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Abstract

The goal of this study is to propose the existence results for the Sobolev-type Hilfer

fractional integro-differential systems with infinite delay. We intend to implement the

outcomes and realities of fractional theory to obtain the main results by Monch’s fixed

point technique. Moreover, we show the existence and controllability of the thought

about the fractional system with the nonlocal condition. In addition, an application to

illustrate the outcomes is also included.
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1 Introduction

In recent years, mathematical modeling has been upheld by fractional calculus, with a few

outcomes, and fractional operators were demonstrated to be a fantastic instrument to de-

pict the hereditary characteristics of different patterns. As of late, this blend has acquired

a lot of significance, basically because fractional differential equations have become amaz-

ing assets for displaying a few complex wonders in various assorted and boundless fields

of science and engineering; readers are referred to [1–20] and articles [21–37]. Hilfer [38]

initiated another kind of derivative, along with Riemann–Liouville and Caputo fractional

derivative. Motivated by the monograph, nowadays, several authors focus on these Hilfer

fractional differential equations, and we refer to [24, 39–48]. Singh et al. [49] discussed the

existence and Ulam stability of solutions for a class of boundary value problems for Hilfer-

type nonlinear implicit fractional differential equations with instantaneous impulses in

Banach spaces.

The differential system with Sobolev-type is frequently evident in the mathematical

structure of several physical events similar to the flowing of fluids through fractured rocks,

thermodynamics. The readers may refer to [50–56]. Many authors discussed the relations

between the asymptotic stability of the zero solution for retarded differential equations
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and real parts of all characteristic roots of characteristic equations. In [57] the author in-

vestigated the asymptotic stability of the zero solution for Caputo–Hadamard fractional

dynamic equations on a time scale. These equations guarantee the effectiveness of the

zero solution, and several authors reported interesting fixed point results in the frame-

work of complete b-metric spaces, recently, Lazreg et al. [58] established some impulsive

Caputo–Fabrizio fractional differential equations in b-metric spaces.

Control hypothesis is a significant region of usage arranged in mathematics which deals

with the design and assessment of control structures. The development of modern math-

ematical control theory is heavily influenced by controllability. The problem of controlla-

bility of dynamical systems is commonly employed in control system analysis and design.

Fractional-order control systems defined by fractional-order differential equations have

gotten a lot of interest in recent years, a wide list of these distributions can be found in

[25, 26, 28, 29, 40, 43, 48, 51, 56, 59–62]. The controllability of impulsive fractional evolu-

tion inclusions with state-dependent delay is demonstrated in [63], which employs a fixed

point theorem for condensing maps.

From the above literature survey, to our knowledge the existence and exact controllabil-

ity of the fractional system have not been studied fully. Motivated by this fact, we consider

the Sobolev-type Hilfer fractional integro-differential system of the form

D
α,β
0+

[
J z(t)

]
= Az(t) + f

(
t, zt ,

∫ t

0

e(t, s, zs)ds

)
, t ∈ N = (0,b], (1.1)

I
(1–α)(1–β)
0+ z(0) = φ ∈ Bl, (1.2)

and assume that the system with control has the following form:

D
α,β
0+

[
J z(t)

]
= Az(t) + f

(
t, zt ,

∫ t

0

e(t, s, zs)ds

)
+ Bu(t), t ∈N = (0,b], (1.3)

I
(1–α)(1–β)
0+ z(0) = φ ∈ Bl, (1.4)

where D
α,β
0+ stands for Hilfer fractional derivative of type 1

2
< β < 1, order 0 ≤ α ≤ 1. The

state z(·) takes values in a Banach space along with the norm ‖ · ‖, A is the infinites-

imal generator of a C0-semigroup. The control function u(·) ∈ L2(N,U). The histories

zt : (–∞, 0] → Bl , zt(s) = z(t + s), s ≤ 0 are associated with phase space Bl . Additionally, a

bounded linear operator B : U → Z, U ∈ Z. f : N × Bl × Z → Z and e : N × N × Bl → Z

are given functions.

We organize the remaining part of our article as follows: Some new notations, important

facts, lemmas, vital definitions, and theoretical results are recalled in Sect. 2. Section 3

provides the existence of fractional system (1.1)–(1.2) which is proven by Monch’s fixed

point theorem.We extended the study to deal with the exact controllability for (1.3)–(1.4)

in Sect. 4. In Sect. 5, we discuss the system with nonlocal conditions. Finally, we end with

Sect. 6, which presents our conclusions.

2 Preliminaries

We review the essential hypothesis which is utilized all through the work in request to

acquire new outcomes. Let v = α + β – αβ , we have (1 – v) = (1 – α)(1 – β). We define
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C1–v(N,Z) = {z : t1–vz(t) ∈ C(N,Z)} with ‖ · ‖v defined by ‖z‖v = sup{t1–v‖z(t)‖, t ∈N}. Sup-

pose C(N,Z) : N → Z with ‖Z‖C := supt∈N ‖z(t)‖ for z ∈ C , and we introduce A : D(A) ⊂

Z → Z, J :D(A) ⊂ Z → Z is satisfied, refer to [53].

(F1) The linear operators A and J are closed.

(F2) D(J ) ⊂D(A), J is bijective.

(F3) J –1 : Z →D(J ) is continuous.

In addition, from (F1), (F2), J
–1 is closed. Applying the closed graph theorem and (F3),

we obtain the boundedness of AJ –1 : Z → Z. Designate ‖J –1‖ = J̃m and ‖J ‖ = Jm.

Definition 2.1 The fractional integral of order α ∈ (0, 1) of f : [b, +∞)→ R is the function

Iαb+ f of the form

Iαb+ f (t) =
1

Ŵ(α)

∫ t

b

f (s)

(t – s)1–α
ds, t > b;α > 0.

Definition 2.2 The Riemann–Liouville derivative of order α ∈ [m – 1,m), m ∈ Z
+ for

f : [b, +∞)→R, the function LDα
b+ f of the form

LDα
b+ f (t) =

1

Ŵ(m – α)

dm

dtm

∫ t

b

f (s)

(t – s)α+1–m
ds, t > b,m – 1≤ α <m.

Definition 2.3 The Hilfer fractional derivative of order 0 ≤ α ≤ 1 and type 0 < β < 1 for

f (t) of the form

D
α,β
b+ f (t) =

(
I
α(1–β)
b+ D

(
I
(1–α)(1–β)
b+ f

))
(t).

Remark 2.4

(i) In case α = 0, b = 0, the Hilfer fractional differential is identical to the classical

Riemann–Liouville fractional derivative for f of the form

D
0,β
0+ f (t) =

d

dt
I
1–β

0+ f (t) = LDα
0+ f (t).

(ii) In case α = 1, 0 < β < 1, and b = 0, the Hilfer fractional derivative is identical to the

classical Caputo derivative for f of the form

D
1,β
0+ f (t) = I

1–β

0+
d

dt
f (t) = cDβ

0+ f (t).

As of now, we characterize the abstract phase space Bl , which is introduced in [51]. Let

g : (–∞, 0] → (0, +∞) be a continuous function with j =
∫ 0

–∞
g(t)dt < +∞. For each i > 0,

we define

B =
{
� : [–i, 0] → Z,�(t) is bounded and measurable

}
,

and provide

‖�‖[–i,0] = sup
γ∈[–i,0]

∣∣�(γ )
∣∣ for every � ∈ B.



Kavitha et al. Advances in Difference Equations        ( 2021)  2021:467 Page 4 of 18

Define

Bl =

{
� : (–∞, 0] → Z; For every i > 0,�|[–i,0] ∈ B,

∫ 0

–∞

g(t)‖�‖[t,0] dt < +∞

}

and

‖�‖Bl
=

∫ 0

–∞

g(t)‖�‖[t,0] dt for every � ∈ Bl.

Hence (Bl,‖ · ‖Bl
) is a Banach space. Suppose

B
′
l =

⎧
⎨
⎩
z : (–∞,b]→ Z;

z|N ∈ C(N,Z), z(0) = φ ∈ Bl,

fix ‖ · ‖b in B
′
l , and it is characterized by

‖z‖b = ‖φ‖Bl
+ sup

{∣∣z(t)
∣∣ : t ∈ (0,b]

}
, z ∈ B

′
l .

Lemma 2.5 ([64]) If z ∈ B
′
l , then for t ∈N, zt ∈ Bl . Also,

j
∣∣z(t)

∣∣≤ ‖zt‖Bl
≤ ‖φ‖Bl

+ j sup
s∈[0,t]

∣∣z(s)
∣∣,

where j =
∫ 0

–∞
g(t)dt < +∞.

Definition 2.6 ([65]) z : (–∞,b] → Z is a mild solution of (1.1)–(1.2) only if z(0) = φ ∈ Bl

on (–∞, 0] and satisfies

z(t) = J –1Sα,β (t)J φ

+

∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, zs,

∫ s

0

e(s, τ , zτ )dτ

)
ds, t ∈N, (2.1)

where

Pβ (t) = tβ–1Qβ (t), Qβ (t) =

∫ ∞

0

βθMβ (θ )T
(
tβθ
)
dθ .

Remark 2.7 We define the mild solution of (1.1)–(1.2) as follows:

Mβ (θ ) =

∞∑

k=1

(–θ )k–1

(k – 1)!Ŵ(1 – βk)
, 0 < β < 1, θ ∈ C,

whereMβ (θ ) is a Wright function and satisfies

∫ ∞

0

θ ιMβ (θ )dθ =
Ŵ(1 + ι)

Ŵ(1 + βι)
for θ ≥ 0.

Lemma 2.8 ([65]) The operators Sα,β (t) and Qβ (t) satisfy the following conditions:
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• For t ≥ 0, the operators Sα,β (t) and Qβ (t) are linearly bounded, i.e., for every z ∈ Z,

∥∥Sα,β (t)z
∥∥≤

Mtμ–1

Ŵ(α(1 – β) + β)
‖z‖;

∥∥Qβ (t)z
∥∥≤

M

Ŵ(β)
‖z‖,

where Sα,β (t) = I
α(1–β)
0+ Pβ (t).

• The operators {Sα,β(t)}t≥0 and {Qβ (t)}t≥0 are strongly continuous.

Lemma 2.9 The strongly continuous operators {Qβ (t)}t>0 and {Sα,β (t)}t>0, 0 < t′ < t′′ ≤ b

are defined by

∥∥(t′
)β–1

Qβ

(
t′
)
z –
(
t′′
)β–1

Qβ

(
t′′
)
z
∥∥→ 0 and

∥∥Sα,β

(
t′
)
z – Sα,β

(
t′′
)
z
∥∥→ 0 as t′′ → t′.

Definition 2.10 ([60]) Assume F+ of the Banach space (F(positive cone),≤). Define φ

with values of F+, it is said to be a measure of noncompactness on Z iff φ(coY ) = φ(Y ) for

Y ⊆ Z, where coY is a closed convex hull of Y .

The measure of noncompactness of φ is called:

(1) Monotone if and only if (Y1 ⊆ Y2) ⇒ (φ(Y1) ≤ φ(Y2)), Y1, Y2 are bounded subsets of

Z;

(2) Nonsingular if and only if φ({a} ∪ Y ) = φ(Y ) for every a ∈ Z, Y ⊂ Z;

(3) Regular if and only if φ(Y ) = 0, Y is relatively compact in Z.

The measure of noncompactness of Hausdorff μ̂ is defined by

μ̂(Y ) = inf

{
ǫ > 0;Y ⊂

m⋃

k=1

Nk such that diam(Nk) ≤ ǫ

}
.

To know more information about the properties of MNC, the readers can refer to [66].

Now, for every Y , Y1, Y2 of Z,

(4) μ̂(Y1 + Y2) ≤ μ̂(Y1) + μ̂(Y2), where Y1 + Y2 = {y1 + y2 : y1 ∈ Y1, y2 ∈ Y2};

(5) μ̂(Y1 ∪ Y2)≤ max{μ̂(Y1), μ̂(Y2)};

(6) μ̂(αY )≤ |α|μ̂(Y ) for any α ∈R;

(7) If Q :D(Q)⊆ Z → Y , then μ̂Y (QY ) ≤ kμ̂(Y ), Y ⊆D(Q), here Y is a Banach space

and k is any constant.

Lemma 2.11 ([66]) If K ⊂ C(N,Z) is bounded and equicontinuous, then μ̂(K(t)) is a con-

tinuous function for all t ∈N

μ̂(K) = sup
t∈N

{
μ̂
(
K(t)

)
, t ∈ N

}
, where K(t) =

{
z(t) : z ∈K

}
⊆ Z.

Theorem 2.12 ([62, 67]) If {un : N → Z} is Bochner’s integrable function with ‖un(t)‖ ≤

μ̂(t) a.e. for t ∈ N and for every n ≥ 1, where μ̂ ∈ L1(N,R), then Y (t) = μ̂({un(t) : n ≥ 1}) ∈

L1(N,R) and satisfies μ̂({
∫ t

0
un(s)ds : n ≥ 1})≤ 2

∫ t

0
μ̂(s)ds.

Lemma 2.13 ([68]) Let K be a closed convex subset of Z and 0 ∈ K . If F : K → Z is a

continuous map which satisfies Mönch’s condition (i.e.,M ⊆ K is countable,M ⊆ co({0} ∪

F(M)) ⇒ M is compact), then F has a fixed point in K .
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3 Existence

In this section, we mainly focus on the existence of (1.1)–(1.2), and in order to prove the

main theorem, we have the following assumptions.

(A0) For all K ⊂ Z, θ ∈ (0,∞) and z ∈ K ,

∥∥T
(
t
β
2 θ
)
z – T

(
t
β
1 θ
)
z
∥∥→ 0, as t2 → t1.

(A1) The function f :N× Bl × Z → Z satisfies the following:

(i) f (·, s, z) ismeasurable for every (s, z) ∈ Bl×Z and f (t, ·, ·) is continuous, t ∈N

and z ∈ Bl , f (·, ·, z) : (0,b] → Z is strongly measurable.

(ii) There exist β1 ∈ (0,β),m1 ∈ L
1
β1 (N ,R+) and � :R+ →R

+ such that

∥∥f (t, s, z)
∥∥≤ m1(t)�

(
t1–v‖s‖Bl

+ ‖z‖
)

for every t, s, z ∈N× Bl × Z, where μ̂ satisfies lim infj→∞
μ̂(j)
j
= 0.

(iii) There exists β2 ∈ (0,β),m2 ∈ L
1
β2 (N,R+) such that, for any K1 ⊂ Z and F1 ⊂

Bl ,

μ̂
(
f (t,F1,K1)

)
≤ m2(t)

[
sup

–∞<ξ≤0

μ̂
(
F1(ξ )

)
+ μ̂(K1)

]
for almost all t ∈N,

where F1(ξ ) = {ẁ(ξ ) : ẁ ∈ K1}, μ̂ is the Hausdorff measure of noncompact-

ness.

For mi ∈ L
1
βi ([0,b],R+), βi ∈ (0,β), i = 1, 2.

(A2) The function e :N×N× Bl → Z satisfies the following:

(i) e(·, s, z) is measurable for all (s, z) ∈ Bl × Z.

(ii) There exists E0 > 0 such that ‖e(t, s, z)‖ ≤ E0(1 + ‖z‖Bl
) for every t, z ∈ Z,

s ∈ Bl .

(iii) There existsm3 ∈ L1(N,R+) such that, for any K2 ⊂ Z,

μ̂
(
f (t, s, z)

)
≤ m3(t, s)

[
sup

–∞<ξ≤0

μ̂
(
K2(ξ )

)]
for almost all t ∈ N,

with m∗
3 = sups∈N

∫ s

0
m3(t, τ )dτ <∞.

For our convenience, we introduce

M1 = k1‖m1‖
L

1
β2

(N,R+) , M2 = k2‖m2‖
L

1
β2

(N,R+) ,

ki =

[(
1 – βi

β – βi

)
b
(
β–βi
1–βi

)
]1–βi

, βi ∈ (0,β), i = 1, 2.

Theorem 3.1 Assume that (A0)–(A2) are satisfied, then (1.1)–(1.2) has at least one mild

solution if

P∗ =
2MM2J̃

1–v
m (1 + 2m∗

3)

Ŵ(β)
< 1 for some

1

2
< β < 1. (3.1)
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Proof We define the operator ϒ :B ′
l → B

′
l by

ϒz(t) =

⎧
⎪⎪⎨
⎪⎪⎩

φ(t), t ∈ (–∞, 0],

J –1Sα,β (t)J φ

+
∫ t

0
(t – s)β–1J –1Qβ (t – s)f (s, zs,

∫ s

0
e(s, τ , zτ )dτ )ds, t ∈N.

(3.2)

For φ ∈ Bl , we define η̂ as follows:

η̂(t) =

⎧
⎨
⎩

φ(t), t ∈ (–∞, 0],

J –1Sα,β (t)J φ, t ∈N,

then η̂ ∈ B
′
l . Let z(t) = g(t)+ η̂(t), –∞ < t ≤ b. Clearly, z satisfies (2.1) if and only if g satisfies

g0 = 0 and

g(t) =

∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, gs + η̂s,

∫ s

0

e(s, τ , gτ + η̂τ )dτ

)
ds.

Let B
′′
l = {g ∈ B

′
l : g0 = 0 ∈ Bl}. For any g ∈ B

′′
l ,

‖g‖b = ‖g0‖Bl
+ sup

{∥∥g(s)
∥∥ : 0 ≤ s≤ b

}

= sup
{∥∥g(s)

∥∥ : 0≤ s ≤ b
}
.

Hence (B ′′
l ,‖ · ‖b) is a Banach space. Now ℓ > 0, we fix Fℓ = {g ∈ B

′′
l : ‖g‖b ≤ ℓ}, then

Fℓ ⊆ B
′′
l is uniformly bounded, g ∈ Fℓ, and referring to Lemma 2.5,

‖gt + η̂t‖Bl
≤ ‖gt‖Bl

+ ‖η̂t‖Bl

≤ j

(
ℓ + J̃m

Mtμ–1

Ŵ(α(1 – β) + β)
Jm|φ|

)
+ ‖φ‖Bl

= ℓ′. (3.3)

We define the operator ϒ̃ :B ′′
l → B

′′
l as follows:

ϒ̃g(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, t ∈ (–∞, 0],
∫ t

0
(t – s)β–1J –1Qβ (t – s)

× f (s, gt + η̂t ,
∫ s

0
e(s, τ , gτ + η̂τ )dτ )ds, t ∈N.

(3.4)

To prove that ϒ̃ has a fixed point.

Now we divide the proof into a few steps for our benefit.

Step 1: For ℓ > 0, ϒ̃(Fℓ) ⊆ Fℓ. If it is false, then gℓ(·) ∈ Fℓ and t ∈ N such that ‖(ϒ̃gℓ)(t)‖ >

ℓ. Suppose ℓ > 0, and consider {Fℓ = z ∈ C1–v : ‖z‖v ≤ ℓ}. It is understood that Fℓ is a closed,

bounded, and convex set of C. Furthermore, from Lemma 2.8, (A1), and Hölder’s inequal-

ity, we have

ℓ < sup
t∈N

t1–v
∥∥(ϒ̃gℓ

)
(t)
∥∥

≤ b1–v
∥∥∥∥
∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, gℓ

s + η̂s,

∫ s

0

e
(
s, τ , gℓ

τ + η̂τ

)
dτ

)
ds

∥∥∥∥
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≤ b1–v
∥∥∥∥
∫ t

0

(t – s)β–1J –1Qβ (t – s)m1(s)�
(
ℓ′ + bE0

(
1 + ℓ′

))
ds

∥∥∥∥

≤ b1–v
MM1J̃m

Ŵ(1 + β)
�
(
ℓ′ + bE0

(
1 + ℓ′

))
. (3.5)

We now divide (3.5) by ℓ, and taking ℓ → ∞, it contradicts with (3.1). Therefore, ϒ̃(Fℓ) ⊆

Fℓ.

Step 2: ϒ̃ is continuous on Fℓ.

For all gm, g ∈ Fℓ(N), m = 0, 1, 2, . . . , with limm→∞ gm = g , then we have limm→∞ gm(t) =

g(t) and

lim
m→∞

t1–vgm(t) = t1–vg(t).

Consider f (t, t1–vzm(t),
∫ t

0
e(t, s, s1–vzm(s))ds), and we take

Fm(s) = f

(
s, s1–v

(
gms + η̂s

)
,

∫ s

0

e
(
s, ε, ε1–v

(
gmε + η̂ε

))
dε

)
and

F(s) = f

(
s, s1–v(gs + η̂s),

∫ s

0

e
(
s, ε, ε1–v(gε + η̂ε)

)
dε

)
.

Lebesgue’s dominated convergence theorem and hypotheses (A1), (A2) give

∫ t

0

(t – s)β–1J –1Qβ (t – s)
∥∥Fm(s) – F(s)

∥∥ds → 0 asm → ∞, t ∈ N. (3.6)

Now, by (A1), we have

∥∥ϒ̃gm – ϒ̃g
∥∥
C

≤
b1–vMJ̃m

Ŵ(β)

∫ t

0

(t – s)β–1
∥∥Fm(s) – F(s)

∥∥ds. (3.7)

Using (3.6) in (3.7), we get

∥∥ϒ̃gm – ϒ̃g
∥∥
C

→ 0 asm → ∞,

therefore, ϒ̃ is continuous on Fℓ.

Step 3: ϒ̃(Fℓ) is equicontinuous on N. Let γ ∈ ϒ̃(Fℓ).

For 0 < t1 < t2 < b, we have

∥∥γ (t2) – γ (t1)
∥∥ =
∥∥∥∥J

–1

∫ t2

0

t1–v2 (t2 – s)β–1Qβ (t2 – s)F(s)ds

–J –1

∫ t1

0

t1–v1 (t1 – s)β–1Qβ (t1 – s)F(s)ds

∥∥∥∥

≤

∥∥∥∥
∫ t2

t1

t1–v2 (t2 – s)β–1J –1Qβ (t1 – s)F(s)ds

∥∥∥∥

+

∥∥∥∥
∫ t1

0

[
t1–v2 (t2 – s)β–1 – t1–v1 (t1 – s)β–1

]
J –1Qβ (t2 – s)F(s)ds

∥∥∥∥

+

∥∥∥∥
∫ t1

0

t1–v1 (t1 – s)β–1J –1
[
Qβ (t2 – s) –Qβ (t1 – s)

]
F(s)ds

∥∥∥∥
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≤
MJ̃m

Ŵ(β)
�
(
ℓ′ + bE0

(
1 + ℓ′

))∥∥∥∥
∫ t2

t1

t1–v2 (t2 – s)β–1m1(s)ds

∥∥∥∥

+
2MJ̃m

Ŵ(β)

∥∥∥∥
∫ t1

0

[
t1–v2 (t2 – s)β–1 – t1–v1 (t1 – s)β–1

]
m1(s)ds

∥∥∥∥

+

∥∥∥∥
∫ t1

0

t1–v1 (t1 – s)β–1J –1
[
Qβ (t2 – s) –Qβ (t1 – s)

]
F(s)ds

∥∥∥∥.

By Lemma 2.9 and Lebesgue’s integral dominance convergence theorem, we get ‖γ (t2) –

γ (t1)‖ becomes zero as t2 – t1 → 0.

Thus, ϒ̃(Fℓ) is equicontinuous on N.

Step 4:Mönch’s condition: Assume thatK ⊆ Fℓ is countable and K ⊆ conv({0} ∪ ϒ̃(K)).

To prove μ̂(K) = 0, where μ̂ is the Hausdorff measure of noncompactness. IfK = {gm}∞m=1,

thus we show that ϒ̃(K)(t) is relatively compact in Z for all t ∈N. By using Theorem 2.12,

μ̂
({(

ϒ̃gm
)
(t)
}∞
m=1

)

= μ̂

({
t1–v
∫ t

0

(t – s)β–1J –1Qβ (t – s)Fm(s)

}∞

m=1

)

≤
2MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1μ̂
({
Fm(s)

}∞
m=1

)
ds

≤
2MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1m2(s)

[
sup

–∞<τ≤0
S
({
gm(s + τ ) + η̂(s + τ )

}∞
m=1

)

+ μ̂

({∫ s

0

e
(
s, ε, gmε + η̂ε

)
dε

}∞

m=1

)]
ds

≤
2MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1m2(s) sup
–∞<τ≤s

μ̂
({
gm(τ ) + η̂(τ )

}∞
m=1

)
ds

+
4MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1m2(s)

∫ s

0

μ̂
({
e
(
s, ε, gmε + η̂ε

)
dε
}∞
m=1

)
ds

≤
2MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1m2(s) sup
–∞<τ≤s

μ̂
({
gm(τ ) + η̂(τ )

}∞
m=1

)
ds

+
4MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1m2(s)

∫ s

0

m3(s, ε)
[

sup
–∞<ξ≤0

μ̂
((
gmε + η̂ε

)
(ξ )
)
dε
]
ds

≤
2MM2J̃mc

1–v

Ŵ(β)
sup

–∞<τ≤s
μ̂
({
gm(τ ) + η̂(τ )

}∞
m=1

)

+
4MM2J̃mb

1–v

Ŵ(β)

∫ s

0

m3(s, ε)
[

sup
–∞<ξ≤0

μ̂
((
gmε + η̂ε

)
(ξ )
)
dε
]

≤
2MM2J̃mb

1–v

Ŵ(β)

[
1 + 2m∗

3

]
sup
0≤τ≤s

μ̂
({
gm(τ ) + η̂(τ )

}∞
m=1

)

≤
2MM2J̃mb

1–v

Ŵ(β)

[
1 + 2m∗

3

]
sup
0≤τ≤s

μ̂
(
K(τ )

)
.

That is,

μ̂
(
ϒ̃K(t)

)
≤

2MM2J̃mb
1–v(1 + 2m∗

3)

Ŵ(β)
sup
0≤τ≤s

μ̂
(
K(τ )

)
.
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Therefore, by using Lemma 2.11,

μ̂(K)≤ μ̂(conv
(
{0} ∪

(
ϒ̃(K)

))
= μ̂
(
ϒ̃(K)

)
≤ P∗μ̂(K),

where P∗ is defined in (3.1), hence μ̂(K) = 0.

Lemma 2.13 shows that ϒ̃ has a fixed point K ∈ Fℓ. Consequently, z = g + η̂ is a mild

solution of (1.1)–(1.2). The proof is now completed. �

4 Controllability

In this section, we mainly focus on the controllability of (1.3)–(1.4). So, we now introduce

the mild solution of (1.3)–(1.4) as follows.

Definition 4.1 A function z : (–∞,b] → Z is said to be a mild solution of (1.1)–(1.2) if

and only if z(0) = φ ∈ Bl on (–∞, 0] and z satisfies

z(t) = J –1Sα,β (t)J φ +

∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, zs,

∫ s

0

e(s, τ , zτ )dτ

)
ds

+

∫ t

0

(t – s)β–1J –1Qβ (t – s)Buz(s)ds, t ∈N. (4.1)

Lemma 4.2 System (1.3)–(1.4) is said to be controllable on N if, for every φ ∈ Bl , z
1 ∈ Z,

there exists u ∈ L2(N,U) such that z(t) of (1.3)–(1.4) satisfies z(b) = z1.

Controllability results are proved in relation to the following hypotheses:

(A3) The operator B : L2(N,U) → L1(N,Z) which is bounded,W : L2(N,U)→ Z defined

by

Wu =

∫ b

0

(b – s)β–1J –1Qβ (t – s)Bu(s)ds,

satisfies:

(i) W–1 takes the value in L2((0,b],U)/KerW , there exist Mb > 0, Mw > 0 such

that ‖B‖ ≤ Mb and ‖W–1‖ ≤ Mw.

(ii) There exists β4 ∈ (0,β), and for every K ∈ Z, m4 ∈ L
1
β4 ((0,b],R+) such that

μ̂((W–1K)(t))≤ m4(t)μ̂(K). Here,mi ∈ L
1
βi ([0,b],R+), βi ∈ (0,β), i = 1, 2, 3, 4.

For our convenience, we introduce

M4 = k4‖m4‖
L

1
β4

(N,R+) , C∗ =

√
b2β–1

2β – 1
,

ki =

[(
1 – βi

β – βi

)
b
(
β–βi
1–βi

)
]1–βi

, i = 1, 2, 3, 4.

Theorem 4.3 Assume that (A0)–(A3) are satisfied, then (1.3)–(1.4) is controllable on (0,b]

if

2MJ̃mM2b
1–v(1 + 2m∗

3)

Ŵ(β)

[
1 +

2MMbM4J̃m

Ŵ(β)

]
μ̂
(
K(τ )

)
< 1 for some

1

2
< β < 1. (4.2)
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Proof By using (A3), we define uz(t) by

uz(t) =W–1

[
z1 –J –1Sα,β (t)J φ

–

∫ b

0

(b – s)β–1J –1Qβ (b – s)f

(
s, gs,

∫ s

0

e(s, τ , gτ )dτ

)
ds

]
(t).

Let ϒ : B ′
l → B

′
l be defined by

ϒz(t) =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

φ(t), t ∈ (–∞, 0],

J –1Sα,β (t)J (t)φ

+
∫ t

0
(t – s)β–1J –1Qβ (t – s)f (s, zs,

∫ s

0
e(s, τ , zτ )dτ )ds

+
∫ t

0
(t – s)β–1J –1Qβ (t – s)Buz(s)ds, t ∈N.

(4.3)

For φ ∈ Bl , we have

η̂(t) =

⎧
⎨
⎩

φ(t), t ∈ (–∞, 0],

J –1Sα,β (t)J φ, t ∈N,

then η̂ ∈ B
′
l . Let z(t) = g(t) + η̂(t), –∞ < t ≤ b. Now, we identified that z satisfies (4.1) if

and only if g satisfies g0 = 0 and

g(t) =

∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, gs + η̂s,

∫ s

0

e(s, τ , gτ + η̂τ )dτ

)
ds

+

∫ t

0

(t – s)β–1J –1Qβ (t – s)Buz(s)ds,

where

uz(s) =W–1

[
z1 –J –1Sα,β (t)J φ –

∫ b

0

(b – s)β–1J –1Qβ (b – s)

× f

(
s, gs + η̂s,

∫ s

0

e(s, τ , gτ + η̂τ )dτ

)
ds

]
(t).

We define the operator ϒ̃ :B ′′
h → B

′′
h by

ϒ̃g(t) =

⎧
⎪⎪⎨
⎪⎪⎩

0, t ∈ (–∞, 0],
∫ t

0
(t – s)β–1J –1Qβ (t – s)f (s, gs + η̂s,

∫ s

0
e(s, τ , gτ + η̂τ )dτ )ds

+
∫ t

0
(t – s)β–1J –1Qβ (t – s)Buz(s)ds, t ∈N.

(4.4)

Now, to show ϒ̃ has a fixed point. We divide the proof into the following steps for our

convenience.

Step 1: To prove that there exists a constant ℓ > 0 such that ϒ̃(Fℓ) ⊆ Fℓ. If it fails, then

gℓ(·) ∈ Fℓ and t ∈ N such that ‖ϒ̃(gℓ)(t)‖ > ℓ.

Take ℓ > 0 and consider {Fℓ = z ∈ C1–v : ‖z‖v ≤ ℓ}. Apparently, Fℓ is a closed, bounded,

and convex set of C.
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Using Lemma 2.8, (A1), (A3), and Holder’s inequality, we have

ℓ < sup
x∈N

t1–v
∥∥(ϒ̃gℓ

)
(t)
∥∥

≤ b1–v
∥∥∥∥
∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, gs + η̂s,

∫ s

0

e(s, τ , gτ + η̂τ )dτ

)
ds

∥∥∥∥

+ b1–v
∥∥∥∥
∫ t

0

(t – s)β–1J –1Qβ (t – s)Bugℓ (s)ds

∥∥∥∥, t ∈N

≤
MJ̃mb

1–v

Ŵ(β)

∥∥∥∥
∫ t

0

(t – s)β–1m1(s)�
(
ℓ′ + bE0

(
1 + ℓ′

))
ds

∥∥∥∥

+
MMbJ̃mb

1–v

Ŵ(β)

√
b2β–1

2β – 1
‖ugℓ‖L2

≤
MM1J̃mb

1–v

Ŵ(β)
�
(
ℓ′ + bE0

(
1 + ℓ′

))

+
MMbMwJ̃mb

1–v

Ŵ(β)

√
b2β–1

2β – 1

[∥∥z1
∥∥ +J –1Sα,β (t)(b)J φ

+

∫ b

0

(b – γ )β–1J –1Qβ (t – γ )f

(
γ , gγ + η̂γ ,

∫ γ

0

e(γ , τ , gτ + η̂τ )dτ

)
dγ

]

≤
MM1J̃mb

1–v

Ŵ(β)
�
(
ℓ′ + bE0

(
1 + ℓ′

))
+
MMbMwJ̃m

Ŵ(β)
C∗

[
b1–v
∥∥z1
∥∥

+
J̃mMJm

Ŵ(γ (1 – β) + β)
‖φ‖ +

MM1J̃mb
1–v

Ŵ(β)
�
(
ℓ′ + bE0

(
1 + ℓ′

))]

≤
MM1J̃mb

1–v

Ŵ(β)
�
(
ℓ′ + bE0

(
1 + ℓ′

))[
1 +

MJ̃mMbMw

Ŵ(β)
C∗

]

+
MJ̃mMbMw

Ŵ(β)
C∗

[
b1–v
∥∥z1
∥∥ + J̃mMJm

Ŵ(γ (1 – β) + β)
‖φ‖

]
. (4.5)

Take ρ = ℓ′ + bE0(1 + ℓ′), note that ρ → ∞ as ℓ → ∞.

Dividing (4.5) by ℓ and taking ℓ → ∞, we have

1≤
MM1J̃mb

1–v

Ŵ(β)
lim

ρ→∞
inf

μ̂(ρ)

ρ

ρ

ℓ

[
1 +

MJ̃mMbMw

Ŵ(β)
C∗

]
, (4.6)

then by (A1)(ii), (4.6) is a contradiction. Hence ϒ̃(Fℓ)⊆ Fℓ.

Step 2: Similar to Step 2 of Theorem 3.1.

Step 3: For g ∈ Fℓ, assume g(t) = tv–1ϒz(t), ϒ̃ provides bounded sets into equicontinuous

sets of C for all y ∈ Fℓ, there exists ϒ ∈ ϒ̃(z) such that ‖ϒz(t2) –ϒz(t1)‖ → 0 as t2 → t1.

ϒz(t) = J –1Sα,β (t)J (t)φ +

∫ t

0

(t – s)β–1J –1Qβ (t – s)

(×)f

(
s, gs + η̂s,

∫ s

0

e(s, τ , zτ )dτ

)
ds

+

∫ t

0

(t – s)β–1J –1Qβ (t – s)Bug(s)ds.
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Hereafter, we continue our proof as per Step 3 of Theorem3.1, and hence ϒ̃(Fℓ) is equicon-

tinuous.

Step 4:Mönch’s condition: Consider K ⊆ Fℓ is countable and K ⊆ conv({0} ∪ ϒ̃(K)). To

prove μ̂(K) = 0, here μ̂ is the Hausdorffmeasure of noncompactness. IfK = {gm}∞m=1, then

we show that ϒ̃(K)(t) is relatively compact in Z for all t ∈N. By Theorem 2.12, we obtain

μ̂
({(

ϒ̃gm
)
(t)
}∞
m=1

)
= μ̂

({∫ t

0

(t – s)β–1J –1Qβ (t – s)
[
Fm(s) + Bugm (s)

]}∞

m=1

)

≤
2MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1μ̂
({
Fm(s)

}∞
m=1

)
ds

+
2MMbJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1μ̂
({
ugm (s)

}∞
m=1

)
ds

≤ I1 + I2,

where

I1 =
2MJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1μ̂
({
Fm(s)

}∞
m=1

)
ds

≤
2MM2J̃mb

1–v(1 + 2m∗
3)

Ŵ(β)
sup
0≤τ≤s

μ̂
(
K(τ )

)
(from Step 4 of Theorem 3.1),

I2 =
2MMbJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1μ̂
({
ugm (s)

}∞
m=1

)
ds

≤
2MMbJ̃mb

1–v

Ŵ(β)

∫ t

0

(t – s)β–1m4(s)
2MJ̃m

Ŵ(β)

∫ b

0

(b – s)β–1μ̂
(
Fm(s)

)
ds

≤
4M2J̃ 2

mMbM2M4b
1–v

Ŵ(β)2

(
1 + 2m∗

3

)
sup
0≤τ≤s

μ̂
(
K(τ )

)
,

I1 + I2 ≤
2MJ̃mM2b

1–v(1 + 2m∗
3)

Ŵ(β)

[
1 +

2MMbM4J̃m

Ŵ(β)

]
μ̂
(
K(τ )

)
.

That is, μ̂(ϒ̃K(t)) ≤
2MJ̃mM2b

1–v(1+2m∗
3)

Ŵ(β)
[1 +

2MMbM4J̃m

Ŵ(β)
]μ̂(K(τ )). Therefore, using Mönch’s

condition, we get μ̂(K)≤ μ̂(conv({0} ∪ (ϒ̃(K))) = μ̂(ϒ̃(K))≤ P∗μ̂(K), where P∗ is defined

in (4.2), and hence Lemma 2.13 shows that (1.1)–(1.2) has a fixed point K in Fℓ. Hence,

z = g + η̂ is the mild solution of (1.1)–(1.2) satisfying z(b) = z1. Consequently (1.3)–(1.4) is

controllable on N. �

5 Nonlocal conditions

The nonlocal Cauchy problem for differential equationwas first studied by Byszewski [69].

Their research is driven by imaginative enthusiasm and themanner inwhich these types of

problems usually occurwhen proving practical applications. For example,material science

and life sciences can be depicted by techniques for the differential framework subject to

nonlocal limit conditions, the readers can refer to [48, 60, 62, 69, 70]. We presently expect

that the nonlocal Sobolev-typeHilfer fractional integro-differential equationswith control
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are as follows:

D
α,β
0+

[
J z(t)

]
= Az(t) + f

(
t, zt ,

∫ t

0

e(t, s, zs)ds

)
+ Bu(t), t ∈N = (0,b], (5.1)

I
(1–α)(1–β)
0+ z(0) = φ + j (ti1 , ti2 , ti3 , . . . , tik ) ∈ Bl, 0 < ik ≤ b,k = 1, 2, . . . ,n. (5.2)

The result is proved in relation to the following hypothesis:

(A4) Function j :Bn → B is continuous, there exists Li(h) > 0 such that

∥∥j (v1, v2, . . . , vk) – j (w1,w2, . . . ,wk)
∥∥≤

n∑

k=1

Lk(j )‖vk –wk‖Bl

for all vk ,wk ∈ Bl , and consider Lk = sup{‖j (v1, v2, . . . , vk)‖ : vk ∈ Bl}.

Definition 5.1 A function z : (–∞,b] → Z is a mild solution of (5.1)–(5.2) only if z0 =

φ + j (tx1 , tx2 , . . . , txn ) ∈ Bl on (–∞, 0] and

z(t) = J –1Sα,β (t)J
[
φ + j (tx1 , tx2 , tx3 , . . . , txn )(0)

]

+

∫ t

0

(t – s)β–1J –1Qβ (t – s)f

(
s, zs,

∫ s

0

e(s, τ , zτ )dτ

)
ds

+

∫ t

0

(t – s)β–1J –1Qβ (t – s)Buz(s)ds, t ∈N, (5.3)

is satisfied.

Theorem 5.2 Assume that (A0)–(A4) are satisfied, then (5.1)–(5.2) is controllable on (0,b]

if

2MJ̃mM2b
1–v(1 + 2m∗

3)

Ŵ(β)

{
1 +

2MMbM4J̃m

Ŵ(β)

}
μ̂
(
K(τ )

)
< 1 for some

1

2
< β < 1

is satisfied.

6 Example

Assume that the fractional evolution system with control is as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D
α, 23
0+ [z(φ,ς ) – ∂2

∂ς2 z(φ,ς )]

= ∂2

∂ς2 z(φ,ς ) +U(φ,ς )

+ g(φ,
∫ φ

–∞
t1(σ – φ)z(σ ,ς )dσ ,

∫ x

0

∫ 0

–∞
ξ2(r,ς , ε – r)z(ε,ς )dε dr),

r ∈ [0,π ], z ∈ (0,b],

I (1–α) 13 [z(φ,ς )]|ς=0 = z0(ς ), ς ∈ [0,π ],

z(φ, 0) = z(φ,π ) = 0, φ ≥ 0,

z(0,β) = φ(β), 0≤ β ≤ π ,

(6.1)

whereD
α, 23
0+ denotes theHilfer fractional derivative of order 2

3
, typeα, g :N×[0, 1]×[0, 1]×

R →R is continuous.
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To convert (6.1) into an abstract form, consider Z = L2(0,π ) and A : D(A) ⊂ Z → Z, let

J :D(J ) ⊂ Z → Z be defined as Av = v′′, and J v = v –A, D(A), D(J ) are given by

{
v ∈ Z : v, v′ are absolutely continuous, v(0) = v(π ) = 0

}
.

Additionally, A and P are presented as Av =
∑∞

m=1 n
2〈v, zm〉zm, v ∈D(A) and

J v =

∞∑

m=1

(
1 +m2

)
〈v, zm〉zm, v ∈ D(J ),

where zm(t) =
√

2
π

sin(mt),m = 1, 2, . . . . Also, for z ∈ Z, we have

P–1z =

∞∑

m=1

1

(1 +m2)
〈z, zm〉zm, AJ –1z =

∞∑

m=1

m2

(1 +m2)
〈z, zn〉zn

and Qβ (x)z =
∑∞

m=1 exp( m2t
1+m2 )〈z, zn〉zn.

Now, from [62] z(t)z(s) = z(t + s) for z ∈ Z, μ̂(T(t)D)≤ μ̂(D), where T(t) is not compact

and μ̂ is the Hausdorff measure. Moreover, φ → v(φ
2
3 + σ ) is equicontinuous for φ ≥ 0.

Define f : [0,π ]× Z → Z by

e(κ,φ) =

∫
κ

–∞

ξ2(κ, r, ε)φ(ε)dε,

f

(
κ,φ,

∫
κ

0

e(ε,φ)dε

)
= ζ

(
φ,

∫ φ

–∞

ζ1(σ – φ)u(σ ,γ )dσ ,

∫
κ

0

e(ε,φ)(r)dε

)
,

and D
α, 23
0+ (u)(φ)(β) = ∂

2
3

∂β
2
3
u(φ,β), u(φ)(ς ) = u(φ,ς ).

Let B :U → Z be defined by (Bw)(φ)(ς ) = Uw(φ,ς ), 0 < ς < 1. For ς ∈ (0,π ),W is given

by

Ww(ς ) =

∫ 1

0

(1 – φ)
–1
3 P–1Qγ (1 – φ)Uw(φ,ς )dφ,

where

Q 2
3
=
2

3

∫ ∞

0

ςϒ 2
3
(ς )w

(
x

2
3 ς
)
dς ,

and for ϒ ∈ (0,∞),

ϒ 2
3
(ς ) =

3

2
ς–1– –5

2 w 2
3

(
ς

–3
2
)
,

w 2
3
(ς ) =

(
1

π

) ∞∑

r=1

(–1)r–1x–
2
3 r–1

[
Ŵ( 2

3
r + 1)

r!

]
sin

(
2rπ

3

)
.

Here, ϒ 2
3
is defined on (0,∞), that is,

ϒ 2
3
(ς ) ≥ 0, ς ∈ (0,∞) as well as

∫ ∞

0

ϒ 2
3
(ς )dς = 1,

f and U fulfills (A1)–(A3). We conclude that (6.1) is controllable on N.
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7 Conclusion

In this article, we have fundamentally focused on a class of Sobolev-type Hilfer frac-

tional integro-differential framework with infinite delay, which generalized the Riemann–

Liouville fractional derivative. At first, we dealt with the new existence result of a mild

solution with the assumptions that the framework satisfies the initial condition and non-

compactnessmeasure condition. Later, we have presented the controllability results of the

thought about the fractional framework. In the end, we introduced an example to show the

procured hypothetical results. We will try to investigate the neutral differential equation

and controllability of a similar problem in our future research work.

Acknowledgements

The fourth and fifth authors would like to thank Azarbaijan Shahid Madani University. The authors would like to thank

dear reviewers for their constructive comments which improved final version of this work.

Funding

Not applicable.

Availability of data andmaterials

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved

the final manuscript.

Author details
1Department of Mathematics, School of Advanced Sciences, Vellore Institute of Technology, 632 014 Vellore, Tamil Nadu,

India. 2Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi

Aldawaser 11991, Saudi Arabia. 3Department of Applied Science, Rajkiya Engineering College Kannauj, Kannauj 209732,

India. 4Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. 5Department of Medical Research,

China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 16 June 2021 Accepted: 28 September 2021

References

1. Baleanu, D., Etemad, S., Rezapour, S.: On a fractional hybrid integro-differential equation with mixed hybrid integral

boundary value conditions by using three operators. Alex. Eng. J. 59(5), 3019–3027 (2020).

https://doi.org/10.1016/j.aej.2020.04.053

2. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J.

Math. 45(1), 496–519 (2021). https://doi.org/10.3906/mat-2010-70

3. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver

with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020).

https://doi.org/10.1016/j.chaos.2020.109705

4. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional

differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A

Mat. 115, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3

5. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solution of a boundary value problem associated with a

fractional differential equation. Math. Methods Appl. Sci. (2020). https://doi.org/10.1002/mma.6652

6. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty

type hybrid contractions. Appl. Comput. Math. 20(2), 313–333 (2021)

https://doi.org/10.1016/j.aej.2020.04.053
https://doi.org/10.3906/mat-2010-70
https://doi.org/10.1016/j.chaos.2020.109705
https://doi.org/10.1007/s13398-021-01095-3
https://doi.org/10.1002/mma.6652


Kavitha et al. Advances in Difference Equations        ( 2021)  2021:467 Page 17 of 18

7. Alqahtani, B., Aydi, H., Karapinar, E., Rakocevic, V.: A solution for Volterra fractional integral equations by hybrid

contractions. Mathematics 7(8), 694 (2019). https://doi.org/10.3390/math7080694
8. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional

Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
9. Baleanu, D., Etemad, S., Rezapour, S.: A hybrid Caputo fractional modeling for thermostat with hybrid boundary value

conditions. Bound. Value Probl. 2020, 64 (2020). https://doi.org/10.1186/s13661-020-01361-0
10. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric

Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2017, 145 (2017).

https://doi.org/10.1186/s13661-017-0867-9
11. Samei, M.E., Rezapour, S.: On a system of fractional q-differential inclusions via sum of two multi-term functions on a

time scale. Bound. Value Probl. 2020, 135 (2020). https://doi.org/10.1186/s13661-020-01433-1
12. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a new structure of the pantograph inclusion problem in the Caputo

conformable setting. Bound. Value Probl. 2020, 171 (2020). https://doi.org/10.1186/s13661-020-01468-4
13. Rezapour, S., Samei, M.E.: On the existence of solutions for a multi-singular pointwise defined fractional

q-integro-differential equation. Bound. Value Probl. 2020, 38 (2020). https://doi.org/10.1186/s13661-020-01342-3
14. Tuan, N.H., Mohammadi, H., Rezapour, S.: A mathematical model for COVID-19 transmission by using the Caputo

fractional derivative. Chaos Solitons Fractals 140, 110107 (2020). https://doi.org/10.1016/j.chaos.2020.110107
15. Aydogan, S.M., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations

including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018).

https://doi.org/10.1186/s13661-018-1008-9
16. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier,

Amsterdam (2006)
17. Lakshmikantham, V., Leela, S., Vasundhara, D.J.: Theory of Fractional Dynamic Systems. Cambridge Academic

Publishers, London (2009)
18. Deimling, K.: Multi-Valued Differential Equations. de Gruyter, Berlin (1992)
19. Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations. Springer, New York (1983)
20. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
21. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new

approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w
22. Sabetghadam, F., Masiha, H.P., Altun, I.: Fixed-point theorems for integral-type contractions on partial metric spaces.

Ukr. Math. J. 68, 940–949 (2016). https://doi.org/10.1007/s11253-016-1267-5
23. Sabetghadam, F., Masiha, H.P.: Fixed-point results for multi-valued operators in quasi-ordered metric spaces. Appl.

Math. Lett. 25(11), 1856–1861 (2012). https://doi.org/10.1016/j.aml.2012.02.046
24. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S.: A discussion on the approximate controllability of Hilfer

fractional neutral stochastic integro-differential systems. Chaos Solitons Fractals 142, 110472 (2021).

https://doi.org/10.1016/j.chaos.2020.110472
25. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: Results on the existence and controllability of fractional

integro-differential system of order 1 < r < 2 via measure of noncompactness. Chaos Solitons Fractals 139, 110299

(2020). https://doi.org/10.1016/j.chaos.2020.110299
26. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R., Zhou, Y.: A new approach on the approximate controllability of

fractional differential evolution equations of order 1 < r < 2 in Hilbert spaces. Chaos Solitons Fractals 141, 110310

(2020). https://doi.org/10.1016/j.chaos.2020.110310
27. Rezapour, S., Azzaoui, B., Tellab, B., Etemad, S., Masiha, H.P.: An analysis on the positivesSolutions for a fractional

configuration of the Caputo multiterm semilinear differential equation. J. Funct. Spaces 2021, Article ID 6022941

(2021). https://doi.org/10.1155/2021/6022941
28. Mohan Raja, M., Vijayakumar, V., Udhayakumar, R.: A new approach on approximate controllability of fractional

evolution inclusions of order 1 < r < 2 with infinite delay. Chaos Solitons Fractals 141, 110343 (2020).

https://doi.org/10.1016/j.chaos.2020.110343
29. Mahmudov, N.I., Udhayakumar, R., Vijayakumar, V.: On the approximate controllability of second-order evolution

hemivariational inequalities. Results Math. 75, 160 (2020). https://doi.org/10.1007/s00025-020-01293-2
30. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear control system of order

α ∈ (1, 2] in Hilbert spaces. Nonlinear Stud. 22(1), 131–138 (2015)
31. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional control systems of order

α ∈ (1, 2] with infinite delay. Mediterr. J. Math. 13, 2539–2550 (2016). https://doi.org/10.1007/s00009-015-0638-8
32. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of fractional semilinear stochastic system of order

α ∈ (1, 2]. J. Dyn. Control Syst. 23, 679–691 (2017). https://doi.org/10.1007/s10883-016-9350-7
33. Shukla, A., Sukavanam, N., Pandey, D.N.: Approximate controllability of semilinear fractional stochastic control system.

Asian-Eur. J. Math. 11(6), 1850088 (2018). https://doi.org/10.1142/S1793557118500882
34. Singh, A., Shukla, A., Vijayakumar, V., Udhayakumar, R.: Asymptotic stability of fractional order (1, 2] stochastic delay

differential equations in Banach spaces. Chaos Solitons Fractals 150, 111095 (2021).

https://doi.org/10.1016/j.chaos.2021.111095
35. Vijayakumar, V., Udhayakumar, R., Kavitha, K.: On the approximate controllability of neutral integro-differential

inclusions of Sobolev-type with infinite delay. Evol. Equ. Control Theory 10(2), 271–296 (2021).

https://doi.org/10.3934/eect.2020066
36. Vijayakumar, V., Udhayakumar, R.: A new exploration on existence of Sobolev-type Hilfer fractional neutral

integro-differential equations with infinite delay. Numer. Methods Partial Differ. Equ. 37, 750–766 (2021).

https://doi.org/10.1002/num.22550
37. Williams, W.K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: A new study on existence and uniqueness of nonlocal

fractional delay differential systems of order 1 < r < 2 in Banach spaces. Numer. Methods Partial Differ. Equ. 37(2),

949–961 (2021). https://doi.org/10.1002/num.22560
38. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)
39. Gu, H., Trujillo, J.: Existence of mild solution for evolution equation with Hilfer fractional derivative. Appl. Math.

Comput. 257, 344–354 (2015). https://doi.org/10.1016/j.amc.2014.10.083

https://doi.org/10.3390/math7080694
https://doi.org/10.1186/s13661-019-1194-0
https://doi.org/10.1186/s13661-020-01361-0
https://doi.org/10.1186/s13661-017-0867-9
https://doi.org/10.1186/s13661-020-01433-1
https://doi.org/10.1186/s13661-020-01468-4
https://doi.org/10.1186/s13661-020-01342-3
https://doi.org/10.1016/j.chaos.2020.110107
https://doi.org/10.1186/s13661-018-1008-9
https://doi.org/10.1186/s13662-020-02544-w
https://doi.org/10.1007/s11253-016-1267-5
https://doi.org/10.1016/j.aml.2012.02.046
https://doi.org/10.1016/j.chaos.2020.110472
https://doi.org/10.1016/j.chaos.2020.110299
https://doi.org/10.1016/j.chaos.2020.110310
https://doi.org/10.1155/2021/6022941
https://doi.org/10.1016/j.chaos.2020.110343
https://doi.org/10.1007/s00025-020-01293-2
https://doi.org/10.1007/s00009-015-0638-8
https://doi.org/10.1007/s10883-016-9350-7
https://doi.org/10.1142/S1793557118500882
https://doi.org/10.1016/j.chaos.2021.111095
https://doi.org/10.3934/eect.2020066
https://doi.org/10.1002/num.22550
https://doi.org/10.1002/num.22560
https://doi.org/10.1016/j.amc.2014.10.083


Kavitha et al. Advances in Difference Equations        ( 2021)  2021:467 Page 18 of 18

40. Kavitha, K., Vijayakumar, V., Udhayakumar, R.: Results on controllability of Hilfer fractional neutral differential equations

with infinite delay via measures of noncompactness. Chaos Solitons Fractals 139, 110035 (2020).

https://doi.org/10.1016/j.chaos.2020.110035

41. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Nisar, K.S.: Results on the existence of Hilfer fractional neutral evolution

equations with infinite delay via measures of noncompactness. Math. Methods Appl. Sci. 44(2), 1438–1455 (2021).

https://doi.org/10.1002/mma.6843

42. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Sakthivel, N., Nisar, K.S.: A note on approximate controllability of the

Hilfer fractional neutral differential inclusions with infinite delay. Math. Methods Appl. Sci. 44(6), 4428–4447 (2021).

https://doi.org/10.1002/mma.7040

43. Kavitha, K., Vijayakumar, V., Shukla, A., Nisar, K.S., Udhayakumar, R.: Results on approximate controllability of

Sobolev-type fractional neutral differential inclusions of Clarke subdifferential type. Chaos Solitons Fractals 151,

111264 (2021). https://doi.org/10.1016/j.chaos.2021.111264

44. Kavitha, K., Vijayakumar, V., Udhayakumar, R., Ravichandran, C.: Results on controllability of Hilfer fractional differential

equations with infinite delay via measures of noncompactness. Asian J. Control (2021).

https://doi.org/10.1002/asjc.2549

45. Subashini, R., Jothimani, K., Nisar, K.S., Ravichandran, C.: New results on nonlocal functional integro-differential

equations via Hilfer fractional derivative. Alex. Eng. J. 59(5), 2891–2899 (2020).

https://doi.org/10.1016/j.aej.2020.01.055

46. Vijayakumar, V., Henriquez, H.R.: Controllability results for a class of fractional semilinear integro-differential inclusions

via resolvent operators. Numer. Funct. Anal. Optim. 39(6), 704–736 (2018).

https://doi.org/10.1080/01630563.2017.1414060

47. Vijayakumar, V., Murugesu, R., Poongodi, R., Dhanalakshmi, S.: Controllability of second order impulsive nonlocal

Cauchy problem via measure of noncompactness. Mediterr. J. Math. 14, 3 (2017).

https://doi.org/10.1007/s00009-016-0813-6

48. Yang, M., Wang, Q.: Approximate controllability of Hilfer fractional differential inclusions with nonlocal conditions.

Math. Methods Appl. Sci. 40(4), 1126–1138 (2017). https://doi.org/10.1002/mma.4040

49. Salim, A., Benchohra, M., Karapinar, E., Lazreg, J.E.: Existence and Ulam stability for impulsive generalized Hilfer-type

fractional differential equations. Adv. Differ. Equ. 2020, 601 (2020). https://doi.org/10.1186/s13662-020-03063-4

50. Brill, H.: A semilinear Sobolev evolution equation in Banach space. J. Differ. Equ. 24(3), 412–425 (1997).

https://doi.org/10.1016/0022-0396(77)90009-2

51. Chang, Y.K., Li, W.T.: Controllability of Sobolev type semilinear functional differential and integrodifferential inclusions

with an unbounded delay. Georgian Math. J. 13(1), 11–24 (2006). https://doi.org/10.1515/GMJ.2006.11

52. Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application

to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math7050444

53. Lightbourne, J.H., Rankin, S.: A partial functional differential equation of Sobolev type. J. Math. Anal. Appl. 93(2),

328–337 (1983). https://doi.org/10.1016/0022-247X(83)90178-6

54. Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo–Fabrizio fractional modeling

for hearing loss due to mumps virus with optimal control. Chaos Solitons Fractals 144, 110668 (2021).

https://doi.org/10.1016/j.chaos.2021.110668

55. Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Differ. Equ.

2020, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7

56. Wang, J., Feckan, M., Zhou, Y.: Controllability of Sobolev type fractional evolution systems. Dyn. Partial Differ. Equ.

11(1), 71–87 (2014). https://doi.org/10.4310/DPDE.2014.v11.n1.a4

57. Abdelouaheb, A.: Asymptotic stability in Caputo–Hadamard fractional dynamic equations. Results Nonlinear Anal.

4(2), 77–86 (2021)

58. Lazreg, J.E., Abbas, S., Benchohra, M., Karapinar, E.: Impulsive Caputo–Fabrizio fractional differential equations in

b-metric spaces. Open Math. 19(1), 363–372 (2021). https://doi.org/10.1515/math-2021-0040

59. Dineshkumar, C., Udhayakumar, R., Vijayakumar, V., Nisar, K.S., Shukla, A.: A note on the approximate controllability of

Sobolev type fractional stochastic integro-differential delay inclusions with order 1 < r < 2. Math. Comput. Simul. 190,

1003–1026 (2021). https://doi.org/10.1016/j.matcom.2021.06.026

60. Ji, S., Li, G., Wang, M.: Controllability of impulsive differential systems with nonlocal conditions. Appl. Math. Comput.

217(16), 6981–6989 (2011). https://doi.org/10.1016/j.amc.2011.01.107

61. Nisar, K.S., Vijayakumar, V.: Results concerning to approximate controllability of non-densely defined Sobolev-type

Hilfer fractional neutral delay differential system. Math. Methods Appl. Sci. (2021). https://doi.org/10.1002/mma.7647

62. Wang, J., Fan, Z., Zhou, Y.: Nonlocal controllability of semilinear dynamic systems with fractional derivative in Banach

spaces. J. Optim. Theory Appl. 154, 292–302 (2012). https://doi.org/10.1007/s10957-012-9999-3

63. Benchora, M., Alssani, K., Nieto, J.: Controllability for impulsive fractional evolution inclusions with state-dependent

delay. Adv. Theory Nonlinear Anal. Appl. 3(1), 18–34 (2019). https://doi.org/10.31197/atnaa.494662

64. Yan, B.: Boundary value problems on the half-line with impulses and infinite delay. J. Math. Anal. Appl. 259(1), 94–114

(2001). https://doi.org/10.1006/jmaa.2000.7392

65. Zhou, Y., Jiao, F.: Existence of mild solutions for fractional neutral evolution equations. Comput. Math. Appl. 59(3),

1063–1077 (2010). https://doi.org/10.1016/j.camwa.2009.06.026

66. Banas, J., Goebel, K.: Measure of Noncompactness in Banach Spaces. Dekker, New York (1980)

67. O’Regan, D., Precup, R.: Existence criteria for integral equations in Banach spaces. J. Inequal. Appl. 6(1), 77–97 (2001)

68. Monch, H.: Boundary value problems for nonlinear ordinary differential equations of second order in Banach spaces.

Nonlinear Anal., Theory Methods Appl. 4(5), 985–999 (1980). https://doi.org/10.1016/0362-546X(80)90010-3

69. Byszewski, L.: Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy

problem. J. Math. Anal. Appl. 162(2), 494–505 (1991). https://doi.org/10.1016/0022-247X(91)90164-U

70. Byszewski, L., Akca, H.: On a mild solution of a semilinear functional-differential evolution nonlocal problem. J. Appl.

Math. Stoch. Anal. 10(3), 265–271 (1997). https://doi.org/10.1155/S1048953397000336

https://doi.org/10.1016/j.chaos.2020.110035
https://doi.org/10.1002/mma.6843
https://doi.org/10.1002/mma.7040
https://doi.org/10.1016/j.chaos.2021.111264
https://doi.org/10.1002/asjc.2549
https://doi.org/10.1016/j.aej.2020.01.055
https://doi.org/10.1080/01630563.2017.1414060
https://doi.org/10.1007/s00009-016-0813-6
https://doi.org/10.1002/mma.4040
https://doi.org/10.1186/s13662-020-03063-4
https://doi.org/10.1016/0022-0396(77)90009-2
https://doi.org/10.1515/GMJ.2006.11
https://doi.org/10.3390/math7050444
https://doi.org/10.1016/0022-247X(83)90178-6
https://doi.org/10.1016/j.chaos.2021.110668
https://doi.org/10.1186/s13662-020-03044-7
https://doi.org/10.4310/DPDE.2014.v11.n1.a4
https://doi.org/10.1515/math-2021-0040
https://doi.org/10.1016/j.matcom.2021.06.026
https://doi.org/10.1016/j.amc.2011.01.107
https://doi.org/10.1002/mma.7647
https://doi.org/10.1007/s10957-012-9999-3
https://doi.org/10.31197/atnaa.494662
https://doi.org/10.1006/jmaa.2000.7392
https://doi.org/10.1016/j.camwa.2009.06.026
https://doi.org/10.1016/0362-546X(80)90010-3
https://doi.org/10.1016/0022-247X(91)90164-U
https://doi.org/10.1155/S1048953397000336

	A discussion concerning the existence results for the Sobolev-type Hilfer fractional delay integro-differential systems
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence
	Controllability
	Nonlocal conditions
	Example
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Declarations
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


