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Abstract

Generating polyhedral outer approximations and solving mixed-integer linear 
relaxations remains one of the main approaches for solving convex mixed-integer 
nonlinear programming (MINLP) problems. There are several algorithms based 
on this concept, and the efficiency is greatly affected by the tightness of the outer 
approximation. In this paper, we present a new framework for strengthening cut-
ting planes of nonlinear convex constraints, to obtain tighter outer approximations. 
The strengthened cuts can give a tighter continuous relaxation and an overall tighter 
representation of the nonlinear constraints. The cuts are strengthened by analyzing 
disjunctive structures in the MINLP problem, and we present two types of strength-
ened cuts. The first type of cut is obtained by reducing the right-hand side value of 
the original cut, such that it forms the tightest generally valid inequality for a chosen 
disjunction. The second type of cut effectively uses individual right-hand side values 
for each term of the disjunction. We prove that both types of cuts are valid and that 
the second type of cut can dominate both the first type and the original cut. We use 
the cut strengthening in conjunction with the extended supporting hyperplane algo-
rithm, and numerical results show that the strengthening can significantly reduce 
both the number of iterations and the time needed to solve convex MINLP problems.
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1 Introduction

Mixed-integer nonlinear optimization (MINLP) arises in many applications 
across engineering, manufacturing, and the natural sciences (Boukouvala et  al. 
2016). An important MINLP subclass features exclusively convex nonlinearities, 
i.e. the nonconvexity of the MINLP comes only from the discrete variables (Kro-
nqvist et  al. 2019). Convex MINLP is highly relevant in diverse fields includ-
ing process synthesis (Durán-Peña 1984; Duran and Grossmann 1986a), portfolio 
optimization (Bienstock 1996; Frangioni and Gentile 2006; Bonami and Lejeune 
2009), and constrained layout (Castillo et  al. 2005; Sawaya and Grossmann 
2007). For MINLP with nonconvex nonlinearities, e.g. heat integration of chemi-
cal processes (Duran and Grossmann 1986c) and pooling problems (Misener and 
Floudas 2009), optimization algorithms assuming convex nonlinearities may gen-
erate excellent primal heuristics to the original optimization problem (Duran and 
Grossmann 1986b; Bonami et al. 2008; D’Ambrosio et al. 2012).

Convex MINLP represents a highly successful subclass of optimization prob-
lems, e.g. algorithm developers often develop convex approximations of noncon-
vex engineering relationships (Geiler et  al. 2015) or decompose their optimiza-
tion problems into a series of convex MINLP problems (Lundell and Westerlund 
2018; Nowak et al. 2018). A wide range of efficient solver software is developed 
specifically for convex MINLP (Grossmann et al. 2002; Bonami et al. 2008; Las-
tusilta 2011; Bernal et al. 2020; Lundell et al. 2020; Mahajan et al. 2017; Kröger 
et  al. 2018; Melo et  al. 2020). The success of convex MINLP derives from the 
seminal work of Duran and Grossmann (1986b) in developing the outer approxi-
mation (OA) algorithm. The work by Duran and Grossmann (1986b) became piv-
otal in solving convex MINLP problems because of the algorithm’s strong con-
vergence properties for a wide range of problem classes (Quesada and Grossmann 
1992; Fletcher and Leyffer 1994) and its speed in solving practical problems 
(Bonami et  al. 2008). In a recent benchmark by Kronqvist et  al. (2019) it was 
shown that several of the most efficient convex MINLP solvers are based on the 
OA algorithm.

The concept of using an outer approximation of the nonlinear constraints for 
MINLP problems, developed by (Duran and Grossmann 1986b; Geoffrion 1972), 
forms the core of several other convex MINLP algorithms, e.g.,   extended cut-
ting plane (ECP) (Westerlund and Petterson 1995; Westerlund and Pörn 2002), 
feasibility pump (Bonami and Gonçalves 2012), extended supporting hyper-
plane  (ESH) (Kronqvist et  al. 2016), and the center-cut algorithm (Kronqvist 
et  al. 2018a). Further developments of the OA algorithm, incorporating quad-
ratic approximations and regularization, has been presented by Su et  al. (2018) 
and Kronqvist et al. (2018b). These algorithms could commonly be referred to as 
outer approximation type algorithms, although this classification is seldom used.

This paper focuses on deriving strong cutting planes for convex MINLP prob-
lems, resulting in tight outer approximations, by exploiting disjunctive struc-
tures in the problem. We use cuts obtained by the ESH algorithm as a basis, and 
we develop a framework for strengthening the cuts by considering the integer 
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restrictions. The cut strengthening technique is not unique to the ESH algorithm 
and could also be used with an OA, ECP or generalized Benders decomposition 
(Geoffrion 1972) framework. The main motivation behind using the ESH algo-
rithm is that the algorithm tends to generate a single strong cut per iteration. The 
ESH cuts are actually as tight as possible with regards to the nonlinear constraints 
(Kronqvist et al. 2016), but they do not in general form supporting hyperplanes 
to the convex hull of all integer feasible solutions. Here we develop a framework 
for strengthening the ESH cuts, which results in two new types of cuts that are 
always as tight or tighter than the ESH cut. The new cuts can give both a tighter 
representation of the nonlinear constraints as well as a tighter continuous relaxa-
tion. By obtaining a tighter outer approximation of the nonlinear constraints, we 
can reduce both the number of iterations and the time needed to solve problems.

Cutting planes that strengthen the continuous relaxation are nowadays an essen-
tial part of an efficient mixed-integer linear programming (MILP) solver (Achter-
berg and Wunderling 2013; Linderoth and Lodi 2011), and there is an active inter-
est in developing similar cuts for convex MINLP. Disjunctive cutting planes for 
convex MINLP originate from the fundamental contributions of Ceria and Soares 
(1999) and Stubbs and Mehrotra (1999), and further developments are presented in 
(Trespalacios and Grossmann 2016). Lift-and-project cuts were first introduced in 
MILP by Balas et al. (1993), and this technique has later been adopted within con-
vex MINLP. By linearizing the constraints, a polyhedral outer approximation can 
be used to derive lift-and-project cuts through a cut generating LP (Zhu and Kuno 
2006; Bonami 2011; Kılınç et al. 2017; Serra 2020). An alternative approach is pre-
sented by Lodi et al. (2019), where they obtain cuts directly by solving cut generat-
ing conic programs. Other types of cuts used within MINLP includes different types 
of mixed-integer rounding cuts (Gomory 1960; Atamtürk and Narayanan 2010), 
reformulation linearization technique (RLT) based cuts (Sherali and Adams 2013; 
Misener et al. 2015), and split cuts (Modaresi et al. 2015).

The cut strengthening techniques presented here can be viewed as an alternative 
approach to the previously mentioned lift-and-project and disjunctive cuts. However, 
our cut strengthening procedure is more focused on obtaining a tight MILP relaxa-
tion, than getting the best improvement for the continuous relaxation. The cuts are 
generated by selecting a disjunction of the MINLP problem and strengthening an 
ESH cut over the convex hull of the selected disjunction. Trespalacios and Gross-
mann (2016) use a somewhat similar idea, where they derive a supporting hyper-
plane for a nonlinear disjunction by solving a separation problem. Instead of solving 
a separation problem, we strengthen the ESH cut by deriving the smallest possible 
right-hand side values to the ESH cut that are still valid for each term of the disjunc-
tion. This enables us to effectively use individual right-hand side values for each 
term of the disjunction, making the cut tight for each disjunct. A similar approach 
is used by Trespalacios and Grossmann (2015) to construct tighter big-M reformu-
lations of generalized disjunctive programs. We determine right-hand side values 
of the cuts by solving independent convex NLP problems in the original variable 
space and do not rely on the convex hull formulation of the disjunctions. By doing 
so, numerical difficulties associated with the perspective function are avoided and 
instead of solving a larger (lifted) problem, we solve several smaller independent 
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(parallelizable) problems. This approach also enables us to identify some infeasible 
integer assignments and to handle numerical tolerances in a straightforward fashion. 
To the authors’ best knowledge, this is a novel cut strengthening technique for con-
vex MINLP.

The paper is organized as follows. Section 2 gives a short description of the ESH 
algorithm, along with the necessary assumptions on the MINLP problems. Section 3 
presents the theory and techniques used for the cut strengthening, and a cut strength-
ening algorithm is presented in Sect. 4. Section 5 presents an algorithm for solving 
convex MINLP problems that combines the ESH algorithm with the cut strengthen-
ing techniques. Finally, some numerical results are presented in Sect. 6.

2  Background

First, we define the class of problems considered within the paper and state the 
assumptions needed to guarantee convergence of the ESH algorithm. The disjunc-
tive structure that the cut strengthening technique builds upon is also presented in 
this section. The second part of this section briefly describes the ESH algorithm, 
which is later used to generate cuts and forms the basis of the convex MINLP algo-
rithm in Sect. 5.

2.1  Problem statement

The most commonly used, and most practical, definition of a convex MINLP prob-
lem, is that all of the nonlinear constraints and objective are given by convex func-
tions (Gupta and Ravindran 1985; Quesada and Grossmann 1992; Westerlund and 
Petterson 1995; Bonami et al. 2012). Throughout the paper, we use this definition 
of convexity. Without loss of generality, we only consider convex MINLP problems 
with the following structure

where gj ∶ ℝ
n
→ ℝ are convex continuously differentiable functions. Here, I

ℤ
 is 

a set containing the indices of all the integer variables. To clarify the notation, x
i
 

referrers to the i-th element of the variable vector � . The feasible set defined by the 
nonlinear constraints will be referred to as the nonlinear feasible set, and it is given 
by

(MINLP)

min
�

�⊤�

s.t. �� ≤ �,

�� = �,

gj(�) ≤ 0, ∀j = 1, 2,… , l,

� ∈ ℝ
n,

xi ∈ ℤ, ∀i ∈ I
ℤ

,

(1)N =
{
� ∈ ℝ

n | gj(�) ≤ 0 ∀j = 1,… l
}

.



1319

1 3

A disjunctive cut strengthening technique for convex MINLP  

To simplify the notation, we will also introduce a set L defined by the linear con-
straints and a set Y given by the variable domains

To ensure convergence of the ESH algorithm, we need to make the following 
assumptions of problem (MINLP).

Assumption 1 The linear constraints form a compact set.

Assumption 2 The continuous relaxation of problem (MINLP) satisfies Slater’s con-
dition (Slater 1950).

For the cut strengthening procedure, we make the following assumption on the 
problem structure.

Assumption 3 The MINLP problem contains at least one exclusive selection con-
straint of binary variables, i.e., ∃ I

D
⊂ I

ℤ
∶ x

i
∈ {0, 1} ∀i ∈ I

D
 , and either one of 

the constraints

appears in the problem.

For the sake of simplicity and clarity, we will throughout the paper only focus on 
the exclusive selection constraint (2). The second type of exclusive selection con-
straint (3), can trivially be converted into the first type by introducing a slack binary 
variable and can be handled by the same approach.

The exclusive selection constraints arise, for example, from the representation 
of disjunctive constraints through the so-called big-M or convex hull formulation 
(Balas 1979; Raman and Grossmann 1994; Trespalacios and Grossmann 2014). 
Note that we do not restrict all of the integer variables to be binary variables, nor do 
we assume the problems to have disjunctive constraints of a specific type. The cut 
strengthening simply requires that the problem contains at least one exclusive selec-
tion constraint, which is used for strengthening the cut. However, the cut strengthen-
ing is most powerful in case the problem contains the big-M constraints, resulting 
in a weak continuous relaxation. Therefore, we focus on problems containing big-M 
constraints.

For the cut strengthening to be computationally efficient, the number of elements in 
I
D
 should be less than the elements in I

ℤ
 . Throughout the paper, we also assume that 

the main challenges in solving problem (MINLP) arise from the integer restrictions. 

L = {� ∈ ℝ
n | �� ≤ �, �� = �},

Y =
{
� ∈ ℝ

n | x
i
∈ ℤ ∀i ∈ I

ℤ

}
.

(2)
∑

i∈I
d

x
i
= 1,

(3)
∑

i∈I
d

x
i
≤ 1,
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Consequently, we assume that a continuous relaxation of the problem is significantly 
easier to solve than the MILP relaxations used by OA, ECP, and ESH. This is often the 
case for convex MINLP problems which is, for example, shown by the numerical result 
in Muts et al. (2020) and Su et al. (2015).

2.2  The extended supporting hyperplane algorithm

The ESH algorithm was presented by Kronqvist et al. (2016) as a method for solving 
convex MINLP problems, and it builds upon ideas presented by Veinott Jr (1967). 
It was proven by Eronen et al. (2017) that the ESH algorithm is directly applicable 
to nonsmooth MINLP problems with constraints given by pseudoconvex functions. 
Properties of the ESH algorithm have also been further analyzed by Serrano et al. 
(2019).

The ESH algorithm constructs a tight polyhedral outer approximation of the non-
linear feasible set N, by generating supporting hyperplanes to the set. The polyhedral 
outer approximation at iteration k is given by

where �̄i are points on the boundary of N and A
i
 contains the indices of all constrains 

active at �̄i . From convexity it directly follows that N ⊆ N̂
k
 , and N̂

k
 is commonly 

referred to as an outer approximation of N.
A new trial solution �k+1 is obtained by solving the following MILP relaxation

A lower bound on the optimal objective value of problem (MINLP) is given by 
�
⊤
�

k+1 , where �k+1 is an optimal solution to the MILP relaxation.
The trial solutions obtained by solving problem (MILP-r) will all be outside of 

the nonlinear feasible set N, before the very last iteration. Therefore, linearizing the 
nonlinear constraints at the trial solutions �k would, in general, not form support-
ing hyperplanes to N and would result in weaker cuts. To obtain supporting hyper-
planes, ESH performs an approximative projection of the trial solution �k onto 
N ∩ L . A point in the interior of N ∩ L is needed for the projection, and such a point 
is obtained by solving the convex continuous problem

For the approximative projection of �k , we define the one-dimensional function

(4)N̂k =

{

∇gj

(

�̄
i
)⊤(

� − �̄
i
)

≤ 0 ∀i = 1, 2… k, j ∈ Ai

}

,

(MILP-r)
�

k+1
∈ arg min

�

�
⊤
�

s.t. � ∈ L ∩ N̂
k
∩ Y .

(NLP-IP)

�int,� ∈ arg min
�,�

�

s.t. gj(�) ≤ �, ∀j = 1, 2,… , l

� ∈ L,

� ∈ ℝ.

(5)F(�) = max
j

{

gj

(

��int + (1 − �)�k
)}

,
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for � ∈ [0, 1] . Using a simple root-search algorithm we can obtain a �k such that 
F
(

�
k
)

= 0 . The approximative projection of �k onto N ∩ L is then given by

Now, if the active constraints are linearized at �̄k we obtain the following cuts

which forms supporting hyperplanes to N ∩ L . The supporting hyperplanes are then 
added to the current polyhedral outer approximation to form N̂

k+1
 , which ensures 

that �̄k ∉ N̂
k+1

.
The ESH algorithm repeats the procedure of solving (MILP-r) and improving the 

outer approximation by generating supporting hyperplanes. To improve the compu-
tational performance, the algorithm starts by further relaxing (MILP-r) and solving 
LP relaxations to quickly generate an outer approximation. For more details and 
computational enhancements on the ESH algorithm see Lundell et al. (2018).

The cuts generated by the ESH algorithm are as tight as possible with regards 
to N ∩ L . However, there is no guarantee that the algorithm generates supporting 
hyperplanes to the convex hull of N ∩ L ∩ Y  . Therefore, it can be possible to further 
strengthen the cuts by considering the integrality restrictions. To illustrate the pos-
sible strengthening of the cuts, consider the following example

The example contains the disjunctive constraint that the (x1, x2)-variables must be 
within one of three circles, which is represented by the big-M formulation. The 
value 29.944 is, in this case, the tightest common value for the big-M coefficients. A 
stronger problem formulation could simply be obtained by using individual M val-
ues for each constraint, which can easily be determined as described in the Appen-
dix. We only use the weaker formulation in order to better highlight differences 
between the cuts. Figure 1 shows the feasible set of problem (EX1) along with the 
continuously relaxed feasible set projected down onto the (x1, x2)-space.

In the first iteration, the ESH algorithm will generate the following cut

which forms a supporting hyperplane to N ∩ L but not a supporting hyperplane to 
convex hull of N ∩ L ∩ Y  . From Fig. 1, it is clear that the cut given by Eq. (8) is not 
as tight as possible when considering the integer properties. In the next section, we 
present a technique to further tighten the cut by utilizing the disjunctive structures of 
the MINLP problem.

(6)�̄
k = �

k
�

int
+ (1 − �

k)�k
.

(7)∇gj

(

�̄
k
)⊤(

� − �̄
k
)

≤ 0 ∀j ∈ Ai,

(EX1)

min
�

− x1 − x2

s.t. (x1 − 1)2 + (x2 − 2)2 ≤ 1 + 29.944(1 − x3),

(x1 − 2)2 + (x2 − 5)2 ≤ 1 + 29.944(1 − x4),

(x1 − 4)2 + (x2 − 1)2 ≤ 1 + 29.944(1 − x5),

x3 + x4 + x5 = 1,

0 ≤ x1 ≤ 8, 0 ≤ x2 ≤ 8,

x1, x2 ∈ ℝ, x3, x4, x5 ∈ {0, 1}.

(8)5.920x1 + 4.536x2 + 29.944x3 ≤ 59.249,
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3  Cut strengthening

From the example in the previous section, it can be observed that the ESH cut can be 
tightened by simply reducing the right-hand side and still remain valid for the inte-
ger feasible set, i.e., N ∩ L ∩ Y  . To reduce the right-hand side, we will consider an 
exclusive selection constraint, see assumption 3, and determine the smallest right-
hand side values for each selection. This enables us to strengthen the cut by reducing 
the right-hand side alone or to further strengthen the cut by assigning individual 
right-hand side values for each assignment of the exclusive selection constraint.

First, we select an index set I
D

(

I
D
⊂ I

ℤ

)

 that contains the indices of all the binary 
variables included in an exclusive selection constraint of the MINLP problem. By 
using the ESH algorithm we obtain the cut

which forms a tight valid inequality for N ∩ L . To tighten cut (9), consider the fol-
lowing disjunctive programming (DP) problem

This DP problem can be solved as a convex NLP through the convex hull formula-
tion (Ceria and Soares 1999; Stubbs and Mehrotra 1999; Lee and Grossmann 2000). 
Formulating problem (10) as a convex NLP through a convex hull formulation can 
cause numerical difficulties, such as division by zero and non-smoothness (Sawaya 
and Grossmann 2007), and the problem will contain |I

D
| copies of the variables. 

Instead of solving (10) as a single large problem we solve it as smaller individual 

(9)�⊤
� ≤ �,

(10)

z∗ = max
�

�
⊤
�

s.t.
⋁

i∈ID

⎡
⎢⎢⎣

� ∈ N ∩ L

xi = 1

xj = 0 ∀j ∈ ID ⧵ i

⎤
⎥⎥⎦

.

Fig. 1  The dark circles show the feasible set of problem (EX1) projected onto the (x1, x2)-space. The 
light gray area in the left figure shows the feasible set of the continuous relaxation. The right figure also 
shows the projection of the outer approximation obtained by the first iteration of the ESH algorithm. 
Note that, a supporting hyperplane to N ∩ L does not necessarily form a supporting hyperplane in a pro-
jected space, as shown in the figure
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convex problems, by considering the following alternative formulation of problem 
(10)

By solving each inner problem of (11) separately we can determine z∗ as the largest 
b

i
 . This approach requires |I

D
| independent convex NLP problems to be solved, but 

computationally it can be more efficient than solving a single problem with |I
D
| cop-

ies of the variables. Using z∗ as the new right-hand side value of cut (9), we form the 
tightened cut

Proposition 1 The cut given by Eq. (12) forms a valid inequality for N ∩ L ∩ Y  , and 

is at least as tight as the cut given by Eq. (9).

Proof From optimality of problem (10) it directly follows that cut (12) forms a sup-
porting hyperplane to the feasible set of problem (10), which contains N ∩ L ∩ Y  . 
Since the feasible set of problem  (10) is contained within N ∩ L , it follows that 
z
∗ ≤ � .   ◻

Solving (10) as smaller individual convex problems also enables us to further 
tighten the cut. To further strengthen the cut, we considering each term of the dis-
junction in problem (10) and form a convex NLP problem for each i ∈ I

D

Note that each problem (NLP-i) is a subproblem of problem (11). To simplify the 
derivation and analysis, we first assume that all i ∈ I

D
 result in a feasible problem 

(NLP-i). Solving problem (NLP-i) for each i ∈ I
D
 gives the values b

i
 that can be 

used as individual right-hand side values for each integer assignment of the exclu-
sive selection constraint (2). A new strengthened cut is then given by

and the properties of the new cut are presented in the following two theorems.

Theorem 1 The cut given by Eq. (13) forms a valid inequality for N ∩ L ∩ Y .

(11)

z∗ = max
i∈ID

bi = max
�

�
⊤
�

s.t. � ∈ N ∩ L,

xi = 1,

xj = 0, ∀j ∈ ID ⧵ i.

(12)�
⊤
� ≤ z

∗
.

(NLP-i)

bi = max
�

�
⊤
�

s.t. � ∈ N ∩ L,

xi = 1,

xj = 0, ∀j ∈ ID ⧵ i.

(13)�
⊤
� ≤

∑

i∈I
D

b
i
x

i
,
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Proof The theorem is easily proven by contradiction. First, assume ∃ �̄ ∈ N ∩ L ∩ Y ∶

Due to the exclusive selection constraint, one and only one of the binary variables 
x

i∈I
D

 can be nonzero. Let j be the index of the nonzero binary variable, and the strict 
inequality (14) can now be written as

By assumption, �̄ must satisfy all constraints of problem (NLP-i). This implies that 
bj cannot be an optimal solution to problem (NLP-i), and this leads to a contradic-
tion.   ◻

Before analyzing the tightness of the cuts, we first describe our definition of 
a tighter cut. Here we consider cut (13) to be tighter than cut (12) in the sense 
that any � satisfying Eq. (13) will satisfy Eq. (12), but not vice versa. In integer 
programming, this tightness relation is commonly referred to as cut (13) strictly 
dominating cut (12), e.g., see Balas and Margot (2013).

Theorem 2 The cut given by Eq. (13) is always as tight or tighter than the cut given 

Eq. (12).

Proof Since z
∗ is chosen as the maximum of �⊤

� over all integer assignments 
of the exclusive selection constraint intersected with N ∩ L , it follows that 
z∗ = maxi∈ID

{bi} . Therefore, each b
i
 can be split into two parts bi = z∗ − �i , where 

each �
i
≥ 0 . The cut given by Eq. (13) can now be written as

proving that the cut is always as tight as cut (12). Furthermore, if a single �
i
> 0 , 

then the cut given by (13) will strictly dominate cut (12).   ◻

Earlier we assumed that all i ∈ I
D

 result in a feasible problem (NLP-i), which 
is not a necessary assumption for the cut strengthening. Finding such infeasible 
integer assignments enables us to remove the corresponding binary variable, as 
further described in the following proposition.

Proposition 2 If i ∈ I
D
 result in an infeasible problem (NLP-i), then the binary vari-

able x
i
 can be eliminated by permanently fixing the variable to zero.

Proof In problem (NLP-i) all variables, except those included in the exclusive selec-
tion constraint, are relaxed to continuous variables and they are only restricted by 
the original constraints. Variable x

i
 is fixed to one, which automatically fixes the 

other variables in the exclusive selection constraint to zero. Therefore, the only case 

(14)�
⊤
�̄ >

∑

i∈I
D

b
i
x

i
.

(15)�
⊤
�̄ > bj.

(16)�
⊤
� ≤ z

∗
−

∑

i∈ID

�ixi,
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where problem (NLP-i) can be infeasible is when x
i
= 1 is an infeasible partial inte-

ger assignment to the MINLP problem.   ◻

To illustrate the difference between the two cuts, we again consider problem 
(EX1). By applying the cut strengthening technique to the cut given by the ESH 
algorithm, we can generate the following two cuts

The outer approximations obtained given by the two different cuts are shown in 
Fig. 2. The figure shows a clear advantage of the second cut, resulting in a signifi-
cantly tighter linear relaxation of the MINLP problem. However, comparing Figs. 1 
and 2 show that both cuts are significantly stronger than the standard ESH cut.

In an outer approximation type algorithm, it is not only important to obtain a 
tight continuous relaxation, but also to obtain a tight MILP relaxation, i.e., a tight 
linear relaxation for given integer assignments. The two are obviously related, but 
it is possible to have a tight MILP relaxation with a weak continuous relaxation. 
To further illustrate the differences between the two types of cuts, we analyze 
how the feasible region of the cuts to problem (EX1) varies with the feasible inte-
ger assignments. Figure 3 shows the feasible region of the cut given by Eq. (17) 
for each feasible integer assignment. The figure shows that cut (17) is tight for 
one of the feasible integer assignments, but not as tight as possible for the other 
two.

Figure 4 shows the cut given by Eq. (18) forms a supporting hyperplane to the 
feasible set of each term of the disjunction in problem (EX1), i.e., for each feasi-
ble integer assignment the cut is as tight as possible. The example highlights the 
fact that the individually tightened cuts, i.e., cuts formed by Eq. (13), can give 

(17)5.920x1 + 4.536x2 + 29.944x3 ≤ 52.029,

(18)5.920x
1
+ 4.536x

2
≤ (52.029 − 29.944)x

3
+ 41.192x

4
+ 35.451x

5
.

Fig. 2  The figures show the true feasible set of problem (EX1) and the continuously relaxed feasible set 
projected onto the (x1, x2)-space. The left figure shows the outer approximation given by cut (17) and the 
right figure shows the outer approximation given by cut (18)
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both significantly tighter continuous and MILP relaxations than the cut given by 
Eq. (12) and the original ESH cut.

In this section, we have presented a framework for strengthening cuts obtained by 
the ESH algorithm. However, the same approach can also be used to strengthen cuts 
obtained by a similar algorithm, such as ECP, OA or generalized Benders decompo-
sition. The next section will focus more on the computational aspects, and how to 
practically utilize the cut strengthening framework within a solver.

4  A cut strengthening algorithm

This section focuses on the computational aspects and how to utilize the cut 
strengthening techniques from the previous section in an algorithm. We present a 
simple strategy for selecting one out of multiple exclusive selection constraints, and 

Fig. 3  The dark circles show the feasible set of problem (EX1) projected onto the (x1, x2)-space. The 
light gray area in the figures shows the feasible set of the continuous relaxation. Furthermore, the figures 
also show the feasible set of cut (17) for each feasible integer assignment

Fig. 4  The figures show the feasible set of cut (18) for each feasible integer assignment in the (x1, x2)

-space
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describe some computational enhancements along with a discussion on how to deal 
with tolerances.

The cut strengthening techniques in the previous section utilizes the exclusive 
selection constraint (2) to tighten cuts of the type given by Eq. (9). However, MINLP 
problems can contain multiple exclusive selection constraints, e.g., originating from 
multiple disjunctive constraints. Given a cut, there is a choice of which exclusive 
selection constraint and the corresponding variables to choose for the tightening 
procedure. Ideally one wants to choose the exclusive selection constraint with the 
binary variables x

i
 for i ∈ I

D
 such that the coefficients b

i
 obtained by solving (NLP-i) 

are as small as possible. However, such an optimal choice cannot trivially be deter-
mined, and instead, we will make the choice based on the variable connections.

Suppose that we have obtained cut (9), which is given by linearizing the non-
linear constraint gj(�) ≤ 0 . To compare the different exclusive selection constraints, 
and their corresponding variables x

i
 for i ∈ I

D
 , we check the connections of the vari-

ables x
i
 for i ∈ I

D
 to the constraint gj(�) ≤ 0 . Here we consider two types of connec-

tions, direct connections and step-one connections. Variable x
i
 is directly connected 

to gj(�) ≤ 0 , if the variable is included in the constraint. In a step-one connection, 
the variable x

i
 is included in another constraint (linear or nonlinear) that has at least 

one variable in common with gj(�) ≤ 0 . The number of direct connections in an 
exclusive selection constraint is given by number of variables in I

D
 that are directly 

connected to the nonlinear constraint gj(�) ≤ 0 , and similarly for the step-one con-
nections. Here, we use the following heuristic rule for selecting an exclusive selec-
tion constraint.

Rule 1 Given cut (9), select the exclusive selection constraint with the largest num-

ber of direct connections to the corresponding nonlinear constraint. If there are no 

direct connections, chose the one with the largest number of step-one connections. 

In case of multiple exclusive selection constraints with the same number of connec-

tions, chose one of them randomly.

A feasible solution to the MINLP problem �̂ can also be utilized within the cut 
strengthening procedure. This is done by simply including the objective reduction 
constraint

as a constraint in problem (NLP-i). Including the objective reduction constraint can 
further reduce the coefficients b

i
 , resulting in a stronger cuts. Furthermore, includ-

ing the objective reduction constraint can enforce infeasibility on some partial inte-
ger assignments, and cause assignments in problem (NLP-i) to be infeasible. As 
mentioned earlier, the only way problem (NLP-i) can be infeasible is if the partial 
assignment, i.e., xi = 1 i ∈ ID, xj = 0 ∀j ∈ ID ⧵ i , is infeasible for the MINLP prob-
lem. Finding such infeasibilities is desirable since it allows us to eliminate a variable 
from the MINLP problem by fixing it to zero.

Including the previously tightened cuts into problem (NLP-i) can also improve 
performance by tightening the continuous relaxation. Obtaining a tighter continuous 

(19)�
⊤
� ≤ �

⊤
�̂,
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relaxation in problem (NLP-i) can further strengthen the cut and infer infeasibilities. 
In the numerical results presented in Sect. 6, it was noticed that including the tight-
ened cuts and an objective reduction constraint can greatly help in identifying infea-
sible or non-optimal partial integer assignments. The ability to identify and elimi-
nate these from the search space can result in fewer iterations but can also reduce the 
complexity of the MILP relaxations, used by algorithms such as ESH, ECP, and OA.

The cut strengthening techniques are summarized as pseudo-code in Algorithm 1. 
In the algorithm, the two different cuts from the previous section are considered as 
different strategies. The cut given by Eq. (13) is referred to as a Multi Tightening 
(MT) strategy, since it effectively uses multiple values for the right-hand side. Simi-
larly, the cut given by Eq. (12) is referred to as a Single Tightening (ST) strategy. 

Algorithm 1 Cut strengthening algorithm overview

1: procedure CutStrengthening(α, β, Strategy, x̂)

2: ID ← SelectExclusiveConstraint(α⊤x ≤ β) ⊲ Rule 1, Section 4
3: if A feasible solution is known then

4: MINLP ← IncludeObjectiveConstraint(x̂) ⊲ Equation (19), Section 4
5: end if

6: for i ∈ ID do

7: bi ← SolveNLP(i) ⊲ Problem (NLP-i), Section 3
8: if NLP is infeasible then

9: Remove variable xi from MINLP problem ⊲ Fix xi = 0
10: end if

11: end for

12: if Strategy = ST then

13: z∗ ← maxi∈ID
{bi}

14: return The cut α⊤x ≤ z∗ ⊲ Cut by eq. (12)
15: else if Strategy = MT then

16: return The cut α⊤x ≤
∑

i∈ID
bixi ⊲ Cut by eq. (13)

17: else if Strategy = ESH then

18: return The original ESH cut.
19: end if

20: end procedure

4.1  Computational comments

When solving an optimization problem to generate a cut, it is important to take the 
solver tolerances into consideration. The tolerances are especially important when 
dealing with nonlinear problems, where it is rare that a solver returns an exact opti-
mal solution. In the cut strengthening procedure, presented in the previous section, 
the solver tolerance will only affect the coefficients b

i
 . If we can ensure that the solu-

tion of problem (NLP-i) is within an �-tolerance from the true optimal objective 
value, then the suboptimality can easily be handled by relaxing the cut, i.e., adding � 
to the right-hand side.

As a comparison, some other techniques to obtain strong cuts for convex MINLP 
problems use the minimum distance (separation) problem to generate cuts (Stubbs 
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and Mehrotra 1999; Bonami et  al. 2009; Trespalacios and Grossmann 2016). In 
these approaches, the minimizer of an NLP subproblem forms the coefficients of 
both the left- and right-hand side of the cut. For these cuts, it is important to obtain 
a high optimality accuracy in the variable space, since it affects both the angle and 
level of the cut. Issues with numerical tolerances can be reduced or effectively elimi-
nated, e.g., by post-processing the cut and optimizing over each term in the disjunc-
tion to determine a valid right-hand side, but this comes at a significant computa-
tional expense. However, since both the coefficients on the left- and right-hand side 
are optimized, this approach is not limited to a specific cut but can basically generate 
any supporting hyperplane to the convex hull of the disjunction. Generating cuts by 
solving the separation problem can, therefore, result in stronger cuts than the cut 
strengthening procedure which is limited by the structure of the original cut.

In the cut strengthening procedure, we optimize over each term of a disjunction 
in problem (10) separately. This allows us to obtain stronger cuts and identify infea-
sible partial integer assignments, as described in Sect. 3. In an efficient implementa-
tion, the individual problems given by (NLP-i) can be solved in parallel since they 
are completely independent. This approach also has computational advantages, since 
the convex hull formulation and the perspective function, in particular, comes with 
numerical challenges. There are formulations to avoid division by zero (Sawaya 
2006) and for some types of problems, the convex hull is second-order cone rep-
resentable, which can be handled more efficiently (Ben-Tal and Nemirovski 2001). 
However, if some of the partial integer assignments are infeasible it can cause diffi-
culties for solvers since the convex hull of problems (NLP-i) will then have an empty 
interior even though it is feasible. Such issues can be eliminated by analyzing each 
term of the disjunction in a pre-processing and eliminating infeasible terms, but this 
also comes at a significant computational expense.

As previously mentioned, our cut strengthening approach is limited to a specific 
cut and, therefore, it may result in a weaker cut compared to generating the cut from 
solving a separation problem. The main advantage of our cut strengthening approach 
is that the cut is obtained by solving several smaller independent convex problems, 
compared to solving the larger separation problem. Therefore, the trade-off of our 
cut strengthening approach is a reduced computational complexity at the expense of 
a possibly weaker cut.

5  Computational setup

To compare the cuts and to show the advantage of the cut strengthening, we have 
included a numerical study where we compare the ESH algorithm with and with-
out the cut strengthening technique. These are preliminary results and are mainly 
intended as a proof of concept. To focus on the effects of cut strengthening, we 
apply them to a basic implementation of the ESH algorithm. As shown by Lundell 
et al. (2016, 2020) several other techniques can be combined with the algorithm to 
improve the computational performance, such as early MILP termination and mul-
tiple cut generation strategies. Before presenting the results, we will give a more 
detailed description of the computational setup.
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5.1  A Convex MINLP algorithm

To solve the MINLP problems we will use the ESH algorithm, which was briefly 
presented in Sect. 2. In each iteration, we use the cut strengthening algorithm from 
Sect. 4 to strengthen the cut generated by the ESH algorithm. It is known that the 
basic ESH algorithm tends to only generate a single cut per iteration (Kronqvist 
et  al. 2016; Lundell et  al. 2017). However, in some iterations the root-search can 
result in a point where multiple constraints are active, resulting in multiple cuts. 
Here, we will only strengthen one cut per iteration. If we obtain multiple cuts in an 
iteration, then we randomly pick one of them for the strengthening procedure. We 
do not use the LP-preprocessing from (Kronqvist et al. 2016), which simplifies the 
algorithm and allows us to better focus on the effect of the cut strengthening.

Besides the basic ESH algorithm, we only include two simple primal heuristics 
that have proven to be effective within this framework (Kronqvist et al. 2016; Lun-
dell et al. 2018). Without any primal heuristics the ESH algorithm will generally not 
obtain feasible solutions during the solution procedure, making it difficult to termi-
nate based on the optimality gap. Therefore, the primal heuristics is an important 
enhancement to the ESH algorithm and practically needed within a solver. From the 
numerical tests, we also noticed that feasible solutions improve the cuts and help to 
identify non-optimal partial integer assignments. The primal heuristics we use here 
are checking the alternative solution in the MILP solver’s solution pool, and fixing 
the integer assignments in the MINLP and solving the resulting convex NLP prob-
lem in every fourth iteration. The primal heuristics are summarized as a pseudo-
code in Algorithm 2. 

Algorithm 2 Primal heuristics

1: procedure PrimalHeuristic(c, N, L, Y , SolutionPool, k, x̂,xk)
2: for xi ∈ SolutionPool do

3: if xi ∈ N ∩ L ∩ Y | c⊤xi < c⊤x̂ then ⊲ Check alternative MILP solutions

4: Ŷ ← {x ∈ L ∩ N | xi = xi
j ∀j ∈ IZ} ⊲ Fixed integer assignment

5: x̂ ← arg min
x∈Ŷ

c⊤x

6: end if

7: end for

8: if k mod 4 = 0 then ⊲ Every fourth main iteration
9: Ŷ ← {x ∈ L ∩ N | xi = xk

i ∀i ∈ IZ} ⊲ Fixed integer assignment
10: if MINLP is feasible for the integer assignment then

11: x̃ ← arg min
x∈Ŷ

c⊤x

12: if c⊤x̃ < c⊤x̂ then

13: x̂ ← x̃

14: end if

15: end if

16: end if

17: return x̂

18: end procedure

 For more details on heuristics in combination with the ESH algorithm, see (Lun-
dell et  al. 2020). For a summary of different primal heuristics see, for example, 
(Berthold 2014; D’Ambrosio et al. 2012).



1331

1 3

A disjunctive cut strengthening technique for convex MINLP  

As a termination criterion we use the relative optimality gap defined as

where ub and lb are upper and lower bounds on the optimal objective value of the 
MINLP problem. Here, ub is given by the best found feasible solution and lb is 
given by �⊤�k , where �k is given by problem (MILP-r). We consider the MINLP 
problem as solved when the relative gap is reduced to 10

−3 , thus proving that the 
best found solution is within 0.1% of the global optimum. The method used for solv-
ing the MINLP problems is summarized as a pseudo-code in Algorithm 3. 

Algorithm 3 Overview of the ESH algorithm with cut strengthening

1: Select Strategy ∈ {MT, ST, ESH}.

2: Initialize: k ← 1, N̂0 ← R
n, gap ← ∞.

3: xint ← ObtainInteriorPoint(N, L) ⊲ Problem (NLP-IP), Section 2
4: while gap > 0.001 do

5: x
k, SolutionPool

)

← Relaxation(L, N̂k−1) ⊲ Problem (MILP-r), Section 2

6: x̄
k ← RootSearch(xint,x

k, N) ⊲ Section 2
7: (α, β) ←GenerateCut(x̄k, N) ⊲ Cut given by eq. (7)
8: (α, β∗) ← CutStrengthening(α, β, Strategy, x̂) ⊲ Algorithm 1

9: N̂k ← N̂k−1 ∩ α⊤x ≤ β∗

10: x̂ ← PrimalHeuristics(c, N, L, Y , SolutionPool, k, x̂,xk) ⊲ Algorithm 2
11: if A feasible solution x̂ is found then

12: gap ←
c

⊤
(

x̂−x
k

)

|c⊤
x̂|+10−10

⊲ Eq. (20)

13: end if

14: k ← k + 1
15: end while

16: return x̂

5.2  Implementation and hardware

For the numerical comparison, we use a simple implementation of the ESH algo-
rithm utilizing IPOPT 3.12.9 (Wächter and Biegler 2006) and Gurobi 8.1 (Gurobi 
2019) as subsolvers for NLP and MILP subproblems. For reading and parsing the 
MINLP problems, we use the open-source MATLAB toolbox OPTI Toolbox (Cur-
rie and Wilson 2012). In the current implementation, we are not able to run the cut 
strengthening NLP subproblems in parallel, which could significantly speedup the 
cut strengthening. However, the computational results in the following section still 
clearly show an advantage of the cut strengthening, both in terms of total computa-
tional time and in number of iterations.

The numerical comparisons are performed on a basic desktop computer with an 
Intel i7-7700k processor, 16 GB RAM, and Windows 10. For the subsolvers, we use 
default settings except for allowing Gurobi to run on 8 threads. By running Gurobi 
on multiple threads, the MILP subproblems are solved faster and this is simply done 

(20)gap =
ub − lb

|ub| + 10−10
,
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by changing the Threads-parameter. The root-search, in the approximative projec-
tion, is done to a tolerance of 10

−16 in the �-variable.

6  Numerical results

To test the efficiency of the cut strengthening, we apply the simple implementa-
tion of the ESH algorithm, described in Algorithm 3, to a set of test problems. The 
ESH algorithm forms the baseline for the numerical comparison, and we compare 
how the cut strengthening techniques affect the number of iterations and solution 
times. As already mentioned, the results are mainly intended as a proof of concept 
to show the impact of the cut strengthening. By using techniques such as early stop-
ping (Lundell et al. 2018) and running the cut tightening NLP problems in parallel it 
would be possible to significantly reduce the solution times.

For the numerical test we have chosen convex MINLP instances from MINL-
PLib (MINLPLib 2020) containing at least one exclusive selection constraint. The 
cut strengthening is mainly intended to strengthen the linear approximation of the 
nonlinear constraints, and it is expected to be most beneficial for problems contain-
ing the big-M formulation of disjunctions containing nonlinear constraints. The 
disjunctions are identified through the exclusive selection constraints, and the cuts 
are strengthened through a tighter representation of the disjunctions. If nonlinear 
disjunctions are represented by the convex hull formulation, our approach will not 
necessarily be able to tighten the relaxation. For example, if a nonlinear disjunction 
is represented by the convex hull, then the ESH algorithm can generate supporting 
hyperplanes to the convex hull of the disjunction and the ST-strategy will not be 
able to change such cuts. The MT-strategy could still give a tighter approximation 
for integer feasible solutions, as it may cut off parts of the convex hull for some 
integer values as shown in Fig. 4. Since the cut strengthening is an expensive opera-
tion, it is better suited for problems with the big-M formulation as the impact will be 
more significant and the subproblems are smaller. Therefore, we focus on problems 
where disjunctions, with either linear or nonlinear constraints, are represented by the 
big-M formulation. The problems we consider from MINLPLib are different ver-
sions of the problems clay, flay, slay, sssd, and tls. These problems represent optimi-
zation tasks such as trimloss problems (Harjunkoski et al. 1998), optimal placement 
tasks (Sawaya 2006) and service systems design (Elhedhli 2006). We also consider 
a problem called stockcycle (Silver and Moon 1999), which is known to be diffi-
cult to solve without any reformulations (Kronqvist et al. 2018c). Furthermore, we 
also consider a class of test problems called p_ball, that are described in the Appen-
dix. The p_ball instances contain several relatively large nonlinear disjunctions, and 
are designed to be challenging due to both the nonlinearity and the combinatorial 
aspects. We use a 2 h time limit for all the problems except for stockcycle, where we 
use a time limit of 96 h.

The results are presented in Table 1, showing both the number of iterations and 
the time needed to solve each problem. The table shows that both cut strengthen-
ing techniques can significantly reduce the number of iterations needed to solve 
the problems. However, the table shows a clear advantage of the multi tightening 
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Table 1  The table shows the solution times in seconds and the number of iterations needed to solve (to a 
relative gap ≤ 0.1% ) the MINLP instances with different cut strategies

Instance ESH ESH + ST ESH + MT

Iter. Time Iter. Time Iter. Time

clay0203m 48 12.83 29 9.40 22 6.47

clay0204m 21 4.70 13 5.43 17 3.27

clay0205m 37 14.41 25 8.71 21 7.01

clay0303m 81 34.28 37 17.49 20 3.66

clay0304m 121 90.27 62 46.12 30 11.39

clay0305m 53 34.08 25 13.16 21 8.41

flay02m 14 1.51 10 2.46 8 2.09

flay03m 28 3.14 28 6.01 28 6.31

flay04m 30 4.25 30 7.78 30 7.76

flay05m 52 53.51 52 61.01 52 62.19

flay06m 62 1879.98 62 1801.56 61 1511.69

p_ball_10b_5p_2d 246 59.45 126 91.84 31 21.56

p_ball_15b_5p_2d 389 144.72 209 341.44 51 73.12

p_ball_20b_5p_2d 586 299.42 280 717.67 34 68.96

p_ball_30b_5p_2d 1026 465.31 328 2677.33 48 303.26

p_ball_30b_7p_2d > 1039 > 7200 417 4665.69 65 1008.56

p_ball_10b_5p_3d 491 543.35 185 168.69 60 48.04

p_ball_10b_7p_3d > 433 > 7200 299 2952.08 101 593.01

p_ball_20b_5p_3d > 979 > 7200 450 2453.01 97 331.40

p_ball_30b_5p_3d > 1258 > 7200 385 2660.03 81 509.99

p_ball_40b_5p_3d > 1877 > 7200 534 > 7200 112 1859.94

p_ball_10b_5p_4d 879 2496.35 265 410.06 115 122.82

p_ball_40b_5p_4d > 2134 > 7200 640 > 7200 178 4311.56

slay04m 55 2.79 24 4.79 27 5.15

slay05m 78 4.90 44 9.51 45 7.73

slay06m 88 8.08 45 11.52 44 11.05

slay07m 150 25.40 109 22.88 94 18.28

slay08m 120 33.99 80 25.04 89 24.61

slay09m 130 68.26 88 63.86 104 47.46

slay10m 420 4432.49 105 203.14 109 219.22

sssd08-04 11 4.62 11 5.85 11 5.37

sssd12-05 13 7.56 13 10.39 12 9.81

sssd15-04 11 2.52 11 4.51 11 5.41

sssd15-06 21 33.39 17 24.72 17 24.53

sssd15-08 25 626.97 17 134.49 17 146.36

sssd16-07 20 59.91 17 34.73 17 38.96

sssd18-06 17 62.11 15 43.22 13 6.35

sssd18-08 40 232.48 25 93.29 30 182.83

sssd20-04 14 4.03 13 5.53 13 4.51

sssd20-08 25 402.08 25 351.03 21 54.03
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(MT) strategy. This result aligns well with the theory since cut (13) used in the 
MT strategy can dominate the cuts used by the single tightening (ST) strategy. On 
average, the ST strategy reduces the number of iterations by a factor of 1.5, and 
the MT strategy gives a further reduction with a factor of 2.9 on average. Both 
cut strengthening strategies give a significant reduction in solution times, but the 
MT strategy has a clear advantage and is faster by a factor of 2 compared to the 
ST strategy. The performance in terms of speed for the strategies is illustrated in 
Fig. 5, which shows the performance profiles of the different strategies. From the 
figure, it can be observed that MT strategy gives a great advantage for the more 
challenging problems.

The strategies include a simple implementation of the ESH algorithm and the ESH algorithm combined 
with two new cut strengthening techniques. The sign “>” indicates that the time limit was exceeded 
before the search could be terminated. The fewest iterations and the fastest times are in bold for each 
problem. All of the instances in this table use a big-M formulation

Table 1  (continued)

Instance ESH ESH + ST ESH + MT

Iter. Time Iter. Time Iter. Time

stockcycle > 1205 > 96 h > 3901 > 96 h 2910 36.07 h

tls2 8 1.01 8 2.66 8 3.09

tls4 164 216.33 167 252.42 126 158.88

Geometric mean 94.08 102.03 63.25 87.07 38.56 44.62
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Fig. 5  Solution profiles for the ESH algorithm and the ESH algorithm with the cut strengthening tech-
niques. The graphs show the number of instances solved as a function of time. The test set has 43 
instances (clay*, flay*, p_ball*, slay*, sssd*, stockcycle*). An instance is considered solved when it 
reaches a relative gap of less than 0.1%
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As shown in Table  1, the cut strengthening is especially powerful for the clay 
and p_ball problems. These problems contain nonlinear disjunctions that are repre-
sented by the big-M formulations, giving weak continuous relaxations that can be 
efficiently strengthened by the cut strengthening technique. For the p_ball problems, 
the MT cut strengthening reduces the number of iterations by a factor of 11.7 on 
average. Without the cut strengthening the larger p_ball problems are practically 
intractable with the ESH algorithm, and the optimality gap remained large after 2 h.

As previously mentioned, the cut tightening comes at a computational cost of 
solving convex NLP subproblems. For example, problem p_ball_40b_5p_4d con-
tains nonlinear disjunctions of size 40, which results in 40 subproblems for the cut 
tightening per iteration. Solving these subproblems accumulates to about 35% of the 
total solution time. However, this is well compensated for by the great reduction in 
the number of iterations.

It is worth mentioning that the cut strengthening techniques do not necessarily 
result in computationally more demanding iterations. For example, the average itera-
tion time for slay10m is 10.6 seconds with the ESH strategy and less than 2 seconds 
with both the ST and MT strategies. There are two reasons behind the significantly 
faster iterations. First, the strengthened cuts can result in a tighter continuous relaxa-
tion, making the MILP relaxations easier to solve. But more importantly, the cut 
strengthening procedure can sometimes identify infeasible or non-optimal integer 
assignments during the solution procedure, see Sect. 3 for details. For slay10m, the 
cut strengthening is able to fix 53 of the binary variables to zero. Similarly, the cut 
strengthening eliminates 299 of the 432 binary variables in stockcycle. By further 
studying these problems, we found that the binary variables fixed by the cut tighten-
ing cannot trivially be removed, e.g., by performing LP-based bounds tightening. 
Some of the integer assignments immediately resulted in problem (NLP-i) to be 
infeasible in the cut tightening, and some became infeasible due to bounds on the 
objective and accumulation of strengthened cuts. The ability to identify the infea-
sible or non-optimal integer assignments can greatly reduce the complexity of the 
MINLP problems and comes as a desirable side effect of the cut tightening.

MINLPLib also contains a large number of problems called syn and rsyn (Türkay 
and Grossmann 1996; Sawaya 2006). These problems do have a disjunctive struc-
ture, although mainly involving linear constraints. These problems are all easy to 
solve, and on average they require less than 10 iterations and 3 seconds with the 
ESH algorithm. There are in total 24 rsyn and 24 syn problems with the big-M for-
mulation. For these problems, the cut strengthening did not provide any significant 
advantages. The average times and number of iterations for these two problem types 
are shown in Table 2.

For the rsyn and syn instances the cut tightening procedure has little effect on the 
cuts, and does not result in fewer iterations. In these problems the nonlinear con-
straints only contain three variables, and there is only a single nonlinear variable 
in each constraint. It is possible that these constraints are tight to begin with, which 
would explain why the strengthening does not have much effect for these specific 
problems.

The cut strengthening seems to be most efficient for problems that contain dis-
junctions with nonlinear constraints, e.g., clay and p_ball problems. Some aspects 
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of why the multi tightening strategy works particularly well for these problems are 
described in the next section. For problems with nonlinear disjunctions, the choice 
of which exclusive selection constraint to perform the strengthening on is also 
straight forward since binary variables will be present in the nonlinear constraints. 
The cut strengthening also performed well on the problems slay, sssd, and stockcy-

ckle, where there are only disjunctions with linear constraints.

6.1  Comparing strong problem formulations and cut strengthening

These results show that the strengthening procedure can give a great advantage for 
problems where disjunctions are represented by big-M constraints. To further ana-
lyze the cut strengthening procedure, we compare the cut strengthening procedure 
with applying the basic ESH algorithm on the same MINLP instances in a convex 
hull form, where all or some disjunctions are represented by the convex hull formu-
lation. For this test, we use all problems from the previous section that are available 
in both a big-M and convex hull form. The results are presented in Table 3. Here we 
only use the multi strengthening technique, since it results in stronger cuts than the 
single tightening at the same computational cost.

For nonlinear disjunctions represented by a convex hull formulation, the ESH 
algorithm can generate supporting hyperplanes to the convex hull of the disjunc-
tion. Therefore, applying the ESH algorithm to MINLP instances where nonlinear 
disjunctions are represented by the convex hull can result in significantly tighter cuts 
compared to cuts obtained from big-M constraints. This can be seen from the results 
in Table 3, which shows that the ESH algorithm requires fewer iterations for most of 
the problems in the convex hull form. The ESH algorithm is still faster on some of 
the problems in big-M form, which is most likely due to the smaller subproblems.

It is important to notice that the cut strengthening procedure will not necessarily 
result in similar cuts as applying the ESH algorithm to the convex hull formulation 
of the problem. This is well illustrated by problem (EX1), where the single tighten-
ing strategy does not result in a supporting hyperplane to the convex hull of the 
disjunction as illustrated in Fig. 2. The multi tightening strategy forms a support-
ing hyperplane to the convex hull of the disjunction, but it still behaves differently 
compared to a cut obtained by applying the ESH algorithm to the convex hull form 
of the problem. Figure 4 shows that the multi tightened cut not only forms a sup-
porting hyperplane to the convex hull of the disjunction, but for each feasible integer 
assignment it also forms a supporting hyperplane to the corresponding term of the 

Table 2  The table shows the average number of iterations and solution times (to a relative gap ≤ 0.1% ) 
for the rsyn and syn problems

Instance ESH ESH + ST ESH + MT

Avg. iter. Avg. time Avg. iter. Avg. time Avg. iter. Avg. time

rsyn 9.79 4.12 9.79 6.20 9.79 6.04

syn 8.95 0.73 8.95 1.47 8.95 1.43
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Table 3  The table shows the solution times in seconds and the number of iterations needed with the ESH 
algorithm to solve (to a relative gap ≤ 0.1% ) the MINLP instances in both the big-M and convex hull 
form. The table also shows the solution times and number of iterations with the ESH algorithm com-
bined with multi tightening strategy applied to the big-M formulation

The sign “>” indicates that the time limit was exceeded before the search could be terminated. The few-
est iterations and the fastest times are in bold for each problem

Instance ESH ESH ESH + MT

Big-M Convex hull Big-M

Iter. Time Iter. Time Iter. Time

clay0203(m/h) 48 12.83 46 9.52 22 6.47

clay0204(m/h) 21 4.70 17 6.44 17 3.27

clay0205(m/h) 37 14.41 21 28.36 21 7.01

clay0303(m/h) 81 34.28 63 10.07 20 3.66

clay0304(m/h) 121 90.27 94 30.60 30 11.39

clay0305(m/h) 53 34.08 41 47.00 21 8.41

flay02(m/h) 14 1.51 8 2.48 8 2.09

flay03(m/h) 28 3.14 28 8.32 28 6.31

flay04(m/h) 30 4.25 29 12.61 30 7.76

flay05(m/h) 52 53.51 51 250.15 52 62.19

flay06(m/h) 62 1879.98 > 42 > 7200 61 1511.69

p_ball_10b_5p_2d 246 59.45 49 11.23 31 21.56

p_ball_15b_5p_2d 389 144.72 80 26.06 51 73.12

p_ball_20b_5p_2d 586 299.42 95 28.61 34 68.96

p_ball_30b_5p_2d 1026 465.31 167 84.97 48 303.26

p_ball_30b_7p_2d > 1039 > 7200 165 3981.03 65 1008.56

p_ball_10b_5p_3d 491 543.35 69 48.35 60 48.04

p_ball_10b_7p_3d > 433 > 7200 73 700.48 101 593.01

p_ball_20b_5p_3d > 979 > 7200 157 1073.71 97 331.40

p_ball_30b_5p_3d > 1258 > 7200 194 1921.30 81 509.99

p_ball_40b_5p_3d > 1877 > 7200 > 269 > 7200 112 1859.94

p_ball_10b_5p_4d 879 2496.35 103 212.49 115 122.82

p_ball_40b_5p_4d > 2134 > 7200 > 210 > 7200 178 4311.56

slay04(m/h) 55 2.79 57 10.39 27 5.15

slay05(m/h) 78 4.90 78 17.30 45 7.73

slay06(m/h) 88 8.08 88 30.89 44 11.05

slay07(m/h) 150 25.40 150 108.41 94 18.28

slay08(m/h) 120 33.99 115 294.99 89 24.61

slay09(m/h) 130 68.26 130 1221.01  104 47.46

slay10(m/h) 420 4432.49 > 62 > 7200 109 219.22

Geometric mean 173.47 126.71 72.21 115.60 47.48 47.17
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disjunction. For problem (EX1), a single multi tightened cut effectively acts as a 
supporting hyperplane to three different nonlinear constraints for each feasible inte-
ger assignments. The multi tightened cuts behave similarly for the p_ball instances, 
where each disjunction corresponds to assigning a point to one of the balls. For a 
feasible integer assignment, a cut obtained by multi tightening will then act as a sup-
porting hyperplane to each ball for one of the points. For example, for the problem 
p_ball_40b_5p_3d a multi tightened cut effectively behaves as a tight cut for 40 dif-
ferent nonlinear constraints. This behaviour can make the multi tightened cuts espe-
cially powerful for problems with nonlinear disjunctions, which is also shown by the 
results in Table 3.

Only the p_ball and clay instances contain nonlinear disjunctions and for most 
of these problems the multi tightening strategy significantly reduces both solution 
times and number of iterations. For problems with only linear disjunctions, the multi 
tightening strategy does not necessarily give the same advantage. However, the 
multi tightening strategy also performed well on the test problems with only linear 
disjunctions. On average the multi tightening strategy reduces the number of itera-
tions by a factor of 7.2 compared to the ESH algorithm with the big-M formulation 
and by a factor of 1.5 compared to ESH algorithm with the convex hull formulation 
of the problems. In terms of total solution time, the multi tightening strategy reduces 
the total solution time by more than a factor of 3 on average compared to the other 
two approaches.

7  Conclusions

In this paper, we have presented a new framework for strengthening cuts to obtain 
tighter outer approximations for convex MINLP. The cut strengthening is based on 
analyzing disjunctive structures in the MINLP problem, and either strengthen the 
cut for the entire disjunction or separately for each term of the disjunction. We have 
proven that the strengthening results in valid cuts that can dominate the original cut. 
The numerical results show that the strengthening can greatly reduce the number of 
iterations and time needed to solve convex MINLP problems. We have focused on 
strengthening cuts derived from the ESH algorithm, but the same techniques can 
just as well be used to strengthen cuts obtained by OA, ECP or generalized Benders 
decomposition.
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Appendix: New nonlinear disjunctive test problems

To further test the cut strengthening for problems with different sized disjunctions con-
taining nonlinearities of varying difficulty, we have generated 12 new test problems. 
The underlying optimization task is simple, select n-points in m-dimensional balls, such 
that the �

1
-distance between all points is minimized. Only one point can be assigned to 

each ball, and in total there are l balls with radius one. The problem has a clear disjunc-
tive programming structure, where the disjunctions arise from the assignment of each 
point to one of the balls. In total we get n disjunctions of size l, i.e., one disjunction per 
point and one disjunctive term per ball.

Even if this optimization task can be represented as a binary quadratic problem, it is 
a challenging problem for OA-type algorithms. Without any reformulations, OA-type 
algorithms will require a large number of iterations due to the difficulties of accurately 
approximating an n-dimensional ball with hyperplanes (Hijazi et  al. 2013). Higher-
dimensional balls render the outer approximation task more difficult, and the number of 
nonlinear constraints is given by the number of balls times the number of points. There 
is a clear combinatorial structure to the problem, and the complexity increases with the 
number of points and balls as the number of possible discrete configurations drastically 
increases. The seemingly simple optimization problem is, thus, challenging both due to 
the combinatorial nature and the nonlinearity.

Before presenting the MINLP formulation, we briefly describe the notation and 
some details of the problem formulation. Here, �i

∈ ℝ
m denotes the center of ball i 

and ci

1
 refers to the first coordinate of the center. Similarly, �i

∈ ℝ
m refers to point i and 

pi
1
 is the first coordinate of the point. To simplify the notation, we introduce the sets 

D = {1, 2,… , m} , P = {1, 2,… , n} , P
i = {i + 1, i + 2,… , n} , and B = {1, 2,… , l} . 

The �
1
-distance can be represented by linear constraints by introducing auxiliary vari-

ables �i,j
∈ ℝ

m . As before, di,j

k
 refers to the k-th component of the vector �i,j . To act as 

the absolute value, we use the following constraints

and the distance between the points i and j is now given by 
∑m

k=1
d

i,j

k
 . For the test 

problems, we randomly chose each coordinate of the balls’ centers between 0 and 
10, which also limits each variable di,j

k
 to the interval [0, 10]. We use a binary vari-

able b
i,r

 for selecting if point i is assigned to ball r. There are several identical solu-
tions to these optimization problems due to symmetries, e.g., you can switch places 
of the first and second point to obtain another equally good solution. To eliminate 
some of the symmetrical solutions we include an ordering of the points along the 
first coordinate. The ordering is enforced by including the constraints that the first 
point must be closer to the origin along the first coordinate than the second point, 

d
i,j

k
≥ pi

k
− p

j

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi

,

d
i,j

k
≥ p

j

k
− pi

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi

,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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and similarly for the following points. Using the big-M formulation the problem can 
be written as

where M
r
 are sufficiently large constants. For these problems the smallest valid M

r
 is 

simply given by

Here, M
r
 are based on the largest squared Euclidean distance between the center of 

a ball and the point furthest away in any other ball. This gives the smallest valid M 
constants, resulting in a tight Big-M formulation. It could be possible to obtain a 
stronger formulation, e.g., by eliminating furhter symmetries or by the techniques 
presented by Trespalacios and Grossmann (2015). However, the goal here is not to 
derive an optimal problem formulation, but simply to generate a few test problems 
of different size and difficulty.

We have generated 12 random test instances, where the centers of the unit balls 
are chosen randomly. The test problems are of different size, and the main attributes 
are summarized in Table (4). The problems range in size from 50–210 binary vari-
ables and 30–85 continuous variables.

It is also possible to represent the assignment of points to circles with the convex 
hull formulation to obtain a tighter continuous relaxation. For each point i ∈ P , we 
need to make l copies of the variables �i , and we get the new variables ��

�

r
∈ ℝ

m . 
It would be possible to represent the convex hull by second-order cones, but to fit 
within the framework of this paper we use the formulation presented by Sawaya and 
Grossmann (2007). The problem can then be written as

(21)

min

n
∑

i=1

n
∑

j=i+1

m
∑

k=1

d
i,j

k

d
i,j

k
≥ pi

k
− p

j

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

d
i,j

k
≥ p

j

k
− pi

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

m
∑

k=1

�

pi
k
− cr

k

�2
≤ 1 + Mr(1 − bi,r) ∀i ∈ P, ∀r ∈ B,

l
∑

r=1

bi,r = 1 ∀i ∈ P,

n
∑

i=1

bi,r ≤ 1 ∀r ∈ B,

pi
1
≤ pi+1

1
∀i ∈ P ⧵ n,

bi,r ∈ {0, 1} ∀i ∈ P, ∀r ∈ B,

�i,j ∈ [0, 10]m ∀i ∈ P, ∀j ∈ Pi,

�i ∈ [0, 10]m ∀i ∈ P,

(22)M
r
= max

i∈B

{(
‖‖‖
�

r
− �

i‖‖‖2

+ 1

)2

− 1

}

.
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 In the numerical tests we use � = 10
−9 which was stable for the subsolvers. The 

main properties of the test problems with the convex hull formulation are sum-
marized in Table 5. The problems range in size from 50–210 binary variables and 
130–860 continuous variables.

(23)

min

n∑
i=1

n∑
j=i+1

m∑
k=1

d
i,j

k

d
i,j

k
≥ pi

k
− p

j

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

d
i,j

k
≥ p

j

k
− pi

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

((1 − �)bi,r + �)

�����
�
��

r

(1−�)bi,r+�
− cr

����

2

2

− 1

�

− �

�
‖cr‖2

2
− 1

�
(1 − bi,r) ≤ 0 ∀i ∈ P, ∀r ∈ B,

l∑
r=1

bi,r = 1 ∀i ∈ P,

n∑
i=1

bi,r ≤ 1 ∀r ∈ B,

pi
1
≤ pi+1

1
∀i ∈ P ⧵ n,

l∑
r=1

�
��

r = �i ∀i ∈ P

� ≤ �
��

r ≤ �� ⋅ bi,r ∀i ∈ P,∀r ∈ B,

bi,r ∈ {0, 1} ∀i ∈ P, ∀r ∈ B,

�i,j ∈ [0, 10]m ∀i ∈ P, ∀j ∈ Pi,

�i ∈ [0, 10]m ∀i ∈ P,

�
��

r ∈ [0, 10]m ∀i ∈ P, ∀r ∈ B.

Table 4  The table shows the main properties of the test problems with the Big-M formulation

For each problem, the table lists the number of binary variables (Bin. vars.), number of continuous vari-
ables (Cont. vars.), number of nonlinear constraints (Nl. cons.), number of balls, number of points, and 
the dimensionality of the unit balls (B. dim.)

Name Bin. vars. Cont. vars. Nl. cons. Balls Points B. dim.

p_ball_10b_5p_2d 50 30 50 10 5 2

p_ball_15b_5p_2d 75 30 75 15 5 2

p_ball_20b_5p_2d 100 30 100 20 5 2

p_ball_30b_5p_2d 150 30 150 30 5 2

p_ball_30b_7p_2d 210 56 210 30 7 2

p_ball_10b_5p_3d 50 45 50 10 5 3

p_ball_10b_7p_3d 70 85 70 10 7 3

p_ball_20b_5p_3d 100 45 100 20 5 3

p_ball_30b_5p_3d 150 45 150 30 5 3

p_ball_40b_5p_3d 200 45 200 40 5 3

p_ball_10b_5p_4d 50 60 50 10 5 4

p_ball_40b_5p_4d 200 60 200 40 5 4
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Numerical results are presented in Sect. 6, which show that the test problems are 
challenging for the ESH algorithm with both problem formulations. Finally, all the 
test problems can be downloaded from https ://githu b.com/jkron qvi/point s_in_circl 
es.
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