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Overview



Histogram of Oriented Gradients (HOG)

• Split detection window into 8x8 

non-overlapping pixel regions 

called cells

• Compute 1D histogram of 

gradients in each cell and 

discretize into 9 orientation 

bins

• Normalize histogram of each 

cell with the total energy in the 

four 2x2 blocks that contain 

that cell -> 9x4 feature vector

• Apply a linear SVM classifier
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SVM Review
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Hinge Loss
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HOG & Linear SVM

not pedestrian

pedestrian

0<⋅ fw

0>⋅ fw

HOG space



Histogram of Oriented Gradients (HOG)

Test image HOG descriptor

Positive components

Negative components

w+

w-



Average Gradients

person car motorbike



Deformable Part Models

Root filter

8x8 resolution



Deformable Part Models

Root filter

8x8 resolution

Part filter

4x4 resolution

Quadratic 

spatial model
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HOG Pyramid

),( pHφ concatenation of HOG features in a subwindow of the HOG 

pyramid H at position p = (x,y,l)



Deformable Part Models

Root filter F0 Part filters P1 …Pn
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score = 

filter response part placement



Part Models
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Star Graph / 1-fan

root filter

position

part filter

positions



Distance Transforms

quadratic distance 

specified by ai and bi

filter response

part anchor 

location part position



Quadratic 1-D Distance Transform



Quadratic 1-D Distance Transform



Quadratic 1-D Distance Transform



Distance Transforms in 2-D

input column 

distance transform

full

distance transform



Latent SVM

HOG & Linear SVM
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Semi-convexity

convex in w
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•If fw(x) is linear in w, this is a standard SVM (convex)

•If fw(x) is arbitrary, this is in general not convex

•If fw(x) is convex in w, the hinge loss is convex for negative examples (semi-convex)

- hinge loss is convex in w if positive examples are restricted to single choice of Z(x)
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Optimization is now convex!



Coordinate Descent

1. Hold w fixed, and optimize the latent 

values for the positive examples

2. Hold {zi} fixed for positive examples, 

optimize w by solving the convex problem
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Data Mining Hard Negatives

positive examples

negative examples

HOG Space
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Data Mining Hard Negatives
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Model Learning Algorithm

• Initialize root filter

• Update root filter

• Initialize parts

• Update model



Root Filter Initialization

• Select aspect ratio and size by 
using a heuristic
- model aspect is the mode of data

- model size is largest size > 80% of the data

• Train initial root filter F0 using 
an SVM with no latent 
variables
- positive examples anisotropically scaled to 
aspect and size of filter

- random negative examples



Root Filter Update

• Find best scoring placement of root filter that 

significantly overlaps the bounding box

• Retrain F0 with new positive set



Part Initialization

• Greedily select regions in root filter with most energy

• Part filter initialized to subwindow at twice the resolution

• Quadratic deformation cost initialized to weak Gaussian



Model Update

• Positive examples – highest scoring 

placement with > 50% overlap with 

bounding box

• Negative examples – high scoring 

detections with no target object (add 

as many as can fit in memory)

• Train a new model using SVM

• Keep only hard examples and add 

more negative examples

• Iterate 10 times

positive example

hard negative example



Results – PASCAL07 - Person

0.9562 0.87200.9519 0.8298

0.7723 0.7536 0.7186 0.6865



Results – PASCAL07 - Bicycle

1.4806 1.4282 1.3662 1.3189

2.1838 1.81492.1014 1.6054



Results – PASCAL07 - Car

1.1035 1.0645 1.0623 1.0525

1.5663 1.25941.3875 1.1390



Results – PASCAL07 - Horse

-0.4573 -0.5014 -0.5106 -0.5499

-0.3007 -0.4138-0.3946 -0.4254



Results - Person

-1.1999 -0.7230 -0.0189 0.1432 0.3267

So do more realistic images give higher scores?



Superhuman

2.56!



Gradient Domain Editing

gx gx'

gy gy'

Decompose Edit Reconstruct
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Generating a “person”

9 orientation bins 18 orientation bins

for positive and negative



Generating a “person”

gx

gy

initial “person”initial orientation 

bin assignments



Simulated Annealing

higher

cost
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T is initially high and decreases with number of iterations



Person

Score: 2.56 Score: 0.96



Generated Images

Score: 3.14

Car

Score: 0.84

Horse

Score: 1.57

Score: -0.30



Generated Images

Score: 2.63

Bicycle

Score: 0.80

Cat

Score: 2.18

Score: -0.71



Gradient Erasing

Original

Score: 0.83

Erased

Score: 2.78

Difference image



Gradient Erasing

Original

Score: -0.76

Erased

Score: 0.26

Difference image



Gradient Addition

Score: 0.83 Score: 3.03



Gradient Addition

Score: 2.15



Discriminatively Trained Mixtures of 

Deformable Part Models

P. Felzenszwalb, D. McAllester, and D. Ramanan

http://www.cs.uchicago.edu/~pff/latent

Slide taken from P. Felzenszwalb



Questions?



Thank You
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