A Disruptive Computer Design Idea:
Architectures with Repeatable Timing

Stephen A. Edwards
Coumbia University
sedwards @cs.columbia.edu

Isaac Liu
UC Berkeley
liuisaac @ eecs.berkeley.edu

Abstract—This paper argues that repeatable timing is more
important and more achievable than predictable timing. It de-
scribes microarchitecture approaches to pipelining and memory
hierarchy that deliver repeatable timing and promise compara-
ble or better performance compared to established techniques.
Specifically, threads are interleaved in a pipeline to eliminate
pipeline hazards, and a hierarchical memory architecture is
outlined that hides memory latencies.

I. INTRODUCTION

A conventional microprocessor executes a sequence of
instructions from an instruction set. Each instruction in the
instruction set changes the state of the processor in a well-
defined way. The microprocessor provides a strong guarantee
about its behavior: if you insert in the sequence an instruction
that observes the state of the processor (e.g., the contents
of a register or memory), then that instruction observes a
state equivalent to one produced by a sequential execution
of exactly every instruction that preceded it in the sequence.
For speed, however, modern microprocessors rarely execute
the instructions strictly in sequence. Instead, pipelines, caches,
write buffers, and out-of-order execution reorder and overlap
operations while preserving the illusion of sequential execu-
tion. Any correct execution must preserve the strong guarantee,
and thus the illusion.

Because the semantics of sequential instruction execution
is specified precisely at the bit level, the state observed by a
particular instruction is repeatable, meaning that every correct
execution of the same sequence will lead to the same state
given the same inputs. If the sequence of instructions is that
given by a single program specifying a computation whose
inputs are included in the initial state of the processor (e.g.
in memory) and whose outputs are included in the final state,

This work was supported by the National Science Foundation (NSF award
#0720882 (CSR-EHS: PRET) and the Center for Hybrid and Embedded
Software Systems (CHESS) at UC Berkeley, which receives additional support
from the U. S. Army Research Office (ARO #W911NF-07-2-0019), the U. S.
Air Force Office of Scientific Research (MURI #FA9550-06-0312), the Air
Force Research Lab (AFRL), the State of California Micro Program, and the
following companies: Agilent, Bosch, Lockheed-Martin, National Instruments,
Thales, and Toyota.

978-1-4244-5028-2/09/$25.00 ©2009 IEEE

Sungjun Kim
Coumbia University
skim@ cs.columbia.edu

Hiren D. Patel
UC Berkeley
hiren@eecs.berkeley.edu

54

Edward A. Lee
UC Berkeley
eal@eecs.berkeley.edu

Martin Schoeberl
Vienna University of
Technology
mschoebe @mail.tuwien.ac.at

then the behavior of the program is repeatable. We call this a
conventional Turing-Church computation.

Very few instruction sets provide any guarantee about
the timing of the execution of a sequence of instructions.
If the sequence of instructions is specifying a conventional
Turing-Church computation, then this timing is irrelevant. The
sequence specifies a mapping from inputs (contained in the
initial state of the processor) to outputs (contained in the
observed state of the processor).

For many application, and most particularly for embedded
systems, the timing does matter, however. In particular, some
instructions in the sequence specify interactions with the
external physical world, causing actuation of physical devices
for example. Some will poll sensors that measure the state of
the physical world at the time the instruction is executed. Some
instructions will be inserted into the sequence in response to
an external physical event that raises an interrupt request. The
time at which this occurs determines where in the sequence
the instructions to service the interrupt are inserted. Thus, the
sequence of instructions executed by the microprocessor is not
entirely determined by a program, but is also affected by the
timing of external events. Even non-embedded computations
will use such interrupts to perform multitasking, executing
multiple threads concurrently and switching between them in
response to interrupts raised by an external timer or external
devices such as disk drives. Again, the sequence of instructions
is not completely specified by the program(s) being executed.
Hence, the strong guarantee provided by the microprocessor is
not sufficient to make the behavior of the programs repeatable.

For such programs, the inputs to the system are not just
the initial state of the processor, as they are in a conventional
Turing-Church computation. Any complete definition of “in-
puts” must include the timing of interrupts and the time at
which sensor values are polled. Any complete definition of
“outputs” must also include the timing at which actuations in
the physical environment are asserted. These clearly affect the
behavior of the system. For a microprocessor that provides no
timing guarantees, no such program has repeatable behavior.
Two “correct” executions can exhibit significantly different
timing and can execute significantly different sequences of

instructions, resulting in significantly different outputs.

In the above analysis, we implicitly define the behavior of
a program to be the mapping from inputs to outputs. Many
useful programs, however, do not require such a rigorously de-
fined behavior. Some measure of nondeterminism is tolerable,
meaning that the same inputs may lead to different outputs,
as long as some application-dependent set of properties is
satisfied. If the timing of an output is important, for example,
it may not have to be precise. The application has some
tolerance to deviations in the timing. Thus, we are generally
more interested in whether satisfaction of these properties
is repeatable. That is, we insist that every correct execution
satisfies an application-dependent set of properties.

A real-time program, for example, will specify a set of
properties as constraints on the timing of certain external
interactions or internal actions (updates of values in memory,
for example). The task of a real-time system designer is to
ensure that these properties are repeatable.

A predictable property is a repeatable property than can be
determined in finite time from a specification of the system.
Since any computer only has finite memory, the state after a
sequence of instruction executions is technically predictable,
although doing so can take an impractically long time. How-
ever, if the specification of the system is a program, the
sequence of instructions executed will not be predictable if
timing is not repeatable (interrupts and multitasking will in-
terfere). Thus, even a conventional Turing-Church computation
on a uniprocessor may not have repeatable behavior [1].

Researchers have made great strides in predicting execution
time [2], [3], specifically in bounding the execution time,
determining worst-case execution time (WCET). However,
existing techniques can only determine WCET for a processor-
program pair, not for just a program (unlike processor state,
which must be consistent across all correct processors). Even
worse, implementation details that can affect execution time,
such as memory consistency models [4], are often not well-
specified. Researchers are calling for moderation and identi-
fying particularly problematic techniques [5], [6], [7].

Moderating these practices is not enough. Repeatability is
more important than predictability. With repeatable timing,
testing can establish correctness, and testing is almost always
easier than detailed analysis. Without repeatability, testing
proves little.

Timing should be a repeatable property of a program, not of
a program executing on a particular processor implementation.
That is, our notion of “correct” execution of a sequence of
instructions should include timing properties. This requires
changes to the semantics of instruction sets.

A few researchers have addressed the problem of repeatable
timing. Precision-timed (PRET) machines [8], [9] modify the
instruction set for repeatable timing. Mueller’s VISA [10] runs
a standard fast processor in concert with a slow (repeatable)
one, switching over if the fast one lags behind. Schoeberl has
implemented a Java processor where time-repeatability of in-
dividual bytecode instructions was the major design goal [11].
Whitham and Audsley’s MCGREP [12] use programmable

55

microcode to accelerate hotspots that are otherwise too slow.

In this paper, we focus on two intertwined obstacles to
repeatable timing: pipelines and memory hierarchy. We show
that repeatable timing can be reconciled with pipelining and
memory hierarchy, both of which are required to get compet-
itive performance.

II. PIPELINE INTERLEAVING

Pipelining improves hardware performance: instead of wait-
ing for every operation in an instruction to complete before
starting the next instruction, start the second instruction while
the first instruction completes. The challenge comes when
successive instructions depend on each other, such as the
instruction following a conditional branch or writes to a
register that is read by the following instruction. Dealing with
these hazards requires additional control and steering logic to
reorder or stall the instruction, which makes the execution time
of an instruction depend on the instructions surrounding it.

Instead of rejecting pipelining outright, we advocate an
interleaved pipeline, a form of fine-grained multithreading [13]
(also known as interleaved multithreading). In every cycle, an
instruction from a different thread is fetched and inserted into
the pipeline in a round-robin fashion. Instead of stalling the
pipeline, instructions that take multiple cycles (i.e., memory
access instructions) will be re-fetched into the pipeline on
the next round-robin cycle, until the instruction is finished.
Thus, at any time, the pipeline is running at most one in-
struction from each thread when there are more threads than
pipeline stages. From the perspective of each thread, there is
no pipeline; each instruction completes before the next one
begins.

Interleaved pipelines have performance advantages. They
eliminate inter-instruction dependencies, eliminating time-
consuming hazard detection and steering. They also hide the
off-chip memory latency penalty because other threads execute
while one is waiting for memory. This technique has been used
in various research and commercial processors for achieving
higher performance since the early 80s [13].

More importantly, pipeline interleaving leads to repeatable
timing [14]. By removing the data dependencies and hazards
in the pipeline, instructions will never be affected by their
surrounding instructions. Each instruction will now take ex-
actly the same number of cycles to execute each time it enters
the pipeline. Instructions that block (e.g., when accessing
memory) can always block for the same number of cycles,
regardless of what is happening in other threads and which
instructions precede or follow them.

The first PRET machine [9] implements a thread-interleaved
pipeline with each thread having its own thread context. The
memory hierarchy consists of a scratchpad memory shared
by all threads and a memory wheel component that arbitrates
access to the main memory in a time-triggered fashion. A
replay technique is used for any instructions that take multiple
cycles, such as main memory accesses. A novel concept in
PRET is the ability to control temporal behaviors in software
through deadline instructions [15], [9]. The combination of the

The next memory access request cannot be processed before this time »

« The first memory access request arrives here H
Clock No. 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15
Command| ACT READ NOP NOP NOP = NOP NOP NOP NOP NOP NOP ACT = RW NOP NOP
Bank Address| 00 00 X X X X X X X X X 00 00 X X
Address| Row Col X X X X X X X X X Row Col X X
Data /0 Data0 Data 0

(a) Read followed by R/W request of DDR2: CPU requests read to a row in a bank and then read/write to a
different row in the same bank. Additive latency(AL) = 2, column latency(CL) = 3, burst length(BL) = 4, row

precharge time(tRP) = 3, auto-precharge.

The next memory access request cannot be processed before this time »

« The first memory access request arrives here
Clock No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Command| ACT WRITE NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP NOP ACT RW
Bank Address| 00 00 X X X X X X X X X X X 00 00
Address| Row Col X X X X X X X X X X X Row Col
Data I/0 Data0 Data 0

(b) Write followed by R/W request of DDR2: CPU requests write to a row in a bank and then read/write to a
different row in the same bank. Additive latency(AL) = 2, column latency(CL) = 3, burst length(BL) = 4, write
recovery time(tWR) = 3, row precharge time(tRP) = 3, auto-precharge.

Fig. 1. Timing of read and

architecture and the deadline instructions enables programmers
to get repeatable timing.

III. MEMORY HIERARCHY

While memory bandwidth can be improved with a host of
tricks (mainly parallelism), memory latency is a fundamental
problem for large memories. The usual solution is a hierarchy:
a mix of large slow memories feeding small, fast ones.
Standard memory hierarchies use caching to preserve the
illusion of a large, undifferentiated memory. While caches
present the programmer with a convenient abstraction, they
leave timing unpredictable and often non-repeatable [7]. For
a program running in isolation, the time taken for a memory
access depends on which cache it resides in. This depends in
part on its address, which is often difficult to predict before
the program is running, but also on the history of the memory
accesses.

Our solution retains the memory hierarchy but manages it
differently. First, we use scratchpad memories (SPMs) instead
of caches. SPMs use less power and occupy less area than
caches because no speculation logic is needed. Compared to
caches, SPMs give us the same access time, except that the
allocation of data on the SPMs are done in software, instead
of hardware. This allows us to gain repeatable performance in
the fast access memory.

Large modern DRAM chips are well-suited to our inter-
leaved pipeline. Internally, they consist of separately operating
banks (e.g., eight) that can be simultaneously accessed at
various stages of a read or write. Our solution is to assign
threads to dedicated banks. Since the threads are interleaved
in the pipeline, we can effectively hide the memory latency. In
each cycle, a thread is granted access to its dedicated memory
bank and may initiate or continue a memory operation. Like
the interleaved pipeline, the memory scheduler will implement
something like a round-robin policy.

56

write memory operation.

A. Making DRAM Accesses Repeatable

We design a DRAM memory controller that guarantees
repeatable timing behaviors when accessing the DRAM mem-
ories. This design is tightly coupled to the interleaved pipeline
to hide the long latencies of DRAM, and consequently improve
performance. We use the Samsung specifications [16], [17],
[18], [19] for our DDR2 memory.

Figure 1(a) and Figure 1(b) illustrate the basic read and
write memory operations on the same bank but on different
rows of the DDR2 memory. In these figures, the signals
driven or read by the controller are denoted by command,
bank address, address, and data I/O. Every cell in the figure
represents the signal value at a particular clock cycle. For
instance, at clock cycle 1 in Figure 1(a), the bank address
selects bank 0, the command to activate (ACT) the bank is
sent, and the row address is supplied.

Figure 1(a) shows that a read operation emits the requested
data on the seventh and eighth cycles, but it requires an
additional three cycles for precharge amounting to a total of
11 clock cycles before the next memory access command
can begin. The write operation in Figure 1(b) shows that
data is written to the memory on the sixth and seventh
cycle of the write operation, but due to write recovery and
precharge times, the next memory operation can only occur
after 13 cycles. Notice that Figure 1(a) and Figure 1(b) show
the memory operations with the longest latencies for a read
and write. Other combinations of memory operations yield
different timing behaviors. For example, consecutively reading
from the same bank and the same row results in a shorter
memory access latency while writing then reading from the
same bank and same row result in a different access latency.
Because of such variations, the history of memory operations
affects the latency of the next memory operation. This results
in non-repeatable timing behaviors when using conventional
DRAM memory controllers.

The initial thread can request memory access after this time again »

« The initially scheduled thread requests memory access at this time
i« The secondly scheduled thread can request memory access from this tlme
Clock No. 1 2 3 4 5 6 7 8 9 10 1 12 14 15
Command| ACT - R'W NOP - ACT - RW - NOP - NOP . NOP NOP . NOP . NOP NOP NOP ' ACT | RW
Bank Address| 00 = 00 X 01 01 X X X X X X X X 00 00
Address| Row Col X Row Col X X X X X X X X Row Col
Data /0 range Data 0 Data 0 Data 0 Data 1 Data 1 Data 1

Fig. 2.
bank. Additive latency(AL) =

One approach in achieving repeatability tightly couples the
processor’s interleaved pipeline with the memory controller. It
also designates each DRAM bank to a hardware thread. Since
the interleaved pipeline schedules each hardware thread using
a round-robin policy, this directly translates to the DRAM
such that the memory access order also follows round-robin
scheduling among banks. In Figure 2, we show how to exploit
the interleaved pipeline while achieving repeatability. (In this
diagram, we only show two threads, thus showing only two
memory banks.)

As can be seen, a thread can access the memory again every
13 cycles, but the next thread is also able to access it every 13
cycles because of the DRAM’s ability to access separate banks
simultaneously. To be specific, no matter what the command
types are received to a bank, the next access is allowed after
the maximum latency (the write latency) if it is to a separate
bank. Since a different thread is scheduled every cycle in an
interleaved pipeline, and a different bank is used for every
successive memory access, we can interleave memory accesses
of different banks such that all memory operations take 13
cycles. In this way, we get repeatable timing behaviors from
memory operations.

In addition, compared with Figure 1(a) and Figure 1(b)
where only one memory operation at a time is possible,
interleaving as shown in Figure 2 improves the throughput
of memory operations. While the next memory operation
is processed after 11 cycles in Figure 1(a) and 13 cycles
in Figure 1(b), the subsequent memory operations can be
processed after 3 cycles or 10 cycles in Figure 2, or after
6 cycles or 7 cycles provided we evenly distribute the access
scheduling. Furthermore, these latencies can be reduced with
more threads/banks (i.e., 3 and 4 cycles with 4 threads/banks
provided we add the memory access timing every 3 cycles).

Note that in order to maintain repeatability, we need arbitra-
tion between the processor and the memory controller because
they might run at different clock speeds. As a result, we add
the maximum interaction latency to the total memory access
latency and force the processor’s memory access instruction
to always take this total amount of time. Scheduling of the
memory control is optimized to reduce the interaction latency.

57

Interleaved pipeline operation of DDR2 (our design approach): CPU requests read/write to a row in a bank and then read/write to a row in another
2, column latency(CL) = 3, burst length(BL) = 4, write recovery time(tWR) = 3, row precharge time(tRP) = 3, auto-precharge

B. DRAM Refreshing

Another source of non-repeatability is the constant need to
refresh the DRAM. When the DRAM is being refreshed, the
processor cannot access the DRAM. Conventional processors
simply stall until the refresh is completed. However, this is
undesirable.

In our approach, we propose using the distributed, RAS-
only refresh [20] to each bank separately. In other words,
memory refresh is equivalent to a row access to a bank; thus,
each bank can refresh its row at the proper time separately.
Instead of allowing the internal memory logic to refresh all
the memory banks at once [18], we tightly couple the bank
refreshes with the processor hardware threads, and bring this
abstraction up to the software. When an instruction does
not access memory, the memory controller triggers DRAM
refreshing. Note that since each thread has its dedicated bank,
this will not cause any timing variations among threads.

When a refresh is required can be statically analyzed. For
example, we can issue a refresh whenever we encounter a
branch or nop instruction. Thus, provided a basic block takes
less time than the required refresh rate (usually 15.6 us), then
stable DRAM refresh is guaranteed because the basic block
will finally meet a branch instruction that triggers refresh.
On the other hand, provided a basic block is too large, then
the compiler can insert a nop within that the basic block
to guarantee that the DRAM is refreshed. This still achieves
repeatable timing (however, prediction may be harder).

C. Shared Memory

Combining the DRAM controller with an SRAM scratchpad
memory that is shared among the threads, we note that our
memory hierarchy is the converse of a conventional multicore
approach. The fast, close memory is shared among concurrent
threads, while the slow, remote memory is private to each
thread. In many multicore architectures, the fast, close memory
is a private cache, and the slow, remote memory is shared.

This architecture suggests numerous interesting possibilities
that have profound implications on the programming models
for concurrency. For example, one could dynamically (but in-
frequently) change the ownership of memory banks to transfer
large quantities of data among threads, while using the smaller,
shared scratchpad SRAM for synchronization and fine-grain
coordination. One could also vary how banks are assigned

to threads. Granting a thread exclusive access to a bank will
lead to the highest performance, but it will also be possible
to share a bank among multiple threads through a secondary
round-robin schedule and still achieve repeatable timing.

Furthermore, sharing memory banks by supplying a periodic
schedule is a time-triggered approach, which has been used
successfully for networking, but not memory access. Pitter and
Schoeberl [21] have also considered memory access (in their
case, DMA) as a real-time scheduling problem, but treat it as
a more traditional real-time task and worry just about WCET.
Rosen et al. [22] similarly consider bus access as a real-time
task.

D. Programmable DMA Controller

To facilitate fast transfer of program code and data between
the fast SRAM and large DRAM memories, we advocate using
a programmable direct memory access (DMA) controller.
Input to the DMA controller is a program that describes the
memory transfer pattern for the particular target application.
This program is a finite state machine where the states consist
of instructions to perform the actual transfer between the
memories, and the transitions take place based on the program
counter of the hardware threads. Therefore, the DMA con-
troller has also access to the address bus on which it can snoop
the program counter of the hardware threads. This approach
has the advantage that the program dictating memory transfers
can execute in parallel with the target application. It also does
not require the main application program to explicitly issue a
transfer instruction to initiate the transfer. Instead, it is possible
for the programmable DMA to begin transferring code and
data before the application requires it. Ideally, the program
for the controller will be automatically generated from the
application model or code.

E. Split Read Access

A further optimization to hide memory access latencies on
a load instruction is possible by splitting the read command
phase and the result return phase in the processor. Therefore, a
read start instruction just communicates the address and read
request to the memory subsystem and returns immediately.
To obtain the actual read value another instruction has to be
issued. The benefit of the split of the load instruction is that
other instructions, which do not access the main memory, can
be scheduled by the compiler to hide the access latency. A
split read operation is similar to a prefetch instruction, which
gives the cache system a hint which data will be used in the
near future.

IV. DISCUSSION

To have high processor utilization, our approach requires
that application developers expose enough concurrency that
multiple threads can be active much of the time. This sug-
gests our architecture may be better used with programming
models that are intrinsically concurrent. Fortunately, there is a
great deal of momentum towards such programming models,
particularly for the design of embedded real-time systems.

58

Commercial tools such as Simulink with Real-Time Workshop
from The MathWorks, TargetLink from dSpace, and LabVIEW
from National Instruments, all provide intrinsically concurrent
programming models and synthesize concurrent embedded
code. Emerging programming models for real-time systems
like Giotto [23], TDL [24], and Ptides [25] also expose a
great deal of exploitable concurrency, and appear to be good
matches for our architecture. Even traditional RTOS-based
designs [26] can benefit from our approach because the real-
time constraints will be easier to guarantee with concurrency
that delivers repeatable timing.

Along with the concurrency that these programming models
provide, the structure that comes with the programming mod-
els could also help us analyze memory access patterns and gen-
erate appropriate programs for the programmable DMA. For
example, Bandyopadhyay [27] used the structured properties
of Heterochronous Dataflow programming model to statically
analyze when data should be moved between the main memory
and a software controlled scratchpad in order to achieve the
most optimal allocation scheme. In a similar fashion, we can
configure the memory controller and partitioning of shared
memory regions.

A challenging issue that arises is how to assess the per-
formance of resulting computer architectures compared to
established approaches. Standard benchmarks have no con-
currency, and therefore an interleaved pipeline immediately
appears to come with an enormous cost. Suppose for example
that we compare a non-interleaved processor with a 200 MHz
instruction issue rate to an interleaved processor with a 240
MHz instruction issue rate (we assume that an interleaved
pipeline can be clocked slightly faster because there is less
hardware for forwarding and pipeline interlocks, which often
form the critical path that determines the clock rate). Suppose
then that a four-way interleaved pipeline is required to remove
all pipeline hazards. Then a given thread will execute at
an instruction issue rate of 60 MHz (240/4). Suppose that
the 200 MHz non-interleaved processor results in an average
issue rate of 180 MHz after stalls due to pipeline hazards
(probably generous). Then a single thread benchmark will
appear to indicate a performance of only 33% of the non-
interleaved pipeline. However, four such benchmarks running
simultaneously will exhibit a performance that is 133% of
the non-interleaved pipeline, a dramatic improvement. Which
comparison is more fair?

V. CONCLUSION

For future embedded systems we need new computer archi-
tectures to support the tight integration of computing systems
with the surrounding physical world. In this paper we argued
that repeatable timing is more important and more achiev-
able than predictable timing. Moreover, we can achieve both
repeatable timing and performance. To explore the speedup
of pipelining within an architecture with repeatable timing
we propose to use pipeline interleaving within the processor
pipeline and pipelining of the DRAM access. In the proposed
architecture, each hardware supported thread owns one bank of

the DRAM. Communication between the threads is performed
on a shared on-chip memory. Therefore, we end up with an in-
verse memory hierarchy compared with standard architecture:
fast on-chip memory is shared, slow off-chip memory is thread
local. Future work will explore computing and communication
models that fit this architecture.

[1]

[2]

[6]

[7]

[10]

[11]

[12]
[13]

[14]

[15]

[16]

(17]

[18]

[19]

REFERENCES

E. A. Lee, “The problem with threads,” Computer, vol. 39, no. 5, pp.
33-42, 2006,
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.html.
L. Thiele and R. Wilhelm, “Design for timing predictability,” Real-Time
Systems, vol. 28, no. 2-3, pp. 157-177, 2004.

R. Wilhelm, J. Engblom, A. Ermedahl, N. Holsti, S. Thesing, D. Whal-
ley, G. Bernat, C. Ferdinand, R. Heckmann, T. Mitra, F. Mueller,
1. Puaut, P. Puschner, J. Staschulat, and P. Stenstrom, “The worst-case
execution time problem — overview of methods and survey of tools,”
Trans. on Embedded Computing Sys., vol. 7, no. 3, pp. 1-53, 2008.
M. D. Hill, “Multiprocessors should support simple memory-consistency
models,” IEEE Computer, vol. 31, no. 8, pp. 28-34, Aug. 1998.

R. Wilhelm, D. Grund, J. Reineke, M. Schlickling, M. Pister, and
C. Ferdinand, “Memory hierarchies, pipelines, and buses for future
architectures in time-critical embedded systems,” IEEE Transactions on
CAD of Integrated Circuits and Systems, vol. 28, no. 7, 2009.

R. Kirner and P. Puschner, “Obstacles in worst-case execution time
analysis,” in Symposium on Object Oriented Real-Time Distributed
Computing (ISORC). Orlando, FL, USA: IEEE, 2008, pp. 333-339.
M. Schoeberl, “Time-predictable computer architecture,” EURASIP
Journal on Embedded Systems, vol. 2009, no. Article ID 758480, p. 17
pages, 2009.

S. A. Edwards and E. A. Lee, “The case for the precision timed (PRET)
machine,” in Design Automation Conference (DAC), San Diego, CA,
2007.

B. Lickly, I. Liu, S. Kim, H. D. Patel, S. A. Edwards, and E. A.
Lee, “Predictable programming on a precision timed architecture,” in
Proceedings of the International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems (CASES 2008), E. R. Altman, Ed.
Atlanta, GA, USA: ACM, October 2008, pp. 137-146.

A. Anantaraman, K. Seth, K. Patil, E. Rotenberg, and F. Mueller,
“Virtual simple architecture (visa): exceeding the complexity limit in
safe real-time systems,” in Computer Architecture, 2003. Proceedings.
30th Annual International Symposium on, ser. Computer Architecture
News, vol. 31, 2. New York: ACM Press, June 9-11 2003, pp.
350-361.

M. Schoeberl, “A Java processor architecture for embedded real-time
systems,” Journal of Systems Architecture, vol. 54/1-2, pp. 265-286,
2008.

J. Whitham and N. Audsley, “MCGREP - A Predictable Architecture
for Embedded Real-time Systems,” in Proc. RTSS, 2006, pp. 13-24.

T. Ungerer, B. Robi¢, and J. gilc, “A survey of processors with explicit
multithreading,” Computing Surveys, vol. 35, no. 1, pp. 29-63, 2003.
E. A. Lee and D. G. Messerschmitt, “Pipeline interleaved programmable
dsps: Architecture,” IEEE Trans. on Acoustics, Speech, and Signal
Processing, vol. ASSP-35, no. 9, 1987.

N.J. H. Ip and S. A. Edwards, “A processor extension for cycle-accurate
real-time software,” in IFIP International Conference on Embedded and
Ubiquitous Computing (EUC), vol. LNCS 4096. Seoul, Korea: Springer,
2006, pp. 449-458.

Samsung Electronics, Co., “DDR2 SDRAM device operating and
timing diagram,” 2007,
http://www.samsung.com/global/business/semiconductor/products/dram/
downloads/ddr2_device_operation_timing_diagram_may_07.pdf.

——, “Application note: tWR (write recovery time),” 2001,
http://www.samsung.com/global/business/semiconductor/products/dram/
dram/downloads/applicationnote/tWR.pdf.

——, “DDR2 SDRAM (RFC application note,” 2004,
http://www.samsung.com/global/business/semiconductor/products/dram/
downloads/applicationnote/app_note_trfc_20040506.pdf.

——, “DDR2 SDRAM product guide,” 2009,
http://www.samsung.com/global/business/semiconductor/products/dram/
downloads/ddr2_product_guide_may_09.pdf.

59

[20]

[21]

(22]

[23]

[24]

(25]

[26]

[27]

Micron Technology, Inc., “Various methods of dram refresh — rev. 2/99,”
1994,

http://download.micron.com/pdf/technotes/DT30.pdf.

C. Pitter and M. Schoeberl, “Time predictable CPU and DMA shared
memory access,” in International Conference on Field-Programmable
Logic and its Applications (FPL 2007), Amsterdam, Netherlands,
August 2007, pp. 317 — 322.

J. Rosen, A. Andrei, P. Eles, and Z. Peng, “Bus access optimization for
predictable implementation of real-time applications on multiprocessor
systems-on-chip,” in Proceedings of the Real-Time Systems Symposium
(RTSS 2007), Dec. 2007, pp. 49-60.

T. A. Henzinger, B. Horowitz, and C. M. Kirsch, “Giotto: A time-
triggered language for embedded programming,” in EMSOFT 2001, vol.
LNCS 2211. Tahoe City, CA: Springer-Verlag, 2001, pp. 166—184.
W. Pree and J. Templ, “Modeling with the timing definition language
(tdl),” in Automotive Software Workshop San Diego (ASWSD) on Model-
Driven Development of Reliable Automotive Services, ser. LNCS. San
Diego, CA: Springer, 2006.

Y. Zhao, E. A. Lee, and J. Liu, “A programming model for time-
synchronized distributed real-time systems,” in Real-Time and Embed-
ded Technology and Applications Symposium (RTAS). Bellevue, WA,
USA: IEEE, 2007,
http://ptolemy.eecs.berkeley.edu/publications/papers/07/RTAS/.

G. C. Buttazzo, Hard Real-Time Computing Systems: Predictable
Scheduling Algorithms and Applications, 2nd ed. Springer, 2005.

S. Bandyopadhyay, “Automated memory allocation of actor code and
data buffer in heterochronous dataflow models to scratchpad memory,”
Master’s thesis, EECS Department, University of California, Berkeley,
Aug 2006.

