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Abstract 

Using methods originating in numerical analysis, 
we will develop a unified framework for derivation 
of efficient list decoding algorithms for algebraic- 
geometric codes. We will demonstrate our method 
by accelerating Sudan’s list decoding algorithm 
for Reed-Solomon codes [22], its generalization 
to algebraic-geometric codes by Shokrollahi and 
Wasserman [21], and the recent improvement of 
Guruswami and Sudan [8] in the case of Reed- 
Solomon codes. 

The basic problem we attack in this paper is 
that of efficiently finding nonzero elements in the 
kernel of a structured matrix. The structure of such 
an n x n- matrix allows it to be “compressed” to an 
parameters for some (Y which is usually a constant 
in applications. The concept of structure is for- 
malized using the displacement operator. The dis- 
placement operator allows to perform matrix op 
erations on the compressed version of the matrix. 
In particular, we can find a PLU-decomposition 
of the original matrix in time O(cun’), which is 
quadratic in n for constant (Y. 

We will derive appropriate displacement oper- 
ators for matrices that occur in the context of 
list decoding, and apply our general algorithm to 
them. For example, we will obtain algorithms 
that use O(&) and O(n7/3!) operations over the 
base field for list decoding of Reed-Solomon codes 
and algebraic-geometric codes from certain plane 

curves, respectively, where e is the length of the 
list. Assuming that e is constant, this gives algo- 
rithms of running time O(n’) and O(n7/s), which 
is the same as the running time of conventional de- 
coding algorithms. We will also sketch methods lo 
parallelize our algorithms. 

1 Introduction 

Matrices with different patterns of structure are 
often encountered in the context of coding the- 
ory. Examples include Hankel, Vandermonde, and 
Cauchy matrices which arise in the Berlekamp 
Massey algorithm [2], Reed-Solomon codes, and 
classical Goppa codes [14], respectively. In most 
of these applications one is interested in a certain 
nonzero element in the (right-)kernel of the matrix. 
This problem has been solved efficiently for each of 
the above cases. Although it is obvious that these 
algorithms make use of the structure of the un- 
derlying matrices, this exploitation is often rather 
implicit, and limited to the particular pattern of 
structure. 

In this paper, we apply an alternative general 
method, called the method of displacement, for 
efficiently computing a PLU-decomposition of a 
structured matrix. Though this method has been 
successfully used in other contexts such as image 
processing, system theory, or interpolation (see the 
surveys in [9, 13, 17]), its use in coding theory is 
novel and quite powerful, as we will see below. Its 
power stems from the fact that it enables one to 
perform matrix operations on “compressed” ver- 
sions of a structured matrix, rather than on the 
matrix itself. One of the main characteristics of a 
structured n. x n-matrix is that its n2 entries are 
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functions of only O(n) parameters. In many sit- 
uations, these functions are rather simple, so that 
it makes sense to say that the matrix can be com- 
pressed to O(n) parameters. Now note that basic 
operations on matrices such as Gaussian elimina- 
tion use O(n3) operations because they update the 
entries of the matrix O(n) times. Here and in the 
sequel, an “operation” denotes one the four fun- 
damental arithmetic operations in the base field. 
The “running time” of an algorithm is to be under- 
stood as the number of operations it performs. The 
question is thus whether it is possible to perform 
Gaussian elimination on the “compressed” version 
of the matrix, thereby reducing the running time 
of the algorithm to something close to O(n’). As 
was realized by Morf [15, 161 and independently 
by Bitmead-Anderson [4], the displacement idea 
allows for a concise derivation of exactly such an 
algorithm (though limited at that time to a special 
“Toeplitz-like” structure). The details of the gen- 
eral algorithm that applies to all the above men- 
tioned special structured matrices (Hankel, Van- 
dermonde, Cauchy, etc.) will be carried out in 
the next section. Using the general method of 
displacement, we show how to compute a PLLI- 
decomposition of various structured matrices oc- 
curring in coding theory in time O(n’). Noting 
that an element in the kernel of U is then obtained 
in time O(n’), this gives an algorithm of overall 
running time O(n2). 

To demonstrate the power of our method, we 
will derive solutions to various decoding prob- 
lems concerning Reed-Solomon- and algebraic- 
geometric codes. These codes arguably form one 
of the most powerful known classes of linear codes. 
They are constructed by evaluation of certain func- 
tions on an irreducible curve at some points of the 
curve. The simplest case is provided by Reed- 
Solomon (RS-) codes where one evaluates poly- 
nomials of some bounded degree at n distinct el- 
ements of the base field: these polynomials and 
the elements of the field can be regarded as func- 
tions and points on the projective line, respec- 
tively. The power of AG-codes comes from the 
enormous amount of freedom one has in construct- 
ing them. In particular, using sophisticated se- 
quences of curves over a finite field related to mod- 
ular curves, one can obtain explicit sequences of 
codes that surpass the Gilbert-Varshamov bound. 

The last ten years have witnessed major devel- 
opments with respect to the decoding problem for 
AG-codes [ll]. As far as conventional decoding 
goes, one of the best algorithms is that of Feng- 
Rao [5] which decodes AG-codes up to the designed 
error-correction bound (and sometimes beyond). A 
more practical version of this algorithm is given 
in [20]. 

A basic shortcoming of all conventional decod- 
ing algorithms is that their outcome is unknown if 
the number of errors exceeds the error-correction 
bound (d - 1)/2 of the code, where d is the mini- 
mum distance of the code. Building on a sequence 
of previous results [23, 3, 11, Sudan [22] was the 
first to invent an efficient “list-decoding” algorithm 
for RS-codes. Given a received word and an integer 
e, his algorithm returns a list of size at most e of 
codewords which have distance at most e from the 
received word, where e is a parameter depending 
on L’ and the code. This algorithm, its subsequent 
generalizations by Shokrollahi and Wasserman [21] 
to algebraic-geometric codes, and the recent exten- 
sion by Guruswami and Sudan [8] are among the 
best decoding algorithms known in terms of the 
number of errors they can correct. 

The list decoding process for AG-codes consists 
in the first step of computing a nonzero element 
in the kernel of a certain matrix. The second step 
then involves a root finding method. The latter 
step is a subject of investigation of its own and 
can be solved very efficiently in many cases [6], so 
we will concentrate in this paper on the first step 
only. This will be done by applying our genera1 al- 
gorithm in in Sections 4 and 5. Specifically, we will 
for instance easily prove that decoding RS-codes of 
block length n with lists of length ! can be accom- 
plished in time O(n*!). This result matches that of 
Roth and Ruckenstein [19], though the latter has 
been obtained using completely different methods. 
Furthermore, we will design a novel O(n7&?) algo- 
rithm for list decoding of certain AG-codes from 
plane curves of block length n with lists of length 
e. We remark that, using other means, Htiholdt 
and Refslund Nielsen [lo] have obtained an algo- 
rithm for list decoding on Hermitian curves which 
is based on [8], but is more efficient. However, they 
do not give a rigorous analysis of their algorithm 
and their methods differ substantially from ours. 

Our methodology also applies to erasure decod- 
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ing of AG-codes from plane curves to yield a new 
algorithm with running time O(n713). Further- 
more, our approach allows us to parallelize all the 
algorithms discussed: they can be modified to run 
in time O(n) on O(n) processors. We will sketch 
this later in Section 3. Because simple processors 
are becoming cheaper, this result seems to be of 
particular practical relevance. 

The specific decoding problems highlighted in 
this paper only serve as examples of the power of 
the displacement method and are by no means a 
complete list. The full paper will include further 
coding theoretic problems that can be successfully 
attacked using our method. 

2 The Displacement Structure 

Let m and n be positive integers, I( be a field, 
and D E IPx”, A E KnXn. We define the dis- 
placement operator V = V&z,: I‘?‘x” --t Kmxn by 
V(V) := DV-VA. The V-displacement rankof V 
is defined as the rank of the matrix V(V). If this 
rank is (Y, then V(V) can be written as GB with 
G E IPx” and B E Kaxn. The pair (G, B) is then 
called a V-generator for V. If (Y is small and D and 
A are sufficiently simple, then the V-operator al- 
lows to “compress” the matrix V to matrices with 
a total of ~(m + n) entries. Furthermore, one can 
efficiently compute with the compressed form as 
the following lemma suggests. 

Lemma 2.1 Let the matrices in DV - VA = GB 
be partitioned as 

Suppose that u,, is nonzero. Then the Schur com- 
plement V, := V& - v~‘V~~V,~ of V satisfies the 
equation 

DzVz - VzAz = GzB2, 

A proof can be found in [18, Lemma 3.11, see also [7]. 
The lemma shows how to obtain an U-factorization 

for V (if it exists), by operating only on the ma- 
trices G and B. For this, one only needs to know 
the following well-known facts: the first column of 
L below the upper right entry is given by the first 
column of the Schur-complement Vz, and the first 
row of U is given by the first row of VZ. 

The lemma suggests an algorithm for comput- 
ing an M-decomposition of V which may not work 
if the upper right entry of V of any of its succes- 
sive Schur complements are zero. In this situation 
partial pivoting can be used. This leads to a mod- 
ification of the above lemma in which we have to 
szsume that the matrix D is diagonal. We briefly 
sketch the modification; details can be found in [17, 
Sect. 3.51. If u,, = 0 and the first column of V con- 
tains a nonzero element, say at position (k, l), then 
we can consider PV instead of P, where P is the 
matrix corresponding to interchanging rows 1 and 
k. The displacement equation for PV is then given 
by (PDPT)(PV) - PVA = PGB. Since P can be 
an arbitrary transposition, for PDPT to be lower 
triangular we have to assume that D is diagonal. 
This explains the assumptions in the algorithm be- 
low (see [17, sect. 3.51). 

Algorithm 2.2 On input a diagonal matrix D E 
KmXm, an upper triangular matrix A E K”‘“, and 
a vD,A-geneTator (G, B) for V E KmX” in DV - 
VA = GB, the algorithm outputs a permutation 
matrix P, a lower triangular matriz L E Km’“, 
and an upper triangular matrix U E Kmxn, such 
that V = PLU. 

(1) 

(2) 

(3) 

Recover from the generator the first column of 

V. 

Determine the position, say (k, l), of o 

nontem entry of V. If it does not exist, then 
set the first column of L equal to [l,OIT and 
the first row of U equal to the first row of V, 
and go to Step (4). Otherwise interchange the 
first and the k-th diagonal entries of A and 
the first and the k-th rows of G and call PI 
the permutation matrix corresponding to this 

transposition. 

Recover from the genemtor the first row of 
P,v =: (;2; ;2;). Store [I, V&lJT as the 
first column of L and [v,l, V,z] (IS the first row 
oju. 
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(4) 

(5) 

Ifull # 0, compute by Lemma 2.1 a generator 
of the Schur complement V, of P,V. If v1, = 
0, then set VQ := Vzz, Gz := Gzl, and Bz := 

62. 

Proceed recursively with Vz which is mm rep- 
resented by its generator (Gz,&) to finally 
obtain the factorization V = PLU, where 
P = P1 Pw with Pk being the permuta- 
tion used at the k-th step of the recursion and 
P = min{m, n}. 

The correctness of the above algorithm and its 
running time depend on steps (1) and (3). Note 
that it may not be possible to recover the first row 
and column of V from the matrices D, A, G, B. In 
fact, recovery from these data alone is only possi- 
ble if VD,.A. is an isomorphism. For simplicity we 
assume in the following that this is the case. In the 
general case one has to augment the (D, A, G, B) 
by more data corresponding to the kernel of 0, 
see [17, Sect. 51. 

Lemma 2.3 Suppose that steps (1) and (3) of Al- 
gorithm 2.2 run in time O(m) and O(n), respec- 
tively. Then the total running time of that algo- 
rithm is O(amn), where cy is the displacement rank 
of V with respect to VD,A. 

PROOF. The proof is obvious once one real- 
izes that Step (4) runs in time O(cx(m + n)), and 
that the algorithm is performed recursively at most 
min{m, n} times. II 

In this paper we are mainly concerned with find- 
ing a nonzero element in the kernel of V. Once a 
PLU-decomposition for V is known, such an ele- 
ment can be found in time O(min{m, n}2) by the 
straightforward backward substitution algorithm 
for solving a homogeneous upper triangular system 
of equations. 

Corollary 2.4 Suppose that the matrix V E 
I(“*” has displacement rank (Y with respect to the 

isomorphism VD*A and that V has rank less than 
n. Then one can compute a nontern element in the 
kernel of V with O(cmm) operations. 

3 Parallel Algorithms 

The algorithm given in the last section can be cus- 
tomized to run in parallel if certain additional con- 

ditions are satisfied. We will sketch the approach 
here. 

To begin with, assume that the matrix A of Al- 
gorithm 2.2 is equal to D. This will enable per- 
forming steps (1) and (3) of that algorithm in par- 
allel, as we will see below. In this case, however, 
the operator VD,D is not an isomorphism anymore, 
so that additional work is necessary to recover the 
matrix V from the data D, G, B. 

The additional data consists of the diagonal en- 
tries ~1, ~22,. , unn of the matrix V. During the 
course of the algorithm these values are. updated 
to the diagonal entries of the Schur-complements. 

The first column of V is obtained in the 
following way: first, compute the first column 

(n,...rrnJT of GB. Using m processors, this 
takes O(a) time, where 01 is the displacement 
rank of V with respect to VD,D. This vector 
equals the first column of DV - VD, i.e., it equals 
(0, (dz-dl)vz1,. . ., (d,-dl)v,l)T, where we have 
denoted the diagonal entries of D by dl, , d,. 
From this, one can compute the first column of V 
with m processors in constant time. If the entry ~1 
is nonzero, then one can in the same way as above 
compute the first row of V and proceed with the 
algorithm. Additional care has to be taken, how- 
ever, when ~11 = 0. The somewhat lengthy, but 
straightforward details will be presented in the fi- 
nal version of the paper. 

The algorithm then proceeds exactly in the 
same way as Algorithm 2.2 to obtain a PLU- 
decomposition. Since solving a homogeneous up 
per triangular system of linear equations can be 
easily customized to run in parallel linear time, 
this gives an algorithm for computing a nontriv- 
ial element in the kernel of V in time O(an) on 
O(n) processors. 

4 List Decoding of Reed-Solomon Codes 

In the following we will be dealing with matrices 
that have a repetitive pattern. The following n(~ 
tation will help us to concisely describe them. Let 
(o, ~1,. . . , pt: M --t K be functions from a set M 
into a field K, and let ml,. , m, be elements in 
M. We define 
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Whenever ml, , m, are clear from the context, 
we will replace the subscript (ml,. . ., m,) by 1, n. 
Further, we denote the diagonal matrix with diag- 
onal entries I, , rp(m,) by diag[v]l,,. 

In [22] Sudan describes an algorithm for list de- 
coding of RS-codes which we will briefly describe 
here. Let F*[z]<k denote the space of polynomials 
over Fq of degree less than k, and let 51,. .,z, 
denote distinct elements of P*, where k 2 n. The 
image ofthe morphism y: Fq[z]<k + rf mapping a 
polynomial f to the vector v := (f(zl), . , f(z,)) 
is a linear code over Fq of dimension k and mini- 
mum distance n-k+l. Suppose the vector u is sent 
over a communication channel and the vector u := 
(~1,. , yn) is received. If the Hamming distance 
between u and ~1 is at most (n - k)/2, then con- 
ventional decoding algorithms like the Be&&amp 
Massey algorithm can decode u to the correct code- 
word v. If the number e of errors is larger than 
(n - k)/2, then Sudan’s algorithm compiles a list 
of at most e = e(e) codewords which contains u. 
The algorithm consists of two steps. Let B := 
[(n + l)/(e+ 1) + t(k - 1)/2 - 11. The first step 
uses Hermite interpolation to compute a bivariate 
polynomial F = Cf=, Fi(r)y’ with deg F; 5 B-ik 
and such that F(zt,y,) = 0 for all t = 1,. . ., n. 
The second step computes the roots of F which 
are of the form y - g(z), g E Q[z]<~, and outputs 
those g such that y(g) and u have distance at most 
e. The relationship between e and e is given by 
e < n - B. There are efficient algorithms for solv- 
ing the second step using Hensel lifting [6, 191. In 
the following we will concentrate on the problem 
of efficiently computing the polynomial F. 

The polynomial F corresponds to a nonzero el- 
ement in the kernel of a matrix V with a repeti- 
tive structure which we will describe below. Let 
do,. , dc 2 0 be defined by d; := B - ik. For each 
i = 0,. , b let V; be the matrix 

v, := [y’sdi,... i i] TYS>Y ,” 

and define the matrix V E Knx(“+‘) with the block 

decomposition 

v = (ti I b-1 I . ” I VI I vo) (1) 

(Here and for the rest of this section the sub- 
script “1,n” will always refer to the points 

hrYl),...r (xn,yn).) Let p be a nonzero vector 
such that VF = 0. Then, interpreting the entries 
of p as coefficients of the Fj (starting from Fc down 
to F. and reading the coefficients from high pow- 
ers to low powers of x), this gives a polynomial F 
as desired. Using the displacement structure ap- 
proach, we can easily develop an algorithm with 
running time 0(&z’) for computing F. Assuming 
that f! is a constant (a reasonable assumption in ap- 
plications), this gives an algorithm with a running 
time that is quadratic in n. 

For computing F we will first prove that V 
has displacement rank at most e + 1. Let D := 
diag[zll,, (i.e., D is the diagonal matrix with 
diagonal entries 11,. .,z,J. Further, let A E 
K(“+l)x(“+‘) be the upper shift matrix of format 
n+ 1, i.e., 

0 1 0 ... 0 0 
0 0 1 “. 0 0 

\ 0 0 0 0 0 0 “’ “’ 0 0 0 1 

Let 

G = /ybxdf,yf-l(~df--I - y),‘.‘,Y(xdl -Y), 

‘.&o - y] I,n E K’=(‘+” 

and 
(2) 

B = (Br 1 Be-l 1 . . . 1 B1 1 Bo) E K(C+‘)X(“+‘), 

(3) 
where each B; is an (e+ 1) x (di+ 1)-matrix whose 
only nonzero position is at (e+ 1 -i, 1). Then, one 
easily proves that 

DV-VA=GB. (4) 

Hence, V has displacement rank at most 1-t 1 with 
respect to VD,A. We can now invoke the general 
algorithm 2.2 to compute a PLU-decomposition of 
V using only the matrices D, G, B. (In fact, since 
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we are only interested in nonzero elements in the 
kernel of V, it suffices to compute the matrix U 
only.) To apply Algorithm 2.2 we need to recover 
the first row and the first column of V from the 
first row and the first column of GB. The next 
algorithm shows how to do this in the case where 
all the Zi are nonzero (which is equivalent to Vo,a 
being an &morphism). 

Algorithm 4.1 On input a diagonal matrix D 
with diagonal entries xl,. , zmr all of them 
nonzem, a matrix G E KmXa as in (2), and a 
matrix B E K”‘(“‘+‘) as in (3), this algorithm 
computes the first row and the first column of the 
matrix V given by DV - VA = GB, where A is 
the upper shift matrix of format m + 1. 

(1) Compute the first row (r,, . , r.m+l) and the 
first column (71,. . , 7,JT of GB. 

(2) Fori=l,...,msetvi:=y;/li. 

(3) Set c, := VI. Fori=2,...,m+l sCtCi:= 

(ri + Ci-l)/Zi. 

(4) Output row (cl,. ., cm+l) and coZumn 
(Vlr...r%n)T. 

Proposition 4.2 The above algorithm correctly 
computes its output with O(dm) operations in the 
field K. 

PROOF. Correctness of the algorithm follows 
immediately from the following observation: let 
(Cl,... , c,+I) and ( c~,vz,...,~,)~bethefirstrow 
and the first column of V, respectively. Then 

DV-VA= 

f 

IlCl r,c2 -c, “’ z,c,+1 -c, 
22m * * 

I i 

\ 
: . . 

z,v, * ... * I’ 

where the k’s denote elements in K. As for the 
running time, observe first that computing the first 
row and first column of GB requires at most 2dm 
operations over K. Further, Step (2) and (3) re- 
quire at most m and 2771 operations, respectively. 
0 

Using the above result we obtain the following 
general algorithm for list decoding of RS-codes for 
the case where none of the z; is zero. 

Algorithm 4.3 On input (x1, yl),. .., (z,, yn) E 
K2 and integers do 2 dl,...,dt such that 
Cfzo(d; + 1) = n + 1 and such that none of the 
z; is zero, this algorithm computes a nontwo solu- 
tion of the homogeneous system of linear equations 
given by VF = 0, where V is given in (1). 

(1) Set G1 := G, B1 := B, U := 0, where G and 
B are given in (2) and (3) respectively. 

(2) Fori=l,...,ndo 

(a) Let Di be the diagonal matriz with diago- 
nal entnes z;, . . , 2,. Use Algorithm 4.1 
with input Di, G;, and Bi to compute COG- 

umn c = (Cl, . . . . Cn-j+,)T. 

(b) If c is nonzero, then find location k such 
that ck # 0. Interchange rows k and 1 
of c and of G;. If c is zero, then perform 
the next step, increment i by 1 and go to 
step (a). 

(c) Use Algorithm 4.2 with input Di, G; and 
Bi to compute RJZU t = (PI,. . , rn+z-;). 
Write r in i-th POW of matriz U starting 
at position i. 

(d) For j = 2,. . , n - i + 1 replace row j of 
Gi bg -C~/CI times the first POZU plus the 
j-th row. Set G;+, as the matrix formed 
from Gi by deleting the first TOZU. 

(e) Forj = 2,...,n-if2 replace thej- 
th CO~WIWI of Bi by -P~/CI times the first 
COIU~~ PIUS the j-th CO~UTTUL Set Bi+1 a.~ 
the matrix formed from B; by deleting the 
first column. 

(3) Find nonzero solution of Up = 0 and output F. 

Theorem 4.4 The above algorithm correctly com- 
putes its output with O(&‘) operations over the 
field K. 

PROOF. Follows at once from Corollary 2.4 and 
Proposition 4.2. 0 

The performance of the algorithm can be fur- 
ther enhanced by the following observation: since 
we are only interested in a nonzero element in the 
kernel of V, we can stop the algorithm, as soon as 
we find a zero element in the diagonal of the ma- 
trix U. A zero element on the main diagonal of 
U is obtained after at most rk(V) steps. Hence, 
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the running time of the algorithm with this “early 
abort” strategy is O(n!rk(V)). 

We further remark that the algorithm can be 
modified to deal with the case that one zi is zero 
as well. One way to carry this out is described 
below. We may w.1.o.g. assume that 2, = 0. In 
this case, deletion of the first row of the matrix V 
yields another matrix v of the form given in (1) 
in which none of the Zi is zero. Algorithm 4.3 
computes for v an upper triangular matrix ti such 
that 6’ = piir for some permutation matrix p 
and some nonsingular lower triangular matrix t. 
Let U be the matrix whose first row is that of V, 
and whose remaining rows are those of 0. It is 
then obvious that there is a permutation matrix P 
and a nonsingular lower triangular matrix L such 
that V = PHI. Hence, a vector F satisfies VF = 0 
iff it satisfies Up = 0. Because of the structure of 
U, one can find such a nonzero vector F in time 
O(d). 

5 List Decoding of Algebraic-Geometric Codes 

In [21] the authors generalize Sudan’s algo- 
rithm [22] to algebraic-geometric (AG-) codes. We 
briefly discuss this generalization. Let X be an ir- 
reducible algebraic curve over the finite field Ip,, 
let Q, PI,. . , P,, be distinct Fq-rational points of 
X, and let L(czQ) denote the linear space of the 
divisor a&, i.e., the space of all functions in the 
function field of X that have only a pole of order at 
most (Y at Q. The (one-point) AG-code associated 
to these data is then defined as the image of the 
!F,-linear map L(aQ) --t q mapping a function f 
to the vector (j(P,), . . ., f(Pn)). It is well known 
that this linear code has dimension k 2 (Y - CJ + 1 
and minimum distance d 2 n - LU, where CJ denotes 
the genus of the curve. Suppose that we want to 
decode this code with a list of length at most !?. Let 
P := T(n+l)/(e+l)+eoJ/2+g-l]. Let$%,...,$% 
t = p - 9 + 1, be elements of L@Q) with strictly 
increasing pole orders at Q. Let (~1,. . ., ?/n) be 
the received word. The algorithm in [21] first finds 
functions ~0,. .~ uf with ui E L((,D - i(y)&) such 
that xi u;(Pi)y; = 0 for all 1 < j 5 n. This step 
is accomplished by computing a nonzero element 
in the kernel of the matrix 

v := [Y’~,,...Y’$o~ . ..I YIP.1 “‘YW 

‘pm I,’ “.W ,“i 

(5) 
where sj = p - jcu - 9 + 1. To simplify the dis- 
cussions, we assume that there are two functions 
‘p, $ E L@Q) such that all the vpi are of the form 
I++$~ and such that the order of poles at Q of ‘p is 
smaller than that of $. Further, we a.ssume that 
1p does not vanish at any of the points PI,. , P,,. 
We remark that the method described below can 
be modified to deal with a situation in which any 
of the above assumptions is not valid. 

Let d be the order of poles of ‘p at Q. Then 
it is easily seen that any element of L(PQ) is of 
the form @%+!J~, where 0 5 b < d. Now we divide 
each of the blocks of the matrix V into subblocks 
in the following way: by changing the order of the 
columns, we write the 6th block of V in the form 

[YVSP . . . Y$y’PO 1 . 1 ytyppao Y~@p~] l,n, 

By the above remarks, s < d. Let now D be the 
diagonal matrix diag[v]l,,, and let A be the upper 
shift matrix of format n+ 1. Then in a similar way 
as in the last section one sees that there is a ma- 
trix G E qxd( and a matrix B E qx”’ such that 
DV - VA = GB, hence is of rank at most de. Fur- 
thermore, Algorithm 4.1 shows how to recover the 
first row and the first column of V using the ma- 
trices D, A, G, B. Now we can use Algorithm 4.3 
to prove the following theorem. 

Theorem 5.1 Algorithm 4.3 applied to the ma- 
trices D, V, A, G, B above computes a ~orwero et- 
ement in the kernel of V with O(n’d!) operations 
in Fq. 

The same remarks at the end of the last section also 
apply here. In particular, an early abort strategy 
reduces the running time to O(nrk(V)d!). 

To give a final estimate of the result, we need to 
relate d and n. This depends on the specific struc- 
ture of the curve and the divisor used in the defi- 
nition. For instance, for Hermitian function fields 
defined over lFqp? by the equations Xq+’ = Yq + Y 
and for Q defined as the common pole of the func- 
tions X and Y, the parameter d equals qf 1, while 
the genus CJ is O(q’) and n = O(q3). As a result, 
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the algorithm uses O(n7&) IF-operations. Note . 
that for E = 1, i.e., for unique decoding, this is ex- 
actly the running time of the algorithm presented 
in [12]. A similar assertion can be obtained for cer- 
tain codes from general plane algebraic curves with 
many points. 

We remark that the same method as above 
can be applied to efficient eraSure decoding of 
AG-codes. Suppose that the received word u is 
erased in some positions and denote by &I, , Q. 
the points of the curve which correspond to the 
non-erased positions of u. Let (~1,. . . , y8) denote 
the vector consisting of the received coordinates 
of y ordered in correspondence to the ordering 
Ql,...,Q.. Weassumethatsisatleastn-d+l, 
where d is the minimum distance of the code. 
This guarantees that there is exactly one code- 
word whose coordinates at the points &I,. , Q, 
are equal to those of u at these points. As above 
suppose that the code is constructed by evaluation 
of functions from L(aQ) and that (01,. ., (Ok form 
a basis for L(czQ). Define the matrix 

v = bf’l . “PtlQ1,...,Q. 
Let (X,, . . , Xt)T be the solution to the system of 
linear equations 

V(Xl,..., VT = (Y1,...,YJT. 

Then the decoded codeword is the image of 
xi=, X;qpi under the evaluation map. Our aim 
is thus to find X1,. . , XI. Our method above 
computes a PM-decomposition for V in time 
O(std). From this, we can compute the X; in 
time O(max{s2, t*}). The desired codeword is then 
computed using O(tn) operations in lFq. 

Theorem 5.2 Let C be a one-point AG-code ojdi- 
mension k and block length n built from the divisor 
Q. Assume that there are two functions ‘p and q5 
such that for any m any function in L(mQ) can 
be written as a polynomial in ‘p and $. Assume 
further that the order of poles of (o at Q is d. Then 
for any 6 less than the minimum distance of the 
code any pattern of 6 emswes can be decoded with 
O(kd(n - 6)) opemtions. 

6 The Improved Algorithm 

In [S] the authors describe an extension of algo- 
rithms presented in [22] and [21] in which they use 
a variant of Hermite interpolation rather than a 
Lagrange interpolation. In the case of RS-codes, 
the input to the algorithm is a set of n points 
(zi, y;) in the affine plane over Fq, and parame- 
ters I^, k, and e. Let p be the smallest integer 
such that (! + 1)p > (f;‘)k + (‘;‘)a The out- 
put of the al 

9 
orithm is a nonzero bivariate polyno- 

mial G = Ci=, G;(z)y” such that deg Gi < p - ik, 
G(zi, yi) = 0 for all i 5 n, and G(z + z;, y + yi) 
does not contain any monomial of degree less than 
P. Such a polynomial G corresponds to a nonzero 
element in the kernel of a certain matrix V which 
we will describe below. Let t < n be a fixed pos- 
itive integer. For 0 _< i < P and 0 < j 5 l! let 
VT. E $(di)x(p-‘k) be the matrix having (P,Y)- 

e&y equal to (“)~ty-~, where 0 5 p < P - i and 
0 5 I, 5 p - j%. Now define the matrix Vt as 
a block matrix with P block rows and e+ 1 block 
columns, with block entry (i,j) equal to ({)yi’-‘Vi:. 
The matrix V then equals 

v, 
V2 v= . . 

I) 
(6) 

k 

V has m := (‘t;‘)n rows and s := (!+ 1)p - (‘;‘)k 

columns (and s > m). Let C be the lower shift 
matrix of format s, i.e., C is the transpose of the 
upper shift matrix of format s introduced in Sec- 
tion 4. Further, let J,” denote the ix i-Jordan block 
having zt in its main diagonal and l’s on its lower 
sub-diagonal. Let Jt be the block diagonal matrix 
with block diagonal entries Ji,. , Jf. Let J be the 
block diagonal matrix with block diagonal entries 
J’ , . . ., J”. Then, a quick calculation shows that 
JV - VC has rank at most e+ 1. It is now tempt- 
ing to apply the general results of Section 2 to this 
situation. However, J is not a diagonal matrix. To 
remedy this situation, we need the following simple 
result. 

Proposition 6.1 Let the matrices V E Kmx” and 
W E Knxe have displacement ranks PI andrz with 
respect to V,V-A and VA,R, respectively. Then VW 
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has displacement rank at most r, + PQ with re- 

SpeCt to VF,R. Moreover, a generator for VW 

can be obtained from the generators of V and W 
with O((r, + r2)n2) sequential time, and in time 

O((rl++) on O(n) processors. 

The proof of this result follows trivially from the 
definitions. The assertion on the running time fol- 
lows from the sequential and parallel running times 
of the trivial matrix multiplication algorithms. 

Let F be a suitable extension of Fq having at 
least s elements, and denote by W the (s x s)- 
Vandermonde matrix whose rows consist of pow- 
ers of these elements. Let A denote the diagonal 
matrix having these elements as its diagonal en- 
tries. To avoid tedious arguments, we aSsume that 
none of the diagonal entries of A are zero. Then W 
has displacement rank one with respect to V~,CT. 
Thus, the previous proposition shows that WVT 
has displacement rank 5 e + 2 with respect to 
V A,J~. We can now apply Algorithm 4.3 to obtain 
a PLU-decomposition of WVT, where P, L. E IE”‘” 
and 17 E psxm. By Corollary 2.4 and Proposi- 
tion 4.2 this takes 0(&m) operations over the field 
IF. Further, we obtain V = UTPTLT(W-‘)T. To 
find a nontrivial element 21 in the kernel of V, we 
first compute a nontrivial element u in the kernel 
of UT; this can be achieved with O(m2) opera- 
tions over the field F. Next we solve the system 
of linear equations LTw = Pu. Since LT is upper 
triangular and of full rank m, this takes O(m’) op 
erations. The desired element 2) is then obtained 
as u = WTw, and its computation takes O(s*) op 
erations. In total, this gives a sequential algorithm 
with running time O(s”!) over the field F. Each 
operation in IF uses O(logg(s)) operations over the 
base field Fq. Hence, we obtain an algorithm with 
running time O(s’log~(s)!). In the algorithm of 
Guruswami and Sudan [S] s equals O(r%). Fur- 
thermore n and q have the same order of magni- 
tude. As a result, we obtain an algorithm with 
running time O(nzr4 log,(r)e). In many practical 
situations T and e are constant; hence this gives an 
algorithm with running time O(n*). 

We remark that the above algorithm can be 
modified to possibly avoid computations in the ex- 
tension field !J’. This is done by using a block diag- 
onal matrix for W whose blocks are Vandermonde 
matrices of sizes given by the blocks of the ma- 

trix V, i.e., given by the blocks of lengths p - jk, 
0 5 j 5 e. If none of these sizes exceeds the size Q 
of the base field, then there is no need for switching 
to an extension field. 

The same methodology as above can be applied 
to obtain a parallel algorithm for computing a non- 
trivial element in the kernel of the matrix V given 
in (1). Choose n + 1 distinct elements from Fq (or 
an extension thereof) and denote by W the Vander- 
monde matrix corresponding to these elements and 
by A the diagonal matrix having these elements as 
its diagonal entries. Further, let C denote the up- 
per shift matrix of format n + 1, and let D denote 
the diagonal matrix having entries ~1,. , I,, see 
Section 4. As usual, we assume that D and A are 
invertible. Since V has displacement rank 5 J! + 1 
with respect to VO,C (see (4)), and W has dis- 
placement rank one with respect to VA,CT, Propo- 
sition 6.1 proves that WVT has displacement rank 
< e + 2 with respect to VA,D, and that generators 
of this operator can be calculated in time O(&) 
on O(n) processors. Using results of Section 3, we 
see that we can compute a PLU-decomposition of 
WVT in time O(!n) on O(n) processors. It is now 
easy to see that from this we can compute a non- 
trivial element in the kernel of V in time O(n) on 
O(n) processors. The final algorithm is a parallel 
algorithm that computes a nontrivial element in 
the kernel of the matrix V in time O(&) on O(n) 
processors. 

7 Open Questions and Future Work 

In this paper we have introduced a general method 
originating from numerical analysis for efficient list 
decoding of AG-codes. Our algorithm computes 
a PLU-decomposition of a given dense structured 
(n x m)-matrix in time close to O(n*), where close- 
ness depends on the so-called displacement rank 
of the matrix. The paper discussed three applica- 
tions, that of efficient list decoding of RS-codes, 
of AG-codes, and efficient erasure decoding of AG- 
codes. There are many more applications of this 
method to coding theoretic problems, like the the 
improved algorithm of [B] for AG-codes, and par- 
allel algorithms for improved list decoding of RS- 
codes, to name a few. These and other applica- 
tions are in preparation and some of them will be 
included in the final version of the paper. 
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