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Abstract

Neural networks have greatly boosted performance in

computer vision by learning powerful representations of in-

put data. The drawback of end-to-end training for maxi-

mal overall performance are black-box models whose hid-

den representations are lacking interpretability: Since dis-

tributed coding is optimal for latent layers to improve their

robustness, attributing meaning to parts of a hidden feature

vector or to individual neurons is hindered. We formulate

interpretation as a translation of hidden representations

onto semantic concepts that are comprehensible to the user.

The mapping between both domains has to be bijective so

that semantic modifications in the target domain correctly

alter the original representation. The proposed invertible

interpretation network can be transparently applied on top

of existing architectures with no need to modify or retrain

them. Consequently, we translate an original representa-

tion to an equivalent yet interpretable one and backwards

without affecting the expressiveness and performance of the

original. The invertible interpretation network disentangles

the hidden representation into separate, semantically mean-

ingful concepts. Moreover, we present an efficient approach

to define semantic concepts by only sketching two images

and also an unsupervised strategy. Experimental evaluation

demonstrates the wide applicability to interpretation of ex-

isting classification and image generation networks as well

as to semantically guided image manipulation.

1. Introduction

Deep neural networks have achieved unprecedented per-

formance in various computer vision tasks [51, 15] by learn-

ing task-specific hidden representations rather than relying

on predefined hand-crafted image features. However, the

significant performance boost due to end-to-end learning

comes at the cost of now having black-box models that are

lacking interpretability: A deep network may have found

∗Both authors contributed equally to this work.

Figure 1: Our Invertible Interpretation Network T can be applied

to arbitrary existing models. Its invertibility guarantees that the

translation from z to z̃ does not affect the performance of the

model to be interpreted. Code and results can be found at the

project page https://compvis.github.io/iin/.

a solution to a task, but human users cannot understand

the causes for the predictions that the model makes [36].

Conversely, users must also be able to understand what the

hidden representations have not learned and on which data

the overall model will, consequently, fail. Interpretability is

therefore a prerequisite for safeguarding AI, making its de-

cisions transparent to the users it affects, and understanding

its applicability, limitations, and the most promising options

for its future improvement.

A key challenge is that learned latent representations

typically do not correspond to semantic concepts that are

comprehensible to human users. Hidden layer neurons are

trained to help in solving an overall task in the output layer

of the network. Therefore, the output neurons correspond

to human-interpretable concepts such as object classes in

semantic image segmentation [3] or bounding boxes in ob-

ject detection [48]. In contrast, the hidden layer representa-
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tion of semantic concepts is a distributed pattern [9]. This

distributed coding is crucial for the robustness and gener-

alization performance of neural networks despite noisy in-

puts, large intra-class variability, and the stochastic nature

of the learning algorithm [13]. However, as a downside of

semantics being distributed over numerous neurons it is im-

possible to attribute semantic meaning to only an individual

neuron despite attempts to backpropagate [37] or synthe-

size [47, 52] their associated semantic concepts. One solu-

tion has been to modify and constrain the network so that

abstract concepts can be localized in the hidden representa-

tion [55]. However, this alters the network architecture and

typically deteriorates overall performance [45].

Objective: Therefore, our goal needs to be an approach

that can be transparently applied on top of arbitrary existing

networks and their already learned representations without

altering them. We seek a translation between these hid-

den representations and human-comprehensible semantic

concepts—a non-linear mapping between the two domains.

This translation needs to be invertible, i.e. an invertible neu-

ral network (INN) [5, 6, 19, 22], so that modifications in

the domain of semantic concepts correctly alter the original

representation.

To interpret a representation, we need to attribute mean-

ing to parts of the feature encoding. That is, we have to dis-

entangle the high-dimensional feature vector into multiple

multi-dimensional factors so that each is mapped to a sep-

arate semantic concept that is comprehensible to the user.

As discussed above, this disentangled mapping should be

bijective so that modifications of the disentangled semantic

factors correctly translate back to the original representa-

tion. We can now, without any supervision, disentangle the

representation into independent concepts so that a user can

post-hoc identify their meaning. Moreover, we present an

efficient strategy for defining semantic concepts. It only re-

quires two sketches that exhibit a change in a concept of

interest rather than large annotated training sets for each

concept. Given this input, we derive the invariance prop-

erties that characterize a concept and generate synthesized

training data to train our invertible interpretation network.

This network then acts as a translator that disentangles the

original representation into multiple factors that correspond

to the semantic concepts.

Besides interpreting a network representation, we can

also interpret the structure that is hidden in a dataset and

explain it to the user. Applying the original representation

and then translating onto the disentangled semantic factors

allows seeing which concepts explain the data and its vari-

ability. Finally, the invertible translation supports seman-

tically meaningful modifications of input images: Given

an autoencoder representation, its representation is mapped

onto interpretable factors, these can be modified and inverse

translation allows to apply the decoder to project back into

the image domain. In contrast to existing disentangled im-

age synthesis [34, 8, 32, 24, 7], our invertible approach can

be applied on top of existing autoencoder representations,

which therefore do not have to be altered or retrained to

handle different semantic concepts. Moreover, for other ar-

chitectures such as classification networks, interpretability

helps to analyze their invariance and robustness.

To summarize, (i) we present a new approach to the

interpretability of neural networks, which can be applied

to arbitrary existing models without affecting their perfor-

mance; (ii) we obtain an invertible translation from hidden

representations to disentangled representations of semantic

concepts; (iii) we propose a method that allows users to

efficiently define semantic concepts to be used for our in-

terpretable representation; (iv) we investigate the interpre-

tation of hidden representations, of the original data, and

demonstrate semantic image modifications enabled by the

invertibility of the translation network.

2. Interpretability

An interpretation is a translation between two domains

such that concepts of the first domain can be understood

in terms of concepts of the second domain. Here, we are

interested in interpretations of internal representations of a

neural network in terms of human-understandable represen-

tations. Examples for the latter are given by textual descrip-

tions, visual attributes or images.

To interpret neural networks, some approaches modify

network architectures or losses used for training to obtain

inherently more interpretable networks. [55] relies on a

global average pooling layer to obtain class activation maps,

i.e. heatmaps showing which regions of an input are most

relevant for the prediction of a certain object class. [54]

learn part specific convolutional filters by restricting filter

activations to localized regions. Invertible neural networks

[5, 6, 19, 22] have been used to get a better understand-

ing of adversarial attacks [18]. Instead of replacing existing

architectures with invertible ones, we propose to augment

them with invertible transformations. Using the invertibil-

ity, we can always map back and forth between original rep-

resentations and interpretable ones without loss of informa-

tion. Thus, our approach can be applied to arbitrary existing

architectures without affecting their performance, whereas

approaches modifying architectures always involve a trade-

off between interpretability and performance.

Most works on interpretability of existing networks fo-

cus on visualizations. [53] reconstruct images which acti-

vated a specific feature layer of a network. [47] uses gradi-

ent ascent to synthesize images which maximize class prob-

abilities for different object classes. [52] generalizes this to

arbitrary neurons within a network. Instead of directly op-

timizing over pixel values, [38] optimize over input codes

of a generator network which was trained to reconstruct im-
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ages from hidden layers. [55] avoid synthesizing images

from scratch and look for regions within a given image that

activate certain neurons. For a specific class of functions,

[1] decompose the function into relevance scores which can

be visualized pixel-wise. Layer-wise relevance propaga-

tion [37] is a more general approach to propagate relevance

scores through a network based on rules to distribute the

relevance among input neurons. [41] shows how saliency

maps representing the importance of pixels for a classifier’s

decision can be obtained without access to the classifiers

gradients. All these approaches assume that a fixed set of

neurons is given and should be interpreted in terms of inputs

which activate them. However, [2], [9] demonstrated that

networks use distributed representations. In particular, se-

mantic concepts are encoded by activation patterns of mul-

tiple neurons and single neurons are not concept specific but

involved in the representation of different concepts. We di-

rectly address this finding by learning a non-linear transfor-

mation from a distributed representation to an interpretable

representation with concept specific factors.

While [9] shows that for general networks we must ex-

pect internal representations to be distributed, there are

situations where representations can be expected to have

a simpler structure: Generative models are trained with

the explicit goal to produce images from samples of a

simple distribution, e.g. a Gaussian distribution. Most

approaches are based either on Variational Autoencoders

[23, 44], which try to reconstruct images from a represen-

tation whose marginal distribution is matched to a standard

normal distribution, or on Generative Adversarial Networks

[11, 14, 39], which directly map samples from a standard

normal distribution to realistic looking images as judged

by a discriminator network. The convexity of the Gaus-

sian density makes linear operations between representa-

tions meaningful. Linear interpolations between represen-

tations enable walks along nonlinear data manifolds [42].

[26] finds visual attribute vectors which can be used to in-

terpolate between binary attributes. To this end, two sets of

images containing examples with or without an attribute are

encoded to their representations, and the direction between

their means is the visual attribute vector. Such attribute

vectors have also been found for classifier networks [49],

but because their representations have no linear structure,

the approach is limited to aligned images. [42, 43] demon-

strated that vector arithmetic also enables analogy making.

[46] interprets the latent space of a GAN by finding attribute

vectors as the normal direction of the decision boundary of

an attribute classifier. [10] uses a similar approach to find

attribute vectors associated with cognitive properties such

as memorability, aesthetics and emotional valence. While

these approaches provide enhanced interpretability through

modifcation of attributes they are limited to representations

with a linear structure. In contrast, we provide an approach

to map arbitrary representations into a space of interpretable

representations. This space consists of factors represent-

ing semantic attributes and admits linear operations. Thus,

we can perform semantic modifications in our interpretable

space and, due to the invertibility of our transformation,

map the modified representation back to the original space.

3. Approach

3.1. Interpreting Hidden Representations

Invertible Transformation of Hidden Representations:

Let f be a given neural network to be interpreted. We place

no restrictions on the network f . For example, f could be

an object classifier, a segmentation network or an autoen-

coder. f maps an image x ∈ R
h×w×3 through a sequence

of hidden layers to a final output f(x). Intermediate activa-

tions E(x) ∈ R
H×W×C of a hidden layer are a task-specific

representation of the image x. Such hidden representations

convey no meaning to a human and we must transform them

into meaningful representations. We introduce the notation

z = E(x) ∈ R
H·W ·C , i.e. z is the N = H ·W · C dimen-

sional, flattened version of the hidden representation to be

interpreted. E is the sub-network of f consisting of all lay-

ers of f up to and including the hidden layer that produces

z, and the sub-network after this layer will be denoted by

G, such that f(x) = G ◦ E(x) as illustrated in Fig. 1.

To turn z into an interpretable representation, we aim to

translate the distributed representation z to a factorized rep-

resentation z̃ = (z̃k)
K
k=0 ∈ R

N where each of the K + 1

factors z̃k ∈ R
Nk , with

∑K

k=0 Nk = N , represents an inter-

pretable concept. The goal of this translation is twofold: On

the one hand, it should enable an analysis of the relationship

between data and internal representations of f in terms of

interpretable concepts; this requires a forward map T from

z to T (z) = z̃. On the other hand, it should enable semantic

modifications on internal representations of f ; this requires

the inverse of T . With this inverse map, T−1, an internal

representation z can be mapped to z̃, modified in semanti-

cally meaningful ways to obtain z̃∗ (e.g. changing a single

interpretable concept), and mapped back to an internal rep-

resentation of f . This way, semantic modifications, z̃ 7→ z̃∗,

which were previously only defined on z̃ can be applied to

internal representations via z 7→ z∗ ..= T−1(T (z)∗). See

Fig. 2 for an example, where z is modified by replacing one

of its semantic factors z̃k with that of another image.

Disentangling Interpretable Concepts: For meaningful

analysis and modification, each factor z̃k must represent a

specific interpretable concept and taken together, z̃ should

support a wide range of modifications. Most importantly, it

must be possible to analyze and modify different factors z̃k
independently of each other. This implies a factorization of

their joint density p(z̃) =
∏K

k=0 p(z̃k). To explore different
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z̃1=“digit” z̃2=“color” z̃0=“residual”

Figure 2: Applied to latent representations z of an autoencoder,

our approach enables semantic image analogies. After transform-

ing z to disentangled semantic factors (z̃k)
K

k=0 = T (z), we re-

place z̃k of the target image (leftmost column), with z̃k of the

source image (top row). From left to right: k = 1 (digit), k = 2
(color), k = 0 (residual).

factors, the distribution p(z̃k) of each factor must be easy to

sample from to gain insights into the variability of a factor,

and interpolations between two samples of a factor must be

valid samples to analyze changes along a path. We thus

specify each factor to be normally distributed which gives

p(z̃) =

K
∏

k=0

N (z̃k|0,1) (1)

Without additional constraints, the semantics repre-

sented by a factor z̃k are unspecified. To fix this, we de-

mand that (i) each factor z̃k varies with one and only one

interpretable concept and (ii) it is invariant with respect to

all other variations. Thus, let there be training image pairs

(xa, xb) which specify semantics through their similarity,

e.g. image pairs containing animals of the same species

to define the semantic concept of ‘animal species’. Each

semantic concept F ∈ {1, . . . ,K} defined by such pairs

shall be represented by the corresponding factor z̃F and we

write (xa, xb) ∼ p(xa, xb|F ) to emphasize that (xa, xb) is

a training pair for factor z̃F . However, we cannot expect

to have examples of image pairs for every semantic concept

relevant in z. Still, all factors together, z̃ = (z̃k)
K
k=0, must

be in one-to-one correspondence with the original represen-

tation, i.e. z = T−1(z̃). Therefore, we introduce z̃0 to act as

a residual concept that captures the remaining variability of

z which is missed by the semantic concepts F = 1, . . . ,K.

For a given training pair (xa, xb) ∼ p(xa, xb|F ), the cor-

responding factorized representations, z̃a = T (E(xa)) and

z̃b = T (E(xb)), must now (i) mirror the semantic similarity

of (xa, xb) in its F -th factor and (ii) be invariant in the re-

maining factors. This is expressed by a positive correlation

factor σab ∈ (0, 1) for the F -th factor between pairs,

z̃bF ∼ N (z̃bF |σabz̃
a
F , (1− σ2

ab)1) (2)

and no correlation for the remaining factors between pairs,

z̃bk ∼ N (z̃bk|0,1) k ∈ {0, . . . ,K} \ {F} (3)

To fit this model to data, we utilize the invertibility of T

to directly compute and maximize the likelihood of pairs

(za, zb) = (E(xa), E(xb)). We compute the likelihood

with the absolute value of the Jacobian determinant of T ,

denoted |T ′(·)|, as

p(za, zb|F ) = p(za) p(zb|za, F ) (4)

= |T ′(za)| p (T (za)) · (5)

|T ′(zb)| p
(

T (zb)|T (za), F
)

(6)

To be able to compute the Jacobian determinant effi-

ciently, we follow previous works [22] and build T based

on ActNorm, AffineCoupling and Shuffling layers as de-

scribed in more detail in Sec. A.1 of the supplementary. For

training we use the negative log-likelihood as our loss func-

tion. Substituting Eq. (1) into Eq. (5), Eq. (2) and (3) into

Eq. (6), leads to the per-example loss ℓ(za, zb|F ),

ℓ(za, zb|F ) =

K
∑

k=0

‖T (za)k‖
2 − log|T ′(za)| (7)

+
∑

k 6=F

‖T (zb)k‖
2 − log|T ′(zb)| (8)

+
‖T (zb)F − σab T (z

a)F ‖
2

1− σ2
ab

(9)

which is optimized over training pairs (xa, xb) for all se-

mantic concepts F ∈ {1, . . . ,K}:

L =

K
∑

F=1

E(xa,xb)∼p(xa,xb|F ) ℓ(E(xa), E(xb)|F ) (10)

Note that we have described the case where image pairs

share at least one semantic concept, which includes the case

where they share more than one semantic concept. More-

over, our approach is readily applicable in the case where

image pairs differ in a semantic concept. In this case, Eq. (2)

holds for all factors z̃bk, k ∈ {0, . . . ,K} \ {F} and Eq. (3)

holds for factor z̃bF . This case will also be used in the next

section, where we discuss the dimensionality and origin of

semantic concepts.

3.2. Obtaining Semantic Concepts

Estimating Dimensionality of Factors: Semantic con-

cepts differ in complexity and thus also in dimensionality.

Given image pairs (xa, xb) ∼ p(xa, xb|F ) that define the

F -th semantic concept, we must estimate the dimension-

ality of factor z̃F that represents this concept. Due to the

invertibility of T , the sum of dimensions of all these fac-

tors equals the dimensionality of the original representation.

Thus, semantic concepts captured by the network E require

a larger share of the overall dimensionality than those E is

invariant to.
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Figure 3: Efficient generation of training examples for semantic

concepts: A user must only provide two sketches (first row) for a

change of a semantic concept, here: roundness. We then synthe-

size training images to reflect this semantic change.

The similarity of xa, xb in the F -th semantic con-

cept implies a positive mutual information between them,

which will only be preserved in the latent representations

E(xa), E(xb) if the F -th semantic concept is captured by

E. Thus, based on the simplifying assumption that compo-

nents of hidden representations E(xa)i, E(xb)i are jointly

Gaussian distributed, we approximate their mutual informa-

tion with their correlation for each component i. Summing

over all components i yields a relative score sF that serves

as proxy for the dimensionality of z̃F in case of training

images (xa, xb) ∼ p(xa, xb|F ) for concept F ,

sF =
∑

i

Cov
(

E(xa)i, E(xb)i
)

√

Var(E(xa)i) Var(E(xb)i)
. (11)

Since correlation is in [−1, 1], scores sF are in [−N,N ]
for N -dimensional latent representations of E. Using the

maximum score N for the residual factor z̃0 ensures that all

factors have equal dimensionality if all semantic concepts

are captured by E. The dimensionality NF of z̃F is then

NF =
⌊

exp sF∑
K

k=0
exp sk

N
⌋

. Tab. 1 demonstrates the feasibility

Dataset Model Latent z Interpretable z̃

Dim. Dim. Factor z̃F
Color- AE 64 12 Digit

MNIST 19 Color

Classifier 64 22 Digit

11 Color

Table 1: Estimated dimensionalities of interpretable factors z̃F

representing different semantic concepts. Remaining dimensions

are assigned to the residual factor z̃0. Compared to an autoencoder,

the color factor is smaller in case of a color-invariant classifier.

Figure 4: The inverse of our interpretation network T maps linear

walks in the interpretable domain back to nonlinear walks on the

data manifold in the encoder space, which get decoded to mean-

ingful images (bottom right). In contrast, decoded images of linear

walks in the encoder space contain ghosting artifacts (bottom left).

of predicting dimensionalities with this approximation.

Sketch-Based Description of Semantic Concepts:

Training requires the availability of image pairs that depict

changes in a semantic concept. Most often, a sufficiently

large number of such examples is not easy to obtain. The

following describes an approach to help a user specify

semantic concepts effortlessly.

Two sketches are worth a thousand labels: Instead of la-

beling thousands of images with semantic concepts, a user

only has to provide two sketches, ya and yb which demon-

strate a change in a concept. For example, one sketch may

contain mostly round curves and another mostly angular

ones as in Fig. 3. We then utilize a style transfer algorithm

[40] to transform each x from the training set into two new

images: xa and xb which are stylized with ya and yb, re-

spectively. The combinations (x, xa), (x, xb) and (xa, xb)
serve as examples for a change in the concept of interest.

Unsupervised Interpretations: Even without examples

for changes in semantic factors, our approach can still pro-

duce disentangled factors. In this case, we minimize the

negative log-likelihood of the marginal distribution of hid-

den representations z = E(x):

Lunsup = −Ex‖T (E(x))‖2 − log|T ′(E(x))| (12)

As this leads to independent components in the transformed

representation, it allows users to attribute meaning to this

representation after training. Mapping a linear interpolation

in our disentangled space back to E’s representation space
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Figure 5: Transfer on AnimalFaces: We combine z̃0 (residual) of

the target image (leftmost column) with z̃1 (animal class) of the

source image (top row), resulting in a transfer of animal type from

source to target.

leads to a nonlinear interpolation on the data manifold em-

bedded by E (see Fig. 4). This linear structure allows to ex-

plore the representations using vector arithmetics [49]. For

example, based on a few examples of images with a change

in a semantic concept, we can find a vector representing

this concept as the mean direction between these images

(see Eq. (14)). In contrast to previous works, we do not rely

on disentangled latent representations but learn to translate

arbitrary given representations into disentangled ones.

4. Experiments

The subsequent experiments use the following datasets:

AnimalFaces [28], DeepFashion [29, 31], CelebA [30]

MNIST[27], Cifar10 [25], and FashionMNIST [50]. More-

over, we augment MNIST by randomly coloring its images

to provide a benchmark for disentangling experiments (de-

noted ColorMNIST).

4.1. Interpretation of Autoencoder­Frameworks

Autoencoders learn to reconstruct images from a low-

dimensional latent representation z = E(x). Subsequently,

we map z onto interpretable factors to perform semantic

image modification. Note that z is only obtained using

a given network; our invertible interpretation network has

never seen an image itself.

Disentangling Latent Codes of Autoencoders: Now we

alter the z̃k which should in turn modify the z in a seman-

tically meaningful manner. This tests two aspects of our

translation onto mutually disentangled, interpretable repre-

sentations: First, if its factors have been successfully dis-

entangled, swapping factors from different images should

Figure 6: Transfer on DeepFashion: We combine z̃0 (residual)

of the target image (top row) with z̃1 (appearance) of the source

image (leftmost column), resulting in a transfer of appearances

from source to target.

still yield valid representations. Second, if the factors rep-

resent their semantic concepts faithfully, modifying a factor

should alter its corresponding semantic concept.

To evaluate these aspects, we trained an autoencoder on

the AnimalFaces dataset. As semantic concepts we utilize

the animal category and a residual factor. Fig. 5 shows the

results of combining the residual factor of the image on the

left with the animal-class-factor of the image at the top. Af-

ter decoding, the results depict animals from the class of the

image at the top. However, their gaze direction corresponds

to the image on the left. This demonstrates a successful dis-

entangling of semantic concepts in our interpreted space.

The previous case has confirmed the applicability of our

approach to roughly aligned images. We now test it on

unaligned images of articulated persons on DeepFashion.

Fig. 6 presents results for attribute swapping as in the previ-

ous experiment. Evidently, our approach can handle articu-

lated objects and enables pose guided human synthesis.

Finally, we conduct this swapping experiment on Col-

orMNIST to investigate simultaneous disentangling of mul-

tiple factors. Fig. 2 shows a swapping using an interpreta-

tion of three factors: digit type, color, and residual.

Evaluating the Unsupervised Case: To investigate our

approach in case of no supervision regarding semantic con-

cepts, we analyze its capability to turn simple autoencoders

into generative models. Because our interpretations yield

normally distributed representations, we can sample them,

translate them back onto the latent space of the autoencoder,

and finally decode them to images,

z̃ ∼ N (z̃|0,1), x = G(T−1(z̃)). (13)
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MNIST FashionMNIST CIFAR-10 CelebA

TwoStageVAE 12.6± 1.5 29.3± 1.0 72.9± 0.9 44.4± 0.7
WGAN GP 20.3± 5.0 24.5± 2.1 55.8± 0.9 30.3± 1.0

WGAN 6.7± 0.4 21.5± 1.6 55.2± 2.3 41.3± 2.0
DRAGAN 7.6± 0.4 27.7± 1.2 69.8± 2.0 42.3± 3.0
BEGAN 13.1± 1.0 22.9± 0.9 71.9± 1.6 38.9± 0.9

Ours 6.4± 0.1 16.0± 0.1 45.7± 0.3 20.2± 0.5

Table 2: FID scores of various AE-based and GAN models as reported in [4].

We employ the standard evaluation protocol for genera-

tive models and measure image quality with Fréchet In-

ception Distance (FID scores). [4] presented an approach

to generative modeling using two Variational Autoencoders

and achieved results competitive with approaches based on

GANs. We follow [4] and use an autoencoder architecture

based on [33] and train on the same datasets with losses

as in [26]. Tab. 2 presents mean and std of FID scores

over three trials with 10K generated images. We signif-

icantly improve over state-of-the-art FID reported in [4].

Our approach can utilize a learned similarity metric simi-

lar to GANs, which enables them to produce high-quality

images. In contrast to approaches based on GANs, we can

rely on an autoencoder and a reconstruction loss. This en-

ables stable training and avoids the mode-collapse problem

of GANs, which explains our improvement in FID.

Besides sampling from the model as described by equa-

tion (13), our approach supports semantic interpolation in

the representation space, since the invertible network con-

stitutes a lossless encoder/decoder framework. We ob-

tain semantic axes z̃F→F̄ by encoding two sets of images

XF = {xF }, X F̄ = {xF̄ }, showing examples with an at-

tribute in XF and without that attribute in X F̄ . Note that

these sets are only required after training, i.e. during test

Figure 7: CelebA: Four randomly drawn samples (corners) and

corresponding interpolations obtained with unsupervised training,

see Sec. 4.1.

time. z̃F→F̄ is then obtained as the average direction be-

tween examples of XF and XF̄ ,

z̃F→F̄ =
1

|X F̄ |

∑

xF̄∈XF̄

xF̄ −
1

|XF |

∑

xF∈XF

xF . (14)

Such vector arithmetic depends on a meaningful linear

structure of our interpreted representation space. We il-

lustrate this structure in Fig. 4. Linear walks in our inter-

pretable space always result in meaningful decoded images,

indicating that the backtransformed representations lie on

the data manifold. In contrast, decoded images of linear

walks in the encoder’s hidden representation space contain

ghosting artifacts. Consequently, our model can transform

nonlinear hidden representations to an interpretable space

with linear structure. Fig. 7 visualizes a 2D submanifold on

CelebA.

Fig. 8 provides an example for an interpolation as de-

scribed in Eq. 14 between attributes on the CelebA dataset.

We linearly walk along the beardiness and smiling at-

tributes, increasing the former and decreasing the latter.

Figure 8: Interpolating along semantic directions in disentangled

representation space: First four rows show interpolations along

beardiness, while the last four depict interpolations along smiling

attribute. Note the change of gender in rows 1,2,4, reflecting the

strong correlation of beard and gender in the original data.
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Figure 9: Left: Output variance per class of a digit classifier on ColorMNIST, assessed via distribution of log-softmaxed logits and class

predictions. T disentangles z̃0 (residual), z̃1 (digit) and z̃2 (color). Right: 1d disentangled UMAP embeddings of z̃1 and z̃2. See Sec. 4.2.

4.2. Interpretation of Classifiers

After interpreting autoencoder architectures we now an-

alyze classification networks: (i) A digit classifier on Col-

orMNIST (accuracy ∼ 97%). To interpret this network, we

extract hidden representations z ∈ R
64 just before the clas-

sification head. (ii) A ResNet-50 classifier [12] trained on

classes of AnimalFaces. Hidden representations z ∈ R
2048

are extracted after the fully convolutional layers.

Network Response Analysis: We now analyze how class

output probabilities change under manipulations in the in-

terpretation space: First, we train the translator T to disen-

tangle K (plus a residual) distinct factors z̃k. For evalua-

tion we modify a single factor z̃k while keeping all others

fixed. More precisely, we modify z̃k by replacing it with

samples drawn from a random walk in a harmonic potential

(an Ornstein-Uhlenbeck process, see Sec. B of the supple-

mentary), starting at z̃k. This yields a sequence of modified

factors (z̃
(1)
k , z̃

(2)
k , . . . , z̃

(n)
k ) when performing n modifica-

tion steps. We invert every element in this sequence back to

its hidden representation and apply the classifier. We ana-

lyze the response of the network to each modified factor k

through the distribution of the logits and class predictions.

Figure 10: UMAP embedding of a ColorMNIST classifier’s latent

space z = E(x). Colors of dots represent classes of test examples.

We map latent representations z to interpretable representations

z̃ = T (z), where we perform a random walk in one of the factors

z̃k. Using T
−1, this random walk is mapped back to the latent

space and shown as black crosses connected by gray lines. On

the left, a random walk in the digit factor jumps between digit

clusters, whereas on the right, a random walk in the color factor

stays (mostly) within the digit cluster it starts from.

Interpreting Classifiers to Estimate their Invariance:

Network interpretation also identifies the invariance prop-

erties of a learned representation. Here we evaluate invari-

ances of a digit classifier to color. We learn a translation T

to disentangle digit z̃1, color z̃2, and a residual z̃0. Fig. 9

shows the network response analysis. The distribution of

log softmax-values and predicted classes is indeed not sen-

sitive to variations in the factor color, but turns out to be

quite responsive when altering the digit representation. We

additionally show a UMAP [35] of the reversed factor ma-

nipulations in Fig. 10 (in black). Since the entire modifica-

tion occurs within one cluster, this underlines that T found

a disentangled representation and that the classifier is al-

most invariant to color. Additionally, we employ another

1D-UMAP dimensionality reduction to each factor seper-

ately and then plot their pair-wise correlation in Fig. 9.

Next, we trained a transformer T to evaluate inter-

pretability in case of the popular ResNet-50. The analy-

sis of three factors, grayscale value z̃1, roundness z̃2, and

a residual z̃0 reveals an invariance of the classifier towards

grayness but not roundness. More details can be found in

Sec. B of the supplementary.

5. Conclusion

We have shown that latent representations of black boxes

can be translated to interpretable representations where dis-

entangled factors represent semantic concepts. We pre-

sented an approach to perform this translation without loss

of information. For arbitrary models, we provide the ability

to work with interpretable representations which are equiv-

alent to the ones used internally by the model. We have

shown how this provides a better understanding of models

and data as seen by a model. Invertibility of our approach

enables semantic modifications and we showed how it can

be used to obtain state-of-the-art autoencoder-based gener-

ative models.
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