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S U M M A R Y  
For a vector field defined by a scalar potential outside a surface enclosing all the 
sources, it is well known that the potential is defined uniquely if either the potential 
itself, or its derivative normal to the surface, is known everywhere on the surface. 
For a spherical surface, the normal derivative is the radial component of the field: 
the horizontal (vector) component of the field also gives uniqueness (except for any 
monopole contribution). 

This paper discusses the way other partial information of the field on the spherical 
surface can give a unique, or almost unique, knpwledge of the external 
potentialhieid, bringing together and correcting previous work. For convenience the 
results are given in the context of the geomagnetic field B. This is often expressed in 
terms of its local Cartesian components ( X ,  Y ,  Z ) ,  equivalent to ( - B e ,  B,, - B r ) ;  it 
can also be expressed in terms of Z and the vector horizontal component 
H = (X, Y ) .  Alternatively, local ‘spherical polar’ components (F, I ,  D) are used, 
where F = IBI, the inclination I is the angle in the vertical plane downward from H 
to B,  and the declination D is the angle in the horizontal plane eastward from north 
to H. 

Knowledge of X over the sphere gives a complete knowledge of the potential, 
apart from that of any monopole (which is zero in geomagnetism), and Y gives the 
potential except for any axially symmetric part (which can be provided by a 
knowledge of X along a meridian, or of H along any path from pole to pole). In 
terms of ( F ,  I, D) the situation is more complicated; either F o r  the total angle ( I ,  0) 
needs to be known throughout a finite volume; for the latter, this paper shows how, 
in principle, the actual potential can be determined (except for an unknown scaling 
factor). Similarly D on the sphere also needs a knowledge of IHl on a line from 
(magnetic) pole to pole. 

We also discuss how these various properties affect the determination, by surface 
integration, of the Gauss coefficients of the field representation in terms of spherical 
harmonics. 

Key words: geomagnetic field, potential theory, spherical harmonic analysi’s, 
uniqueness. 

1 INTRODUCTION 

In a region where a vector field B is curl-free (always true 
for a gravitational field, true in the absence of local current 
density for a magnetic field), the field can be specified as the 
gradient of a scalar potential U. If there is no local 
mass/pole density, we also have div B = 0, and the potential 
satisfies the Laplace equation 

v2u = 0. (1) 

It is well known that eq. (1) has a unique solution outside a 
closed surface (containing all the sources) on which we 
everywhere know either (i) the potential U (Dirichlet 
problem), or (ii) its derivative normal to the surface 
(Neumann problem); hence in such cases the field B is 
therefore also determined everywhere outside (and on) the 
surface. Once the potential, or its radial derivative, is known 
on the surface, the actual potential at any exterior point can 
be determined numerically by using the appropriate Green’s 
function to integrate over the surface. 
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In geomagnetism, what is measured is the vector field 
B = -grad U. It is clear from the Neumann situation that a 
full knowledge of the field vector over the surface will 
enable the external potential, and hence field, to be 
determined uniquely; in fact we only need the field 
component that is locally normal to the surface. This paper 
considers other sorts of partial knowledge of B that also give 
(almost) unique solutions when the surface is spherical, or 
when the knowledge is extended over a finite shell. In the 
next section we consider the problem of uniqueness, 
bringing together previous work, and adding new results of 
our own. In Section 3 we discuss how the solutions can be 
found in several cases, when working in terms of spherical 
harmonics. Our discussion is given in the notation of 
geomagnetism, but we point out where the situation for a 
gravitational field is different. 

2 UNIQUENESS WHEN ONLY PARTIAL 
INFORMATION IS AVAILABLE 

2.1 Using normal and tangential components of the field 

We saw above that a full knowledge of the normal 
component of the field over the surface gives a unique 
solution. In fact, for a yherical surface, the tangential 
component H = B,6 + B+c#J of the field is also sufficient to 
give (almost) uniqueness (Schmidt 1889, though in a 
spheroidal context; Langel 1987); assuming the potential at 
one point to be U,, the potential at any other point on the 
sphere can be determined by adding to U, the line integral 
from that point U ,  = J H - ds. We can then put 

where Urn is the mean over the sphere of U,, and hence 
U ,  = U, + U, is an arbitrary potential, constant over the 
sphere. As the problem is linear, we can then apply 
Dirichlet to specify the external potentials corresponding to 
U ’  and U ,  separately. But we know that, for the spherical 
surface, the constant potential U ,  can only be that of a 
central monopole (corresponding to total mass, or net 
magnetic pole strength). As in geomagnetism the monopole 
moment is zero, we have U, = 0, so that the U’ given by H 
completely defines the external potential. (For gravitational 
and other fields the monopole moment, which gives a purely 
radial field, is not determined.) 

The same approach can be used also for a spheroidal 
surface, giving an unknown constant potential over that 
surface; this constant potential is now that of the zero-order, 
spheroidal harmonic, which is zero in our situation. 

2.2 Using geomagnetic ( X ,  Y ,  2)  components of the field 

It is conventional in geomagnetism to express the field B not 
in terms of spherical polar coordinates (B,, B,, B4), but in 
terms of an equivalent local Cartesian coordinate system 
which puts B =  ( X ,  Y,  Z ) ,  where X ,  Y, Z are the local 

northward ( - -Be) ,  eastward (B+), and downward radial 
( -Br ) ,  components. (Throughout this paper we assume that 
this ( X ,  Y ,  Z )  system is defined for the spherical surface.) 
Note that the (separate) values of the X and Y components 
depend on the (otherwise essentially arbitrary) choice of the 
8 = 0 ‘polar’ axis, and of the 4 = 0 meridian. 

We have (in effect) already discussed above the case of 
the Z component, which is normal to the sphere. We also 
saw that, on the sphere r = a ,  and given zero monopole 
field, a knowledge of the total horizontal vector component 
H = ( X ,  Y )  is sufficient to give uniqueness; in fact (Schmidt 
1889), we only need to know the north-south component 
X ( a ,  8, 4). Starting from 8 = 0, the relative potential 
anywhere else on the surface can be found by integrating X 
down the appropriate line of longitude, and then we have 
the same situation as above. 

It is clear that a knowledge only of the east-west 
component, Y(a, 8, d), of H can tell us nothing about any 
part of the potential that has axial symmetry about the 6 = 0 
axis. But, starting with the (unknown) potential distribution 
along, say, the 4 = 0 meridian on a sphere, the relative 
potential elsewhere can be obtained by integrating along 
the appropriate circle of latitude (Schmidt 1889). An 
argument similar to that used above then shows that this is 
sufficient to define uniquely any non-axisymmetrical part of 
the potential. As stated by Vestine (1941), if we also know 
the value of X along this 4 = 0 meridian, the potential is 
then completely defined (except for any monopole); 
equivalently, a knowledge of H along any path from 
geographic pole to pole would suffice. 

As in Section 2.1 these results also apply to the 
corresponding components on a spheroidal surface. 

That the Y component of the horizontal (vector) H 
contains less information than the X component follows 
from the geometry of its definition; while knowing X allows 
the equivalent of J H - ds to be calculated between one point 
(a pole) and any other point, this is not possible with Y. 

2.3 Using geomagnetic ( F ,  I ,  D )  components of the field 

Instead of expressing B in terms of components in a local 
Cartesian coordinate system, we can use a local spherical 
polar system, with its polar axis vertically downward, to give 
B = (F,  I ,  D ) ,  where F is the (radial) length of the vector B,  
and the inclination I and declination D correspond to the 
‘latitude’ and ‘longitude’ of the direction of the vector B in 
the local coordinate system. ( I  is the angle in the vertical 
plane downward from H to B ,  and D is the angle in the 
horizontal plane eastward from north to H . )  We can then 
ask similar questions as to whether partial specification of B, 
in terms of one or more of F, I ,  D, on a closed surface, is 
sufficient to give uniqueness. 

For a complete knowledge of F on an arbitrary closed 
surface, Backus (1968, 1970) showed that, provided there is 
a finite monopole moment, the potential is uniquely defined 
(except as to sign if the sign of the monopole is unknown) 
on and outside the surface. If, as in geomagnetism, there is 
no monopole moment, then, provided U is known to have 
only a finite number of spherical harmonics, a knowledge of 
F on a spherical surface again determines U uniquely, except 
as to sign, on and outside the sphere. If U consists of an 
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infinite number of harmonics, however, the position is 
unclear; although Backus (1970) produced a counter- 
example that there are an infinite number of pairs of 
solutions having the same F on a spherical surface, this does 
not rule out the possibility that there are some magnetic 
fields that are determined uniquely by knowing F on a 
sphere. (In practice, if only F values are used in a numerical 
approximation to the geomagnetic field, then large 
'perpendicular errors' (Lowes 1975) are produced, 
analogous to the Backus counter-example. It is not known, 
however, if this would happen with perfect data over the 
sphere.) 

If knowledge of F is expanded to cover a finite volume, 
however, Backus (1968 for the volume outside a sphere, 
1970 for spherical shell (though without a formal proof), 
and 1974 for arbitrary finite volume) showed that the 
solution is  unique (except as to sign) everywhere outside the 
source region. 

Even if there is a unique solution, there appears to be no 
formal method of producing an exact solution (except for 
the analytical continuation involved in Backus' (1974) 
proof). 

Kono (1976) attempted to prove that a knowledge of the 
full direction (I, D )  on the sphere would give uniqueness. If 
a field B(r, 8, 4 )  were to exist which fitted the observed 
(I, D) on r = a ,  then so would the field k ( a ,  8, 4 )  
B(a, 8, 4),  where k is a scalar. Kono claimed to have shown 
that k must in fact be constant both on and outside the 
sphere, and that therefore B was unique. However his 
'proof' assumed that on the sphere the contours of k were 
not perpendicular to B, but Gubbins (1986) showed this was 
not true (although Gubbins did not relate this to Kono's 
work). Later, Proctor & Gubbins (1990) showed that there 
was in fact no restriction on how k behaved away from the 
surface, and also produced a counter-example. 

Kono (1976) also gave counter-examples to show that 
knowledge of only X / Z  (analogous to I )  or X / Y  (analogous 
to D )  on the sphere is not necessarily sufficient to give 
uniqueness. For I itself he showed that if two independent 
potentials give the same values of I on the sphere, then at 
least one of them must contain an infinite number of 
spherical harmonics; this is analogous to the result of Backus 
(1968) for F. 

Gubbins (1986) showed that if D is known everywhere on 
a sphere, and a field B has been found that matches it there, 
then (for an Earth-like field) a knowledge of the horizontal 
intensity along a line joining the dip-poles defines the field 
uniquely; this is analogous to the way a geographic 
pole-to-pole knowledge of H removes the ambiguity if only 
the rectangular component Y is known. 

If the full direction ( I ,  D ) ,  or its equivalent, is known 
throughout a finite volume, Bloxham (1985), reported by 
Proctor & Gubbins (1990), proved that the field is then 
uniquely defined everywhere, up to a multiplicative 
constant. (They gave their proof for a spherical annulus, but 
the restriction is not necessary.) 

We now show how the field can be determined 
analytically, at least in principle, in this situation. Let T ( r )  

be the unit vector in the direction of the field, and F ( r )  the 
(unknown) corresponding field magnitude. We then have 

div B = div ( F T )  = (grad F )  - T + F div T =0,  (3) 

and 

curl B = curl ( F T )  = (grad F )  X T + F curl T = 0. (4) 

Putting 

A = (grad F ) / F ,  

we then have 

A * T = -div T and A x T = -curl T .  (6) 

As T is specified everywhere in the annulus, then from (6) so 
also is the vector A =(grad F ) / F .  (Expressions for A in 
terms of its components are given in the Appendix.) Now, 

(grad F ) / F  = grad (In F ) ,  (7 1 

so, if In F is assumed to have the value In F, at some point r, 
in the annulus, the value of In F at any other point r, in the 
annulus can be found by the line integral 

In Fp = In F;, + 

giving 

ds, 

F, = F, exp [fi * d s ] .  (9) 

Combining this field magnitude F with the known direction 
T ,  we now know the vector field B throughout the annulus. 
We therefore know it, and hence its normal derivative, on 
some closed surface, so we have the Neuman problem again 
(except for an arbitrary scale factor). 

In this derivation the finite volume throughout which the 
direction is known does not have to be a spherical shell, and, 
although the derivation has been expressed in terms of B, 
there is no assumption about the monopole moment being 
zero. 

3 SPHERICAL HARMONIC APPROACH 

3.1 Potential and vector field 

Once the potential, or its radial derivative, is known on the 
sphere, then the potential at any exterior point can be 
determined by using the appropriate Green's function to 
integrate over the sphere. A much simpler approach is 
possible, however, if we restrict the surface to be a sphere of 
radius a ,  and express the potential U as the sum of spherical 
harmonic terms of the form 

where in geomagnetism the g," and h," are the numerical 
Gauss coefficients. We can write this more compactly as 

where the superscript b denotes either cos or sin (for 
example gTc stands for g,", and g? stands for h,"). 
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In geomagnetism what is measured is the vector field 
B = -grad U ,  and we can write 

where 

Br” = -grad Ur“.  

On the sphere the Ur” are orthogonal, so the g r b  can be 
determined directly by integration over the sphere. For the 
Dirichlet problem, if U is the observed potential, we have 

= (2n + 1) UUnnh d S / 4 m 4  (13) I 
for the Schmidt semi-normalized associated Legendre 
polynomials. 

The BTb are also orthogonal on the sphere (Lowes 1966). 
so if B is the observed field we have 

gm” = I. - Br” dS/!(Br“)’ dS 

= I B  * B,“” dS/(n + 1)4rca2. (14) 

3.2 Using (X, Y ,  Z) components 

If we put B = ( X ,  Y, Z ) ,  where X ,  Y, 2 are the conventional 
geomagnetic field components defined in Section 2.2, then 
we can write 

where each term is derived from the appropriate potential: 

X y  = (a/r)”+’ cos rn4 d c ( c o s  8 ) / d e ,  

Y? = m(a/r)“+)’ sin m 4 c ( c o s  @)/sin e, (16) 

Z r  = - ( n  + l ) (a/r)“+)’  cos m 4 c ( c o s  e), 

and similarly for the sine terms (except for the change of 
sign in YF) .  

We have already seen that a complete knowledge of the 
radial component Z(a,  0, 4) is sufficient; using the results 
of Lowes (1966) we have, for the Neumann problem, 

= (2n + 1) 22;“ dS/4rca2(n + 1))’. (17) I 
Just as the Br” and the 2,“” ( = B Y ” . n )  are each 

orthogonal, so also is their vector difference, the 
corresponding horizontal component 

H,“” = (X,“”, Y?”). 

We therefore have (Lowes 1966) 

g;” = / H  H r b  dS/I(H;”))’  dS 

= (2n + 1) H * H r b  dS/4m2n(n + 1), (18) I 
so, as expected from Section 2.1 above, we can obtain all the 
Gauss coefficients given either the vertical (scalar) 
component, or the horizontal (vector) component on a 
sphere. 

But the case of X,“” and Yzb separately is more 
complicated. As was shown by Lucke (1957) these are 
separately not orthogonal, so the sort of surface integration 
used above cannot be used directly to determine individual 
coeficients; Langel (1987, p. 347) is wrong in implying that 
this can be done. (Of course the line-integral approach of 
Section 2.2 can be used to give the distribution of the 
potential on the surface, and then (13) can be used.) 

There is also the complication that, because of their 
definitions, X and Y are discontinuous at the two geographic 
poles (although of course the field they represent is 
continuous). To avoid this latter difficulty, Schmidt (1889, 
expanded in 1895) introduced the use of (Xsin 0 )  and 
( Y  sin 0); in fact the (Y,“ sin 0) are orthogonal over the 
sphere, although the ( X z  sin 6) are not completely 
orthogonal. 

Because of the orthogonality of the ( Y r  sin 0) we have 

g r  = ( y sin e)( Y r  sin 0) d S / / (  YT sin 0)’ dS I 
= (2n + 1) (Y sin e)(YTsin 6) dS/4m2m2,  (19) I 

and similarly, except for change of sign, for h r .  Of course 
no information can be obtained about the gz. Presumably, 
using Y sin 8 is equivalent to performing the line integral 
J Y  ds = JY sin 8 a d 4  of Section 2.2. 

Because of the lack of orthogonality for the (A’; sin 0)  
the algebra is more complicated. It is a standard result that 

sin B d K / d O  = a:c-l - b;c+l ,  (20) 

where the a,“ and b r  are known factors (with b,“=O for 
n < m ) .  Therefore when ( X  sin 6 )  is analysed, using the 
equivalent of (lo), to give 

x ~ ( C O S  e), (21) 

then we find that in general each e,“ has contributions from 
both gYPl and g,“+:-. Each gz+,  starts a sequence of 
equations in whicn e z  occurs only in the first equation, so 
this e z  gives the corresponding gz+,  directly, and then 
g z + 3 ,  gz+5,  etc. can be solved for recursively. However, 
each g z  starts a sequence of equations in which the first 
equation has only e z ,  which also occurs in the next 
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equation, so this set of equations cannot be solved; this was 
explained by Kawasaki, Matsushita & Cain (1989). Schmidt 
(1889) attempted to get round this problem by assuming that 
the harmonic expansion was truncated at a known point, so 
that the last equation of the sequence had an e," which 
occurred only once, so that the equations could be solved, at 
least formally, but this seems a very dubious procedure 
(although perhaps analogous to the uniqueness given by I or 
by F when the field consists only of a finite number of 
harmonics). Certainly, the phrase 'By a comparison of 
corresponding terms the coefficients g," can be expressed by 
a combination of coefficients e," . . - ' used by Chapman & 
Bartels (1940, p. 637) does not seem justified. It is 
somewhat surprising that while X ,  unlike some other 
components of B ,  imposes a unique solution for the full 
potential, and hence in principle for all the harmonic 
coefficients g7b,  there does not seem to be a way to 
determine more than about half of them. 

4 DISCUSSION 

This paper has considered how (parts of) the external 
field/potential are determined uniquely, and how they can 
be determined analytically, when given various sorts of 
partial, but exact, information about the field over a 
spherical surface enclosing the sources. 

The potential U itself, and the vector field B, or its radial 
component 2 = -Br,  all give complete uniqueness, as does 
the vector horizontal component H (except for a possible 
monopole field, which is zero in geomagnetism); because of 
orthogonality, the corresponding spherical harmonic 
coefficients can be determined analytically. 

Knowing the north-south horizontal component, X = 
-Bo, over the sphere determines the field uniquely (for 
zero monopole field). The east-west, Y = B,, component 
determines the field except for its axially symmetric part, 
and this can be added either by a knowledge of X along a 
meridian, or of H along any line joining the poles. While the 
corresponding spherical harmonic coefficients can be 
determined analytically for the case of Y ,  in the case of X 
only about half can be determined, unless the potential is 
known to consist only of a finite number of harmonics. 

Alternatively, B can be expressed in terms of its intensity 
and direction in the form of (F,  I ,  D). A knowledge of F on 
the sphere probably does not give uniqueness unless there is 
a monopole (as for gravitational fields), or it is known that 
the potential consists only of a finite number of spherical 
harmonics. At best, the total angular information ( I ,  0)  by 
itself could determine the field only to a scale factor in 
magnitude, but uniqueness has not been proved; surface I by 
itself gives uniqueness only if there are only a finite number 
of harmonics, and surface D needs also a knowledge of H 
along a line from dip-pole to dip-pole. 

The intensity F, or total angle ( I ,  D), gives uniqueness if 
known throughout a finite volume, and this paper shows 
how the solution can be found, at least in principle, for the 
latter case. 

The above situations all involve exact knowledge over the 
whole sphere, and in principle will give exact results (except 
for any truncation of a series solution when using a spherical 
harmonic approach). Of course in practice we only know 

(components of) the field at a finite number of discrete 
points on the sphere, and the Gauss coefficients of a series 
solution for the potential are only estimated, usually by some 
sort of least squares' processs. The way the (lack of) 
orthogonality affects this process in the various situations is 
discussed by DeSantis, Falcone & Lowes (1995). 
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APPENDIX A: THE DETERMINATION OF 
(grad F ) I F  

For A = (grad F ) / F ,  we found above that 

A - T = -div T and A X T = -curl 7. 
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Writing these vector equations in terms of scalar component 
equations we have 

= 0, +-- 
r sin 8 a, 

1 a(sin 87,) 1 are 
r sin 8 a8 rsin ea4 ’ (Al)  

_ _ _ -  A,r, - A,q, = __ 

Although there appear to be four equations for the three 
components A,, A,, A,, only three are independent, as the 
determinant of the last three equations is zero. (Physically, 

A X T gives no information about the projection of A along 
the direction of 7.) 

Solving algebraically, we find 

7,a7, ‘Ted(rT,) T, az, 
A, = - z, div - - - + - __ - __ - 

r d 8  r ar r s i n 8 a 4  

7, W,) +--- 
r ar 

=f,(r, 8, $1, ( ‘42) 

and similarly for A,  =f , ( r ,  8, 4) and A, = f + ( r ,  8, 4). We 
then have 
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