A Displacement Approach to Efficient Decoding of Algebraic-Geometric Codes

Vadim Olshevsky
Department of Mathematics
Georgia State University

Abstract

Using methods originating in numerical analysis,
we will develop a unified framework for derivation
of efficient list decoding algorithms for algebraic-
geometric codes. We will demonstrate our method
by accelerating Sudan’s list decoding algorithm
for Reed-Solomon codes [22], its generalization
to algebraic-geometric codes by Shokrollahi and
Wasserman [21], and the recent improvement of
Guruswami and Sudan [8] in the case of Reed-
Solomon codes.

The basic problem we attack in this paper is
that of efficiently finding nonzero elements in the
kernel of a structured matriz. The structure of such
an nXn- matrix allows it to be “compressed” to an
parameters for some a which is usually a constant
in applications. The concept of structure is for-
malized using the displacement operator. The dis-
placement operator allows to perform matrix op-
erations on the compressed version of the matrix.
In particular, we can find a PLU-decomposition
of the original matrix in time O(an?), which is
quadratic in n for constant a.

We will derive appropriate displacement oper-
ators for matrices that occur in the context of
list decoding, and apply our general algorithm to
them. For example, we will obtain algorithms
that use O(n?¢) and O(n"/3¢) operations over the
base field for list decoding of Reed-Solomon codes
and algebraic-geometric codes from certain plane

Permission to make digital or hard copies of all or part of this work for
personal or classroom use s granted without fee previded that copies
are not madce or distributed for profit or commercial advantage and that
copics bear this notice and the tuil citation on the first page. To copy
otherwise. 1 republish, 1o post on servers or o redistribute to lists,
requires prior speeific permission andfor a fee.

STOC ‘99 Atlanta GA USA

Copyright ACM 1999 1-58113-067-8/99/05...35.00

235

M. Amin Shokroilahi

Department of Fundamental Mathematics

Bell Labs

curves, respectively, where £ is the length of the
list. Assuming that £ is constant, this gives algo-
rithms of running time O(n?) and O(n/3), which
is the same as the running time of conventional de-
coding algorithms. We will also sketch methods to
parallelize our algorithms.

1 Introduction

Matrices with different patterns of structure are
often encountered in the context of coding the-
ory. Examples include Hankel, Vandermonde, and
Cauchy matrices which arise in the Berlekamp-
Massey algorithm [2}, Reed-Solomon codes, and
classical Goppa codes [14], respectively. In most
of these applications one is interested in a certain
nonzero element in the (right-)kernel of the matrix.
This problem has been solved efficiently for each of
the above cases. Although it is obvious that these
algorithms make use of the structure of the un-
derlying matrices, this exploitation is often rather
implicit, and limited to the particular pattern of
structure.

In this paper, we apply an alternative general
method, called the method of displacement, for
efficiently computing a PLU-decomposition of a
structured matrix. Though this method has been
successfully used in other contexts such as image
processing, system theory, or interpolation (see the
surveys in [9, 13, 17]), its use in coding theory is
novel and quite powerful, as we will see below. Its
power stems from the fact that it enables one to
perform matrix operations on “compressed” ver-
sions of a structured matrix, rather than on the
matrix itself. One of the main characteristics of a
structured n X n-matrix is that its n® entries are

functions of only O(n) parameters. In many sii-
uations, these functions are rather simple, so that
it makes sense to say that the matrix can be com-
pressed to O(n) parameters. Now note that basic
operations on matrices such as Gaussian elimina-
tion use O(n®) operations because they update the
entries of the matrix O(n) times. Here and in the
sequel, an “operation” denotes one the four fun-
damental arithmetic operations in the base field.
The “running time” of an algorithm is to be under-
stood as the number of operations it performs. The
question is thus whether it is possible to perform
Gaussian elimination on the “compressed” version
of the matrix, thereby reducing the running time
of the algorithm to something close to O(n?). As
was realized by Morf [15, 16] and independently
by Bitmead-Anderson [4], the displacement idea
allows for a concise derivation of exactly such an
algorithm (though limited at that time to a special
“Toeplitz-like” structure). The details of the gen-
eral algorithm that applies to all the above men-
tioned special structured matrices {(Hankel, Van-
dermonde, Cauchy, etc.) will be carried out in
the next section. Using the general method of
displacement, we show how to compute a PLU-
decomposition of various structured matrices oc-
curring in coding theory in time O(n?). Noting
that an element in the kernel of U is then obtained
in time O(n?), this gives an algorithm of overall
running time O(n?).

To demonstrate the power of our method, we
will derive solutions to various decoding prob-
lems concerning Reed-Solomon- and algebraic-
geometric codes. These codes arguably form one
of the most powerful known classes of linear codes.
They are constructed by evaluation of certain func-
tions on an irreducible curve at some points of the
curve. The simplest case is provided by Reed-
Solomon (RS-) codes where one evaluates poly-
nomials of some bounded degree at n distinct el-
ements of the base field: these polynomials and
the elements of the fleld can be regarded as func-
tions and points on the projective line, respec-
tively. The power of AG-codes comes from the
enormous amount of freedom one has in construct-
ing them. In particular, using sophisticated se-
quences of curves over a finite field related to mod-
ular curves, one can obtain explicit sequences of
codes that surpass the Gilbert-Varshamov bound.

236

The last ten years have witnessed major devel-
opments with respect to the decoding problem for
AG-codes [11). As far as conventional decading
goes, one of the best algorithms is that of Feng-
Rao [5] which decodes AG-codes up to the designed
error-correction bound (and sometimes beyond). A
more practical version of this algorithm is given
in [20].

A basic shortcoming of all conventional decod-
ing algorithms is that their outcome is unknown if
the number of errors exceeds the error-correction
bound (d — 1)/2 of the code, where d is the mini-
mum distance of the code. Building on a sequence
of previous results [23, 3, 1], Sudan [22] was the
first to invent an efficient “list-decoding” algorithm
for RS-codes. Given a received word and an integer
¢, his algorithm returns a list of size at most £ of
codewords which have distance at most e from the
received word, where e is a parameter depending
on £ and the code. This algorithm, its subsequent
generalizations by Shokrollahi and Wasserman [21]
to algebraic-geometric codes, and the recent exten-
sion by Guruswami and Sudan [8] are among the
best decoding algorithms known in terms of the
number of errors they can correct.

The list decoding process for AG-codes consists
in the first step of computing a nonzero element
in the kernel of a certain matrix. The second step
then involves a root finding method. The latter
step is a subject of investigation of its own and
can be solved very efficiently in many cases [6], so
we will concentrate in this paper on the first step
only. This will be done by applying our general al-
gorithm in in Sections 4 and 5. Specifically, we will
for instance easily prove that decoding RS-codes of
block length » with lists of length £ can be accom-
plished in time O(n%£). This result matches that of
Roth and Ruckenstein [19], though the latter has
been obtained using completely different methods.
Furthermore, we will design a novel O(n7/3¢) algo-
rithm for list decoding of certain AG-codes from
plane curves of block length n with lists of length
£. We remark that, using other means, Hgholdt
and Refslund Nielsen [10] have obtained an algo-
rithm for list decoding on Hermitian curves which
is based on [8], but is more efficient. However, they
do not give a rigorous analysis of their algorithm
and their methods differ substantially from ours.

Our methodology also applies to erasure decod-

ing of AG-codes from plane curves to yield a new
algorithm with running time O(n"/®). Further-
more, our approach allows us to parallelize all the
algorithms discussed: they can be modified to run
in time O(n) on O(n) processors. We will sketch
this later in Section 3. Because simple processors
are becoming cheaper, this result seeras to be of
particular practical relevance.

The specific decoding problems highlighted in
this paper only serve as examples of the power of
the displacement method and are by no means a
complete list. The full paper will include further
coding theoretic problems that can be successfully
attacked using our method.

2 The Displacement Structure

Let m and n be positive integers, K be a field,
and D € K™*™ A e K", We define the dis-
placement operator V. = Vp 4: K™*% — K™MX" by
V{V) := DV —V A. The V-displacement rankof V
is defined as the rank of the matrix V(V). If this
rank is @, then V(V) can be written as GB with
G € K™**and B € K**". The pair (G, B} is then
called a V-generatorfor V. If v is small and D and
A are sufficiently simple, then the V-operator al-
lows to “compress” the matrix V to matrices with
a total of a{m + n) entries. Furthermore, one can
efficiently compute with the compressed form as
the following lemma suggests.

Lemma 2.1 Lei the mairices in DV — VA =GB
G =[gu | Gau}, B=[bn}Bia],
D= |: dl 0, :| ,A [ay *

be partitioned as
* D2 0 Ag :| ’
V= [] .

Viz
Vaz

Suppose thal vy is nonzero. Then the Schur com-

plement Vo == Vig — v]'Va1Via of V satisfies the

equation

V11
Vai

DyVo — VoA = Gy By,

where G2 = 621 - ’Ul_llgllmz and Bz B12 -

-1
Ull bIIVIZ-

A proof can be found in [18, Lemma 3.1], see also [7].
The lemma shows how to obtain an LI/-factorization

237

for V (if it exists), by operating only on the ma-
trices (G and B. For this, one only needs to know
the following well-known facts: the first column of
L below the upper right entry is given by the first
column of the Schur-complement V5, and the first
row of U/ is given by the first row of V5.

The lemma suggests an algorithm for comput-
ing an LU-decomposition of V which may not work
if the upper right entry of ¥V of any of its succes-
sive Schur complements are zero. In this situation
partial pivoting can be used. This leads to a mod-
ification of the above lemma in which we have to
assume that the matrix D is diagonal. We briefly
sketch the modification; details can be found in [17,
Sect. 3.5]. If v1; = 0 and the first column of V con-
tains a nonzero element, say at position (&, 1), then
we can consider PV instead of P, where P is the
matrix corresponding to interchanging rows 1 and
k. The displacement equation for PV is then given
by (PDPT)(PV)— PV A = PGB. Since P can be
an arbitrary transposition, for PDPT to be lower
triangular we have to assume that D is diagonal.
This explains the assumptions in the algorithm be-
low (see [17, Sect. 3.5]).

Algorithm 2.2 On input a diagonal matriz D €
K™*™ an upper triangular matrizc A € K™*", and
a Vp 4-generator (G, B) for V.€ K™ " in DV —
VA = (GB, the algorithm oulpuls a permutation
mairiz P, a lower triengular matriz L € K™%,
and an upper triangular matriz U € K™*", such
that V = PLU.

(1) Recover from the generator the first column of
V.

(2) Determine the position, say (k,1), of a
nonzero entry of V. If it does not exist, then
set the first column of L equal to [1,0]7 and
the first row of U equal to the first row of V,
and go to Step (4). Otherwise interchange the
first and the k-th diagonal entries of A and
the first and the k-th rows of G and call P
the permutation matriz corresponding to this

transposition.
(3) Recover from the generator the first row of
PV = (3132). Store [1,Viz/vn]" as the

first column of L and [v11, V2] as the first row
of U.

(4) If vy # 0, compute by Lemma 2.1 a generator
of the Schur complement Vo of BiV. If vy, =
0, then set Vi = Vo9, G9 1= Gy, and B :
Blz-

Proceed recursively with Vy which is now rep-
resented by its generator (Gz, Ba) to finally
obtain the factorization V. = PLU, where
P = P .--P, with P, being the permuta-
tion used at the k-th step of the recursion and
g = min{m,n}.

The correctness of the above algorithm and its
running time depend on steps (1) and (3). Note
that it may not be possible to recover the first row
and column of V from the matrices D, A,G, B. In
fact, recovery from these data alone is only possi-
ble if Vp 4 is an isomorphism. For simplicity we
assume in the following that this is the case. In the
general case one has to augment the (D, A, G, B)
by more data corresponding to the kernel of V,
see [17, Sect. 5].

Lemma 2.3 Suppose that steps (1) and (3) of Al-
gorithm 2.2 run in ftime Q(m) and O(n), respec-
tively. Then the total running time of that algo-
rithm is O(amn), where o is the displacement rank
of V' with respect to Vp 4.

Proovr. The proof is obvious once one real-
izes that Step (4) runs in time O{a(m + n)), and
that the algorithm is performed recursively at most
min{m, n} times. O

In this paper we are mainly concerned with find-
ing a nonzero element in the kernel of V. Once a
PLU-decomposition for V is known, such an ele-
ment can be found in time O(min{m, n}?) by the
straightforward backward substitution algorithm
for solving a homogeneous upper triangular system
of equations.

Corollary 2.4 Suppose that the matriz V €
K™*" has displacement rank o with respect to the
isomorphism Vp 4o and that V has rank less than
n. Then one can compule a nonzero element in the
kernel of V' with O(amn) operations.

3 Parallef Algorithms

The algorithm given in the last section can be cus-
tomized to run in parallel if certain additional con-

238

ditions are satisfied. We will sketch the approach
here,

To begin with, assume that the matrix A of Al-
gorithm 2.2 is equal to D. This will enable per-
forming steps (1) and (3} of that algorithm in par-
allel, as we will see below. In this case, however,
the operator Vp p is not an isomorphism anymore,
so that additional work is necessary to recover the
matrix V from the data D, G, B.

The additional data consists of the diagonal en-
tries vi1, ¥22,..., Uny Of the matrix V. During the
course of the algorithm these values are updated
to the diagonal entries of the Schur-complements.

The first column of V is obtained in the
following way: first, compute the first column
(715---1¥m)' of GB. Using m processors, this
takes O(«) time, where « is the displacement
rank of V with respect to Vpp. This vector
equals the first column of DV — V D, i.e., it equals
(0, (d2—d1)vai, . . ., (dn — d1) 1) T, where we have
denoted the diagonal entries of D by dy,...,dn.
From this, one can compute the first column of V
with m processors in constant time. If the entry vy
is nonzero, then one can in the same way as above
compute the first row of V and proceed with the
algorithm. Additional care has to be taken, how-
ever, when v1; = 0. The somewhat lengthy, but
straightforward details will be presented in the fi-
nal version of the paper.

The algorithm then proceeds exactly in the
same way as Algorithm 2.2 to obtain a PLU-
decomposition. Since solving a homogeneous up-
per triangular system of linear equations can be
easily customized to run in parallel linear time,
this gives an algorithm for computing a nontriv-
ial element in the kernel of V in time O(an) on
O(n) processors.

4 List Decoding of Reed-Solomon Codes

In the following we will be dealing with matrices
that have a repetitive pattern. The following no-
tation will help us to concisely describe them. Let
®, 01,4, 011 M — K be functions from a set M
into a field K, and let m,,..., m, be elements in
M. We define

le1(m), - 0ty m) =

p1(m1) @a(ma) (M)
e1(mz) @2(ma) p1(ma)
r(mn) $alma) o pulmn)

Whenever my, ..., my, are clear from the context,
we will replace the subscript (m1,...,my,) by 1, 7.
Further, we denote the diagonal matrix with diag-
onal entries ¢(m), ..., @(my,) by diage]i n.

In [22] Sudan describes an algorithm for list de-
coding of RS-codes which we will briefly describe
here. Let Fy[z]<x denote the space of polynomials
over F, of degree less than k&, and let z1,...,2,
denote distinct elements of Iy, where £ < n. The
image of the morphism 7: Fy[z])<x — F; mapping a
polynomial f to the vector v:= (f(z1),..., f(za))
is a linear code over F, of dimension k¥ and mini-
mum distance n—k+1. Suppose the vector v is sent
over a communication channel and the vector u :=
(y1,--.,yn) is received. If the Hamming distance
between u and v is at most (n — &)/2, ther con-
ventional decoding algorithms like the Berlekamp-
Massey algorithm can decode u to the correct code-
word v. If the number e of errors is larger than
(n — k)/2, then Sudan’s algorithm compiles a list
of at most £ = £(e) codewords which contains v,
The algorithm consists of two steps. Let B :=
[(n+1)/(£+ 1) + £(k — 1)/2 — 1]. The first step
uses Hermite interpolation to compute a bivariate
polynomial F = Y%, Fi(z)y* with deg F; < B—ik
and such that F(z;,3) = 0 forall t = 1,...,n.
The second step computes the roots of F which
are of the form y — g(z), g € Fy[z]<k, and outputs
those ¢ such that y(g¢) and « have distance at most
e. The relationship between £ and e is given by
e < n — B. There are efficient algorithms for solv-
ing the second step using Hensel lifting [6, 19]. In
the following we will concentrate on the problem
of efficiently computing the polynomial F'.

The polynomial F corresponds to a nonzero el-
ement in the kernel of a matrix V with a repeti-
tive structure which we will describe below. Let
dp,...,ds > 0 be defined by d; := B — ik. For each
1=0,...,blet V; be the matrix

V;:: ylxdia"'vy'zt:?yll
'3

and define the matrix V € K"%(n+1) with the block

239

decomposition

V=(WVe|Veier |-+ | V1 | Vo). (1)

(Here and for the rest of this section the sub-
script “1,n” will always refer to the points
(z1,¥1)y..+; (Tn,yn}.) Let ¢ be a nonzero vector
such that Vr = 0. Then, interpreting the entries
of ¢ as coefficients of the F; (starting from Fy down
to Fp and reading the coefficients from high pow-
ers to low powers of z), this gives a polynomial F
as desired. Using the displacement structure ap-
proach, we can easily develop an algorithm with
running time O{¢n?) for computing F. Assuming
that £ is a constant (a reasonable assumption in ap-
plications), this gives an algorithm with a running
time that is quadratic in n.

For computing F we will first prove that V
has displacement rank at most £+ 1. Let D :=
diaglz], » (i.e., D is the diagonal matrix with
diagonal entries zy,...,z,). Further, let A €
K(n+1)x(n+1) he the upper shift matriz of format
n+1,i.e.,

010 - 00
0oo0o1---00
A= M :
o000 --120
000 ---01
000 - 00

Let

G= [ybxd‘, ye—l(xdt_l - y)’ " '!y(mdl - y)’
290 _ y] € Knx(£+1)
In

(2)

and

B=(Be| Bey | -++| By | By) € KEHD*(n+),
(3)
where each B; is an (€4 1) x (d;+ 1)-matrix whose
only nonzero position is at (41 —1,1}. Then, one
easily proves that

DV -VA=GB. (4)
Hence, V has displacement rank at most £4-1 with
respect to Vp 4. We can now invoke the general
algorithm 2.2 to compute a PLU-decomposition of
V using only the matrices D, G, B. (In fact, since

we are only interested in nonzero elements in the
kernel of V, it suflices to compute the matrix U
only.) To apply Algorithm 2.2 we need to recover
the first row and the first column of V from the
first row and the first column of GB. The next
algorithm shows how to do this in the case where
all the z; are nonzero (which is equivalent to Vp 4
being an isomorphism).

Algorithm 4.1 On input a diagonal matriz D
with diagonal entries zi,...,Zm,, all of them
nonzero, a matric G € K™*® as in (2), and a
matriz B € K**X(n+1) g5 in (3), this algorithm
compules the first row and the first column of the
matriz V given by DV — VA = GB, where A is
the upper shift matriz of format m + 1.

(1) Compute the first row (ry,...,7m41) and the
first column (v1,...,7)" of GB.

(2) Fori=1,...,m set v; 1= v;/z;.

(3) Setey :=wvy. Fori=2,...,m+1 set ¢ :=
(ri+ci1)/2:.

(4) Output row {c1,...,Cms+1) and column
(v1y. o vm)T.

Proposition 4.2 The above algorithm correctly
computes its oulput with O(dm) operations in the
field K.

Proor. Correctness of the algorithm follows
immediately from the following observation: let
(c1y.--y€m+1) and (e1,v,...,0,) 7 be the first row
and the first column of V, respectively. Then

DV - VA=
TiC1 T2 — € T1Cm41 — Cm
Uy * *
1
TmUm * *

where the »’s denote elements in K. As for the
running time, observe first that computing the first
row and first column of GB requires at most 2dm
operations over K. Further, Step (2) and (3) re-
quire at most m and 2m operations, respectively.
O

Using the above result we obtain the following
general algorithm for list decoding of RS-codes for
the case where none of the z; is zero.

240

Algorithm 4.3 On input (2,)y ey (20, 4n) €
K% and integers dy > dy,...,ds such that
Ef=0(d,- +1) = n+ 1 and such that none of the
z; is zero, this algorithm computes a nonzero solu-
tion of the homogeneous system of linear equations
given by Vr =0, where V is given in (1).

(1) Set Gy :=G, By .= B, U := 0, where G and
B are given in (2) and (3) respectively.

(2) Fori=1,...,n do

(a) Let D; be the diagonal matriz with diago-
nal entries z;,...,2,. Use Algorithm J.1
with input D;, G;, and B; to compute col-
umn ¢ = (61, cey cﬂ——i+l)T

If ¢ is nonzero, then find location k such
that ci # 0. Interchange rows k and 1
of ¢ and of G;. If ¢ is zero, then perform
the nezt step, increment i by 1 and go to

Step (a).
(c) Use Algorithm 4.1 with input D;, G; and
B; to compute row v = (ry,...,rn42-i).

Write v in i-th row of matriz U starting
al position i.

Forj=2,...,n—1+4+ 1 replace row j of
G; by —c;j/cy times the first row plus the
j-th row. Set G4 as the mairiz formed
from G; by deleting the first row.

(d)

For j = 2,...,n — i+ 2 replace the j-
th column of B; by —r;/c| times the first
column plus the j-th column. Set B,y as
the matriz formed from B; by deleting the
first eolumn.

(3) Find nonzero solution of Ur = 0 and output .

Theorem 4.4 The above algorithm correctly com-
putes its output with O(fn?) operations over the
field K.

Follows at once from Corollary 2.4 and

a

The performance of the algorithm can be fur-
ther enhanced by the following observation: since
we are only interested in a nonzero element in the
kernel of V, we can stop the algorithm, as soon as
we find a zero element in the diagonal of the ma-
trix /. A zero element on the main diagonal of
U is oblained after at most rk(V) steps. Hence,

ProorF.
Proposition 4.2.

the running time of the algorithm with this “early
abort” strategy is O(nérk(V)).

We further remark that the algorithm can be
modified to deal with the case that one z; is zero
as well. One way to carry this out is described
below. We may w.l.o.g. assume that z; = 0. In
this case, deletion of the first row of the matrix V
yields another matrix V of the form given in (1)
in which none of the z; is zero. Algorithm 4.3
computes for V an upper triangular matrix U such
that V = PLU for some permutation matrix P
and some nonsingular lower triangular matrix L.
Let U/ be the matrix whose first row is that of V,
and whose remaining rows are those of U. It is
then obvious that there is a permutation matrix P
and a nonsingular lower triangular matrix L such
that V = PLU. Hence, a vector r satisfies Vz = 0
iff it satisfies Uz == 0. Because of the structure of
U, one can find such a nonzero vector ¢ in time

O(n?).

5 List Decoding of Algebraic-Geometric Codes

In [21] the authors generalize Sudan’s algo-
rithm [22] to algebraic-geometric (AG-) codes. We
briefly discuss this generalization. Let A’ be an ir-
reducible algebraic curve over the finite field F,,
let @, Py,..., P, be distinct Fj-rational points of
X, and let L(a@Q) denote the linear space of the
divisor «(), i.e., the space of all functions in the
function field of X’ that have only a pole of order at
most « at . The (one-point) AG-code associated
to these data is then defined as the image of the
F,-linear map L(aQ) — Fy mapping a function f
to the vector (f(P1),..., f(FPy)). It is well known
that this linear code has dimension £ > o~ g+ 1
and minimum distance d > n — «, where g denotes
the genus of the curve. Suppose that we want to
decode this code with a list of length at most £. Let
B = r("+1)/(£+1)+ea/2+g_ 1-| Let Pl Py
t = —g+1, be elements of L{BQ) with strictly
increasing pole orders at Q. Let (y1,...,u,) be
the received word. The algorithm in [21] first finds
functions wug,...,ue with u; € L((8 — ia)Q) such
that >, u,—(Pj)y;: =0 for all 1 € 7 < n. This step
is accomplished by computing a nonzero element
in the kernel of the matrix

241

—

Vv } ywal---ywl}

In

(3)
where 5; = f — joo — g+ 1. To simplify the dis-
cussions, we assume that there are two functions
@, ¥ € L(BQ) such that all the ¢; are of the form
©*#* and such that the order of poles at Q of ¢ is
smaller than that of 3. Further, we assume that
 does not vanish at any of the points P;,..., Py,
We remark that the method described below can
be modified to deal with a situation in which any
of the above assumptions is not valid.

Let d be the order of poles of ¢ at . Then
it is easily seen that any element of L(3Q) is of
the form ®4® where 0 < & < d. Now we divide
each of the blocks of the matrix V' into subblocks
in the following way: by changing the order of the
columns, we write the ¢-th block of V in the form

[y %% -y p® [-+ | y' 0™ -y

By the above remarks, s < d. Let now D be the
diagonal matrix diag[¢]) », and let A be the upper
shift matrix of format n+ 1. Then in a similar way
as in the last section one sees that there is a ma-
trix G €]E'[;x‘“ and a matrix B €]F'g’xm such that
DV —V A =GB, hence is of rank at most d¢. Fur-
thermore, Algorithm 4.1 shows how to recover the
first row and the first column of V using the ma-
trices D, A,G, B. Now we can use Algorithm 4.3
to prove the following theorem.

yeps, -y ‘

Theorem 5.1 Algorithm 4.3 applied to the ma-
trices D, V, A, G, B above computes a nonzero el-
ement in the kernel of V with O(n®df) operations
inF,.

The same remarks at the end of the last section also
apply here. In particular, an early abort strategy
reduces the running time to O(nrk(V }d¢).

To give a final estimate of the result, we need to
relate d and n. This depends on the specific struc-
ture of the curve and the divisor used in the defi-
nition. For instance, for Hermitian function fields
defined over F. by the equations Xt =YI+Y
and for @} defined as the common pole of the func-
tions X and Y, the parameter d equals g+ 1, while
the genus g is O(¢?) and n = O(¢°). As a result,

the algorithm uses O(n"/3¢) F,-operations. Note
that for £ =1, i.e., for unique decoding, this is ex-
actly the running time of the algorithm presented
n [12]. A similar assertion can be obtained for cer-
tain codes from general plane algebraic curves with
many points.

We remark that the same method as above
can be applied to efficient erasure decoding of
AG-codes. Suppose that the received word u is
erased in some positions and denote by @,...,Q,
the points of the curve which correspond to the
non-erased positions of u. Let (y1,...,y,) denote
the vector consisting of the received coordinates
of y ordered in correspondence to the ordering
@1,...,Qs We assume that sis at least n —d + 1,
where d is the minimum distance of the code.
This guarantees that there is exactly one code-
word whose coordinates at the points Qq,...,Q,
are equal to those of u at these points. As above
suppose that the code is constructed by evaluation
of functions from L(a@)) and that ¢y,.. ., ¢; form
a basts for L{aQ). Define the matrix

V=lp

Let ()\1, ey At)T
linear equations

“ilg,,..q.

be the solution to the system of

V(Ah"':’\t)-r = (y1,...,y3)T.

Then the decoded codeword is the image of
i, diwi under the evaluation map. Our aim
is thus to find Ay,...,A;. Our method above
computes a PLU-decomposition for V in time
O(std). From this, we can compute the }; in
time O(max{s?, t2}). The desired codeword is then
computed using O(tn) operations in F,.

Theorem 5.2 Lel C be a one-point AG-code of di-
mension k and block length n built from the divisor
(). Assume that there are two functions ¢ and 9
such that for any m any function in L{m@Q) can
be written as a polynomial in ¢ and v¥. Assume
further that the order of poles of ¢ at () isd. Then
for any & less than the minimum distance of the
code any pattern of é erasures can be decoded with
O(kd(n — 8)) operations.

242

6 The Improved Algorithm

In [8] the authors describe an extension of algo-
rithms presented in [22] and {21] in which they use
a variant of Hermite interpolation rather than a
Lagrange interpolation. In the case of RS-codes,
the input to the algorithm is a set of » points
(¢i,y:i) in the affine plane over F,, and parame-
ters r, k, and £. Let 8 be the smallest integer
such that (£+1)8 > (4")k + ("IY)n. The out-
put of the algorlthm is a nonzero bivariate polyno-
mial G = Gi(z)y* such that deg G; < 8 — ik,
Gz, y) = 0 for all © < n, and G(z + z;,y + y,)
does not contain any monomial of degree iess than
r. Such a polynomial G corresponds to a nonzero
element in the kernel of a certain matrix V which
we will describe below. Let ¢ < n be a fixed pos-
itive integer. For 0 < ¢ < rand 0 < j < £ let

e E‘é’*")"(ﬁ"‘“’ be the matrix having (g, v)-
entry equal to (¥)z; ™", where 0 < u < r ~ i and
0 < v < 8- Jk Now define the matrix V; as
a block matrix with r block rows and £+ 1 block
columns, with block entry (2, 7) equal to (f)y{"Vtz
The matrix V then equals

(6)

V has m:= ("T')n rows and s := (£+1)8 - ()&
columns (and s > m). Let C be the lower shift
matrix of format s, i.e., C is the transpose of the
upper shift matrix of format s introduced in Sec-
tion 4. Further, let J! denote the i x i-Jordan block
having z; in its main diagonal and 1’s on its lower
sub-diagonal. Let J* be the block diagonal matrix
with block diagonal entries Jf, ..., JI. Let J be the
block diagonal matrix with block diagonal entries
JY,...,J% Then, a quick calculation shows that
JV — V(' has rank at most £+ 1. It is now tempt-
ing to apply the general results of Section 2 to this
situation. However, .J is not a diagonal matrix. To
remedy this situation, we need the following simple
result.

Proposition 8.1 Let the matrices V € K™*" and
W € K™* have displacement ranks ry andry with
respect to Vg 4 and V 4 g, respectively. Then VW

has displacement rank at most ry + r2 with re-
spect to Vpgp. Moreover, a generator for VW
can be obtained from the generators of V and W
with O({r) + ro)n?) sequential time, and in time
O{{r1+2)n) on O(n) processors.

The proof of this result follows trivially from the
definitions. The assertion on the running time fol-
lows from the sequential and parallel running times
of the trivial matrix multiplication algorithms.

Let F be a suitable extension of F, having at
least s elements, and denote by W the (s X s)-
Vandermonde matrix whose rows consist of pow-
ers of these elements. Let A denote the diagonal
matrix having these elements as its diagonal en-
tries. To avoid tedious arguments, we assume that
none of the diagonal entries of A are zero. Then W
has displacement rank one with respect to V 7.
Thus, the previous proposition shows that WV
has displacement rank < €4 2 with respect to
Va 7. We can now apply Algorithm 4.3 to obtain
a PLU-decomposition of WV T, where P, L € F***
and U € F¥*™_ By Corollary 2.4 and Proposi-
tion 4.2 this takes O(fsm) operations over the field
F. Further, we obtain V = UTPTLT(W-1)T. To
find a nontrivial element v in the kernel of V, we
first compute a nontrivial element u in the kernel
of UT; this can be achieved with O(m?) opera-
tions over the field F. Next we solve the system
of linear equations LTw = Pu. Since LT is upper
triangular and of full rank m, this takes O(m?) op-
erations. The desired element v is then obtained
as v = W7 w, and its computation takes O(s?) op-
erations. In total, this gives a sequential algorithm
with running time O(s%f) over the field F. Each
operation in F uses O(log2(s)) operations over the
base field F,. Hence, we obtain an algorithm with
running time O(s?logZ(s)f). In the algorithm of
Guruswami and Sudan 8] s equals O{r?n). Fur-
thermore n and g have the same order of magni-
tude. As a result, we obtain an algorithm with
running time O(n*r*log,(r)£). In many practical
situations r and £ are constant; hence this gives an
algorithm with running time O(n?).

We remark that the above algorithm can be
modified to possibly avoid computations in the ex-
tension field F. This is done by using a block diag-
onal matrix for W whose blocks are Vandermonde
matrices of sizes given by the blocks of the ma-

243

trix V, i.e., given by the blocks of lengths § — jk,
0 < j < £. If none of these sizes exceeds the size g
of the base field, then there is no need for switching
to an extension field.

The same methodology as above car be applied
to obtain a parallel algorithm for computing a non-
trivial element in the kernel of the matrix V given
in (1). Choose n + 1 distinct elements from F, {or
an extension thereof) and denote by W the Vander-
monde matrix corresponding to these elements and
by A the diagonal matrix having these elements as
its diagonal entries. Further, let C denote the up-
per shift matrix of format n + 1, and let D denote
the diagonal matrix having entries zi,...,2,, see
Section 4. As usual, we assume that D and A are
invertible. Since V has displacement rank < €41
with respect to Vp ¢ (see (4)), and W has dis-
placement rank one with respect to V4 <7, Propo-
sition 6.1 proves that WV T has displacement rank
< £+ 2 with respect to Va p, and that generators
of this operator can be calculated in time O({n)
on O(n) processors. Using results of Section 3, we
see that we can compute a PLU-decomposition of
WVT in time O(fn) on O(n) processors. It is now
easy to see that from this we can compute a non-
trivial element in the kernel of V' in time O(n) on
O(n) processors. The final algorithm is a parallel
algorithm that computes a nontrivial element in
the kernel of the matrix V in time O({n) on O(n)
Processors.

7 Open Questions and Future Work

In this paper we have introduced a general method
originating from numerical analysis for efficient list
decoding of AG-codes. Our algorithm computes
a PLU-decomposition of a given dense structured
{n x m)-matrix in time close to O(n?), where close-
ness depends on the so-called displacement rank
of the matrix. The paper discussed three applica-
tions, that of effictent list decoding of RS-codes,
of AG-codes, and efficient erasure decoding of AG-
codes. There are many more applications of this
method to coding theoretic problems, like the the
improved algorithm of [8] for AG-codes, and par-
allel algorithms for improved list decoding of RS-
codes, to name a few. These and other applica-
tions are in preparation and some of them will be
included in the final version of the paper.

References

[1] S. Ar, R. Lipton, R. Rubinfeld, and M. Su-
dan. Reconstructing algebraic functions from
mixed data. In Proc. 33rd FOCS, pages 503~
512, 1992.

(2] E.R. Berlekamp. Algebraic Coding Theory.
McGraw-Hill, New York, 1968.

(3] E.R. Berlekamp. Bounded distance + 1
soft decision Reed-Solomon decoding. [EEFE
Trans. Inform. Theory, 42:704-720, 1996.

[4] R. Bitmead and B. Anderson. Asymptotically
fast solution of Toeplitz and related systems
of linear equations. Linear Algebre and its Ap-
plications, 34:103-116, 1980.

[5] G.L. Feng and T.R.N. Rao. Decoding
algebraic-geometric codes up to the designed
minimum distance. IFEF Trans. Inform. The-
ory, 39:37-45, 1993.

[6] S. Gao and M.A. Shokrollahi. Computing
roots of polynomials over function fields of
curves. Preprint, 1998.

[7] 1. Gohberg and V. Olshevsky. Fast state-space
algorithms for matrix Nehari and Nehari-
Takagi interpolation problems. Integral Equa-
tions and Operator Theory, 20:44-83, 1994.

[8] V. Guruswami and M. Sudan. Improved
decoding of Reed-Solomon and algebraic-
geometric codes. In Proceedings of the 39th
IEEE Symposium on Foundations of Com-
puter Science, 1998.

[9] G. Heinig and K. Rost. Algebraic Meth-
ods for Toeplitz-like matrices and operators,
volume 13 of Operator Theory. Birkhiuser,
Boston, 1984,

[10] T. Hgholdt and R. Refslund Nielsen. Decod-
ing Hermitian codes with Sudan’s algorithm.
Preprint, Denmark Technical University, 1999.

[11] T. Hpholdt and R. Pellikaan. On the decoding
of algebraic-geometric codes. IEEF Trans. In-
form. Theory, 411:1589-1614, 1995.

(12] J. Justesen, K.J. Larsen, H.E. Jensen, and
T. Hgholdt. Fast decoding of codes from alge-
braic plane curves. TEFE Trans. Inform. The-
ory, 38:111-119, 1992.

244

(13] T. Kailath and A.H. Sayed. Displacement
structure: Theory and applications. STAM Re-
view, 37:297-386, 1995,

[14] F.J. MacWilliams and N.J.A. Sloane. The
Theory of FError-Correcting Codes. North-
Holland, 1988.

[15] M. Morf. Fast algorithms for multivariable
systems. PhD thesis, Stanford University,
1974.

[16] M. Morf. Doubling algorithms for Toeplitz
and related equations. In Prceedings of IEEFE
Conference on Acoustics, Speech, and Signal
Processing, Denver, pages 954-959, 1980.

[17] V. Olshevsky. Pivoting for
tured matrices with applications.
http://www.cs.gsu.edu/ " matvro, 1997.

{18] V. Olshevsky and V. Pan. A superfast state-
space algorithm for tangential Nevanlinna-
Pick interpolation problem. In Proceedings of
the 39th IEEE Symposium on Foundations of
Computer Science, pages 192-201, 1998,

[19] R. Roth and G. Ruckenstein. Efficient de-
coding of reed-solomon codes beyond half the
minimum distance. In Prceedings of 1998
EIlI International Symposium on Information
Theory, pages 56-56, 1998.

[20] S. Sakata, J. Justesen, Y. Madelung, H.E.
Jensen, and T. Hgholdt. Fast decoding of
algebraic-geometric codes up to the designed
minimum distance. IEEE Trans. Inform. The-
ory, 41:1672-1677, 1995.

[21] M.A. Shokrollahi and H. Wasserman. De-
coding algebraic-geometric codes beyond the
error-correction bound. Proceedings of the
30th Annual ACM Symposium on Theory of
Compuling, pages 241-248, 1998.

[22] M. Sudan. Decoding of Reed-Solomon codes
beyond the error-correction bound. .J. Compl.,
13:180-193, 1997.

[23] L.R. Welch and E.R. Berlekamp. Error cor-
rection for algebraic block codes. U.S. Patent
4,633,470, issued Dec. 30, 1986.

struc-

