A Discriminatively Trained, Multiscale, Deformable Part Model

P. Felzenszwalb, D. McAllester, and D. Ramanan

Edward Hsiao
16-721 Learning Based Methods in Vision
February 16, 2009

Overview

Histogram of Oriented Gradients (HOG)

- Split detection window into 8×8 non-overlapping pixel regions called cells
- Compute 1D histogram of gradients in each cell and discretize into 9 orientation bins
- Normalize histogram of each cell with the total energy in the four 2×2 blocks that contain that cell -> 9×4 feature vector
- Apply a linear SVM classifier

Feature vector, $f=$

Normalise gamma \& colour

Normalise contrast within overlapping blocks of cells

Collect HOGs for all blocks over detection window

Histogram of Oriented Gradients (HOG)

SVM Review

$$
\begin{gathered}
c_{i}\left(w \cdot x_{i}\right) \geq 1 \\
\text { minimize } \frac{1}{2}\|w\|^{2} \text { subject to } c_{i}\left(w \cdot x_{i}\right) \geq 1
\end{gathered}
$$

Hinge Loss

$$
\max \left(0,1-c_{i}\left(w \cdot x_{i}\right)\right)
$$

HOG \& Linear SVM

Histogram of Oriented Gradients (HOG)

Negative components

Average Gradients

person

car

motorbike

Deformable Part Models

Root filter
8×8 resolution

Deformable Part Models

Root filter
8×8 resolution

Part filter
4×4 resolution

Quadratic spatial model

$$
a_{x, i} x_{i}+a_{y, i} y_{i}+b_{x, i} x_{i}^{2}+b_{y, i} y_{i}^{2}
$$

HOG Pyramid

$\phi(H, p)$
concatenation of HOG features in a subwindow of the HOG pyramid H at position $p=(x, y, l)$

Deformable Part Models

Root filter F_{0}

Part filters $\mathrm{P}_{1} \ldots \mathrm{P}_{\mathrm{n}}$

$$
P_{i}=\left(F_{i}, v_{i}, s_{i}, a_{i}, b_{i}\right)
$$

$$
\text { score }=\underbrace{\sum_{i=0}^{n} F_{i} \cdot \phi\left(H, p_{i}\right)}_{\text {filter response }}+\underbrace{\sum_{i=1}^{n} a_{i} \cdot\left(\tilde{x}_{i}, \tilde{y}_{i}\right)+b_{i} \cdot\left(\tilde{x}_{i}^{2}, \tilde{y}_{i}^{2}\right)}_{\text {part placement }}
$$

Part Models

Quadratic spatial model

$$
\begin{gathered}
P_{i}=\left(F_{i}, v_{i}, s_{i}, a_{i}, b_{i}\right) \quad a_{x, i} x_{i}+a_{y, i} y_{i}+b_{x, i} x_{i}^{2}+b_{y, i} y_{i}^{2} \\
b_{i} \geq 0
\end{gathered}
$$

Star Graph / 1-fan

root filter
position

part filter
positions

Distance Transforms

Quadratic 1-D Distance Transform

$$
\mathcal{D}_{f}(p)=\min _{q \in \mathcal{G}}\left((p-q)^{2}+f(q)\right)
$$

Quadratic 1-D Distance Transform

$$
\mathcal{D}_{f}(p)=\min _{q \in \mathcal{G}}\left((p-q)^{2}+f(q)\right)
$$

Quadratic 1-D Distance Transform

$$
\mathcal{D}_{f}(p)=\min _{q \in \mathcal{G}}\left((p-q)^{2}+f(q)\right)
$$

Distance Transforms in 2-D

Latent SVM

HOG \& Linear SVM

Deformable Parts \& Latent SVM

$$
\begin{gathered}
f_{w}(x)=w \cdot \Phi(x) \\
w=F_{0} \\
\Phi(x)=\phi\left(H(x), p_{0}\right)
\end{gathered}
$$

$$
\begin{gathered}
f_{w}(x)=\max _{z \in Z(x)} w \cdot \Phi(x, z) \\
w=\left(F_{0}, \ldots, F_{n}, a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)
\end{gathered}
$$

$$
\begin{gathered}
\Phi(x, z)=\left(\phi\left(H(x), p_{0}\right), \phi\left(H(x), p_{1}\right), \ldots, \phi\left(H(x), p_{n}\right),\right. \\
\left.\tilde{x}_{1}, \tilde{y}_{1}, \tilde{x}_{1}^{2}, \tilde{y}_{1}^{2}, \ldots, \tilde{x}_{n}, \tilde{y}_{n}, \tilde{x}_{n}^{2}, \tilde{y}_{n}^{2}\right)
\end{gathered}
$$

$w^{*}=\underset{w}{\arg \min } \lambda\|w\|^{2}+\sum_{i=1}^{n} \max \left(0,1-y_{i} f_{w}\left(x_{i}\right)\right)$

Semi-convexity

$$
\begin{gathered}
f_{w}(x)=\max _{z \in Z(x)} w \cdot \Phi(x, z) \\
w^{*}=\underset{w}{\arg \min } \lambda\|w\|^{2}+\sum_{i \in \text { pos }} \max \left(0,1-f_{w}\left(x_{i}\right)\right)+\sum_{i \in \text { neg }} \max \left(0,1+f_{w}\left(x_{i}\right)\right)
\end{gathered}
$$

- If $f_{w}(x)$ is linear in w, this is a standard SVM (convex)
-If $f_{w}(x)$ is arbitrary, this is in general not convex
-If $f_{w}(x)$ is convex in w, the hinge loss is convex for negative examples (semi-convex)
- hinge loss is convex in w if positive examples are restricted to single choice of $Z(x)$

$$
\hat{w}=\underset{w}{\arg \min } \lambda\|w\|^{2}+\sum_{i \in \text { pos }} \max \left(0,1-w \cdot \Phi\left(x_{i}, z_{i}\right)\right)+\sum_{i \in \text { neg }} \max \left(0,1+f_{w}\left(x_{i}\right)\right)
$$

Coordinate Descent

1. Hold w fixed, and optimize the latent values for the positive examples

$$
z_{i}=\underset{z \in Z\left(x_{i}\right)}{\arg \max } w \cdot \Phi(x, z)
$$

2. Hold $\left\{z_{i}\right\}$ fixed for positive examples, optimize w by solving the convex problem

$$
\hat{w}=\underset{w}{\arg \min } \lambda\|w\|^{2}+\sum_{i \in \text { pos }} \max \left(0,1-w \cdot \Phi\left(x_{i}, z_{i}\right)\right)+\sum_{i \in \text { neg }} \max \left(0,1+f_{w}\left(x_{i}\right)\right)
$$

Data Mining Hard Negatives

- positive examples
- negative examples

Data Mining Hard Negatives

- positive examples
- negative examples

Data Mining Hard Negatives

- positive examples
- negative examples

Data Mining Hard Negatives

- positive examples
- negative examples

Data Mining Hard Negatives

- positive examples
- negative examples

Data Mining Hard Negatives

- positive examples
- negative examples

Data Mining Hard Negatives

- positive examples
- negative examples

Model Learning Algorithm

- Initialize root filter
- Update root filter
- Initialize parts
- Update model

Root Filter Initialization

- Select aspect ratio and size by using a heuristic
- model aspect is the mode of data
- model size is largest size $>80 \%$ of the data
- Train initial root filter F_{0} using an SVM with no latent variables
- positive examples anisotropically scaled to aspect and size of filter
- random negative examples

Root Filter Update

- Find best scoring placement of root filter that significantly overlaps the bounding box
- Retrain F_{0} with new positive set

Part Initialization

- Greedily select regions in root filter with most energy
- Part filter initialized to subwindow at twice the resolution
- Quadratic deformation cost initialized to weak Gaussian

Model Update

- Positive examples - highest scoring placement with > 50\% overlap with bounding box
- Negative examples - high scoring detections with no target object (add as many as can fit in memory)
- Train a new model using SVM
- Keep only hard examples and add more negative examples
- Iterate 10 times

hard negative example

Results - PASCALO7 - Person

0.9562

0.7723

0.9519

0.7536

0.8720

0.7186

0.8298

0.6865

Results - PASCALO7 - Bicycle

Results - PASCAL07 - Car

Results - PASCALO7 - Horse

-0.3007

-0.4573

-0.3946

-0.5014

-0.4138

-0.5106

-0.4254

-0.5499

Results - Person

So do more realistic images give higher scores?

Superhuman

$2.56!$

Gradient Domain Editing

Generating a "person"

9 orientation bins

18 orientation bins for positive and negative

Generating a "person"

initial orientation
bin assignments

g_{x}

g_{y}

initial "person"

Simulated Annealing

T is initially high and decreases with number of iterations

Person

Score: 2.56
Score: 0.96

Generated Images

Car

Score: 3.14

Score: 1.57

Horse

Score: 0.84

Score: -0.30

Generated Images

Bicycle

Score: 2.63

Cat

Score: 0.80

Score: 2.18

Score: -0.71

Gradient Erasing

Original
Score: 0.83

Erased
Score: 2.78

Difference image

Gradient Erasing

Original
Score: -0.76

Erased
Score: 0.26

Difference image

Gradient Addition

Score: 0.83

Score: 3.03

Gradient Addition

Score: 2.15

Discriminatively Trained Mixtures of Deformable Part Models

P. Felzenszwalb, D. McAllester, and D. Ramanan

2 component bicycle model

root filters
part filters
finer resolution

deformation models

Questions?

Thank You

