A Discriminatively Trained, Multiscale, Deformable Part Model

P. Felzenszwalb, D. McAllester, and D. Ramanan

Edward Hsiao

16-721 Learning Based Methods in Vision February 16, 2009

Overview

- Split detection window into 8x8 non-overlapping pixel regions called cells
- Compute 1D histogram of gradients in each cell and discretize into 9 orientation bins
- Normalize histogram of each cell with the total energy in the four 2x2 blocks that contain that cell -> 9x4 feature vector
- Apply a linear SVM classifier

Feature vector f = [...,..., ,...]

9 orientation bins 0 - 180° degrees

Feature vector f = [...,..., ,...]

9 orientation bins 0 - 180° degrees

Feature vector f = [...,..., ,...]

9 orientation bins 0 - 180° degrees

Feature vector f = [...,..., ,...]

9 orientation bins 0 - 180° degrees

SVM Review

$$c_i(w \cdot x_i) \ge 1$$

minimize $\frac{1}{2} \|w\|^2$ subject to $c_i(w \cdot x_i) \ge 1$

Hinge Loss

$$\max(0, 1 - c_i(w \cdot x_i))$$

$$1 - c_i(w \cdot x_i) > 0$$

if incorrectly classified or inside margin

$$\arg\min_{w} \lambda ||w||^{2} + \sum_{i=1}^{n} \max(0, 1 - c_{i}(w \cdot x_{i}))$$

HOG & Linear SVM

Negative components

Average Gradients

person

car

motorbike

Deformable Part Models

Root filter 8x8 resolution

Deformable Part Models

Root filter 8x8 resolution

Part filter 4x4 resolution

Quadratic spatial model

$$a_{x,i}x_i + a_{y,i}y_i + b_{x,i}x_i^2 + b_{y,i}y_i^2$$

HOG Pyramid

 $\phi(H,p)$ concatenation of HOG features in a subwindow of the HOG pyramid H at position p = (x,y,l)

Deformable Part Models

Root filter F₀

Part filters $P_1 ... P_n$ $P_i = (F_i, v_i, s_i, a_i, b_i)$

score =
$$\sum_{i=0}^{n} F_i \cdot \phi(H, p_i) + \sum_{i=1}^{n} a_i \cdot (\tilde{x}_i, \tilde{y}_i) + b_i \cdot (\tilde{x}_i^2, \tilde{y}_i^2)$$
filter response part placement

Part Models

root filter

$$P_i = (F_i, v_i, s_i, a_i, b_i)$$

Quadratic spatial model

$$a_{x,i}x_{i} + a_{y,i}y_{i} + b_{x,i}x_{i}^{2} + b_{y,i}y_{i}^{2}$$

$$b_{i} \ge 0$$

Star Graph / 1-fan

part filter positions

Distance Transforms

$$\begin{array}{ll} \text{part anchor} & \text{part position} \\ \downarrow & \downarrow \\ \mathcal{D}_f(p) = \min_{q \in \mathcal{G}} (d(p,q) + f(q)) \\ & \text{quadratic distance} & \text{filter response} \\ & \text{specified by a}_i \text{ and b}_i \end{array}$$

Quadratic 1-D Distance Transform

$$\mathcal{D}_f(p) = \min_{q \in \mathcal{G}} ((p-q)^2 + f(q))$$

Quadratic 1-D Distance Transform

$$\mathcal{D}_f(p) = \min_{q \in \mathcal{G}} ((p - q)^2 + f(q))$$

Quadratic 1-D Distance Transform

$$\mathcal{D}_f(p) = \min_{q \in \mathcal{G}} ((p-q)^2 + f(q))$$

Distance Transforms in 2-D

Latent SVM

$$f_w(x) = w \cdot \Phi(x)$$

$$w = F_0$$

$$\Phi(x) = \phi(H(x), p_0)$$

$$w^* = \arg\min_{w} \lambda ||w||^2 + \sum_{i=1}^n \max(0, 1 - y_i f_w(x_i))$$

Deformable Parts & Latent SVM

$$f_{w}(x) = \max_{z \in Z(x)} w \cdot \Phi(x, z)$$

$$w = (F_{0}, ..., F_{n}, a_{1}, b_{1}, ..., a_{n}, b_{n})$$

$$\Phi(x, z) = (\phi(H(x), p_{0}), \phi(H(x), p_{1}), ..., \phi(H(x), p_{n}),$$

$$\tilde{x}_{1}, \tilde{y}_{1}, \tilde{x}_{1}^{2}, \tilde{y}_{1}^{2}, ..., \tilde{x}_{n}, \tilde{y}_{n}, \tilde{x}_{n}^{2}, \tilde{y}_{n}^{2})$$

$$w^* = \arg\min_{w} \lambda ||w||^2 + \sum_{i=1}^n \max(0, 1 - y_i f_w(x_i))$$

Semi-convexity

$$f_w(x) = \max_{z \in Z(x)} w \cdot \Phi(x, z)$$
 convex in w

$$w^* = \arg\min_{w} \lambda ||w||^2 + \sum_{i \in pos} \max(0, 1 - f_w(x_i)) + \sum_{i \in neg} \max(0, 1 + f_w(x_i))$$

- •If $f_w(x)$ is linear in w, this is a standard SVM (convex)
- •If $f_w(x)$ is arbitrary, this is in general not convex
- •If $f_w(x)$ is convex in w, the hinge loss is convex for negative examples (semi-convex)
 - hinge loss is convex in w if positive examples are restricted to single choice of Z(x)

$$\hat{w} = \arg\min_{w} \lambda \|w\|^{2} + \sum_{i \in pos} \max(0, 1 - w \cdot \Phi(x_{i}, z_{i})) + \sum_{i \in neg} \max(0, 1 + f_{w}(x_{i}))$$
 convex

Optimization is now convex!

Coordinate Descent

1. Hold w fixed, and optimize the latent values for the positive examples

$$z_i = \underset{z \in Z(x_i)}{\operatorname{arg\,max}} \, w \cdot \Phi(x, z)$$

2. Hold {z_i} fixed for positive examples, optimize w by solving the convex problem

$$\hat{w} = \arg\min_{w} \lambda \|w\|^2 + \sum_{i \in pos} \max(0, 1 - w \cdot \Phi(x_i, z_i)) + \sum_{i \in neg} \max(0, 1 + f_w(x_i))$$

positive examples negative examples

positive examples negative examples

HOG Space

- positive examples
- negative examples

HOG Space

- positive examples
- negative examples

HOG Space

- positive examples
- negative examples

HOG Space

- positive examples
- negative examples

positive examples negative examples

Model Learning Algorithm

- Initialize root filter
- Update root filter
- Initialize parts
- Update model

Root Filter Initialization

- Select aspect ratio and size by using a heuristic
 - model aspect is the mode of data
 - model size is largest size > 80% of the data
- Train initial root filter F₀ using an SVM with no latent variables
 - positive examples anisotropically scaled to aspect and size of filter
 - random negative examples

Root Filter Update

- Find best scoring placement of root filter that significantly overlaps the bounding box
- Retrain F₀ with new positive set

Part Initialization

- Greedily select regions in root filter with most energy
- Part filter initialized to subwindow at twice the resolution
- Quadratic deformation cost initialized to weak Gaussian

Model Update

- Positive examples highest scoring placement with > 50% overlap with bounding box
- Negative examples high scoring detections with no target object (add as many as can fit in memory)
- Train a new model using SVM
- Keep only hard examples and add more negative examples
- Iterate 10 times

positive example

hard negative example

Results - PASCAL07 - Person

0.9519

0.8720

0.8298

0.7536

0.7186

0.6865

Results – PASCAL07 - Bicycle

2.1014

1.8149

1.6054

1.4806

1.4282

1.3662

1.3189

Results - PASCAL07 - Car

1.5663

1.2594

1.1390

1.1035

1.0645

1.0623

1.0525

Results – PASCAL07 - Horse

-0.3007

-0.3946

-0.4138

-0.4254

-0.4573

-0.5014

-0.5106

-0.5499

Results - Person

Superhuman

2.56!

Gradient Domain Editing

Generating a "person"

9 orientation bins

18 orientation bins for positive and negative

Generating a "person"

initial orientation bin assignments

 g_{x}

 $g_{\boldsymbol{y}}$

initial "person"

Simulated Annealing

$$P = \exp\left[-\frac{(c_{new} - c_{current})}{T}\right]$$

T is initially high and decreases with number of iterations

Person

Score: 2.56 Score: 0.96

Generated Images

Car

Score: 3.14

Score: 1.57

Horse

Score: 0.84

Score: -0.30

Generated Images

Bicycle

Score: 2.63

Score: 2.18

Score: 0.80 Score: -0.71

Gradient Erasing

Original Score: 0.83

Erased Score: 2.78

Difference image

Gradient Erasing

Original Score: -0.76

Erased Score: 0.26

Difference image

Gradient Addition

Score: 0.83

Score: 3.03

Gradient Addition

Score: 2.15

Discriminatively Trained Mixtures of Deformable Part Models

P. Felzenszwalb, D. McAllester, and D. Ramanan

2 component bicycle model

http://www.cs.uchicago.edu/~pff/latent

Questions?

Thank You