
Vol.:(0123456789)

Optimization and Engineering (2021) 22:1315–1345

https://doi.org/10.1007/s11081-020-09551-6

1 3

RESEARCH ARTICLE

A disjunctive cut strengthening technique for convex
MINLP

Jan Kronqvist1 · Ruth Misener1

Received: 19 February 2020 / Revised: 6 August 2020 / Accepted: 11 August 2020 /

Published online: 20 August 2020

© The Author(s) 2020

Abstract

Generating polyhedral outer approximations and solving mixed-integer linear
relaxations remains one of the main approaches for solving convex mixed-integer
nonlinear programming (MINLP) problems. There are several algorithms based
on this concept, and the efficiency is greatly affected by the tightness of the outer
approximation. In this paper, we present a new framework for strengthening cut-
ting planes of nonlinear convex constraints, to obtain tighter outer approximations.
The strengthened cuts can give a tighter continuous relaxation and an overall tighter
representation of the nonlinear constraints. The cuts are strengthened by analyzing
disjunctive structures in the MINLP problem, and we present two types of strength-
ened cuts. The first type of cut is obtained by reducing the right-hand side value of
the original cut, such that it forms the tightest generally valid inequality for a chosen
disjunction. The second type of cut effectively uses individual right-hand side values
for each term of the disjunction. We prove that both types of cuts are valid and that
the second type of cut can dominate both the first type and the original cut. We use
the cut strengthening in conjunction with the extended supporting hyperplane algo-
rithm, and numerical results show that the strengthening can significantly reduce
both the number of iterations and the time needed to solve convex MINLP problems.

Keywords Disjunctive cuts · Convex MINLP · Cut strengthening · Extended
supporting hyperplane algorithm

 * Jan Kronqvist
 j.kronqvist@imperial.ac.uk

 Ruth Misener
 r.misener@imperial.ac.uk

1 Department of Computing, Imperial College London, Huxley Building, 180 Queen′s Gate,
London SW7 2RH, United Kingdom

http://orcid.org/0000-0003-0299-5745
http://orcid.org/0000-0001-5612-5417
http://crossmark.crossref.org/dialog/?doi=10.1007/s11081-020-09551-6&domain=pdf

1316 J. Kronqvist, R. Misener

1 3

1 Introduction

Mixed-integer nonlinear optimization (MINLP) arises in many applications
across engineering, manufacturing, and the natural sciences (Boukouvala et al.
2016). An important MINLP subclass features exclusively convex nonlinearities,
i.e. the nonconvexity of the MINLP comes only from the discrete variables (Kro-
nqvist et al. 2019). Convex MINLP is highly relevant in diverse fields includ-
ing process synthesis (Durán-Peña 1984; Duran and Grossmann 1986a), portfolio
optimization (Bienstock 1996; Frangioni and Gentile 2006; Bonami and Lejeune
2009), and constrained layout (Castillo et al. 2005; Sawaya and Grossmann
2007). For MINLP with nonconvex nonlinearities, e.g. heat integration of chemi-
cal processes (Duran and Grossmann 1986c) and pooling problems (Misener and
Floudas 2009), optimization algorithms assuming convex nonlinearities may gen-
erate excellent primal heuristics to the original optimization problem (Duran and
Grossmann 1986b; Bonami et al. 2008; D’Ambrosio et al. 2012).

Convex MINLP represents a highly successful subclass of optimization prob-
lems, e.g. algorithm developers often develop convex approximations of noncon-
vex engineering relationships (Geiler et al. 2015) or decompose their optimiza-
tion problems into a series of convex MINLP problems (Lundell and Westerlund
2018; Nowak et al. 2018). A wide range of efficient solver software is developed
specifically for convex MINLP (Grossmann et al. 2002; Bonami et al. 2008; Las-
tusilta 2011; Bernal et al. 2020; Lundell et al. 2020; Mahajan et al. 2017; Kröger
et al. 2018; Melo et al. 2020). The success of convex MINLP derives from the
seminal work of Duran and Grossmann (1986b) in developing the outer approxi-
mation (OA) algorithm. The work by Duran and Grossmann (1986b) became piv-
otal in solving convex MINLP problems because of the algorithm’s strong con-
vergence properties for a wide range of problem classes (Quesada and Grossmann
1992; Fletcher and Leyffer 1994) and its speed in solving practical problems
(Bonami et al. 2008). In a recent benchmark by Kronqvist et al. (2019) it was
shown that several of the most efficient convex MINLP solvers are based on the
OA algorithm.

The concept of using an outer approximation of the nonlinear constraints for
MINLP problems, developed by (Duran and Grossmann 1986b; Geoffrion 1972),
forms the core of several other convex MINLP algorithms, e.g., extended cut-
ting plane (ECP) (Westerlund and Petterson 1995; Westerlund and Pörn 2002),
feasibility pump (Bonami and Gonçalves 2012), extended supporting hyper-
plane (ESH) (Kronqvist et al. 2016), and the center-cut algorithm (Kronqvist
et al. 2018a). Further developments of the OA algorithm, incorporating quad-
ratic approximations and regularization, has been presented by Su et al. (2018)
and Kronqvist et al. (2018b). These algorithms could commonly be referred to as
outer approximation type algorithms, although this classification is seldom used.

This paper focuses on deriving strong cutting planes for convex MINLP prob-
lems, resulting in tight outer approximations, by exploiting disjunctive struc-
tures in the problem. We use cuts obtained by the ESH algorithm as a basis, and
we develop a framework for strengthening the cuts by considering the integer

1317

1 3

A disjunctive cut strengthening technique for convex MINLP

restrictions. The cut strengthening technique is not unique to the ESH algorithm
and could also be used with an OA, ECP or generalized Benders decomposition
(Geoffrion 1972) framework. The main motivation behind using the ESH algo-
rithm is that the algorithm tends to generate a single strong cut per iteration. The
ESH cuts are actually as tight as possible with regards to the nonlinear constraints
(Kronqvist et al. 2016), but they do not in general form supporting hyperplanes
to the convex hull of all integer feasible solutions. Here we develop a framework
for strengthening the ESH cuts, which results in two new types of cuts that are
always as tight or tighter than the ESH cut. The new cuts can give both a tighter
representation of the nonlinear constraints as well as a tighter continuous relaxa-
tion. By obtaining a tighter outer approximation of the nonlinear constraints, we
can reduce both the number of iterations and the time needed to solve problems.

Cutting planes that strengthen the continuous relaxation are nowadays an essen-
tial part of an efficient mixed-integer linear programming (MILP) solver (Achter-
berg and Wunderling 2013; Linderoth and Lodi 2011), and there is an active inter-
est in developing similar cuts for convex MINLP. Disjunctive cutting planes for
convex MINLP originate from the fundamental contributions of Ceria and Soares
(1999) and Stubbs and Mehrotra (1999), and further developments are presented in
(Trespalacios and Grossmann 2016). Lift-and-project cuts were first introduced in
MILP by Balas et al. (1993), and this technique has later been adopted within con-
vex MINLP. By linearizing the constraints, a polyhedral outer approximation can
be used to derive lift-and-project cuts through a cut generating LP (Zhu and Kuno
2006; Bonami 2011; Kılınç et al. 2017; Serra 2020). An alternative approach is pre-
sented by Lodi et al. (2019), where they obtain cuts directly by solving cut generat-
ing conic programs. Other types of cuts used within MINLP includes different types
of mixed-integer rounding cuts (Gomory 1960; Atamtürk and Narayanan 2010),
reformulation linearization technique (RLT) based cuts (Sherali and Adams 2013;
Misener et al. 2015), and split cuts (Modaresi et al. 2015).

The cut strengthening techniques presented here can be viewed as an alternative
approach to the previously mentioned lift-and-project and disjunctive cuts. However,
our cut strengthening procedure is more focused on obtaining a tight MILP relaxa-
tion, than getting the best improvement for the continuous relaxation. The cuts are
generated by selecting a disjunction of the MINLP problem and strengthening an
ESH cut over the convex hull of the selected disjunction. Trespalacios and Gross-
mann (2016) use a somewhat similar idea, where they derive a supporting hyper-
plane for a nonlinear disjunction by solving a separation problem. Instead of solving
a separation problem, we strengthen the ESH cut by deriving the smallest possible
right-hand side values to the ESH cut that are still valid for each term of the disjunc-
tion. This enables us to effectively use individual right-hand side values for each
term of the disjunction, making the cut tight for each disjunct. A similar approach
is used by Trespalacios and Grossmann (2015) to construct tighter big-M reformu-
lations of generalized disjunctive programs. We determine right-hand side values
of the cuts by solving independent convex NLP problems in the original variable
space and do not rely on the convex hull formulation of the disjunctions. By doing
so, numerical difficulties associated with the perspective function are avoided and
instead of solving a larger (lifted) problem, we solve several smaller independent

1318 J. Kronqvist, R. Misener

1 3

(parallelizable) problems. This approach also enables us to identify some infeasible
integer assignments and to handle numerical tolerances in a straightforward fashion.
To the authors’ best knowledge, this is a novel cut strengthening technique for con-
vex MINLP.

The paper is organized as follows. Section 2 gives a short description of the ESH
algorithm, along with the necessary assumptions on the MINLP problems. Section 3
presents the theory and techniques used for the cut strengthening, and a cut strength-
ening algorithm is presented in Sect. 4. Section 5 presents an algorithm for solving
convex MINLP problems that combines the ESH algorithm with the cut strengthen-
ing techniques. Finally, some numerical results are presented in Sect. 6.

2 Background

First, we define the class of problems considered within the paper and state the
assumptions needed to guarantee convergence of the ESH algorithm. The disjunc-
tive structure that the cut strengthening technique builds upon is also presented in
this section. The second part of this section briefly describes the ESH algorithm,
which is later used to generate cuts and forms the basis of the convex MINLP algo-
rithm in Sect. 5.

2.1 Problem statement

The most commonly used, and most practical, definition of a convex MINLP prob-
lem, is that all of the nonlinear constraints and objective are given by convex func-
tions (Gupta and Ravindran 1985; Quesada and Grossmann 1992; Westerlund and
Petterson 1995; Bonami et al. 2012). Throughout the paper, we use this definition
of convexity. Without loss of generality, we only consider convex MINLP problems
with the following structure

where gj ∶ ℝ
n
→ ℝ are convex continuously differentiable functions. Here, I

ℤ
 is

a set containing the indices of all the integer variables. To clarify the notation, x
i

referrers to the i-th element of the variable vector � . The feasible set defined by the
nonlinear constraints will be referred to as the nonlinear feasible set, and it is given
by

(MINLP)

min
�

�⊤�

s.t. �� ≤ �,

�� = �,

gj(�) ≤ 0, ∀j = 1, 2,… , l,

� ∈ ℝ
n,

xi ∈ ℤ, ∀i ∈ I
ℤ

,

(1)N =
{
� ∈ ℝ

n | gj(�) ≤ 0 ∀j = 1,… l
}

.

1319

1 3

A disjunctive cut strengthening technique for convex MINLP

To simplify the notation, we will also introduce a set L defined by the linear con-
straints and a set Y given by the variable domains

To ensure convergence of the ESH algorithm, we need to make the following
assumptions of problem (MINLP).

Assumption 1 The linear constraints form a compact set.

Assumption 2 The continuous relaxation of problem (MINLP) satisfies Slater’s con-
dition (Slater 1950).

For the cut strengthening procedure, we make the following assumption on the
problem structure.

Assumption 3 The MINLP problem contains at least one exclusive selection con-
straint of binary variables, i.e., ∃ I

D
⊂ I

ℤ
∶ x

i
∈ {0, 1} ∀i ∈ I

D
 , and either one of

the constraints

appears in the problem.

For the sake of simplicity and clarity, we will throughout the paper only focus on
the exclusive selection constraint (2). The second type of exclusive selection con-
straint (3), can trivially be converted into the first type by introducing a slack binary
variable and can be handled by the same approach.

The exclusive selection constraints arise, for example, from the representation
of disjunctive constraints through the so-called big-M or convex hull formulation
(Balas 1979; Raman and Grossmann 1994; Trespalacios and Grossmann 2014).
Note that we do not restrict all of the integer variables to be binary variables, nor do
we assume the problems to have disjunctive constraints of a specific type. The cut
strengthening simply requires that the problem contains at least one exclusive selec-
tion constraint, which is used for strengthening the cut. However, the cut strengthen-
ing is most powerful in case the problem contains the big-M constraints, resulting
in a weak continuous relaxation. Therefore, we focus on problems containing big-M
constraints.

For the cut strengthening to be computationally efficient, the number of elements in
I
D
 should be less than the elements in I

ℤ
 . Throughout the paper, we also assume that

the main challenges in solving problem (MINLP) arise from the integer restrictions.

L = {� ∈ ℝ
n | �� ≤ �, �� = �},

Y =
{
� ∈ ℝ

n | x
i
∈ ℤ ∀i ∈ I

ℤ

}
.

(2)
∑

i∈I
d

x
i
= 1,

(3)
∑

i∈I
d

x
i
≤ 1,

1320 J. Kronqvist, R. Misener

1 3

Consequently, we assume that a continuous relaxation of the problem is significantly
easier to solve than the MILP relaxations used by OA, ECP, and ESH. This is often the
case for convex MINLP problems which is, for example, shown by the numerical result
in Muts et al. (2020) and Su et al. (2015).

2.2 The extended supporting hyperplane algorithm

The ESH algorithm was presented by Kronqvist et al. (2016) as a method for solving
convex MINLP problems, and it builds upon ideas presented by Veinott Jr (1967).
It was proven by Eronen et al. (2017) that the ESH algorithm is directly applicable
to nonsmooth MINLP problems with constraints given by pseudoconvex functions.
Properties of the ESH algorithm have also been further analyzed by Serrano et al.
(2019).

The ESH algorithm constructs a tight polyhedral outer approximation of the non-
linear feasible set N, by generating supporting hyperplanes to the set. The polyhedral
outer approximation at iteration k is given by

where �̄i are points on the boundary of N and A
i
 contains the indices of all constrains

active at �̄i . From convexity it directly follows that N ⊆ N̂
k
 , and N̂

k
 is commonly

referred to as an outer approximation of N.
A new trial solution �k+1 is obtained by solving the following MILP relaxation

A lower bound on the optimal objective value of problem (MINLP) is given by
�
⊤
�

k+1 , where �k+1 is an optimal solution to the MILP relaxation.
The trial solutions obtained by solving problem (MILP-r) will all be outside of

the nonlinear feasible set N, before the very last iteration. Therefore, linearizing the
nonlinear constraints at the trial solutions �k would, in general, not form support-
ing hyperplanes to N and would result in weaker cuts. To obtain supporting hyper-
planes, ESH performs an approximative projection of the trial solution �k onto
N ∩ L . A point in the interior of N ∩ L is needed for the projection, and such a point
is obtained by solving the convex continuous problem

For the approximative projection of �k , we define the one-dimensional function

(4)N̂k =

{

∇gj

(

�̄
i
)⊤(

� − �̄
i
)

≤ 0 ∀i = 1, 2… k, j ∈ Ai

}

,

(MILP-r)
�

k+1
∈ arg min

�

�
⊤
�

s.t. � ∈ L ∩ N̂
k
∩ Y .

(NLP-IP)

�int,� ∈ arg min
�,�

�

s.t. gj(�) ≤ �, ∀j = 1, 2,… , l

� ∈ L,

� ∈ ℝ.

(5)F(�) = max
j

{

gj

(

��int + (1 − �)�k
)}

,

1321

1 3

A disjunctive cut strengthening technique for convex MINLP

for � ∈ [0, 1] . Using a simple root-search algorithm we can obtain a �k such that
F
(

�
k
)

= 0 . The approximative projection of �k onto N ∩ L is then given by

Now, if the active constraints are linearized at �̄k we obtain the following cuts

which forms supporting hyperplanes to N ∩ L . The supporting hyperplanes are then
added to the current polyhedral outer approximation to form N̂

k+1
 , which ensures

that �̄k ∉ N̂
k+1

.
The ESH algorithm repeats the procedure of solving (MILP-r) and improving the

outer approximation by generating supporting hyperplanes. To improve the compu-
tational performance, the algorithm starts by further relaxing (MILP-r) and solving
LP relaxations to quickly generate an outer approximation. For more details and
computational enhancements on the ESH algorithm see Lundell et al. (2018).

The cuts generated by the ESH algorithm are as tight as possible with regards
to N ∩ L . However, there is no guarantee that the algorithm generates supporting
hyperplanes to the convex hull of N ∩ L ∩ Y . Therefore, it can be possible to further
strengthen the cuts by considering the integrality restrictions. To illustrate the pos-
sible strengthening of the cuts, consider the following example

The example contains the disjunctive constraint that the (x1, x2)-variables must be
within one of three circles, which is represented by the big-M formulation. The
value 29.944 is, in this case, the tightest common value for the big-M coefficients. A
stronger problem formulation could simply be obtained by using individual M val-
ues for each constraint, which can easily be determined as described in the Appen-
dix. We only use the weaker formulation in order to better highlight differences
between the cuts. Figure 1 shows the feasible set of problem (EX1) along with the
continuously relaxed feasible set projected down onto the (x1, x2)-space.

In the first iteration, the ESH algorithm will generate the following cut

which forms a supporting hyperplane to N ∩ L but not a supporting hyperplane to
convex hull of N ∩ L ∩ Y . From Fig. 1, it is clear that the cut given by Eq. (8) is not
as tight as possible when considering the integer properties. In the next section, we
present a technique to further tighten the cut by utilizing the disjunctive structures of
the MINLP problem.

(6)�̄
k = �

k
�

int
+ (1 − �

k)�k
.

(7)∇gj

(

�̄
k
)⊤(

� − �̄
k
)

≤ 0 ∀j ∈ Ai,

(EX1)

min
�

− x1 − x2

s.t. (x1 − 1)2 + (x2 − 2)2 ≤ 1 + 29.944(1 − x3),

(x1 − 2)2 + (x2 − 5)2 ≤ 1 + 29.944(1 − x4),

(x1 − 4)2 + (x2 − 1)2 ≤ 1 + 29.944(1 − x5),

x3 + x4 + x5 = 1,

0 ≤ x1 ≤ 8, 0 ≤ x2 ≤ 8,

x1, x2 ∈ ℝ, x3, x4, x5 ∈ {0, 1}.

(8)5.920x1 + 4.536x2 + 29.944x3 ≤ 59.249,

1322 J. Kronqvist, R. Misener

1 3

3 Cut strengthening

From the example in the previous section, it can be observed that the ESH cut can be
tightened by simply reducing the right-hand side and still remain valid for the inte-
ger feasible set, i.e., N ∩ L ∩ Y . To reduce the right-hand side, we will consider an
exclusive selection constraint, see assumption 3, and determine the smallest right-
hand side values for each selection. This enables us to strengthen the cut by reducing
the right-hand side alone or to further strengthen the cut by assigning individual
right-hand side values for each assignment of the exclusive selection constraint.

First, we select an index set I
D

(

I
D
⊂ I

ℤ

)

 that contains the indices of all the binary
variables included in an exclusive selection constraint of the MINLP problem. By
using the ESH algorithm we obtain the cut

which forms a tight valid inequality for N ∩ L . To tighten cut (9), consider the fol-
lowing disjunctive programming (DP) problem

This DP problem can be solved as a convex NLP through the convex hull formula-
tion (Ceria and Soares 1999; Stubbs and Mehrotra 1999; Lee and Grossmann 2000).
Formulating problem (10) as a convex NLP through a convex hull formulation can
cause numerical difficulties, such as division by zero and non-smoothness (Sawaya
and Grossmann 2007), and the problem will contain |I

D
| copies of the variables.

Instead of solving (10) as a single large problem we solve it as smaller individual

(9)�⊤
� ≤ �,

(10)

z∗ = max
�

�
⊤
�

s.t.
⋁

i∈ID

⎡
⎢⎢⎣

� ∈ N ∩ L

xi = 1

xj = 0 ∀j ∈ ID ⧵ i

⎤
⎥⎥⎦

.

Fig. 1 The dark circles show the feasible set of problem (EX1) projected onto the (x1, x2)-space. The
light gray area in the left figure shows the feasible set of the continuous relaxation. The right figure also
shows the projection of the outer approximation obtained by the first iteration of the ESH algorithm.
Note that, a supporting hyperplane to N ∩ L does not necessarily form a supporting hyperplane in a pro-
jected space, as shown in the figure

1323

1 3

A disjunctive cut strengthening technique for convex MINLP

convex problems, by considering the following alternative formulation of problem
(10)

By solving each inner problem of (11) separately we can determine z∗ as the largest
b

i
 . This approach requires |I

D
| independent convex NLP problems to be solved, but

computationally it can be more efficient than solving a single problem with |I
D
| cop-

ies of the variables. Using z∗ as the new right-hand side value of cut (9), we form the
tightened cut

Proposition 1 The cut given by Eq. (12) forms a valid inequality for N ∩ L ∩ Y , and

is at least as tight as the cut given by Eq. (9).

Proof From optimality of problem (10) it directly follows that cut (12) forms a sup-
porting hyperplane to the feasible set of problem (10), which contains N ∩ L ∩ Y .
Since the feasible set of problem (10) is contained within N ∩ L , it follows that
z
∗ ≤ � . ◻

Solving (10) as smaller individual convex problems also enables us to further
tighten the cut. To further strengthen the cut, we considering each term of the dis-
junction in problem (10) and form a convex NLP problem for each i ∈ I

D

Note that each problem (NLP-i) is a subproblem of problem (11). To simplify the
derivation and analysis, we first assume that all i ∈ I

D
 result in a feasible problem

(NLP-i). Solving problem (NLP-i) for each i ∈ I
D
 gives the values b

i
 that can be

used as individual right-hand side values for each integer assignment of the exclu-
sive selection constraint (2). A new strengthened cut is then given by

and the properties of the new cut are presented in the following two theorems.

Theorem 1 The cut given by Eq. (13) forms a valid inequality for N ∩ L ∩ Y .

(11)

z∗ = max
i∈ID

bi = max
�

�
⊤
�

s.t. � ∈ N ∩ L,

xi = 1,

xj = 0, ∀j ∈ ID ⧵ i.

(12)�
⊤
� ≤ z

∗
.

(NLP-i)

bi = max
�

�
⊤
�

s.t. � ∈ N ∩ L,

xi = 1,

xj = 0, ∀j ∈ ID ⧵ i.

(13)�
⊤
� ≤

∑

i∈I
D

b
i
x

i
,

1324 J. Kronqvist, R. Misener

1 3

Proof The theorem is easily proven by contradiction. First, assume ∃ �̄ ∈ N ∩ L ∩ Y ∶

Due to the exclusive selection constraint, one and only one of the binary variables
x

i∈I
D

 can be nonzero. Let j be the index of the nonzero binary variable, and the strict
inequality (14) can now be written as

By assumption, �̄ must satisfy all constraints of problem (NLP-i). This implies that
bj cannot be an optimal solution to problem (NLP-i), and this leads to a contradic-
tion. ◻

Before analyzing the tightness of the cuts, we first describe our definition of
a tighter cut. Here we consider cut (13) to be tighter than cut (12) in the sense
that any � satisfying Eq. (13) will satisfy Eq. (12), but not vice versa. In integer
programming, this tightness relation is commonly referred to as cut (13) strictly
dominating cut (12), e.g., see Balas and Margot (2013).

Theorem 2 The cut given by Eq. (13) is always as tight or tighter than the cut given

Eq. (12).

Proof Since z
∗ is chosen as the maximum of �⊤

� over all integer assignments
of the exclusive selection constraint intersected with N ∩ L , it follows that
z∗ = maxi∈ID

{bi} . Therefore, each b
i
 can be split into two parts bi = z∗ − �i , where

each �
i
≥ 0 . The cut given by Eq. (13) can now be written as

proving that the cut is always as tight as cut (12). Furthermore, if a single �
i
> 0 ,

then the cut given by (13) will strictly dominate cut (12). ◻

Earlier we assumed that all i ∈ I
D

 result in a feasible problem (NLP-i), which
is not a necessary assumption for the cut strengthening. Finding such infeasible
integer assignments enables us to remove the corresponding binary variable, as
further described in the following proposition.

Proposition 2 If i ∈ I
D
 result in an infeasible problem (NLP-i), then the binary vari-

able x
i
 can be eliminated by permanently fixing the variable to zero.

Proof In problem (NLP-i) all variables, except those included in the exclusive selec-
tion constraint, are relaxed to continuous variables and they are only restricted by
the original constraints. Variable x

i
 is fixed to one, which automatically fixes the

other variables in the exclusive selection constraint to zero. Therefore, the only case

(14)�
⊤
�̄ >

∑

i∈I
D

b
i
x

i
.

(15)�
⊤
�̄ > bj.

(16)�
⊤
� ≤ z

∗
−

∑

i∈ID

�ixi,

1325

1 3

A disjunctive cut strengthening technique for convex MINLP

where problem (NLP-i) can be infeasible is when x
i
= 1 is an infeasible partial inte-

ger assignment to the MINLP problem. ◻

To illustrate the difference between the two cuts, we again consider problem
(EX1). By applying the cut strengthening technique to the cut given by the ESH
algorithm, we can generate the following two cuts

The outer approximations obtained given by the two different cuts are shown in
Fig. 2. The figure shows a clear advantage of the second cut, resulting in a signifi-
cantly tighter linear relaxation of the MINLP problem. However, comparing Figs. 1
and 2 show that both cuts are significantly stronger than the standard ESH cut.

In an outer approximation type algorithm, it is not only important to obtain a
tight continuous relaxation, but also to obtain a tight MILP relaxation, i.e., a tight
linear relaxation for given integer assignments. The two are obviously related, but
it is possible to have a tight MILP relaxation with a weak continuous relaxation.
To further illustrate the differences between the two types of cuts, we analyze
how the feasible region of the cuts to problem (EX1) varies with the feasible inte-
ger assignments. Figure 3 shows the feasible region of the cut given by Eq. (17)
for each feasible integer assignment. The figure shows that cut (17) is tight for
one of the feasible integer assignments, but not as tight as possible for the other
two.

Figure 4 shows the cut given by Eq. (18) forms a supporting hyperplane to the
feasible set of each term of the disjunction in problem (EX1), i.e., for each feasi-
ble integer assignment the cut is as tight as possible. The example highlights the
fact that the individually tightened cuts, i.e., cuts formed by Eq. (13), can give

(17)5.920x1 + 4.536x2 + 29.944x3 ≤ 52.029,

(18)5.920x
1
+ 4.536x

2
≤ (52.029 − 29.944)x

3
+ 41.192x

4
+ 35.451x

5
.

Fig. 2 The figures show the true feasible set of problem (EX1) and the continuously relaxed feasible set
projected onto the (x1, x2)-space. The left figure shows the outer approximation given by cut (17) and the
right figure shows the outer approximation given by cut (18)

1326 J. Kronqvist, R. Misener

1 3

both significantly tighter continuous and MILP relaxations than the cut given by
Eq. (12) and the original ESH cut.

In this section, we have presented a framework for strengthening cuts obtained by
the ESH algorithm. However, the same approach can also be used to strengthen cuts
obtained by a similar algorithm, such as ECP, OA or generalized Benders decompo-
sition. The next section will focus more on the computational aspects, and how to
practically utilize the cut strengthening framework within a solver.

4 A cut strengthening algorithm

This section focuses on the computational aspects and how to utilize the cut
strengthening techniques from the previous section in an algorithm. We present a
simple strategy for selecting one out of multiple exclusive selection constraints, and

Fig. 3 The dark circles show the feasible set of problem (EX1) projected onto the (x1, x2)-space. The
light gray area in the figures shows the feasible set of the continuous relaxation. Furthermore, the figures
also show the feasible set of cut (17) for each feasible integer assignment

Fig. 4 The figures show the feasible set of cut (18) for each feasible integer assignment in the (x1, x2)

-space

1327

1 3

A disjunctive cut strengthening technique for convex MINLP

describe some computational enhancements along with a discussion on how to deal
with tolerances.

The cut strengthening techniques in the previous section utilizes the exclusive
selection constraint (2) to tighten cuts of the type given by Eq. (9). However, MINLP
problems can contain multiple exclusive selection constraints, e.g., originating from
multiple disjunctive constraints. Given a cut, there is a choice of which exclusive
selection constraint and the corresponding variables to choose for the tightening
procedure. Ideally one wants to choose the exclusive selection constraint with the
binary variables x

i
 for i ∈ I

D
 such that the coefficients b

i
 obtained by solving (NLP-i)

are as small as possible. However, such an optimal choice cannot trivially be deter-
mined, and instead, we will make the choice based on the variable connections.

Suppose that we have obtained cut (9), which is given by linearizing the non-
linear constraint gj(�) ≤ 0 . To compare the different exclusive selection constraints,
and their corresponding variables x

i
 for i ∈ I

D
 , we check the connections of the vari-

ables x
i
 for i ∈ I

D
 to the constraint gj(�) ≤ 0 . Here we consider two types of connec-

tions, direct connections and step-one connections. Variable x
i
 is directly connected

to gj(�) ≤ 0 , if the variable is included in the constraint. In a step-one connection,
the variable x

i
 is included in another constraint (linear or nonlinear) that has at least

one variable in common with gj(�) ≤ 0 . The number of direct connections in an
exclusive selection constraint is given by number of variables in I

D
 that are directly

connected to the nonlinear constraint gj(�) ≤ 0 , and similarly for the step-one con-
nections. Here, we use the following heuristic rule for selecting an exclusive selec-
tion constraint.

Rule 1 Given cut (9), select the exclusive selection constraint with the largest num-

ber of direct connections to the corresponding nonlinear constraint. If there are no

direct connections, chose the one with the largest number of step-one connections.

In case of multiple exclusive selection constraints with the same number of connec-

tions, chose one of them randomly.

A feasible solution to the MINLP problem �̂ can also be utilized within the cut
strengthening procedure. This is done by simply including the objective reduction
constraint

as a constraint in problem (NLP-i). Including the objective reduction constraint can
further reduce the coefficients b

i
 , resulting in a stronger cuts. Furthermore, includ-

ing the objective reduction constraint can enforce infeasibility on some partial inte-
ger assignments, and cause assignments in problem (NLP-i) to be infeasible. As
mentioned earlier, the only way problem (NLP-i) can be infeasible is if the partial
assignment, i.e., xi = 1 i ∈ ID, xj = 0 ∀j ∈ ID ⧵ i , is infeasible for the MINLP prob-
lem. Finding such infeasibilities is desirable since it allows us to eliminate a variable
from the MINLP problem by fixing it to zero.

Including the previously tightened cuts into problem (NLP-i) can also improve
performance by tightening the continuous relaxation. Obtaining a tighter continuous

(19)�
⊤
� ≤ �

⊤
�̂,

1328 J. Kronqvist, R. Misener

1 3

relaxation in problem (NLP-i) can further strengthen the cut and infer infeasibilities.
In the numerical results presented in Sect. 6, it was noticed that including the tight-
ened cuts and an objective reduction constraint can greatly help in identifying infea-
sible or non-optimal partial integer assignments. The ability to identify and elimi-
nate these from the search space can result in fewer iterations but can also reduce the
complexity of the MILP relaxations, used by algorithms such as ESH, ECP, and OA.

The cut strengthening techniques are summarized as pseudo-code in Algorithm 1.
In the algorithm, the two different cuts from the previous section are considered as
different strategies. The cut given by Eq. (13) is referred to as a Multi Tightening
(MT) strategy, since it effectively uses multiple values for the right-hand side. Simi-
larly, the cut given by Eq. (12) is referred to as a Single Tightening (ST) strategy.

Algorithm 1 Cut strengthening algorithm overview

1: procedure CutStrengthening(α, β, Strategy, x̂)

2: ID ← SelectExclusiveConstraint(α⊤x ≤ β) ⊲ Rule 1, Section 4
3: if A feasible solution is known then

4: MINLP ← IncludeObjectiveConstraint(x̂) ⊲ Equation (19), Section 4
5: end if

6: for i ∈ ID do

7: bi ← SolveNLP(i) ⊲ Problem (NLP-i), Section 3
8: if NLP is infeasible then

9: Remove variable xi from MINLP problem ⊲ Fix xi = 0
10: end if

11: end for

12: if Strategy = ST then

13: z∗ ← maxi∈ID
{bi}

14: return The cut α⊤x ≤ z∗ ⊲ Cut by eq. (12)
15: else if Strategy = MT then

16: return The cut α⊤x ≤
∑

i∈ID
bixi ⊲ Cut by eq. (13)

17: else if Strategy = ESH then

18: return The original ESH cut.
19: end if

20: end procedure

4.1 Computational comments

When solving an optimization problem to generate a cut, it is important to take the
solver tolerances into consideration. The tolerances are especially important when
dealing with nonlinear problems, where it is rare that a solver returns an exact opti-
mal solution. In the cut strengthening procedure, presented in the previous section,
the solver tolerance will only affect the coefficients b

i
 . If we can ensure that the solu-

tion of problem (NLP-i) is within an �-tolerance from the true optimal objective
value, then the suboptimality can easily be handled by relaxing the cut, i.e., adding �
to the right-hand side.

As a comparison, some other techniques to obtain strong cuts for convex MINLP
problems use the minimum distance (separation) problem to generate cuts (Stubbs

1329

1 3

A disjunctive cut strengthening technique for convex MINLP

and Mehrotra 1999; Bonami et al. 2009; Trespalacios and Grossmann 2016). In
these approaches, the minimizer of an NLP subproblem forms the coefficients of
both the left- and right-hand side of the cut. For these cuts, it is important to obtain
a high optimality accuracy in the variable space, since it affects both the angle and
level of the cut. Issues with numerical tolerances can be reduced or effectively elimi-
nated, e.g., by post-processing the cut and optimizing over each term in the disjunc-
tion to determine a valid right-hand side, but this comes at a significant computa-
tional expense. However, since both the coefficients on the left- and right-hand side
are optimized, this approach is not limited to a specific cut but can basically generate
any supporting hyperplane to the convex hull of the disjunction. Generating cuts by
solving the separation problem can, therefore, result in stronger cuts than the cut
strengthening procedure which is limited by the structure of the original cut.

In the cut strengthening procedure, we optimize over each term of a disjunction
in problem (10) separately. This allows us to obtain stronger cuts and identify infea-
sible partial integer assignments, as described in Sect. 3. In an efficient implementa-
tion, the individual problems given by (NLP-i) can be solved in parallel since they
are completely independent. This approach also has computational advantages, since
the convex hull formulation and the perspective function, in particular, comes with
numerical challenges. There are formulations to avoid division by zero (Sawaya
2006) and for some types of problems, the convex hull is second-order cone rep-
resentable, which can be handled more efficiently (Ben-Tal and Nemirovski 2001).
However, if some of the partial integer assignments are infeasible it can cause diffi-
culties for solvers since the convex hull of problems (NLP-i) will then have an empty
interior even though it is feasible. Such issues can be eliminated by analyzing each
term of the disjunction in a pre-processing and eliminating infeasible terms, but this
also comes at a significant computational expense.

As previously mentioned, our cut strengthening approach is limited to a specific
cut and, therefore, it may result in a weaker cut compared to generating the cut from
solving a separation problem. The main advantage of our cut strengthening approach
is that the cut is obtained by solving several smaller independent convex problems,
compared to solving the larger separation problem. Therefore, the trade-off of our
cut strengthening approach is a reduced computational complexity at the expense of
a possibly weaker cut.

5 Computational setup

To compare the cuts and to show the advantage of the cut strengthening, we have
included a numerical study where we compare the ESH algorithm with and with-
out the cut strengthening technique. These are preliminary results and are mainly
intended as a proof of concept. To focus on the effects of cut strengthening, we
apply them to a basic implementation of the ESH algorithm. As shown by Lundell
et al. (2016, 2020) several other techniques can be combined with the algorithm to
improve the computational performance, such as early MILP termination and mul-
tiple cut generation strategies. Before presenting the results, we will give a more
detailed description of the computational setup.

1330 J. Kronqvist, R. Misener

1 3

5.1 A Convex MINLP algorithm

To solve the MINLP problems we will use the ESH algorithm, which was briefly
presented in Sect. 2. In each iteration, we use the cut strengthening algorithm from
Sect. 4 to strengthen the cut generated by the ESH algorithm. It is known that the
basic ESH algorithm tends to only generate a single cut per iteration (Kronqvist
et al. 2016; Lundell et al. 2017). However, in some iterations the root-search can
result in a point where multiple constraints are active, resulting in multiple cuts.
Here, we will only strengthen one cut per iteration. If we obtain multiple cuts in an
iteration, then we randomly pick one of them for the strengthening procedure. We
do not use the LP-preprocessing from (Kronqvist et al. 2016), which simplifies the
algorithm and allows us to better focus on the effect of the cut strengthening.

Besides the basic ESH algorithm, we only include two simple primal heuristics
that have proven to be effective within this framework (Kronqvist et al. 2016; Lun-
dell et al. 2018). Without any primal heuristics the ESH algorithm will generally not
obtain feasible solutions during the solution procedure, making it difficult to termi-
nate based on the optimality gap. Therefore, the primal heuristics is an important
enhancement to the ESH algorithm and practically needed within a solver. From the
numerical tests, we also noticed that feasible solutions improve the cuts and help to
identify non-optimal partial integer assignments. The primal heuristics we use here
are checking the alternative solution in the MILP solver’s solution pool, and fixing
the integer assignments in the MINLP and solving the resulting convex NLP prob-
lem in every fourth iteration. The primal heuristics are summarized as a pseudo-
code in Algorithm 2.

Algorithm 2 Primal heuristics

1: procedure PrimalHeuristic(c, N, L, Y , SolutionPool, k, x̂,xk)
2: for xi ∈ SolutionPool do

3: if xi ∈ N ∩ L ∩ Y | c⊤xi < c⊤x̂ then ⊲ Check alternative MILP solutions

4: Ŷ ← {x ∈ L ∩ N | xi = xi
j ∀j ∈ IZ} ⊲ Fixed integer assignment

5: x̂ ← arg min
x∈Ŷ

c⊤x

6: end if

7: end for

8: if k mod 4 = 0 then ⊲ Every fourth main iteration
9: Ŷ ← {x ∈ L ∩ N | xi = xk

i ∀i ∈ IZ} ⊲ Fixed integer assignment
10: if MINLP is feasible for the integer assignment then

11: x̃ ← arg min
x∈Ŷ

c⊤x

12: if c⊤x̃ < c⊤x̂ then

13: x̂ ← x̃

14: end if

15: end if

16: end if

17: return x̂

18: end procedure

 For more details on heuristics in combination with the ESH algorithm, see (Lun-
dell et al. 2020). For a summary of different primal heuristics see, for example,
(Berthold 2014; D’Ambrosio et al. 2012).

1331

1 3

A disjunctive cut strengthening technique for convex MINLP

As a termination criterion we use the relative optimality gap defined as

where ub and lb are upper and lower bounds on the optimal objective value of the
MINLP problem. Here, ub is given by the best found feasible solution and lb is
given by �⊤�k , where �k is given by problem (MILP-r). We consider the MINLP
problem as solved when the relative gap is reduced to 10

−3 , thus proving that the
best found solution is within 0.1% of the global optimum. The method used for solv-
ing the MINLP problems is summarized as a pseudo-code in Algorithm 3.

Algorithm 3 Overview of the ESH algorithm with cut strengthening

1: Select Strategy ∈ {MT, ST, ESH}.

2: Initialize: k ← 1, N̂0 ← R
n, gap ← ∞.

3: xint ← ObtainInteriorPoint(N, L) ⊲ Problem (NLP-IP), Section 2
4: while gap > 0.001 do

5: x
k, SolutionPool

)

← Relaxation(L, N̂k−1) ⊲ Problem (MILP-r), Section 2

6: x̄
k ← RootSearch(xint,x

k, N) ⊲ Section 2
7: (α, β) ←GenerateCut(x̄k, N) ⊲ Cut given by eq. (7)
8: (α, β∗) ← CutStrengthening(α, β, Strategy, x̂) ⊲ Algorithm 1

9: N̂k ← N̂k−1 ∩ α⊤x ≤ β∗

10: x̂ ← PrimalHeuristics(c, N, L, Y , SolutionPool, k, x̂,xk) ⊲ Algorithm 2
11: if A feasible solution x̂ is found then

12: gap ←
c

⊤
(

x̂−x
k

)

|c⊤
x̂|+10−10

⊲ Eq. (20)

13: end if

14: k ← k + 1
15: end while

16: return x̂

5.2 Implementation and hardware

For the numerical comparison, we use a simple implementation of the ESH algo-
rithm utilizing IPOPT 3.12.9 (Wächter and Biegler 2006) and Gurobi 8.1 (Gurobi
2019) as subsolvers for NLP and MILP subproblems. For reading and parsing the
MINLP problems, we use the open-source MATLAB toolbox OPTI Toolbox (Cur-
rie and Wilson 2012). In the current implementation, we are not able to run the cut
strengthening NLP subproblems in parallel, which could significantly speedup the
cut strengthening. However, the computational results in the following section still
clearly show an advantage of the cut strengthening, both in terms of total computa-
tional time and in number of iterations.

The numerical comparisons are performed on a basic desktop computer with an
Intel i7-7700k processor, 16 GB RAM, and Windows 10. For the subsolvers, we use
default settings except for allowing Gurobi to run on 8 threads. By running Gurobi
on multiple threads, the MILP subproblems are solved faster and this is simply done

(20)gap =
ub − lb

|ub| + 10−10
,

1332 J. Kronqvist, R. Misener

1 3

by changing the Threads-parameter. The root-search, in the approximative projec-
tion, is done to a tolerance of 10

−16 in the �-variable.

6 Numerical results

To test the efficiency of the cut strengthening, we apply the simple implementa-
tion of the ESH algorithm, described in Algorithm 3, to a set of test problems. The
ESH algorithm forms the baseline for the numerical comparison, and we compare
how the cut strengthening techniques affect the number of iterations and solution
times. As already mentioned, the results are mainly intended as a proof of concept
to show the impact of the cut strengthening. By using techniques such as early stop-
ping (Lundell et al. 2018) and running the cut tightening NLP problems in parallel it
would be possible to significantly reduce the solution times.

For the numerical test we have chosen convex MINLP instances from MINL-
PLib (MINLPLib 2020) containing at least one exclusive selection constraint. The
cut strengthening is mainly intended to strengthen the linear approximation of the
nonlinear constraints, and it is expected to be most beneficial for problems contain-
ing the big-M formulation of disjunctions containing nonlinear constraints. The
disjunctions are identified through the exclusive selection constraints, and the cuts
are strengthened through a tighter representation of the disjunctions. If nonlinear
disjunctions are represented by the convex hull formulation, our approach will not
necessarily be able to tighten the relaxation. For example, if a nonlinear disjunction
is represented by the convex hull, then the ESH algorithm can generate supporting
hyperplanes to the convex hull of the disjunction and the ST-strategy will not be
able to change such cuts. The MT-strategy could still give a tighter approximation
for integer feasible solutions, as it may cut off parts of the convex hull for some
integer values as shown in Fig. 4. Since the cut strengthening is an expensive opera-
tion, it is better suited for problems with the big-M formulation as the impact will be
more significant and the subproblems are smaller. Therefore, we focus on problems
where disjunctions, with either linear or nonlinear constraints, are represented by the
big-M formulation. The problems we consider from MINLPLib are different ver-
sions of the problems clay, flay, slay, sssd, and tls. These problems represent optimi-
zation tasks such as trimloss problems (Harjunkoski et al. 1998), optimal placement
tasks (Sawaya 2006) and service systems design (Elhedhli 2006). We also consider
a problem called stockcycle (Silver and Moon 1999), which is known to be diffi-
cult to solve without any reformulations (Kronqvist et al. 2018c). Furthermore, we
also consider a class of test problems called p_ball, that are described in the Appen-
dix. The p_ball instances contain several relatively large nonlinear disjunctions, and
are designed to be challenging due to both the nonlinearity and the combinatorial
aspects. We use a 2 h time limit for all the problems except for stockcycle, where we
use a time limit of 96 h.

The results are presented in Table 1, showing both the number of iterations and
the time needed to solve each problem. The table shows that both cut strengthen-
ing techniques can significantly reduce the number of iterations needed to solve
the problems. However, the table shows a clear advantage of the multi tightening

1333

1 3

A disjunctive cut strengthening technique for convex MINLP

Table 1 The table shows the solution times in seconds and the number of iterations needed to solve (to a
relative gap ≤ 0.1%) the MINLP instances with different cut strategies

Instance ESH ESH + ST ESH + MT

Iter. Time Iter. Time Iter. Time

clay0203m 48 12.83 29 9.40 22 6.47

clay0204m 21 4.70 13 5.43 17 3.27

clay0205m 37 14.41 25 8.71 21 7.01

clay0303m 81 34.28 37 17.49 20 3.66

clay0304m 121 90.27 62 46.12 30 11.39

clay0305m 53 34.08 25 13.16 21 8.41

flay02m 14 1.51 10 2.46 8 2.09

flay03m 28 3.14 28 6.01 28 6.31

flay04m 30 4.25 30 7.78 30 7.76

flay05m 52 53.51 52 61.01 52 62.19

flay06m 62 1879.98 62 1801.56 61 1511.69

p_ball_10b_5p_2d 246 59.45 126 91.84 31 21.56

p_ball_15b_5p_2d 389 144.72 209 341.44 51 73.12

p_ball_20b_5p_2d 586 299.42 280 717.67 34 68.96

p_ball_30b_5p_2d 1026 465.31 328 2677.33 48 303.26

p_ball_30b_7p_2d > 1039 > 7200 417 4665.69 65 1008.56

p_ball_10b_5p_3d 491 543.35 185 168.69 60 48.04

p_ball_10b_7p_3d > 433 > 7200 299 2952.08 101 593.01

p_ball_20b_5p_3d > 979 > 7200 450 2453.01 97 331.40

p_ball_30b_5p_3d > 1258 > 7200 385 2660.03 81 509.99

p_ball_40b_5p_3d > 1877 > 7200 534 > 7200 112 1859.94

p_ball_10b_5p_4d 879 2496.35 265 410.06 115 122.82

p_ball_40b_5p_4d > 2134 > 7200 640 > 7200 178 4311.56

slay04m 55 2.79 24 4.79 27 5.15

slay05m 78 4.90 44 9.51 45 7.73

slay06m 88 8.08 45 11.52 44 11.05

slay07m 150 25.40 109 22.88 94 18.28

slay08m 120 33.99 80 25.04 89 24.61

slay09m 130 68.26 88 63.86 104 47.46

slay10m 420 4432.49 105 203.14 109 219.22

sssd08-04 11 4.62 11 5.85 11 5.37

sssd12-05 13 7.56 13 10.39 12 9.81

sssd15-04 11 2.52 11 4.51 11 5.41

sssd15-06 21 33.39 17 24.72 17 24.53

sssd15-08 25 626.97 17 134.49 17 146.36

sssd16-07 20 59.91 17 34.73 17 38.96

sssd18-06 17 62.11 15 43.22 13 6.35

sssd18-08 40 232.48 25 93.29 30 182.83

sssd20-04 14 4.03 13 5.53 13 4.51

sssd20-08 25 402.08 25 351.03 21 54.03

1334 J. Kronqvist, R. Misener

1 3

(MT) strategy. This result aligns well with the theory since cut (13) used in the
MT strategy can dominate the cuts used by the single tightening (ST) strategy. On
average, the ST strategy reduces the number of iterations by a factor of 1.5, and
the MT strategy gives a further reduction with a factor of 2.9 on average. Both
cut strengthening strategies give a significant reduction in solution times, but the
MT strategy has a clear advantage and is faster by a factor of 2 compared to the
ST strategy. The performance in terms of speed for the strategies is illustrated in
Fig. 5, which shows the performance profiles of the different strategies. From the
figure, it can be observed that MT strategy gives a great advantage for the more
challenging problems.

The strategies include a simple implementation of the ESH algorithm and the ESH algorithm combined
with two new cut strengthening techniques. The sign “>” indicates that the time limit was exceeded
before the search could be terminated. The fewest iterations and the fastest times are in bold for each
problem. All of the instances in this table use a big-M formulation

Table 1 (continued)

Instance ESH ESH + ST ESH + MT

Iter. Time Iter. Time Iter. Time

stockcycle > 1205 > 96 h > 3901 > 96 h 2910 36.07 h

tls2 8 1.01 8 2.66 8 3.09

tls4 164 216.33 167 252.42 126 158.88

Geometric mean 94.08 102.03 63.25 87.07 38.56 44.62

0 10 20 30 40 50

10

20

30

40

In
s
t
a
n
c
e
s

s
o
lv

e
d

(
g
a
p

≤
0

.
1
%

)

Solution time (s)

60 120 300 900 1800 3600 7200

ESH

ESH + ST

ESH + MT

Fig. 5 Solution profiles for the ESH algorithm and the ESH algorithm with the cut strengthening tech-
niques. The graphs show the number of instances solved as a function of time. The test set has 43
instances (clay*, flay*, p_ball*, slay*, sssd*, stockcycle*). An instance is considered solved when it
reaches a relative gap of less than 0.1%

1335

1 3

A disjunctive cut strengthening technique for convex MINLP

As shown in Table 1, the cut strengthening is especially powerful for the clay
and p_ball problems. These problems contain nonlinear disjunctions that are repre-
sented by the big-M formulations, giving weak continuous relaxations that can be
efficiently strengthened by the cut strengthening technique. For the p_ball problems,
the MT cut strengthening reduces the number of iterations by a factor of 11.7 on
average. Without the cut strengthening the larger p_ball problems are practically
intractable with the ESH algorithm, and the optimality gap remained large after 2 h.

As previously mentioned, the cut tightening comes at a computational cost of
solving convex NLP subproblems. For example, problem p_ball_40b_5p_4d con-
tains nonlinear disjunctions of size 40, which results in 40 subproblems for the cut
tightening per iteration. Solving these subproblems accumulates to about 35% of the
total solution time. However, this is well compensated for by the great reduction in
the number of iterations.

It is worth mentioning that the cut strengthening techniques do not necessarily
result in computationally more demanding iterations. For example, the average itera-
tion time for slay10m is 10.6 seconds with the ESH strategy and less than 2 seconds
with both the ST and MT strategies. There are two reasons behind the significantly
faster iterations. First, the strengthened cuts can result in a tighter continuous relaxa-
tion, making the MILP relaxations easier to solve. But more importantly, the cut
strengthening procedure can sometimes identify infeasible or non-optimal integer
assignments during the solution procedure, see Sect. 3 for details. For slay10m, the
cut strengthening is able to fix 53 of the binary variables to zero. Similarly, the cut
strengthening eliminates 299 of the 432 binary variables in stockcycle. By further
studying these problems, we found that the binary variables fixed by the cut tighten-
ing cannot trivially be removed, e.g., by performing LP-based bounds tightening.
Some of the integer assignments immediately resulted in problem (NLP-i) to be
infeasible in the cut tightening, and some became infeasible due to bounds on the
objective and accumulation of strengthened cuts. The ability to identify the infea-
sible or non-optimal integer assignments can greatly reduce the complexity of the
MINLP problems and comes as a desirable side effect of the cut tightening.

MINLPLib also contains a large number of problems called syn and rsyn (Türkay
and Grossmann 1996; Sawaya 2006). These problems do have a disjunctive struc-
ture, although mainly involving linear constraints. These problems are all easy to
solve, and on average they require less than 10 iterations and 3 seconds with the
ESH algorithm. There are in total 24 rsyn and 24 syn problems with the big-M for-
mulation. For these problems, the cut strengthening did not provide any significant
advantages. The average times and number of iterations for these two problem types
are shown in Table 2.

For the rsyn and syn instances the cut tightening procedure has little effect on the
cuts, and does not result in fewer iterations. In these problems the nonlinear con-
straints only contain three variables, and there is only a single nonlinear variable
in each constraint. It is possible that these constraints are tight to begin with, which
would explain why the strengthening does not have much effect for these specific
problems.

The cut strengthening seems to be most efficient for problems that contain dis-
junctions with nonlinear constraints, e.g., clay and p_ball problems. Some aspects

1336 J. Kronqvist, R. Misener

1 3

of why the multi tightening strategy works particularly well for these problems are
described in the next section. For problems with nonlinear disjunctions, the choice
of which exclusive selection constraint to perform the strengthening on is also
straight forward since binary variables will be present in the nonlinear constraints.
The cut strengthening also performed well on the problems slay, sssd, and stockcy-

ckle, where there are only disjunctions with linear constraints.

6.1 Comparing strong problem formulations and cut strengthening

These results show that the strengthening procedure can give a great advantage for
problems where disjunctions are represented by big-M constraints. To further ana-
lyze the cut strengthening procedure, we compare the cut strengthening procedure
with applying the basic ESH algorithm on the same MINLP instances in a convex
hull form, where all or some disjunctions are represented by the convex hull formu-
lation. For this test, we use all problems from the previous section that are available
in both a big-M and convex hull form. The results are presented in Table 3. Here we
only use the multi strengthening technique, since it results in stronger cuts than the
single tightening at the same computational cost.

For nonlinear disjunctions represented by a convex hull formulation, the ESH
algorithm can generate supporting hyperplanes to the convex hull of the disjunc-
tion. Therefore, applying the ESH algorithm to MINLP instances where nonlinear
disjunctions are represented by the convex hull can result in significantly tighter cuts
compared to cuts obtained from big-M constraints. This can be seen from the results
in Table 3, which shows that the ESH algorithm requires fewer iterations for most of
the problems in the convex hull form. The ESH algorithm is still faster on some of
the problems in big-M form, which is most likely due to the smaller subproblems.

It is important to notice that the cut strengthening procedure will not necessarily
result in similar cuts as applying the ESH algorithm to the convex hull formulation
of the problem. This is well illustrated by problem (EX1), where the single tighten-
ing strategy does not result in a supporting hyperplane to the convex hull of the
disjunction as illustrated in Fig. 2. The multi tightening strategy forms a support-
ing hyperplane to the convex hull of the disjunction, but it still behaves differently
compared to a cut obtained by applying the ESH algorithm to the convex hull form
of the problem. Figure 4 shows that the multi tightened cut not only forms a sup-
porting hyperplane to the convex hull of the disjunction, but for each feasible integer
assignment it also forms a supporting hyperplane to the corresponding term of the

Table 2 The table shows the average number of iterations and solution times (to a relative gap ≤ 0.1%)
for the rsyn and syn problems

Instance ESH ESH + ST ESH + MT

Avg. iter. Avg. time Avg. iter. Avg. time Avg. iter. Avg. time

rsyn 9.79 4.12 9.79 6.20 9.79 6.04

syn 8.95 0.73 8.95 1.47 8.95 1.43

1337

1 3

A disjunctive cut strengthening technique for convex MINLP

Table 3 The table shows the solution times in seconds and the number of iterations needed with the ESH
algorithm to solve (to a relative gap ≤ 0.1%) the MINLP instances in both the big-M and convex hull
form. The table also shows the solution times and number of iterations with the ESH algorithm com-
bined with multi tightening strategy applied to the big-M formulation

The sign “>” indicates that the time limit was exceeded before the search could be terminated. The few-
est iterations and the fastest times are in bold for each problem

Instance ESH ESH ESH + MT

Big-M Convex hull Big-M

Iter. Time Iter. Time Iter. Time

clay0203(m/h) 48 12.83 46 9.52 22 6.47

clay0204(m/h) 21 4.70 17 6.44 17 3.27

clay0205(m/h) 37 14.41 21 28.36 21 7.01

clay0303(m/h) 81 34.28 63 10.07 20 3.66

clay0304(m/h) 121 90.27 94 30.60 30 11.39

clay0305(m/h) 53 34.08 41 47.00 21 8.41

flay02(m/h) 14 1.51 8 2.48 8 2.09

flay03(m/h) 28 3.14 28 8.32 28 6.31

flay04(m/h) 30 4.25 29 12.61 30 7.76

flay05(m/h) 52 53.51 51 250.15 52 62.19

flay06(m/h) 62 1879.98 > 42 > 7200 61 1511.69

p_ball_10b_5p_2d 246 59.45 49 11.23 31 21.56

p_ball_15b_5p_2d 389 144.72 80 26.06 51 73.12

p_ball_20b_5p_2d 586 299.42 95 28.61 34 68.96

p_ball_30b_5p_2d 1026 465.31 167 84.97 48 303.26

p_ball_30b_7p_2d > 1039 > 7200 165 3981.03 65 1008.56

p_ball_10b_5p_3d 491 543.35 69 48.35 60 48.04

p_ball_10b_7p_3d > 433 > 7200 73 700.48 101 593.01

p_ball_20b_5p_3d > 979 > 7200 157 1073.71 97 331.40

p_ball_30b_5p_3d > 1258 > 7200 194 1921.30 81 509.99

p_ball_40b_5p_3d > 1877 > 7200 > 269 > 7200 112 1859.94

p_ball_10b_5p_4d 879 2496.35 103 212.49 115 122.82

p_ball_40b_5p_4d > 2134 > 7200 > 210 > 7200 178 4311.56

slay04(m/h) 55 2.79 57 10.39 27 5.15

slay05(m/h) 78 4.90 78 17.30 45 7.73

slay06(m/h) 88 8.08 88 30.89 44 11.05

slay07(m/h) 150 25.40 150 108.41 94 18.28

slay08(m/h) 120 33.99 115 294.99 89 24.61

slay09(m/h) 130 68.26 130 1221.01 104 47.46

slay10(m/h) 420 4432.49 > 62 > 7200 109 219.22

Geometric mean 173.47 126.71 72.21 115.60 47.48 47.17

1338 J. Kronqvist, R. Misener

1 3

disjunction. For problem (EX1), a single multi tightened cut effectively acts as a
supporting hyperplane to three different nonlinear constraints for each feasible inte-
ger assignments. The multi tightened cuts behave similarly for the p_ball instances,
where each disjunction corresponds to assigning a point to one of the balls. For a
feasible integer assignment, a cut obtained by multi tightening will then act as a sup-
porting hyperplane to each ball for one of the points. For example, for the problem
p_ball_40b_5p_3d a multi tightened cut effectively behaves as a tight cut for 40 dif-
ferent nonlinear constraints. This behaviour can make the multi tightened cuts espe-
cially powerful for problems with nonlinear disjunctions, which is also shown by the
results in Table 3.

Only the p_ball and clay instances contain nonlinear disjunctions and for most
of these problems the multi tightening strategy significantly reduces both solution
times and number of iterations. For problems with only linear disjunctions, the multi
tightening strategy does not necessarily give the same advantage. However, the
multi tightening strategy also performed well on the test problems with only linear
disjunctions. On average the multi tightening strategy reduces the number of itera-
tions by a factor of 7.2 compared to the ESH algorithm with the big-M formulation
and by a factor of 1.5 compared to ESH algorithm with the convex hull formulation
of the problems. In terms of total solution time, the multi tightening strategy reduces
the total solution time by more than a factor of 3 on average compared to the other
two approaches.

7 Conclusions

In this paper, we have presented a new framework for strengthening cuts to obtain
tighter outer approximations for convex MINLP. The cut strengthening is based on
analyzing disjunctive structures in the MINLP problem, and either strengthen the
cut for the entire disjunction or separately for each term of the disjunction. We have
proven that the strengthening results in valid cuts that can dominate the original cut.
The numerical results show that the strengthening can greatly reduce the number of
iterations and time needed to solve convex MINLP problems. We have focused on
strengthening cuts derived from the ESH algorithm, but the same techniques can
just as well be used to strengthen cuts obtained by OA, ECP or generalized Benders
decomposition.

Acknowledgements The work was funded by a Newton International Fellowship by the Royal Society
(NIF∖ R1∖ 182194) to JK, a grant by the Swedish Cultural Foundation in Finland to JK, and by an Engi-
neering and Physical Sciences Research Council Research Fellowship to RM (Grant No. EP/P016871/1).

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission

1339

1 3

A disjunctive cut strengthening technique for convex MINLP

directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

Appendix: New nonlinear disjunctive test problems

To further test the cut strengthening for problems with different sized disjunctions con-
taining nonlinearities of varying difficulty, we have generated 12 new test problems.
The underlying optimization task is simple, select n-points in m-dimensional balls, such
that the �

1
-distance between all points is minimized. Only one point can be assigned to

each ball, and in total there are l balls with radius one. The problem has a clear disjunc-
tive programming structure, where the disjunctions arise from the assignment of each
point to one of the balls. In total we get n disjunctions of size l, i.e., one disjunction per
point and one disjunctive term per ball.

Even if this optimization task can be represented as a binary quadratic problem, it is
a challenging problem for OA-type algorithms. Without any reformulations, OA-type
algorithms will require a large number of iterations due to the difficulties of accurately
approximating an n-dimensional ball with hyperplanes (Hijazi et al. 2013). Higher-
dimensional balls render the outer approximation task more difficult, and the number of
nonlinear constraints is given by the number of balls times the number of points. There
is a clear combinatorial structure to the problem, and the complexity increases with the
number of points and balls as the number of possible discrete configurations drastically
increases. The seemingly simple optimization problem is, thus, challenging both due to
the combinatorial nature and the nonlinearity.

Before presenting the MINLP formulation, we briefly describe the notation and
some details of the problem formulation. Here, �i

∈ ℝ
m denotes the center of ball i

and ci

1
 refers to the first coordinate of the center. Similarly, �i

∈ ℝ
m refers to point i and

pi
1
 is the first coordinate of the point. To simplify the notation, we introduce the sets

D = {1, 2,… , m} , P = {1, 2,… , n} , P
i = {i + 1, i + 2,… , n} , and B = {1, 2,… , l} .

The �
1
-distance can be represented by linear constraints by introducing auxiliary vari-

ables �i,j
∈ ℝ

m . As before, di,j

k
 refers to the k-th component of the vector �i,j . To act as

the absolute value, we use the following constraints

and the distance between the points i and j is now given by
∑m

k=1
d

i,j

k
 . For the test

problems, we randomly chose each coordinate of the balls’ centers between 0 and
10, which also limits each variable di,j

k
 to the interval [0, 10]. We use a binary vari-

able b
i,r

 for selecting if point i is assigned to ball r. There are several identical solu-
tions to these optimization problems due to symmetries, e.g., you can switch places
of the first and second point to obtain another equally good solution. To eliminate
some of the symmetrical solutions we include an ordering of the points along the
first coordinate. The ordering is enforced by including the constraints that the first
point must be closer to the origin along the first coordinate than the second point,

d
i,j

k
≥ pi

k
− p

j

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi

,

d
i,j

k
≥ p

j

k
− pi

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi

,

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

1340 J. Kronqvist, R. Misener

1 3

and similarly for the following points. Using the big-M formulation the problem can
be written as

where M
r
 are sufficiently large constants. For these problems the smallest valid M

r
 is

simply given by

Here, M
r
 are based on the largest squared Euclidean distance between the center of

a ball and the point furthest away in any other ball. This gives the smallest valid M
constants, resulting in a tight Big-M formulation. It could be possible to obtain a
stronger formulation, e.g., by eliminating furhter symmetries or by the techniques
presented by Trespalacios and Grossmann (2015). However, the goal here is not to
derive an optimal problem formulation, but simply to generate a few test problems
of different size and difficulty.

We have generated 12 random test instances, where the centers of the unit balls
are chosen randomly. The test problems are of different size, and the main attributes
are summarized in Table (4). The problems range in size from 50–210 binary vari-
ables and 30–85 continuous variables.

It is also possible to represent the assignment of points to circles with the convex
hull formulation to obtain a tighter continuous relaxation. For each point i ∈ P , we
need to make l copies of the variables �i , and we get the new variables ��

�

r
∈ ℝ

m .
It would be possible to represent the convex hull by second-order cones, but to fit
within the framework of this paper we use the formulation presented by Sawaya and
Grossmann (2007). The problem can then be written as

(21)

min

n
∑

i=1

n
∑

j=i+1

m
∑

k=1

d
i,j

k

d
i,j

k
≥ pi

k
− p

j

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

d
i,j

k
≥ p

j

k
− pi

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

m
∑

k=1

�

pi
k
− cr

k

�2
≤ 1 + Mr(1 − bi,r) ∀i ∈ P, ∀r ∈ B,

l
∑

r=1

bi,r = 1 ∀i ∈ P,

n
∑

i=1

bi,r ≤ 1 ∀r ∈ B,

pi
1
≤ pi+1

1
∀i ∈ P ⧵ n,

bi,r ∈ {0, 1} ∀i ∈ P, ∀r ∈ B,

�i,j ∈ [0, 10]m ∀i ∈ P, ∀j ∈ Pi,

�i ∈ [0, 10]m ∀i ∈ P,

(22)M
r
= max

i∈B

{(
‖‖‖
�

r
− �

i‖‖‖2

+ 1

)2

− 1

}

.

1341

1 3

A disjunctive cut strengthening technique for convex MINLP

 In the numerical tests we use � = 10
−9 which was stable for the subsolvers. The

main properties of the test problems with the convex hull formulation are sum-
marized in Table 5. The problems range in size from 50–210 binary variables and
130–860 continuous variables.

(23)

min

n∑
i=1

n∑
j=i+1

m∑
k=1

d
i,j

k

d
i,j

k
≥ pi

k
− p

j

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

d
i,j

k
≥ p

j

k
− pi

k
∀k ∈ D, ∀i ∈ P, ∀j ∈ Pi,

((1 − �)bi,r + �)

�����
�
��

r

(1−�)bi,r+�
− cr

����

2

2

− 1

�

− �

�
‖cr‖2

2
− 1

�
(1 − bi,r) ≤ 0 ∀i ∈ P, ∀r ∈ B,

l∑
r=1

bi,r = 1 ∀i ∈ P,

n∑
i=1

bi,r ≤ 1 ∀r ∈ B,

pi
1
≤ pi+1

1
∀i ∈ P ⧵ n,

l∑
r=1

�
��

r = �i ∀i ∈ P

� ≤ �
��

r ≤ �� ⋅ bi,r ∀i ∈ P,∀r ∈ B,

bi,r ∈ {0, 1} ∀i ∈ P, ∀r ∈ B,

�i,j ∈ [0, 10]m ∀i ∈ P, ∀j ∈ Pi,

�i ∈ [0, 10]m ∀i ∈ P,

�
��

r ∈ [0, 10]m ∀i ∈ P, ∀r ∈ B.

Table 4 The table shows the main properties of the test problems with the Big-M formulation

For each problem, the table lists the number of binary variables (Bin. vars.), number of continuous vari-
ables (Cont. vars.), number of nonlinear constraints (Nl. cons.), number of balls, number of points, and
the dimensionality of the unit balls (B. dim.)

Name Bin. vars. Cont. vars. Nl. cons. Balls Points B. dim.

p_ball_10b_5p_2d 50 30 50 10 5 2

p_ball_15b_5p_2d 75 30 75 15 5 2

p_ball_20b_5p_2d 100 30 100 20 5 2

p_ball_30b_5p_2d 150 30 150 30 5 2

p_ball_30b_7p_2d 210 56 210 30 7 2

p_ball_10b_5p_3d 50 45 50 10 5 3

p_ball_10b_7p_3d 70 85 70 10 7 3

p_ball_20b_5p_3d 100 45 100 20 5 3

p_ball_30b_5p_3d 150 45 150 30 5 3

p_ball_40b_5p_3d 200 45 200 40 5 3

p_ball_10b_5p_4d 50 60 50 10 5 4

p_ball_40b_5p_4d 200 60 200 40 5 4

1342 J. Kronqvist, R. Misener

1 3

Numerical results are presented in Sect. 6, which show that the test problems are
challenging for the ESH algorithm with both problem formulations. Finally, all the
test problems can be downloaded from https ://githu b.com/jkron qvi/point s_in_circl
es.

References

Achterberg T, Wunderling R (2013) Mixed integer programming: Analyzing 12 years of progress. In:
Facets of combinatorial optimization, Springer, Berlin, pp 449–481

Atamtürk A, Narayanan V (2010) Conic mixed-integer rounding cuts. Math Program 122(1):1–20
Balas E (1979) Disjunctive programming. In: Annals of discrete mathematics. Elsevier, Amsterdam,

vol 5, pp 3–51
Balas E, Margot F (2013) Generalized intersection cuts and a new cut generating paradigm. Math Pro-

gram 137(1–2):19–35
Balas E, Ceria S, Cornuéjols G (1993) A lift-and-project cutting plane algorithm for mixed 0–1 pro-

grams. Math Program 58(1–3):295–324
Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization: analysis, algorithms, and

engineering applications, vol 2. SIAM
Bernal DE, Vigerske S, Trespalacios F, Grossmann IE (2020) Improving the performance of DICOPT in

convex MINLP problems using a feasibility pump. Optim Methods Softw 35(1):171–190
Berthold T (2014) Heuristic algorithms in global MINLP solvers. PhD thesis, Technische Universität

Berlin
Bienstock D (1996) Computational study of a family of mixed-integer quadratic programming problems.

Math Program 74(2):121–140
Bonami P (2011) Lift-and-project cuts for mixed integer convex programs. In: International conference

on integer programming and combinatorial optimization. Springer, Berlin, pp 52–64
Bonami P, Gonçalves JP (2012) Heuristics for convex mixed integer nonlinear programs. Comput Optim

Appl 51(2):729–747

Table 5 The table shows the main properties of the test problems with the convex hull formulation

For each problem, the table lists the number of binary variables (Bin. vars.), number of continuous vari-
ables (Cont. vars.), number of nonlinear constraints (Nl. cons.), number of balls, number of points, and
the dimensionality of the unit balls (B. dim.)

Name Bin. vars. Cont. vars. Nl. cons. Balls Points B. dim.

p_ball_10b_5p_2d 50 130 50 10 5 2

p_ball_15b_5p_2d 75 180 75 15 5 2

p_ball_20b_5p_2d 100 230 100 20 5 2

p_ball_30b_5p_2d 150 330 150 30 5 2

p_ball_30b_7p_2d 210 476 210 30 7 2

p_ball_10b_5p_3d 50 195 50 10 5 3

p_ball_10b_7p_3d 70 295 70 10 7 3

p_ball_20b_5p_3d 100 345 100 20 5 3

p_ball_30b_5p_3d 150 495 150 30 5 3

p_ball_40b_5p_3d 200 645 200 40 5 3

p_ball_10b_5p_4d 50 260 50 10 5 4

p_ball_40b_5p_4d 200 860 200 40 5 4

https://github.com/jkronqvi/points_in_circles
https://github.com/jkronqvi/points_in_circles

1343

1 3

A disjunctive cut strengthening technique for convex MINLP

Bonami P, Lejeune MA (2009) An exact solution approach for portfolio optimization problems under
stochastic and integer constraints. Oper Res 57(3):650–670

Bonami P, Biegler LT, Conn AR, Cornuéjols G, Grossmann IE, Laird CD, Lee J, Lodi A, Margot F,
Sawaya N, Wächter A (2008) An algorithmic framework for convex mixed integer nonlinear pro-
grams. Discrete Optim 5(2):186–204

Bonami P, Cornuéjols G, Lodi A, Margot F (2009) A feasibility pump for mixed integer nonlinear pro-
grams. Math Program 119(2):331–352

Bonami P, Kilinç M, Linderoth J (2012) Algorithms and software for convex mixed integer nonlinear
programs. In: Mixed integer nonlinear programming, Springer, Berlin, pp 1–39

Boukouvala F, Misener R, Floudas CA (2016) Global optimization advances in mixed-integer nonlin-
ear programming, MINLP, and constrained derivative-free optimization. CDFO. Euro J Oper Res
252(3):701–727

Castillo I, Westerlund J, Emet S, Westerlund T (2005) Optimization of block layout design problems
with unequal areas: a comparison of MILP and MINLP optimization methods. Comput Chem Eng
30(1):54–69

Ceria S, Soares J (1999) Convex programming for disjunctive convex optimization. Math Program
86(3):595–614

Currie J, Wilson DI (2012) OPTI: Lowering the Barrier Between Open Source Optimizers and the Indus-
trial MATLAB User. In: Sahinidis N, Pinto J (eds) Foundations of computer-aided process opera-
tions, Savannah. Georgia

D’Ambrosio C, Frangioni A, Liberti L, Lodi A (2012) A storm of feasibility pumps for nonconvex
MINLP. Math Program 136(2):375–402

Duran M, Grossmann I (1986a) A mixed-integer nonlinear programming algorithm for process systems
synthesis. AIChE J 32(4):592–606

Duran MA, Grossmann IE (1986b) An outer-approximation algorithm for a class of mixed-integer non-
linear programs. Math Program 36(3):307–339

Duran MA, Grossmann IE (1986c) Simultaneous optimization and heat integration of chemical pro-
cesses. AIChE J 32(1):123–138

Durán-Peña MA (1984) A mixed-integer nonlinear programming approach for the systematic synthesis of
engineering systems. PhD thesis, Carnegie-Mellon University

Elhedhli S (2006) Service system design with immobile servers, stochastic demand, and congestion.
Manuf Serv Oper Manag 8(1):92–97

Eronen VP, Kronqvist J, Westerlund T, Mäkelä MM, Karmitsa N (2017) Method for solving generalized
convex nonsmooth mixed-integer nonlinear programming problems. J Global Optim 69(2):443–459

Fletcher R, Leyffer S (1994) Solving mixed integer nonlinear programs by outer approximation. Math
Program 66(1):327–349

Frangioni A, Gentile C (2006) Perspective cuts for a class of convex 0–1 mixed integer programs. Math
Program 106(2):225–236

Geiler B, Morsi A, Schewe L, Schmidt M (2015) Solving power-constrained gas transportation problems
using an MIP-based alternating direction method. Comput Chem Eng 82:303–317

Geoffrion AM (1972) Generalized Benders decomposition. J Optim Theory Appl 10(4):237–260
Gomory R (1960) An algorithm for the mixed integer problem. Technical report, RAND Corp. Santa

Monica, CA
Grossmann IE, Viswanathan J, Vecchietti A, Raman R, Kalvelagen E et al. (2002) Gams/dicopt: a dis-

crete continuous optimization package. GAMS Corporation Inc, Washington
Gupta OK, Ravindran A (1985) Branch and bound experiments in convex nonlinear integer program-

ming. Manag Sci 31(12):1533–1546
Gurobi (2019) Gurobi optimizer reference manual. Gurobi Optimization, LLC. https ://www.gurob i.com/

docum entat ion/8.1/refma n/index .html
Harjunkoski I, Westerlund T, Pörn R, Skrifvars H (1998) Different transformations for solving non-con-

vex trim-loss problems by MINLP. Eur J Oper Res 105(3):594–603
Hijazi H, Bonami P, Ouorou A (2013) An outer-inner approximation for separable mixed-integer nonlin-

ear programs. INFORMS J Comput 26(1):31–44
Kılınç MR, Linderoth J, Luedtke J (2017) Lift-and-project cuts for convex mixed integer nonlinear pro-

grams. Math Program Comput 9(4):499–526
Kröger O, Coffrin C, Hijazi H, Nagarajan H (2018) Juniper: an open-source nonlinear branch-and-bound

solver in Julia. arXiv preprint arXiv :1804.07332

https://www.gurobi.com/documentation/8.1/refman/index.html
https://www.gurobi.com/documentation/8.1/refman/index.html
http://arxiv.org/abs/1804.07332

1344 J. Kronqvist, R. Misener

1 3

Kronqvist J, Lundell A, Westerlund T (2016) The extended supporting hyperplane algorithm for convex
mixed-integer nonlinear programming. J Global Optim 64(2):249–272

Kronqvist J, Bernal D, Lundell A, Westerlund T (2018a) A center-cut algorithm for quickly obtaining
feasible solutions and solving convex MINLP problems. Comput Chem Eng 122:105–113

Kronqvist J, Bernal DE, Grossmann IE (2018b) Using regularization and second order information in
outer approximation for convex MINLP. Math Program. https ://doi.org/10.1007/s1010 7-018-1356-3

Kronqvist J, Lundell A, Westerlund T (2018c) Reformulations for utilizing separability when solving
convex MINLP problems. J Global Optim 71:571–592

Kronqvist J, Bernal DE, Lundell A, Grossmann IE (2019) A review and comparison of solvers for convex
MINLP. Optim Eng 20(2):397–455

Lastusilta T (2011) GAMS MINLP solver comparisons and some improvements to the AlphaECP algo-
rithm. PhD thesis. Åbo Akademi University

Lee S, Grossmann IE (2000) New algorithms for nonlinear generalized disjunctive programming. Com-
put Chem Eng 24(9–10):2125–2141

Linderoth JT, Lodi A (2011) MILP Software. https ://doi.org/10.1002/97804 70400 531.eorms 0524
Lodi A, Tanneau M, Vielma JP (2019) Disjunctive cuts for mixed-integer conic optimization. arXiv pre-

print arXiv :1912.03166
Lundell A, Westerlund T (2018) Solving global optimization problems using reformulations and signo-

mial transformations. Comput Chem Eng 116:122–134
Lundell A, Kronqvist J, Westerlund T (2016) Improvements to the supporting hyperplane optimiza-

tion toolkit solver for convex MINLP. In: XIII global optimization workshop GOW16, vol 16, pp
101–104

Lundell A, Kronqvist J, Westerlund T (2017) SHOT—a global solver for convex MINLP in Wolf-
ram Mathematica. In: Computer aided chemical engineering, vol 40, Elsevier, Amsterdam, pp
2137–2142

Lundell A, Kronqvist J, Westerlund T (2020) The supporting hyperplane optimization toolkit—a poly-
hedral outer approximation based convex MINLP solver utilizing a single branching tree approach.
Optimization (preprint, online). http://www.optim izati on-onlin e.org/DB_HTML/2018/06/6680.html

Mahajan A, Leyffer S, Linderoth J, Luedtke J, Munson T (2017) Minotaur: a mixed-integer nonlinear
optimization toolkit. Optimization (preprint, online). http://www.optim izati on-onlin e.org/DB_
FILE/2017/10/6275.pdf

Melo W, Fampa M, Raupp F (2020) An overview of MINLP algorithms and their implementation in
Muriqui Optimizer. Ann Oper Res 286(1):217–241

MINLPLib (2020) Mixed-integer nonlinear programming library. http://www.minlp lib.org/. Accessed 01
Jan 2020

Misener R, Floudas CA (2009) Advances for the pooling problem: modeling, global optimization, and
computational studies. Appl Comput Math 8(1):3–22

Misener R, Smadbeck JB, Floudas CA (2015) Dynamically generated cutting planes for mixed-integer
quadratically constrained quadratic programs and their incorporation into GloMIQO 2. Optim
Methods Softw 30(1):215–249

Modaresi S, Kılınç MR, Vielma JP (2015) Split cuts and extended formulations for mixed integer conic
quadratic programming. Oper Res Lett 43(1):10–15

Muts P, Nowak I, Hendrix EM (2020) The decomposition-based outer approximation algorithm for con-
vex mixed-integer nonlinear programming. J Global Optim 75:77–96

Nowak I, Breitfeld N, Hendrix EM, Njacheun-Njanzoua G (2018) Decomposition-based inner-and outer-
refinement algorithms for global optimization. J Global Optim 72(2):305–321

Quesada I, Grossmann IE (1992) An LP/NLP based branch and bound algorithm for convex MINLP opti-
mization problems. Comput Chem Eng 16(10–11):937–947

Raman R, Grossmann IE (1994) Modelling and computational techniques for logic based integer pro-
gramming. Comput Chem Eng 18(7):563–578

Sawaya N (2006) Reformulations, relaxations and cutting planes for generalized disjunctive program-
ming. PhD thesis, Carnegie Mellon University

Sawaya NW, Grossmann IE (2007) Computational implementation of non-linear convex hull reformula-
tion. Comput Chem Eng 31(7):856–866

Serra T (2020) Reformulating the disjunctive cut generating linear program. Ann Oper Res. https ://doi.
org/10.1007/s1047 9-020-03709 -2

Serrano F, Schwarz R, Gleixner A (2019) On the relation between the extended supporting hyperplane
algorithm and Kelley’s cutting plane algorithm. arXiv preprint arXiv :1905.08157

https://doi.org/10.1007/s10107-018-1356-3
https://doi.org/10.1002/9780470400531.eorms0524
http://arxiv.org/abs/1912.03166
http://www.optimization-online.org/DB_HTML/2018/06/6680.html
http://www.optimization-online.org/DB_FILE/2017/10/6275.pdf
http://www.optimization-online.org/DB_FILE/2017/10/6275.pdf
http://www.minlplib.org/
https://doi.org/10.1007/s10479-020-03709-2
https://doi.org/10.1007/s10479-020-03709-2
http://arxiv.org/abs/190508157

1345

1 3

A disjunctive cut strengthening technique for convex MINLP

Sherali HD, Adams WP (2013) A reformulation-linearization technique for solving discrete and continu-
ous nonconvex problems, vol 31. Springer, Berlin

Silver E, Moon I (1999) A fast heuristic for minimising total average cycle stock subject to practical con-
straints. J Oper Res Soc 50(8):789–796

Slater M (1950) Lagrange multipliers revisited. Cowles Foundation for Research in Economics, Yale Uni-
versity, Technical report

Stubbs RA, Mehrotra S (1999) A branch-and-cut method for 0–1 mixed convex programming. Math Pro-
gram 86(3):515–532

Su L, Tang L, Grossmann IE (2015) Computational strategies for improved minlp algorithms. Comput
Chem Eng 75:40–48

Su L, Tang L, Bernal DE, Grossmann IE (2018) Improved quadratic cuts for convex mixed-integer non-
linear programs. Comput Chem Eng 109:77–95

Trespalacios F, Grossmann IE (2014) Review of mixed-integer nonlinear and generalized disjunctive pro-
gramming methods. Chem Ing Tech 86(7):991–1012

Trespalacios F, Grossmann IE (2015) Improved Big-M reformulation for generalized disjunctive pro-
grams. Comput Chem Eng 76:98–103

Trespalacios F, Grossmann IE (2016) Cutting plane algorithm for convex generalized disjunctive pro-
grams. INFORMS J Comput 28(2):209–222

Türkay M, Grossmann IE (1996) Logic-based MINLP algorithms for the optimal synthesis of process
networks. Comput Chem Eng 20(8):959–978

Veinott AF Jr (1967) The supporting hyperplane method for unimodal programming. Oper Res
15(1):147–152

Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for
large-scale nonlinear programming. Math Program 106(1):25–57

Westerlund T, Petterson F (1995) An extended cutting plane method for solving convex MINLP prob-
lems. Comput Chem Eng 19:131–136

Westerlund T, Pörn R (2002) Solving pseudo-convex mixed integer optimization problems by cutting
plane techniques. Optim Eng 3(3):253–280

Zhu Y, Kuno T (2006) A disjunctive cutting-plane-based branch-and-cut algorithm for 0–1 mixed-integer
convex nonlinear programs. Ind Eng Chem Res 45(1):187–196

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	A disjunctive cut strengthening technique for convex MINLP
	Abstract
	1 Introduction
	2 Background
	2.1 Problem statement
	2.2 The extended supporting hyperplane algorithm

	3 Cut strengthening
	4 A cut strengthening algorithm
	4.1 Computational comments

	5 Computational setup
	5.1 A Convex MINLP algorithm
	5.2 Implementation and hardware

	6 Numerical results
	6.1 Comparing strong problem formulations and cut strengthening

	7 Conclusions
	Acknowledgements
	References

