but the statistics are re-
ported with respect to onset detection accuracy rather than
frame-level transcription accuracy. The note onset transcrip-
tion statistics are given in Table 4. We note that even without
a formal onset detection stage, the proposed algorithm pro-
vides a slight advantage over the comparison systems on our
test set.

6. DISCUSSION

We have shown that a discriminative model for music tran-
scription is viable and can be successful even when based
on a modest amount of training data. The proposed system

of classifying frames of audio with SVMs and temporally
smoothing the output with HMMs provides advantages in
both performance and simplicity when compared to previ-
ous approaches. Additionally, the systemmay be easily gener-
alized to learnmanymusical structures or trained specifically
for a given genre or composer. A classification-based system
for dominant melody transcription was recently shown to be
successful in [12] by Ellis and Poliner. As a result, we believe
that the discriminative model approach may be extended to
perform multiple instrument polyphonic transcription in a
data association framework.

We recognize that separating the classification and tem-
poral constraints is somewhat ad hoc. Recently, Taskar et
al. [16] suggested an approach to apply maximum-margin
classification in a Markov framework, but we expect that
solving the entire optimization problem would be imprac-
tical for the scope of our classification task. Furthermore, as
shown in Section 3, treating each frame independently does
not come at a significant cost to classification accuracy. Per-
haps the existing SVM framework may be improved by op-
timizing the discriminant function for detection, rather than
maximum-margin classification as proposed by Schölkopf
et al. [17].

A close examination of Figure 4 reveals that many of
the note-level classification errors are octave transpositions.
Although these incorrectly transcribed notes may have less
of a perceptual effect on resynthesis, there may be steps
we could take to reduce these errors. Perhaps more ad-
vanced training sample selection such as selecting members
of the same chroma class or frequently occurring harmon-
ically related notes (i.e., classes with the highest probabil-
ity of error) would be more valuable counter-examples on
which to train the classifier. In addition, rather than treat-
ing note state transitions independently, a more advanced
HMM observation could also reduce common octave er-
rors.

A potential solution to resolve the complex issue of off-
set estimation may be to include a hierarchical HMM struc-
ture that treats the piano pedals as hidden states. A similar
hierarchical structure could also be used to include contex-
tual clues such as local estimations of key or tempo. The
HMM system described in this paper is admittedly naive;
however, it provides a significant improvement in tempo-
ral smoothing and greatly reduces onset detection errors.
The inclusion of a formal onset detection stage could fur-
ther reduce note detection errors occurring at rearticula-
tions.

Although the discriminative model provides advantages
in performance and simplicity, perhaps the most impor-
tant result of this paper is that no formal acoustical prior
knowledge is required in order to perform transcription.
At the very least, the proposed system appears to provide a
front-end advantage over spectral-tracking approaches, and
may fit nicely into previously-presented temporal or in-
ferential frameworks. In order to facilitate future research
using classification-based approaches to transcription, we
have made the training and evaluation data available at
http://labrosa.ee.columbia.edu/projects/piano/.

http://labrosa.ee.columbia.edu/projects/piano/
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Table 5: MIDI compositions from http://www.piano-midi.de/.

Composer Training Testing Validation

Albéniz
España (Prélude†, Malagueña, Sereneta,

España (Tango), España
Zortzico) Suite Española (Granada,

Suite Española (Cuba) (Capricho Catalan)
Cataluña, Sevilla, Cádiz, Aragon, Castilla)

Bach BWV 850† BWV 847† BWV 846

Balakirew Islamej† — —

Beethoven
Appassionata 1–3, Moonlight (1, 3), Für Elise†Moonlight(2)

Pathetique(2)
Pathetique (1)†, Waldstein (1–3), Pathetique (3)†

Borodin
Petite Suite (In the monastery†, Intermezzo,

Petite Suite (Mazurka) Réverie
Mazurka, Serenade, Nocturne)

Brahms Fantasia (2†, 5), Rhapsodie Fantasia (6)† —

Burgmueller The pearls†, Thunderstorm The Fountain —

Chopin
Opus 7 (1†, 2), Opus 25 (4),

Opus 10 (1)†, Opus 28 (13) Opus 28 (3)
Opus 28 (2, 6, 10, 22), Opus 33(2, 4)

Debussy
Suite bergamasque

Menuet Clair de Lune
(Passepied†, Prélude)

Granados Danzas Españolas (Oriental†, Zarabanda) Danzas Españolas (Villanesca) —

Grieg Opus 12 (3), Opus 43 (4), Opus 71 (3)† Opus 65 (Wedding) Opus 54 (3)

Haydn Piano Sonata in G major 1† Piano Sonata in G major 2 † —

Liszt Grandes Etudes de Paganini (1†–5) Love Dreams (3) Grandes Etudes de Paganini (6)

Mendelssohn Opus 30 (1)†, Opus 62 (3,4) Opus 62 (5) Opus 53 (5)

Mozart KV 330 (1†–3), KV 333 (3) KV 333 (1)† KV 333 (2)

Mussorgsky Pictures at an Exhibition (1†, 3, 5–8) Pictures at an Exhibition (2,4) —

Schubert D 784 (1†,2), D 760 (1–3), D 960 (1,3) D 760 (4)† D 960(2)

Schumann Scenes from Childhood (1–3, 5, 6†) Scenes from Childhood (4) † Opus 1 (1)

Tchaikovsky
The Seasons (February, March,

The Seasons (January†, June) The Seasons (July)April†, May, August, September,

October, November, December)

† Denotes songs for which piano recordings were made.
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