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Abstract. The speed with which intelligent systems can react to an ac-
tion depends on how soon it can be recognized. The ability to recognize
ongoing actions is critical in many applications, for example, spotting
criminal activity. It is challenging, since decisions have to be made based
on partial videos of temporally incomplete action executions. In this pa-
per, we propose a novel discriminative multi-scale model for predicting
the action class from a partially observed video. The proposed model
captures temporal dynamics of human actions by explicitly considering
all the history of observed features as well as features in smaller tem-
poral segments. We develop a new learning formulation, which elegantly
captures the temporal evolution over time, and enforces the label consis-
tency between segments and corresponding partial videos. Experimental
results on two public datasets show that the proposed approach outper-
forms state-of-the-art action prediction methods.

Keywords: Action Prediction, Structured SVM, Sequential Data.

1 Introduction

Human action recognition [17,10,8,18] has been of great interest for the computer
vision community for many decades due to its practical importance, such as video
analysis and visual surveillance. A majority of action recognition approaches
focus on classifying the action after fully observing the entire video. However, in
many real-world scenarios (e.g. vehicle accident and criminal activity), intelligent
systems do not have the luxury of waiting for the entire video before having
to react to the action contained in it. For example, being able to predict a
dangerous driving situation before it occurs; opposed to recognizing it thereafter.
Unfortunately, most of the existing action recognition approaches are unsuitable
for such early classification tasks as they expect to see the entire set of action
dynamics extracted from a full video.

Different from action recognition, visual data arrives sequentially in action
prediction. Therefore, to achieve accurate prediction as early as possible, it is es-
sential to maximize the discriminative power of the beginning temporal segments
in an action video. In addition, accurate action prediction relies on effectively
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Fig. 1. Our method predicts action label given a partially observed video. Action
dynamics are captured by both local templates (solid rectangles) and global templates
(dashed rectangles).

utilizing useful history action information. As the action data are progressively
observed, the confidence of the partial history observations should also increase.

In this paper, we propose a novel multiple temporal scale support vector ma-
chine (MTSSVM) for the early recognition of unfinished actions. Our model
characterizes human actions at two different temporal granularities (Fig. 1) to
learn the evolution and dynamics of actions, and predicts action labels from
partially observed videos containing temporally incomplete action executions.
Local templates in the MTSSVM consider the sequential nature of human ac-
tions at the fine granularity. The discriminative power of the beginning temporal
segments are maximized by enforcing their label consistency. The temporal ar-
rangements of these local templates also implicitly capture temporal orderings
of inhomogeneous action segments.

We also build coarse global templates to capture the history action informa-
tion. The global templates summarize action evolutions at different temporal
lengths, from the start of the video to the current point in time. Our model uses
this information to learn how to differentiate between classes using all available
information. For example, for the action class “Push” the important feature is
that the “arm is up”, which can be used to distinguish it from the class “Kick”.
By learning a model for increasing amount of information, our model captures
the evolution of actions in each class.

We develop a new convex learning formulation based on the structured SVM
to consider the nature of the sequentially arriving action videos. This is achieved
by introducing new constraints into the learning formulation. We enforce the la-
bel consistency between segments and their corresponding full video to maximize
the discriminative power of the beginning temporal segments. In addition, we
introduce a principled monotonic score function for the global template. This
allows us to use the prior knowledge that informative action information is in-
creasing as the data arrive sequentially. We show in Section 3.3 that the objective
of the new learning formulation minimizes an upper bound of the empirical risk
of the training data.
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2 Related Work

Action Recognition: Human actions [17,26,15,3] have been popularly repre-
sented by a set of quantized local spatiotemporal features, known as bag-of-
words. Bag-of-words models have shown to be robust to background noise but
may not be expressive enough to describe actions in the presence of large ap-
pearance and pose variations. This problem has been addressed by introducing
human knowledge into models and using semantic descriptions or attributes to
characterize complex human actions [7,8,10]. In addition, recognizing human ac-
tions from a set of keyframes [12,22] and static images [25,24] have also been
investigated in previous studies. However, most of existing action recognition
methods were designed for recognizing complete actions, assuming the action in
each testing video has been fully executed. This makes these approaches unsuit-
able for predicting action labels in partial videos.

Another line of work captures temporal evolutions of appearance or pose
using sequential state models [11,23,20,19]. These approaches treat a video as a
composition of temporal segments. However, they do not model temporal action
evolution with respect to observation ratios. Therefore, they cannot characterize
partially observed actions and are unsuitable for prediction. In contrast, we
simulate the sequential data arrival in prediction and use large temporal scale
templates to capture action evolutions from the beginning of the video to the
current observed frame. Therefore, our model can recognize incomplete actions
at different observation ratios.

Action Prediction: Most of the existing work in action prediction aims at rec-
ognizing unfinished action videos. Ryoo [14] proposed the integral bag-of-words
(IBoW) and dynamic bag-of-words (DBoW) approaches for action prediction.
The action model of each progress level is computed by averaging features of a
particular progress level in the same category. However, the learned model may
not be representative if the action videos of the same class have large appearance
variations, and it is sensitive to outliers. To overcome these two problems, Cao
et al.[1] built action models by learning feature bases using sparse coding and
used the reconstruction error in the likelihood computation. Li et al.[9] explored
long-duration action prediction problem. However, their work detects segments
by motion velocity peaks, which may not be applicable on complex outdoor
datasets. Compared with [1,9,14], our model incorporates an important prior
knowledge that informative action information is increasing when new obser-
vations are available. However, their methods have not taken advantage of this
prior. In addition, our method models label consistency of segments, which is not
presented in their methods. The label consistency provides discriminative local
information and implicitly captures context information, which is beneficial for
the prediction task. Moreover, we capture action dynamics in both global and
local temporal scales while [1,14] capture dynamics in one single scale.

Additionally, an early event detector [4] was proposed to localize the starting
and ending frames of an incomplete event, which is different from our goal.
Activity forecasting, which aims at reasoning about the preferred path for people
given a destination in a scene, has been investigated in [6].
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Fig. 2. Example of video segments x(k), partial video x(1,k), feature representations
g(x(1,k), l) of segments (l = 1, · · · , k), and the representation of the partial video
g(x(1,k), 1 : k)

3 Our Method

The aim of this work is to predict the action class y of a partially observed
action video x[1, t] before the action ends. Here 1 and t in x[1, t] indicate the
indices of the starting frame and the last observed frame of the partial video
x[1, t], respectively. Index t ranges from 1 to length T of a full video x[1, T ]:
t ∈ {1, · · · , T }, to generate different partial videos. An action video is usually
composed of a set of inhomogeneous temporal units, which are called segments.
In this work, we uniformly divide a full video x[1, T ] intoK segments x[ T

K
·(l−1)+

1, T
K
· l], where l = 1, · · · ,K is the index of segment. The length of each segment

is T
K
. Note that for different videos, their lengths T may be different. Therefore,

the length of segments of various videos may be different. For simplicity, let x(k)

be the k-th segment x[ T
K

· (k− 1)+ 1, T
K

· k] and x(1,k) be the partially observed

sequence x[1, T
K

· k] (see Fig. 2). The progress level k of a partially observed
video is defined as the number of observed segments that the video has. The
observation ratio is the ratio of the number of frames in a partially observed
video x[1, t] to the number of frames in the full video x[1, T ], which is t

T
. For

example, if T = 100, t = 30 and K = 10, then the progress level of the partially
observed video x[1, t] is 3 and its observation ratio is 0.3.

3.1 Action Representations

We use the bag-of-words models to represent segments and partial videos. The
procedure of learning the visual word dictionary for action videos is as follows.
Spatiotemporal interest points detector [3] and tracklet [13] are employed to ex-
tract interest points and trajectories from a video, respectively. The dictionaries
of visual words are learned by clustering algorithms.

We denote the feature of the partial video x(1,k) at progress level k by
g(x(1,k), 1 : k), which is the histogram of visual words contained in the entire
partial video, starting from the first segment to the k-th segment (Fig. 2). The
representation of the l-th (l ∈ {1, · · · , k}) segment x(l) in the partial video is
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denoted by g(x(1,k), l), which is a histogram of visual words whose temporal
locations are within the l-th segment.

3.2 Model Formulation

Let D = {xi, yi}
N
i=1 be the training data, where xi is the i-th fully observed

action video and yi is the corresponding action label. The problem of action
prediction is to learn a function f : X → Y, which maps a partially observed
video x(1,k) ∈ X to an action label y ∈ Y (k ∈ {1, · · · ,K}).

We formulate the action prediction problem using the structured learning as
presented in [21]. Instead of searching for f , we aim at learning a discriminant
function F : X ×Y → R to score each training sample (x, y). The score measures
the compatibility between a video x and an action label y. Note that, in action
prediction, videos of different observation ratios from the same class should be
classified as the same action category. Therefore, we use the function F to score
the compatibility between the videos of different observation ratios x(1,k) and
the action label y, where k ∈ {1, · · · ,K} is the progress level.

We are interested in a linear function F (x(1,k), y;w) = 〈w,Φ(x(1,k), y)〉, which
is a family of functions parameterized by w, and Φ(x(1,k), y) is a joint feature
map that represents the spatio-temporal features of action label y given a partial
video x(1,k). Once the optimal model parameter w∗ is learned, the prediction of
the action label y∗ is computed by

y∗ = argmax
y∈Y

F (x(1,k), y;w
∗) = argmax

y∈Y

〈w∗,Φ(x(1,k), y)〉. (1)

We define wTΦ(x(1,k), y) as a summation of the following two components:

wTΦ(x(1,k), y) = αT
k ψ1(x(1,k), y) +

K
∑

l=1

[

1(l � k) · βT
l ψ2(x(1,k), y)

]

, (2)

wherew = {α1, · · ·αK , β1, · · · , βK} is model parameter, k is the progress level of
the partial video x(1,k), l is the index of progress levels, and 1(·) is the indicator
function. The two components in Eq.(2) are summarized as follows.

Global Progress Model (GPM). αT
k ψ1(x(1,k), y) indicates how likely the

action class of an unfinished action video x(1,k) (at progress level k) is y. We
define GPM as

αT
k ψ1(x(1,k), y) =

∑

a∈Y

αT
k 1(y = a)g(x(1,k), 1 : k). (3)

Here, feature vector g(x(1,k), 1:k) of dimensionalityD is an action representation
for the partial video x(1,k), where features are extracted from the entire partial
video, from its beginning (i.e., progress level 1) to its current progress level k.
Parameter αk of sizeD×|Y| can be regarded as a progress level-specific template.
Since the partial video is at progress level k, we select the template αk at the same
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progress level, from K parameter matrices {α1, · · · , αK}. The selected template
αk is used to score the unfinished video x(1,k). Define A = [α1, · · · , αK ] as a
vector of all the parameter matrices in the GPM. Then A is a vector of size
D×K × |Y| encoding the weights for the configurations between progress levels
and action labels, with their corresponding video evidence.

The GPM simulates the sequential segment-by-segment data arrival for train-
ing action videos. Essentially, the GPM captures the action appearance changes
as the progress level increases, and characterizes the entire action evolution over
time. In contrast to the IBoW model [14], our GPM does not assume any distri-
butions on the data likelihood; while the IBoW model uses the Gaussian distri-
bution. In addition, the compatibility between observation and action label in
our model is given by the linear model of parameter and feature function, rather
than using a Gaussian kernel function [14].

Local Progress Model (LPM). 1(l� k) · βT
l ψ2(x(1,k), y) indicates how likely

the action classes of all the temporal segments x(l) (l = 1, · · · , k) in an unfinished
video x(1,k) are all y. Here, the progress level of the partial video is k and we
consider all the segments of the video whose temporal locations l are smaller
than k. We define LPM as

βT
l ψ2(x(1,k), y) =

∑

a∈Y

βT
l 1(y = a)g(x(1,k), l), (4)

where feature vector g(x(1,k), l) of dimensionality D extracts features from the l-
th segment of the unfinished video x(1,k). βl of size D× |Y| is the weight matrix
for the l-th segment. We use the indicator function 1(l � k) to select all the
segment weight matrices, β1, · · · , βk, whose temporal locations are smaller than
or equal to the progress level k of the video. Then the selected weight matrices
are used to score the corresponding segments. Let B = [β1, · · · , βK ] be a vector
of all the parameters in the LPM. Then B is a vector of size D×K×|Y| encoding
the weights for the configurations between segments and action labels, with their
corresponding segment evidence.

The LPM considers the sequential nature of a video. The model decomposes
a video of progress level k into segments and describes the temporal dynamics of
segments. Note that the action data preserve the temporal relationship between
the segments. Therefore, the discriminative power of segment x(k) is critical to
the prediction of x(1,k) given the prediction results of x(1,k−1). In this work, the
segment score βT

k g(x(1,k), k) measures the compatibility between the segment
x(k) and all the classes. To maximize the discriminability of the segment, the
score difference between the ground-truth class and all the other classes is max-
imized in our learning formulation. Thus, accurate prediction can be achieved
using the newly-introduced discriminative information in the segment x(k).

3.3 Structured Learning Formulation

The MTSSVM is formulated based on the structured SVM [21,5]. The optimal
model parameter w∗ of MTSSVM in Eq.(1) is learned by solving the following
convex problem given training data {xi, yi}

N
i=1:
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Fig. 3. Graphical illustration of the temporal action evolution over time and the label
consistency of segments. Blue solid rectangles are LPMs, and purple and red dashed
rectangles are GPMs.

min
1

2
‖w‖2 +

C

N

N
∑

i=1

(ξ1i + ξ2i + ξ3i) (5)

s.t. wTΦ(xi(1,k), yi) � wTΦ(xi(1,k), y) +Kδ(y, yi)−
ξ1i

u(k/K)
, ∀i, ∀k, ∀y, (6)

αT
k ψ1(xi(1,k), yi) � αT

k−1ψ1(xi(1,k−1), y) +Kδ(y, yi)−
ξ2i

u(k/K)
,

∀i, k = 2, · · · ,K, ∀y, (7)

βT
k ψ2(xi(k), yi) � βT

k ψ2(xi(k), y) + kKδ(y, yi)−
ξ3i

u(1/K)
, ∀i, ∀k, ∀y, (8)

where C is the slack trade-off parameter similar to that in SVM. ξ1i, ξ2i and ξ3i
are slack variables. u(·) is a scaling factor function: u(p) = p. δ(y, yi) is the 0-1
loss function.

The slack variables ξ1i and the Constraint (6) are usually used in SVM con-
straints on the class labels. We enforce this constraint for all the progress levels
k since we are interested in learning a classifier that can correctly recognize par-
tially observed videos with different progress levels k. Therefore, we simulate
the segment-by-segment data arrival for training and augment the training data
with partial videos of different progress levels. The loss function δ(y, yi) mea-
sures the recognition error of a partial video and the scaling factor u( k

K
) scales

the loss based on the length of the partial video.
Constraint (7) considers temporal action evolution over time (Fig. 3).

We assume that the score αTψ1(xi(1,k), yi) of the partial observation xi(1,k)

at progress level k and ground truth label yi must be greater than the score
αTψ1(xi(1,k−1), y) of a previous observation xi(1,k−1) at progress level k− 1 and
all incorrect labels y. This provides a monotonically increasing score function for
partial observations and elaborately characterizes the nature of sequentially ar-
riving action data in action prediction. The slack variable ξ2i allows us to model
outliers.
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The slack variables ξ3i and the Constraint (8) are used to maximize the dis-
criminability of segments x(k). We encourage the label consistency between
segments and the corresponding full video due to the nature of sequential data
in action prediction (Fig. 3). Assume a partial video x(1,k−1) has been correctly
recognized, then the segment x(k) is the only newly-introduced information and
its discriminative power is the key to recognizing the video x(1,k). Moreover,
context information of segments is implicitly captured by enforcing the label
consistency. It is possible that some segments from different classes are visually
similar and may not be linearly separable. We use the slack variable ξ3i for each
video to allow some segments of a video to be treated as outliers.

Empirical Risk Minimization: We define ∆(yi, y) as the function that quan-
tifies the loss for a prediction y, if the ground-truth is yi. Therefore, the loss of
a classifier f(·) for action prediction on a video-label pair (xi, yi) can be quan-
tified as ∆(yi, f(xi)). Usually, the performance of f(·) is given by the empirical

risk Remp(f) =
1
N

∑N
i=1 ∆(yi, f(xi)) on the training data (xi, yi), assuming data

samples are generated i.i.d.
The nature of continual evaluation in action prediction requires aggregating the

values of loss quantities computed during the action sequence process. Define the
loss associated with a prediction y = f(xi(1,k)) for an action xi at progress level

k as ∆(yi, y)u(
k
K
). Here ∆(yi, y) denotes the misclassification error, and u( k

K
) is

the scaling factor that depends on howmany segments have been observed. In this
work,we use summation to aggregate the loss quantities. This leads to an empirical
risk for N training samples: Remp(f) =

1
N

∑N

i=1

∑K

k=1

{

∆(yi, y)u(
k
K
)
}

.
Denote by ξ∗1 , ξ

∗
2 and ξ∗3 the optimal solutions of the slack variables in Eq. (5-8)

for a given classifier f , we can prove that 1
N

∑N

i=1(ξ
∗
1i+ξ∗2i+ξ∗3i) is an upper bound

on the empirical risk Remp(f) and the learning formulation given in Eq. (5-8)
minimizes the upper bound of the empirical risk Remp(f)

1.

3.4 Discussion

We highlight here some important properties of our model, and show some dif-
ferences from existing methods.

Multiple Temporal Scales. Our method captures action dynamics in both
local and global temporal scales, while [1,4,14] only use a single temporal scale.

Temporal Evolution over Time. Our work uses the prior knowledge of tem-
poral action evolution over time. Inspired by [4], we introduce a principled mono-
tonic score function for the GPM to capture this prior knowledge. However, [4]
aims at finding the starting frame of an event while our goal is to predict action
class of an unfinished video. The methods in [1,14,9] do not use this prior.

Segment Label Consistency. We effectively utilize the discriminative power
of local temporal segments by enforcing label consistency of segments. However,
[1,14,9,4] do not consider the label consistency. The consistency also implicitly

1 Please refer to the supplemental material for details.
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models temporal segment context by enforcing the same label for segments while
[1,14,4] explicitly treat successive temporal segments independently.

Principled Empirical Risk Minimization. We propose a principled empir-
ical risk minimization formulation for action prediction, which is not discussed
in [1,14,9].

3.5 Model Learning and Testing

Learning.We solve the optimization problem (5-8) using the regularized bundle
algorithm [2]. The basic idea of the algorithm is to iteratively approximate the
objective function by adding a new cutting plane to the piecewise quadratic
approximation.

The equivalent unconstrained problem of the optimization problem (5-8) is

minw
1
2‖w‖2 + C

N
· L(w), where L(w) =

∑N

i=1(Ui + Zi + Vi) is the empirical
loss. Here, Ui, Zi and Vi are given by

Ui =

K
∑

k=1

u(
k

K
)max

y

[

Kδ(y, yi) +wTΦ(xi(1,k), y)−wTΦ(xi(1,k), yi)
]

, (9)

Zi =
K
∑

k=2

u(
k

K
)max

y

[

Kδ(y, yi) + αT
k−1ψ1(xi(1,k−1), y)− αT

k ψ1(xi(1,k), yi)
]

,

(10)

Vi =
K
∑

k=1

u(
1

K
)max

y

[

kKδ(y, yi) + βT
k ψ2(xi(k), y)− βT

k ψ2(xi(k), yi)
]

. (11)

The regularized bundle algorithm requires the subgradient of the training loss
with respect to the parameter, ∂L

∂w
=

∑N

i=1(
∂Ui

∂w
+ ∂Zi

∂w
+ ∂Vi

∂w
), in order to find a

new cutting plane to be added to the approximation2.

Testing. Given an unfinished action video with progress level k (k is known in
testing), our goal is to infer the class label y∗ using the learned model param-
eter w∗: y∗ = argmaxy∈Y〈w

∗,Φ(x(1,k), y)〉. Note that testing phase does not
require sophisticated inference algorithms such as belief propagation or graph
cut since we do not explicitly capture segment interactions. However, the context
information between segments is implicitly captured in our model by the label
consistency in Constraint (8).

4 Experiments

We test the proposed MTSSVM approach on three datasets: the UT-Interaction
dataset (UTI) Set 1 (UTI #1) and Set 2 (UTI #2) [16], and the BIT-Interaction
dataset (BIT) [7]. UTI #1 were taken on a parking lot with mostly static back-
ground and little camera jitters. UTI #2 were captured on a lawn with slight

2 Please refer to the supplemental material for details.
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(a) UTI #1 dataset.
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(b) UTI #2 dataset.
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(c) BIT dataset.

Fig. 4. Prediction results on the UTI #1, UTI #2 and BIT dataset

background movements (e.g. tree moves) and camera jitters. Both of the two
sets consist of six types of human actions, with ten videos per class. We adopt
the leave-one-out training scheme on the two datasets. The BIT dataset con-
sists of eight types of human actions between two people, with fifty videos per
class. For this dataset, a random sample of 272 videos is chosen as training sam-
ples, and the remaining 128 videos are used for testing. The dictionary size for
interest point descriptors is set to 500, and the size for tracklet descriptors is
automatically determined by the clustering method in all the experiments.

MTSSVM is evaluated for classifying videos of incomplete action executions
using 10 observation ratios, from 0.1 to 1, representing the increasing amount
of sequential data with time. For example, if a full video containing T frames
is used for testing at the observation ratio of 0.3, the accuracy of MTSSVM is
evaluated by presenting it with the first 0.3 × T frames. At observation ratio
of 1, the entire video is used, at which point MTSSVM acts as a conventional
action recognition model. The progress level k of testing videos is known to all
the methods in our experiments.

4.1 Results

UTI #1 and UTI #2 Datasets. The MTSSVM is compared with DBoW and
IBoW in [14], the MMED [4], the MSSC and the SC in [1], and the method
in [12]. The KNN-nonDynamic, the KNN-Dynamic, and the baseline method
implemented in [1] are also used in comparison. The same experiment settings
in [1] are followed in our experiments.

Fig. 4(a) shows the prediction results on the UTI #1 dataset. Our MTSSVM
achieves better performance over all the other comparison approaches. Our
method outperforms the MSSC method because we not only model segment dy-
namics but also characterize temporal evolutions of actions. Our method can
achieve an impressive 78.33% recognition accuracy when only the first 50%
frames of testing videos are observed. This result is even higher than the SC
method with full observations. Results of our method are significantly higher
than the DBoW and IBoW for all observation ratios. This is mainly due to the
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Table 1. Prediction results compared with [12] on half and full videos

Observation ratio Accuracy with half videos Accuracy with full videos

Raptis and Sigal [12] 73.3% 93.3%
Our model 78.33% 95%

fact that the action models in our work are discriminatively learned while the
action models in the DBoW and IBoW are computed by averaging feature vec-
tors in a particular class. Therefore, the action models in the DBoW and IBoW
may not be the representative models and are sensitive to outliers. MMED does
not perform well as other prediction approaches since it is optimized for early
detection of the starting and ending frame of an action. This is a different goal
from this paper, which is to classify unfinished actions. We also compare with
[12] on half and full video observations. Results in Table 1 show that our method
achieves better performance over [12].

Comparison results on the UTI #2 datasets are shown in Fig. 4(b). The
MTSSVM achieves better performance over all the other comparison approaches
in all the cases. At 0.3, 0.5 and 1 observation ratios, MSSC achieves 48.33%,
71.67%, and 81.67% prediction accuracy, respectively, and SC achieves 50%,
66.67%, and 80% accuracy, respectively. By contrast, our MTSSVM achieves
60%, 75% and 83.33% prediction results, respectively, which is consistently
higher than MSSC and SC. Our MTSSVM achieves 75% accuracy when only
the first 50% frames of testing videos are observed. This accuracy is even higher
than the DBoW and IBoW with full observations.

To demonstrate that both the global progress model (GPM) and the local
progress model (LPM) are important for action prediction, we compare the per-
formance of MTSSVM with the model that only uses one of the two sources of
information on the UTI #1 dataset. Fig. 5 shows the scores of the GPM and
LPM (αT

k ψ1(x(1,k), y) of the GPM and
∑K

l=1 1(l � k) · βT
l ψ2(x(1,k), y) of the

LPM), and compare them to the scores of the full MTSSVM model with respect
to the observation ratio. Results show that the LPM captures discriminative
temporal segments for prediction. LPM characterizes temporal dynamics of seg-
ments and discriminatively learns to differentiate segments from different classes.
In most cases, the score of LPM is monotonically increasing, which indicates a
discriminative temporal segment is used for prediction. However, in some cases,
segments from different classes are visually similar and thus are difficult to dis-
criminate. Therefore, in the middle of the “handshake” class and the “hug” class
in Fig. 5 (observation ratio from 0.3 to 0.7), adding more segment observations
does not increase LPM’s contribution to MTSSVM. Fig. 6 shows examples of
visually similar segments of the two classes at k = 6. However, when such sit-
uations arise, GPM can provide necessary appearance history information and
therefore increases the prediction performance of MTSSVM.
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Fig. 5. Contributions of the global progress model and the local progress model to the
prediction task

k=10k=4 k=6 k=8

Hug

Handshake

k=2

Fig. 6. Examples of segments in “handshake” and “hug”. Segments k = 6, 8, 10 in the
two classes are visually similar.

BIT-Interaction Dataset. We also compare MTSSVM with the MSSC, SC,
DBoW and IBoW on the BIT-Interaction dataset. A BoW+SVM method is
used as a baseline. The parameter σ in DBoW and IBoW is set to 36 and 2,
respectively, which are the optimal parameters on the BIT-Interaction dataset.
Results shown in Fig. 4(c) demonstrate that MTSSVM outperforms MSSC and
SC in all cases due to the effect of the global progress model, which effectively
captures temporal action evolution information. MTSSVM also outperforms the
DBoW and IBoW. Our method achieves 60.16% recognition accuracy with only
the first 50% frames of testing videos are observed, which is better than the
DBoW and IBoW at all observation ratios. Note that the performance of DBoW
and IBoW do not increase much when the observation ratios are increased from
0.6 to 0.9. The IBoW performs even worse. This is due to the fact that some
video segments from different classes are visually similar; especially the segments
in the second half of the videos, where people return to their starting positions
(see Fig. 7). However, because MTSSVM models both the segments and the
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k=2 k=4 k=6 k=8 k=10

Pushing

Boxing

Fig. 7. Examples of visually similar segments in the “boxing” action (Top) and the
“pushing” action (Bottom) with segment index k ∈ {2, 4, 6, 8, 10}. Bounding boxes
indicate the interest regions of actions

entire observation, its performance increases with the increasing of observation
ratio even if the newly introduced segments contain only a small amount of
discriminative information.

We further investigate the sensitivity of MTSSVM to the parameters C in
Eq. (5). We set C to 0.5, 5, and 10, and test MTSSVM on all parameter combi-
nations with observation ratios 0.3, 0.5, and 0.8. Results in Table 2 indicate that
MTSSVM is not sensitive to the parameters when the observation ratio is low
but the sensitivity increases when the observation ratio becomes large. In the
beginning of a video, the small number of features available does not capture the
variability of their class. Therefore, it does not help to use different parameters,
because MTSSVM cannot learn the appropriate class boundaries to separate
all the testing data. As observation ratio increases, the features become more
expressive. However, since structural features in MTSSVM are very complex,
appropriate parameters are required to capture the complexity of data.

Table 2. Recognition accuracy of our model on videos of observation ratio 0.3, 0.5,
and 0.8 with different C parameters

Observation ratio C=0.5 C=5 C=10

0.3 42.97% 39.84% 38.28%
0.5 54.69% 57.03% 51.56%
0.8 66.41% 61.72% 55.47%

Finally, we also evaluate the importance of each component in the MTSSVM,
including the Constraint (7), the Constraint (8), the local progress model (LPM
in Eq. (4)) and the global progress model (GPM in Eq. (3)). We remove each of
these components from the MTSSVM, and obtain four variant models, the no-
cons2 model (remove the Constraint (7) from MTSSVM), the no-cons3 model
(remove the Constraint (8)), the no-LPM model (remove the LPM and Con-
straint (8)), and the no-GPM model (remove the GPM and Constraint (7)).
We compare MTSSVM with these variants with parameter C of 1 and 100.
Results in Fig. 8 show that the GPM is the key component in the MTSSVM.
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(a) Parameter C = 1
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(b) Parameter C = 100

Fig. 8. Prediction results of each component in the full MTSSVM with C parameter
1 and 100

Without the GPM, the performance of the no-GPM model degrades significantly
compared with the full MTSSVM model, especially with parameter C of 100.
The performances of the no-cons3 model and the no-LPM model are worse com-
pared with the full method in all cases. This is due to the lack of the segment
label consistency in the two models. The label consistency can help use the
discriminative information in segments and also implicitly model context infor-
mation. In the ending part of videos in BIT dataset, since most of observations
are visually similar (people return back to their normal position), label consis-
tency is of great importance for discriminating classes. However, due to the lack
of label consistency in the the no-cons3 model and the no-LPM model, they
cannot capture useful information for differentiating action classes.

5 Conclusion

We have proposed the multiple temporal scale support vector machine
(MTSSVM) for recognizing actions in incomplete videos. MTSSVM captures
the entire action evolution over time and also considers the temporal nature of
a video. We formulate the action prediction task as a structured SVM learning
problem. The discriminability of segments is enforced in the learning formulation.
Experiments on two datasets show that MTSSVM outperforms state-of-the-art
approaches.
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