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Abstract

In this paper, we investigate the existence of positive solutions for the new class of

boundary value problems via ψ -Hilfer fractional differential equations. For our

purpose, we use the α –ψ Geraghty-type contraction in the framework of the

b-metric space. We give an example illustrating the validity of the proved results.
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1 Introduction

One of the critical techniques of the solving differential equations is using the method of

successive approximations, which is the basic of the metric fixed point theory. More pre-

cisely, Banach’s contraction mapping principle, the first metric fixed point theorem, is ob-

tained by the abstraction of the method of successive approximations. Roughly speaking,

starting from the arbitrary initial point, we construct a sequence by recursively applying

the given operator. Then, if the obtained sequence converges to a limit, this limit forms a

fixed point and solution of the differential equation.

The pioneer result of metric fixed point theory was given by Banach in the framework

of complete norm spaces. After then, the praiseworthy fixed point theorem of Banach

has been characterized in different structures, such as standard metric spaces, partial

metric spaces, quasimetric spaces, fuzzy-metric spaces, modular metric spaces, and b-

metric spaces. In this paper, we consider our results in a b-metric space, which is a natural

and novel extension of the standard metric spaces. Roughly speaking, the difference of b-

metric from the standard metric is the triangle inequality. In the b-metric notion, instead

of the triangle inequality, the following inequality is used:

d(v, z) ≤ c
[

d(v, t) + d(t, z)
]

for all v, t, z and some c≥ 1.
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In the last few decades, the natural extension of differential equations, fractional dif-

ferential equations, have been investigated densely in the setting of the standard met-

ric spaces. As it is well known, there are several distinct fractional derivative types, such

as Caputo, Hadamard, Grunwald–Letnikov, Hilfer, Riemann–Liouville, Riesz, Atangana–

Baleanu, and so on. Among these different types of fractional derivatives, we focus on the

Hilfer fractional derivative; see, for example, [1–28]. By using this definition we will in-

vestigate the existence of positive solutions for certain boundary value problems in the

context of b-metric spaces.

2 Preliminaries

In this section, we recall some notations and definitions of the fractional differential equa-

tion. Throughout this paper, we assume that all considered sets are nonempty and denote

R
+ = [0,∞).

Let [a,T]⊂R
+ with (0 < a < T < ∞), and let C[a,T] be the Banach space of continuous

functions y : [a,T]→R with the norm

‖y‖C[a,T] = max
{
∣

∣y(t)
∣

∣ : a ≤ t ≤ T
}

.

The weighted space C1–ξ ;δ[a,T] of continuous functions is defined as [22]

C1–ξ ;δ[a,T] =
{

y : (a,T]→R;
[

δ(t) – δ(a)
]1–ξ

y(t) ∈ C[a,T]
}

, 0≤ ξ < 1.

Obviously, C1–ξ ;δ[a,T] is a Banach space endowed with the norm

‖y‖c1–ξ ;δ = max
t∈[a,T]

∣

∣

[

δ(t) – δ(a)
]1–ξ

y(t)
∣

∣.

Definition 2.1 ([22]) Let ι > 0, y ∈ L1[a,b], and let δ ∈ C1[a,b] be an increasing function

with δ′(t) 
= 0 for all t ∈ [a,b]. Then the left-sided δ-Riemann–Liouville fractional integral

of a function y is defined by

Iι,δa+y(t) =
1

Ŵ(ι)

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1

y(s)ds,

where Ŵ is the Euler gamma function defined by Ŵ(ι) =
∫ ∞
0

sι–1e–s ds, ι > 0.

Definition 2.2 ([11]) Let n – 1 < ι < n (n = [ι] + 1), and let y, δ ∈ Cn[a,b] be two functions

with an increasing δ and δ′(t) 
= 0 for all t ∈ [a,b]. Then the left-sided δ-Riemann–Liouville

fractional (δ-Caputo) derivative of a function y of order ι is defined by

Dι,δ
a+y(t) =

(

1

δ′(t)

d

dt

)n

In–ι,δ
a+ y(t)

and

CDι,δ
a+y(t) = In–ι,δ

a+

(

1

δ′(t)

d

dt

)n

y(t),

respectively.
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Definition 2.3 ([22]) Let n–1 < ι < n (n ∈N), and let y, δ ∈ Cn[a,T] be two functions such

that δ is increasing and δ′(t) 
= 0 for all t ∈ [a,T]. Then the left-sided δ-Hilfer fractional

derivative of a function y of order ι and type 0≤ β ≤ 1 is defined by

D
ι,β ,δ
a+ y(t) = I

β(n–ι);δ
a+

(

1

δ′(t)

d

dt

)n

I
(1–β)(n–ι);δ
a+ y(t)

= I
β(n–ι);δ
a+ D

ξ ;δ
a+ y(t) (ξ = ι + nβ – ιβ). (1)

In this paper, we consider the case n = 1, because 0 < ι < 1.

Lemma 2.4 ([17]) Let ι > 0 and 0 ≤ ξ < 1. Then I ι,δa+ is bounded from C1–ξ ;δ[a,b] into

C1–ξ ;δ[a,b].

Now we introduce the spaces

C
ι,β
1–ξ ;δ[a,T] =

{

y ∈ C1–ξ ;δ[a,T],D
ι,β ;δ
a+ y ∈ C1–ξ ;δ[a,T]

}

, 0≤ ξ < 1,

and

C
ξ
1–ξ ;δ[a,T] =

{

y ∈ C1–ξ ;δ[a,T],D
ξ ;δ
a+ y ∈ C1–ξ ;δ[a,T]

}

, 0 ≤ ξ < 1. (2)

Lemma 2.5 ([22]) Let ξ = ι + β – ιβ , where ι ∈ (0, 1), β ∈ [0, 1], and let y ∈ C
ξ
1–ξ ;δ[a,T].

Then

I
ξ ;δ
a+ D

ξ ;δ
a+ y = Iι;δa+D

ι,β ;δ
a+ y

and

D
ξ ;δ
a+ I

ι;δ
a+y =D

β(1–ι);δ
a+ y.

Lemma 2.6 ([22]) Let ι > 0, 0≤ ξ < 1, and y ∈ C1–ξ [a,T], β ∈ [0, 1]. Then

D
ι,β ,δ
a+ Iι,δa+y(t) = y(t).

Lemma 2.7 ([17]) Let t > a. Then for ι ≥ 0 and ξ > 0, we have

Iι,δa+
[

δ(t) – δ(a)
]ξ–1

=
Ŵ(ξ )

Ŵ(ι + ξ )

(

δ(t) – δ(a)
)ι+ξ–1

, t > a

and

Dι,δ
a+

[

δ(t) – δ(a)
]ι–1

= 0 for ι ∈ (0, 1).

Lemma 2.8 ([22]) Let ξ = ι + β – ιβ , where ι ∈ (0, 1), β ∈ [0, 1], let y ∈ C
ξ
1–ξ ;δ[a,T], and let

I
1–ξ ;δ
a+ y ∈ C1

1–ξ ,δ[a,T]. Then we have

I
ξ ;δ
a+ D

ξ ,δ
a+ y(t) = y(t) –

I
1–ξ ;δ
a+ y(a)

Ŵ(ξ )

(

δ(t) – δ(a)
)ξ–1

.
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Lemma 2.9 ([22]) Let ι > 0, 0 ≤ ξ < ι, and y ∈ C1–ξ ,δ[a,T] (0 < a < T < ∞). If ξ < ι, then

Iι;δa+ : C1–ξ ,δ[a,T]→ C1–ξ ,δ[a,T] is continuous on [a,T] and satisfies

Iι;δa+y(a) = lim
t→a+

Iι;δa+y(t) = 0.

Definition 2.10 ([18]) Let ι > 0, and let κ be an increasing function having a continuous

derivative κ ′ on (a,b). The left-sided κ-Riemann–Liouville fractional integral of a function

h with respect to κ on [a,b] is defined by

Iι,κa+h(̺) =
1

Ŵ(ι)

∫ ̺

a

κ ′(ς )
[

κ(̺) – κ(ς )
]ι–1

h(ς )dς , ̺ > a, ι > 0,

provided that Iι,κa+ exists. Note that when κ(̺) = ̺, we obtain the well-known classical

Riemann–Liouville fractional integral.

Definition 2.11 ([18, 21]) Let ι > 0, let n be the smallest integer greater than or equal to

ι, and let h ∈ Lp[a,b], p ≥ 1. Let κ ∈ Cn[a,b] be an increasing function such that κ ′(̺) 
= 0

for all ̺ ∈ [a,b]. The left-sided κ-Riemann–Liouville fractional differential of h of order ι

is given by

Dι;κ
a+h(̺) =

(

1

κ ′(̺)

d

d̺

)n

In–ι,κ
a+ h(̺), n – 1 < ι < n,n ∈N.

Definition 2.12 ([9, 11]) Let n–1 < ι < n, h ∈ Cn[a,b], and let κ ∈ Cn[a,b] be an increasing

function such that κ ′(̺) 
= 0 for all ̺ ∈ [a,b]. The left-sided κ-Caputo fractional differential

of h of order ι is given by

CDι;κ
a+h(̺) = In–ι,κ

a+ Dn,κh(̺),

where Dn,κ := ( 1
κ ′(̺)

d
d̺
)n, and n = [ι] + 1.

Definition2.13 ([12]) Let c ≥ 1, and letM be a set. The distance functiond : M×M →R
+

is called b-metric if for all ̺,ς , ζ ∈M, the following are fulfilled:

(bM1) d(̺,ς ) = 0 if and only if ς = ̺;

(bM2) d(̺,ς ) = d(ς ,̺);

(bM3) d(̺, ζ ) ≤ c[d(̺,ς ) + d(ς , ζ )].

The triple (M,d, c) is called a b-metric space.

Let  be the set of all increasing and continuous functions φ : R+ → R
+ satisfying the

property φ(c̺) ≤ cφ(̺) ≤ c̺ for c > 1 and φ(0) = 0. We denote by F the family of all non-

decreasing functions λ :R+ → [0, 1
r2
) for some r ≥ 1.

Definition 2.14 ([7]) For b-metric space (M,d, r), an operator T :M →M is called a gen-

eralized α–δ-Geraghty mapping whenever there exists α :M ×M →R
+ such that

α(̺,ς )φ
(

r3d(T̺,Tς )
)

≤ λ
(

φ
(

d(̺,ς )
))

φ
(

d(̺,ς )
)

for ̺,ς ∈M, where λ ∈F and φ ∈ .
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Definition 2.15 ([13]) For M ( 
= ∅), let T :M → M and α :M × M → R
+ be given map-

pings. We say that T is orbital α-admissible if for ̺ ∈M, we have

α(̺,T̺)≥ 1 �⇒ α
(

T̺,T2̺
)

≥ 1. (3)

Theorem 2.16 ([7]) Let (M,d) be a complete b-metric space, and let T : M → M be a

generalized α–δ-Geraghty mapping such that

(i) T is α-admissible;

(ii) there exists ̺0 ∈M such that α(̺0,T̺0) ≥ 1;

(iii) If {̺n} ⊆M with ̺n → ̺ and α(̺n,̺n+1) ≥ 1, then α(̺n,̺) ≥ 1.

Then T has a fixed point.

Theorem 2.17 ([10]) Let ξ = ι + β – ιβ , where ι ∈ (0, 1) and β ∈ [0, 1]. If f : (a,T]→R is a

function such that f ∈ C1–ξ ,δ[a,T], then y ∈ C
ξ
1–ξ ,δ(a,T] satisfies the problem

HD
ι,β ;δ
a+ y(t) = f

(

t, y(t)
)

, t ∈ (a,T],a > 0, (4)

y(T) = w ∈R,

if and only if y satisfies the integral equation

Af (t) := y(t) =
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[

w –
1

Ŵ(ι)

∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1

f (s, y(s))ds

]

+
1

Ŵ(ι)

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1

f (s)ds. (5)

3 Main results

LetM = C
ξ
1–ξ ,δ (a,T] := C(K), where K = (a,T], and d :M ×M →R

+ is given by

d(ζ ,w) =
∥

∥(ζ –w)2
∥

∥

∞ = sup
ϑ∈(a,T]

(

ζ (ϑ) –w(ϑ)
)2
.

Then (M,d) is a complete b-metric space with r = 2.

Theorem 3.1 Suppose that

(i) f :K×R
+ →R

+ satisfies the following inequality;

∣

∣f
(

ϑ , ζ (ϑ)
)

– f
(

ϑ ,w(ϑ)
)
∣

∣

≤
ιŴ(ι)(δ(ϑ) – δ(a))1–ξ

4
√
2(δ(T) – δ(a))ι+1–ξ

√

φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

,

where φ ∈  and λ ∈F ;

(ii) For A defined in relation (5) there exist ζ0 ∈ C(K) and τ :R2 →R with

τ
(

ζ0(ϑ),Aζ0(ϑ)
)

≥ 0, ϑ ∈K;

(iii) For ϑ ∈K and ζ ,w ∈ C(K), τ (ζ (ϑ),w(ϑ))≥ 0 implies

τ
(

Aζ (ϑ),Aw(ϑ)
)

≥ 0;
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(iv) If {ζn} ⊆ C(K) with ζn → ζ and τ (ζn, ζn+1) ≥ 0, then τ (ζn, ζ )≥ 0.

Then problem (4) has at least one solution.

Proof By Theorem 2.17, ζ ∈ C(K) is a solution of (4) if and only if a solution of the integral

equation (5). Define O : C(K)→ C(K) by

Oy(t) =
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[

w –
1

Ŵ(ι)

∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1

f
(

s, y(s)
)

ds

]

+
1

Ŵ(ι)

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1

f
(

s, y(s)
)

ds. (6)

We find a fixed point of O. Now let ζ ,w ∈ C(K) be such that τ (ζ (κ),w(κ)) ≥ 0. Using (i),

we get

∣

∣Oζ (κ) –Ow(κ)
∣

∣

=

∣

∣

∣

∣

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[

w –
1

Ŵ(ι)

∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1

f
(

s, ζ (s)
)

ds

]

+
1

Ŵ(ι)

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1

f
(

s, ζ (s)
)

ds

–
(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[

w –
1

Ŵ(ι)

∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1

f
(

s,w(s)
)

ds

]

–
1

Ŵ(ι)

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1

f
(

s,w(s)
)

ds

∣

∣

∣

∣

=
1

Ŵ(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

∣

∣

∣

∣

[∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1(

f
(

s,w(s)
)

– f
(

s, ζ (s)
))

ds

]

+
1

Ŵ(ι)

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1(

f
(

s, ζ (s)
)

– f
(

s,w(s)
))

ds

∣

∣

∣

∣

≤
1

Ŵ(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

[∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1∣

∣f
(

s,w(s)
)

– f
(

s, ζ (s)
)
∣

∣ds

+

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1∣

∣f
(

s, ζ (s)
)

– f
(

s,w(s)
)
∣

∣ds

]

≤
1

Ŵ(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

ιŴ(ι)(δ(t) – δ(a))1–ξ

4
√
2(δ(T) – δ(a))ι+1–ξ

×
√

φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

×
(∫ T

a

δ′(s)
(

δ(T) – δ(s)
)ι–1

ds +

∫ t

a

δ′(s)
(

δ(t) – δ(s)
)ι–1

ds

)

≤
1

Ŵ(ι)

(δ(T) – δ(a))1–ξ

(δ(t) – δ(a))1–ξ

ιŴ(ι)(δ(t) – δ(a))1–ξ

4
√
2(δ(T) – δ(a))ι+1–ξ

×
√

φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

×
(

2

ι

(

δ(T) – δ(a)
)ι

)

,
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and hence

∣

∣Oζ (κ) –Ow(κ)
∣

∣

2

≤
1

8
φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

.

Define α : C(K)×C(K) →R
+ by

α(ζ ,w) =

⎧

⎨

⎩

1, τ (ζ (ϑ),w(ϑ))≥ 0,ϑ ∈K,

0, otherwise.

So for ζ ,w ∈ C(K) with τ (ζ (ϑ),w(ϑ))≥ 0, we have

α(ζ ,w)8d(Oζ ,Ow)≤ 8d(Oζ ,Ow) ≤ λ
(

φ
(

d(ζ ,w)
))

φ
(

d(ζ ,w)
)

, λ ∈K.

From (iii) we have

α(ζ ,w)≥ 1 ⇒ τ
(

ζ (ϑ),w(ϑ)
)

≥ 0 ⇒ τ
(

O(ζ ),O(w)
)

≥ 0

⇒ α
(

O(ζ ),O(w)
)

≥ 1

for ζ ,w ∈ C(K). Thus O is α-admissible. By (ii) there exists ζ0 ∈ C(K) with α(ζ0,Oζ0) ≥ 1.

By (iv) and Theorem 2.16 we find out ζ ∗ with ζ ∗ = Oζ ∗, which is a positive solution of

(4). �

Example 3.2 Consider the δ-Caputo fractional integral BVP

⎧

⎨

⎩

D
1
2 ,0;e

t

1+ y(t) = f (t, y(t)), t ∈ (1, 2],

y(2) = w ∈R,
(7)

C
β(1–ι)
1–ξ ;δ [1, 2] = C0

1
2 ;e

t [1, 2] =
{

f : (1, 2]×R
2 →R;

(

et – e
)
1
2 f ∈ C[1, 2]

}

with ι = 1
2
, β = 0, ξ = 1

2
, δ(t) = et , (a,T] = (1, 2]. Clearly, f ∈ C 1

2 ;e
t [1, 2]. Then u and w satisfy

the following condition:

∣

∣f (x,u) – f (x,w)
∣

∣ ≤
√

π (et – ea)

8
√
2(e2 – ea)

√

∥

∥(u –w)2
∥

∥

∞
sin2 ‖(u –w)2‖∞

4
.

Setting φ(x) = x and λ(t) = sin2 t
4

, we obtain

∣

∣f (x,u) – f (x,w)
∣

∣ ≤
ιŴ(ι)(δ(t) – δ(a))1–ξ

4
√
2(δ(T) – δ(a))ι+1–ξ

√

φ
(
∥

∥(u –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(u –w)2
∥

∥

∞
))

.

Hence all assumptions of Theorem 3.1 hold. Therefore problem (7) has a solution on K.

In [23] the authors investigated the existence, uniqueness, and continuous dependence

of global solution to the following singular fractional differential equation involving the
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left generalized Caputo fractional derivative with respect to another function δ:

cDι;δ
0+u(t) = f

(

t,u(t)
)

, t ∈ (0,b],b > 0, (8)

u(0) = u0 ∈R,

where 0 < ι ≤ 1, and cDι;δ
0+ is the δ-Caputo fractional derivative introduced by Almeida [11],

f : (0,b]×R→R is given function with limt→0+ f (t, ·) = ∞, and u0 is a constant.

Lemma 3.3 ([23]) Assume that:

(A1) f : (0,b]×R→R is a continuous with limt→0+ f (t,u) = ∞, and there exists a

constant 0 < k < ι such that [δ(t) – δ(0)]k f (t,u) is a continuous function on

[0,b]× R.

(A2) For the k above, there exists constant L > 0 such that

[

δ(t) – δ(0)
]k(

f (t,u1) – f (t,u2)
)

≤ l|u1 – u2|

for all t ∈ [0,b] and u1,u2 ∈R.

Then the function u ∈ C[0,b] is a solution to Cauchy problem (8) if and only if u satisfies

the Volterra integral equation

Au(t) := u(t) = u0 +
1

Ŵ(ι)

∫ t

0

δ′(s)
(

δ(t) – δ(s)
)ι–1

f
(

s,u(s)
)

ds, t ∈ (0,b]. (9)

Theorem 3.4 Suppose that the conditions (A1) and (A2) from Lemma 3.3 hold,moreover

(i) f :K×R
+ →R

+ satisfies the following condition:

∣

∣f
(

ϑ , ζ (ϑ)
)

– f
(

ϑ ,w(ϑ)
)
∣

∣

≤
ιŴ(ι)

2
√
2(δ(T) – δ(a))ι

√

φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

,

where φ ∈ ,K = (0,b] and λ ∈F ;

(ii) For A defined in relation (9) there exist ζ1 ∈ C(K) and τ :R2 →R with

τ
(

ζ1(ϑ),Aζ1(ϑ)
)

≥ 0, ϑ ∈K;

(iii) For ϑ ∈K and ζ ,w ∈ C(K), τ (ζ (ϑ),w(ϑ))≥ 0 implies

τ
(

Aζ (ϑ),Aw(ϑ)
)

≥ 0;

(iv) If {ζn} ⊆ C(K) with ζn → ζ and τ (ζn, ζn+1) ≥ 0, then τ (ζn, ζ )≥ 0.

Then problem (8) has at least one solution.

Proof By Lemma 3.3, ζ ∈ C(K) is a solution of (8) if and only if it is a solution of the integral

equation (9). Define O : C(K)→ C(K) by

Oζ (κ) = ζ0 +
1

Ŵ(ι)

∫

κ

0

δ′(s)
(

δ(κ) – δ(s)
)ι–1

f
(

s, ζ (s)
)

ds, κ ∈ (0,b]. (10)
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We find a fixed point of O. Now let ζ ,w ∈ C(K) be such that τ (ζ (κ),w(κ)) ≥ 0. Using (i),

we get

∣

∣Oζ (κ) –Ow(κ)
∣

∣

=
1

Ŵ(ι)

∣

∣

∣

∣

∫

κ

0

δ′(s)
(

δ(κ) – δ(s)
)ι–1

f
(

s, ζ (s)
)

ds

–
1

Ŵ(ι)

∫

κ

0

δ′(s)
(

δ(κ) – δ(s)
)ι–1

f
(

s,w(s)
)

ds

∣

∣

∣

∣

=
1

Ŵ(ι)

∫

κ

0

δ′(s)
(

δ(κ) – δ(s)
)ι–1∣

∣f
(

s,w(s)
)

– f
(

s, ζ (s)
)
∣

∣ds

≤
1

Ŵ(ι)

∫

κ

a

δ′(s)
(

δ(κ) – δ(s)
)ι–1∣

∣f
(

s,w(s)
)

– f
(

s, ζ (s)
)
∣

∣ds

≤
1

Ŵ(ι)

ιŴ(ι

(δ(t) – δ(a))ι

√

φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

×
∫

κ

0

δ′(s)
(

δ(κ) – δ(s)
)ι–1

ds

=
1

2
√
2

√

φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

,

and hence

∣

∣Oζ (κ) –Ow(κ)
∣

∣

2

≤
1

8
φ
(
∥

∥(ζ –w)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(ζ –w)2
∥

∥

∞
))

.

Put α : C(K)×C(K) →R
+ by

α(ζ ,w) =

⎧

⎨

⎩

1, τ (ζ (ϑ),w(ϑ))≥ 0,ϑ ∈K,

0, otherwise.

So for ζ ,w ∈ C(K) with τ (ζ (ϑ),w(ϑ))≥ 0, we have

α(ζ ,w)8d(Oζ ,Ow)≤ 8d(Oζ ,Ow) ≤ λ
(

φ
(

d(ζ ,w)
))

φ
(

d(ζ ,w)
)

, λ ∈F .

From (iii) we have

α(ζ ,w)≥ 1 ⇒ τ
(

ζ (ϑ),w(ϑ)
)

≥ 0 ⇒ τ
(

O(ζ ),O(w)
)

≥ 0

⇒ α
(

O(ζ ),O(w)
)

≥ 1

for ζ ,w ∈ C(K). Thus O is α-admissible. By (ii) there exists ζ0 ∈ C(K) with α(ζ0,Oζ0) ≥ 1.

By (iv) and Theorem 2.16 we find out ζ ∗ with ζ ∗ = Oζ ∗, which is a positive solution of

(8). �
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Example 3.5 We fix a kernel δ : [0, 1] →R and consider the following equation:

⎧

⎨

⎩

D
1
2 ;δ

1+ y(t) = 1

4
√
2
[δ(t) – δ(0)]–

1
2 (1 + 1

3
y)e–‖y2‖∞ , t ∈ (0, 1],

y(0) = 2,
(11)

where α = 1
2
, f (t, y(t)) = 1

4
√
2
[δ(t) – δ(0)]–

1
2 (1 + 1

3
y)e–‖y2‖∞ for (t, y) ∈ (0, 1] × R, and

limt→0+ f (t, ·) = ∞. Setting k = 1
2
, the function

[

δ(t) – δ(0)
]
1
2 f

(

t, y(t)
)

=
1

4
√
2

(

1 +
1

3
y

)

e–‖y2‖∞

is continuous on [0, 1]. So hypothesis (A1) from Lemma 3.3 is satisfied.

For y1(t), y2(t) ∈R (t ∈ (0, 1]) we have

∣

∣f
(

t, y1(t)
)

– f
(

t, y2(t)
)
∣

∣ =
1

12
√
2

[

δ(t) – δ(0)
]– 1

2
∣

∣y1(t) – y2(t)
∣

∣e–‖(y1–y2)2‖∞ .

Considering δ(t) =
√
t + 1 for t ∈ (0, 1] we get

∣

∣f
(

t, y1(t)
)

– f
(

t, y2(t)
)
∣

∣ =
1

12
√
2
[
√
t + 1 – 1]–

1
2
∣

∣y1(t) – y2(t)
∣

∣e–‖(y1–y2)2‖∞ .

So, hypothesis (A2) from Lemma 3.3 is also satisfied with L = 1

12
√
2
e–‖(y1–y2)2‖∞ and k = 1

2
.

Therefore we can apply Lemma 3.3.

For all y1(t), y2(t) satisfying in the condition

∣

∣e–‖y12‖∞ – e–‖y22‖∞
∣

∣ ≤ e–‖(y1–y2)2‖∞ ,

we have

∣

∣f
(

x, y1(t)
)

– f
(

x, y2(t)
)
∣

∣ ≤
√

π

8
√
2(δ(T) – δ(a))ι

√

∥

∥(y1 – y2)2
∥

∥

∞
e–‖(y1–y2)2‖∞

4
.

Setting φ(x) = x and λ(t) = e–t

4
, we obtain

∣

∣f
(

x, y1(t)
)

– f
(

x, y2(t)
)
∣

∣ ≤
ιŴ(ι)

2
√
2(δ(T) – δ(a))ι

√

φ
(
∥

∥(y1 – y2)2
∥

∥

∞
)

λ
(

φ
(
∥

∥(y1 – y2)2
∥

∥

∞
))

.

Hence all assumptions of Theorem 3.4 hold. Therefore problem (11) has a solution on K.
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