
Nonlinear Dynamics (2006) 44: 367–380
DOI: 10.1007/s11071-006-2021-6 c© Springer 2006

A Distal Model of Congenital Nystagmus as Nonlinear Adaptive

Oscillations

CHRISTOPHER M. HARRIS1,∗ and DAVID L. BERRY2

1SensoriMotor Laboratory, Centre for Theoretical and Computational Neuroscience, University of Plymouth, A226 Portland
Square, Plymouth, Devon PL4 8AA, U.K.; 2Departamento de Fı́sica e Centro de Geofı́sica de Évora, Universidade de Évora,
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Abstract. Congenital nystagmus (CN) is an incurable pathological spontaneous oscillation of the eyes with an onset in the first
few months of life. The pathophysiology of CN is mysterious. There is no consistent neurological abnormality, but the majority
of patients have a wide range of unrelated congenital visual abnormalities affecting either the cornea, lens, retina or optic nerve.
In this theoretical study, we show that these eye oscillations could develop as an adaptive response to maximize visual contrast
with poor foveal function in the infant visuomotor system, at a time of peak neural plasticity. We argue that in a visual system with
abnormally poor high spatial frequency sensitivity, image contrast is not only maintained by keeping the image on the fovea (or its
remnant) but also by some degree of image motion. Using the calculus of variations, we show that the optimal trade-off between
these conflicting goals is to generate oscillatory eye movements with increasing velocity waveforms, as seen in real CN. When
we include a stochastic component to the start of each epoch (quick-phase inaccuracy) various observed waveforms (including
pseudo-cycloid) emerge as optimal strategies. Using the delay embedding technique, we find a low fractional dimension as
reported in real data. We further show that, if a velocity command-based pre-motor circuitry (neural integrator) is harnessed to
generate these waveforms, the emergence of a null region is inevitable. We conclude that CN could emerge paradoxically as an
‘optimal’ adaptive response in the infant visual system during an early critical period. This can explain why CN does not emerge
later in life and why CN is so refractory to treatment. It also implies that any therapeutic intervention would need to be very early
in life.

Key words: adaptive control, chaos, distal model, early onset nystagmus, eye movements, human development, infant, infantile
nystagmus

1. Introduction

Congenital nystagmus (CN) is a pathological spontaneous oscillation of the eyes in humans with an onset
within the first few months of life. CN is almost always persistent and life-long, and there is no cure. The
cause of CN is unknown, but in about 90% of cases there is a range of underlying visual disorders [1].
The range is remarkably wide, however, and includes such disparate conditions as albinism and isolated
foveal hypoplasia, cataract, congenital stationary night blindness, aniridia, cone dysfunction and many
other conditions. CN may even occur after acquired damage to the corneas at birth [2]. Because of these
wide associations, it is difficult to argue that CN is caused by any single neural or visual abnormality or
any single genetic mutation. Instead it seems that almost any congenital sensory abnormality (whether
inherited or not) affecting the central retina can lead to CN. In contrast, onset of a visual disorder after
a few months of age (e.g., cataracts) does not lead to CN. Thus, CN emerges only in early infancy,
a time of peak visuomotor plasticity when there is development of the visual system (especially the
formation of the fovea and visual cortex) and the development of eye movement systems, notably the
smooth pursuit system. It seems plausible that CN arises because of some abnormality during this time
of plasticity.
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Figure 1. Typical observed CN waveforms. Jerk nystagmus: (a) pure, (b) extended foveation, (c) pseudo-cycloid. Reversing: (d)
pseudo-jerk, (e) pseudo-pendular, (f) triangular; based on [3].

We propose that CN occurs as the result of normal adaptation to an abnormal visual environment
in infancy. Our tenet is that ‘normal’ eye movements are not all hardwired from birth, nor inevitably
predetermined by postnatal maturation of the brain. Instead, some eye movement strategies, including
gaze holding and smooth pursuit, develop postnatally which, we propose, also depend on the visual
environment. Pre-motor neural networks develop their connectivity to support vision, which in the
vast majority of normal human infants results in so-called ‘normal’ eye movements. After infancy
the plasticity decreases considerably to prevent unlearning of the strategies, but still enough to allow
some modification to respond to continued growth and disease. Our argument is that these same pre-
motor networks may develop an abnormal connectivity in order to organise an eye movement strategy
(CN) to support abnormal vision, but only during early infancy. Once formed, they also remain for
life.

CN oscillations have some unique properties that require explaining by any useful model. The oscil-
lations have waveforms (trajectories) that are not usually observed in other types of acquired nystagmus.
The most common is an increasing velocity slow phase followed by a resetting quick phase (saccade)
(see Figure 1). Variants on this basic shape can be observed, most notably the pseudo-cycloid waveform
[3]. There also is usually a ‘null region’ or ‘null point’. The amplitude of the oscillations usually varies
with the direction of viewing (direction of eyes relative to the head), being minimal in one viewing
direction (the null region) and increasing when the eyes point either side of the null region. In most
patients the waveform also changes with direction, becoming pseudo-cycloid away from the null.

Although there have been numerous attempts to model how the oculomotor system might generate
these unique waveforms (proximal models, see [4–9]), there has been no explanation for why CN might
emerge in the first place (distal model). Taking our plasticity argument one stage further, how could
these peculiar oscillations result from an adaptive process, or equivalently, what is the control objective
of infant eye movement development?

2. Non-Veridical Velocity Tuning

Neural representations of physical objects are not intrinsically veridical. For example, it is well estab-
lished in the visual system that neural assemblies are tuned along different features (or dimensions) such
as object form, colour and motion. Particularly, there is no mathematical relationship between neural
populations that are tuned to object position and object velocity. There is no intrinsic reason for neural
representations to follow the physically veridical relationships.

v(t) = dx(t)
dt

, (1a)

x(t2) = x(t1) +
∫ t2

t1
v(t) dt. (1b)
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Separation between position and velocity tuning occurs early in the visual system. A retinal ganglion
cell (RGC) has a receptive field that is tuned to position by virtue of its coordinates in the retina and
its retinotopic projection to the visual cortex. Receptive fields are also tuned in the spatial frequency
and temporal frequency domains, yielding a velocity tuning. Psychophysics has demonstrated that
sensitivity to a spatial frequency is maximal at some non-zero image speed, where the optimal speed
varies inversely with spatial frequency. Thus, high spatial frequencies (as mediated via the central retina)
require very low drift speeds, whereas low spatial frequencies require more moderate speeds to induce
maximal visual contrast [10–12].

In the normal visual system, spatial frequency resolution is maximal at the fovea due to the high
concentration of small receptive fields, and the optimal image motion is therefore very low. In this
case, the veridical relationship in Equation (1) very nearly maximizes visual contrast of an object. The
fixation and smooth pursuit eye movement systems have presumably evolved to maintain this contrast
when there is relative motion of the object.

When there is compromised foveal function, whether due to malformation (e.g., foveal hypoplasia) or
poor optics (e.g., cataracts, myopia) high spatial frequency resolution will be reduced. Consequently, the
optimal image motion should move to a higher speed (which we will denote by p). The question is how
to maximize visual contrast, since maintaining optimal image motion will inevitably cause the image
to fall off the fovea (or its remnant). Conversely, maintaining position would require a suboptimal zero
velocity. Mathematically, constant position and non-zero velocity could be achieved simultaneously if
the image oscillated with a saw-tooth waveform with infinite frequency and infinitesimal amplitude.
However, the visual system has low-pass temporal characteristics, the visual ‘integration time’, which
we will denote by T . This causes visual contrast to fall when images oscillate at high frequencies. Thus,
the algebraic maximum requires positional and velocity tuning that cannot be achieved [cannot obey
Equation (1)].

The question is what real (and hence veridical) image motion maximizes the response of such a
visual system? To answer this we cast the problem as a minimization problem in which we attribute
costs when the image falls off the fovea or moves at speed other than p. This allows us to find the
optimal image motion in the least squares sense. Real eye movement control has limitations (speed of
response, timing, accuracy), and therefore, we ask how these limitations would affect the generation of
the ideal image motion.

3. Optimal Image Motion

Image motion on the retina is determined by gaze (eye + head) movements and the motion of the
object. We only consider the one-dimensional problem and denote the position of the image relative to
the central fovea by y(t) where y = 0 when the image is on the central fovea. Image velocity is given
by ẏ ≡ dy/dt . Image position is given by

y(t) = o(t) − e(t) − h(t), (2)

where h(t) is the position of the head and e(t) is the position of the eye relative to the head, and o(t) is
the actual position of the object’s image on retina due to object motion relative to the body (see Figure
2). Positional cost Fy(t) is minimal when the image is on the central fovea, and assumed to be quadratic
in the vicinity of the fovea

Fy(t) = c1 + ay2(t), (3)
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Figure 2. Linear lumped model of oculomotor control of image motion. Image position relative to the fovea, y(y), is determined
by the actual object position o(t), head position, h(t), and eye position e(t). We only elaborate the eye movement system. Eye
movement position is determined by the filtering action of the muscle dynamics, m(t), a pre-motor compensator network, c(t),
driven by a velocity command, v(t).

where a is a positive constant of proportionality describing the steepness of the minimum, and c1 is the
cost at the fovea. Similarly, velocity cost Fẏ(t) is minimal when the image is moving at speed, p, which
in general could depend on the position of the image, y. However, in this treatment, we shall assume
that changes in p are negligible. Fẏ(t) is also assumed quadratic when image velocity is in the vicinity
of p

Fẏ(t) = c2 + b[ẏ(t) − p]2, (4)

where c2 and b are also positive constants. Assuming total cost to be additive

F(t, y, ẏ) = Fẏ(t) + Fy(t), (5)

total cost over the time interval (0, T ) is given by the integral

J =
∫ T

0
F(t, y, ẏ) dt =

∫ T

0
[c1 + c2 + ay2(t) + b[ẏ(t) − p]2] dt. (6)

Our goal is to find the optimal trajectory of the image

y∗(t): min
y(t)

J. (7)

We assume that y(t) is sufficiently smooth to take a standard variational approach.
The Euler–Lagrange equation for the functional in Equation (6) is

2ay − d
dt

[2b(ẏ − p)] = ay − bÿ = 0 (8)

which has the general solution

y = Ae−t/τ + Bet/τ (9)

where τ = ±√
b/a. The Weierstrassian condition is met since

∂2 F(t, y, q)/∂q2 = 2b > 0,
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for arbitrary q , indicating a strong minimum. Substituting Equation (9) into Equation (6) and setting
the partial derivatives ∂ J/∂ A and ∂ J/∂ B to zero yields the optimal coefficient values

A∗ = − pαeT/τ

eT/τ + 1
, B∗ = pα

eT/τ + 1
(10)

and the optimal motion is

y∗ = A∗e−t/τ + B∗et/τ . (11)

The effect of p is only to scale the trajectory without changing its shape. The shape is dependent on the
ratio T/τ , and different optimal trajectories and their phase plots are shown in Figure 3.

Figure 3. Optimal trajectories. (a) Optimal trajectories from Equation (10) for τ = 0.01, 0.1, 0.2, 0.4, 0.6, 0.8 with Y = 1 and
p = +1. Note trajectories become linear with large τ . (b) Phase plots of the trajectories with target shown by large dot. Reset is
not shown but would be a large negative velocity excursion. (c) Over an extended time period, the optimal trajectory is cyclical
as illustrated here for τ = 0.2 (a,b,c) and τ = 0.8 (d, e, f), with p = +1 (a, d) with p = −1 (b, e), and when p alternates after
each cycle (c, f) (see text).
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Clearly, the optimal image motion requires net shift in position from one side of the fovea to the
other. The cost of the optimal trajectory is

J ∗ = p2τ 2(T eT/τ − τeT/τ + 2τ + T )

eT/τ + 1
, (12)

which always increases with T (for a fixed τ ) since

∂ J ∗

∂T
= p2τ 2(eT/τ − 1)2

(e2T/τ + 1)2
≥ 0, (13)

and therefore it pays to make T as small as possible.
We conclude that over an extended period of time, the optimal trajectory is oscillatory with each epoch

given by y∗(t). We note that this applies even if the object is moving, so that an underlying ‘smooth
pursuit’ system would be needed to track the object motion. If the sign of p is changed, trajectories
may be inverted. If p can change sign on each epoch then reversed cycles will occur [Figure 3(c)].
Overall cost is minimized by increasing the frequency as high as possible. As described above, there
are biological limitations on the effectiveness in reducing T , since the visual system has a low-pass
temporal filtering action, so that contrast is reduced for high-frequency image oscillations.

Real CN sometimes shows waveforms similar to the global optimum waveform predicted by Equations
(10) and (11) (e.g., [13]), but it is not the most common. More realism emerges when we consider the
limitations imposed by the eye movement system, which we now outline.

4. Oculomotor Constraints

To generate the desired image motion, the nervous system must innervate the extraocular muscles and
the neck and body muscles with appropriate motor commands. For simplicity, we will assume that the
head and body are still, so that image position is controlled only by the oculomotor system. It is well
established that the oculomotor system is controlled via a pre-motor network that compensates for the
muscle plant. This network receives the motor command which is the desired velocity (see Figure 2).
For the normal oculomotor system the velocity command is used to control eye velocity and position
(via the Neural Integrator) dynamically, and the viscoelastic forces of the muscles are compensated by
the pre-motor network. This pre-motor network has evolved to cope with normal vision (i.e., p ≈ 0),
rather than with generating precise oscillatory image motion. We now briefly look at the effects of
limitations of eye movement control.

4.1. THE FIELD OF EXTREMALS FOR INITIAL POSITION

Rapid resetting of eye position at the end of an epoch can only be achieved by saccadic eye movements.
Saccades are driven by brief intense velocity pulses, but they are not instantaneous steps. They are not
perfectly accurate, and their timing is quite variable. We first consider the effect of inaccuracy.

Visually guided saccades (i.e., saccades to a small visual target) are not perfectly accurate. The end-
point standard deviation is about 5–10% of the amplitude of the saccade. There is also a tendency for
saccades to undershoot the target by 5–10% (the undershoot bias). Cursory observation indicates that
the end-points of nystagmus resetting quick phases are also quite variable. Since the end-point of one
cycle is the initial position of the next cycle, it means that the desired starting position of the optimal
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trajectory, y∗(0), cannot always be determined. Given uncertainty in initial position, the ideal strategy
would be to generate the ith cycle trajectory based on the actual ith initial position. We therefore need
to find the optimal trajectory given yi (0).

Specifying yi (0) places a constraint on Ai and Bi since B = y(0)− A. Substituting this into Equation
(6) gives

J = − A2τe−2T/τ + τ [y(0) − A]2e2T/τ − 2p Aτ 2e−T/τ

− 2τ 2 p(y(0) − A)eT/τ + τ 2 p2T − τ y2(0)

+ 2τ Ay(0) + 2τ 2 py(0) (14)

and solving ∂ J/∂ A = 0 yields the optimal coefficients given y(0)

Ai = yi (0)e2T/τ − pτeT/τ

e2T/τ + 1
, (15a)

Bi = yi (0) + pτeT/τ

e2T/τ + 1
. (15b)

Substituting into (9) yields a field of extremals depending on yi (0)

yi (t) = Ai e−t/τ + Bi et/τ , (16)

and some illustrative examples are shown in Figure 4. The divergence of these extremals is given by
the derivative

d
dt

(
dyi

dy0

)
= et/τ − e−2T/τ e−t/τ

τ (e2T/τ + 1)
. (17)

Clearly the extremals always converge for t < T , and diverge for t > T and are always parallel at
t = T .

A second possibility is that the system minimizes expected cost over many cycles. Denote the mean
and standard deviation of y(0) by ȳ and σ . Then from Equation (14), the expected cost is

E{J } = − A2τe−2T/τ + (
σ 2

x + (ȳ − A)2)τe2T/τ − 2p Aτ 2e−T/τ

− 2τ 2 p(ȳ − A)eT/τ + τ 2 p2T − τ
(
σ 2

x + ȳ2)
+ 2τ Aȳ + 2τ 2 pȳ. (18)

The partial derivative ∂ E{J }/∂ A is independent of σ and is the same as in Equation (14) with y(0)
replaced by ȳ, and the optimal trajectory belongs to the same field of extremals as in the deterministic
case [Equation (16)]. The actual optimal trajectory will depend on the precise value of σ . If, as we
expect, σ depends on the distance between the start of the epoch and the end-point of the previous
(i−1)th epoch, σ = k|yi−1(T ) − yi (0)|, where k is a constant of proportionality, then the shape of
optimal trajectory will depend on the amplitude of the optimal trajectory. Whether such oscillations are
stochastically stationary or not will depend on the divergence of extremal field.

Clearly, depending on the initial condition of an epoch, a wide range of waveforms may be optimal,
ranging from the global optimum (Figure 3), through simple accelerative slow phases, to the pseudo-
cycloid waveform [Figure 4(c)], and all can be seen in real data [Figure 1(a)–(c)]. If we allow p to



374 C. M. Harris and D. L. Berry

Figure 4. Fields of extremals. (a) Each curve is the optimal trajectory over (0, T ) for a given starting position, −2 ≤ y(0) ≤ 2,
with τ = 0.3, T = 1, p = 1. Note convergence of trajectories for t < T . When extremals are extended for t > T divergence
occurs and there is rapid acceleration. (b) Same as (a) except τ = 0.8. Note less convergence and less acceleration in the extended
period. (c) (bottom curve) examples of waveform for τ = 0.6 with y(0) = 0, showing accelerative slow phase that is typical of
CN; (top curve) waveform for y(0) = 0.7 illustrating the typical pseudo-cycloid waveform of CN.

change sign between epochs, then reversals can occur and are sometimes observed as well [Figure
1(e) and (f)]. Moreover, if p can be anisotropic (see Section 5) then reversals may occur with different
profiles [e.g., Figure 1(d)], but empirically these are rarer. Reversals require instantaneous changes in
velocity. For the normal oculomotor system this cannot be achieved without a saccade (assuming there
is no external stimulus). Therefore, a small saccade would be needed to enable a reversal, which again
is empirically observed [Figure 1(d)–(f)].

4.2. TIMING LIMITATIONS AND EXTENDED EXTREMALS

Observation of CN (or any other type of jerk nystagmus) reveals that the timing of quick phases is
highly variable. In infants (when CN begins), quick phases occur much less frequently than in adults.
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The mechanism of triggering quick phases is very poorly understood, and for infants, it seems that they
cannot be generated much faster than about 2–3 per second [14]. Although empirical data are needed,
it seems most likely that there are limitations on how soon a reset at the end of an epoch could occur,
both in terms of mean and standard deviation. Let us denote the time when a reset occurs by D (Di for
the duration of the i th epoch). Clearly, if a reset does not occur until D, the trajectory will continue. If
the waveform were ideally maintained during 0 < t ≤ T , then the trajectory would follow the extended
extremal for t > T (the extremals are analytic functions). In reality, we might expect deviations from
the extended extremal, but this could only occur relatively slowly due to improper compensation and
the low-pass nature of the muscle plant (see later). Extended extremals are divergent [Equation (17)]
and will cause the eye position to accelerate rapidly, and subsequent large resetting quick phases will
be needed (see Figure 4). Thus, slow phase velocities may far exceed p depending on the extremal
acceleration.

Assuming quick phases behave similarly to saccades, larger amplitudes will be associated with larger
σ and possible undershoot. This will influence the next cycle either directly or stochastically, adding to
the complexity of the sequence of cycles. The possibility that CN may be a nonlinear dynamical system
has been explored empirically by Abadi and colleagues, who have reported low dimensionality and
determinism for real CN data taken from a female subject with typical idiopathic congenital nystagmus
[13]. Using a similar approach based on the use of delay embedding techniques, we quantified the
dynamics of simulated cycles in the region of foveation. Eye position trajectories were assumed to be
perfect extended extremals—with perfect plant compensation assumed. A cycle was reset by a simulated
saccade using a minimum jerk profile [15]. The three-dimensional projection of the reconstructed phase
space trajectory, calculated using Matlab’s Tstool toolbox [16], shows a similar profile as observed
empirically [13] [Figure 5(c) and (d)].

4.3. PLANT COMPENSATION AND THE NULL REGION

The muscle plant has strong viscoelastic forces that tend to restore eye position to an equilibrium position.
For normal eye movements it is necessary for the pre-motor networks to compensate for the muscle
plant and to integrate the velocity command to a positional signal (the famous ‘neural integrator’).
When correctly compensated, a velocity command will drive the eyes at the desired velocity in all eye
positions, and a saccadic velocity pulse will move the eyes rapidly to the new position and remain steady
due to the tonic signal generated by the integrator [17].

A key question is how CN waveforms could be generated. In principle it would be possible to
devise a network that could generate y∗(t) at all eye eccentricities. For example, a velocity sig-
nal representing ẏ∗(t) could be added to the ongoing velocity command in the normal system
(although a problematic reset would be needed on every cycle, see [7]. However, such a system
does not exist in the normal primate genotype/phenotype. Therefore, we consider the possibility
that the normal pre-motor plant compensation network could be adapted to generate each cycle of
ẏ∗(t).

Modelling the control as a linear system, we denote the transfer function of the muscle plant by m(t)
and the transfer function of the pre-motor network by c(t)(see Figure 2). The motor command is denoted
by u(t). Assuming a linear lumped model, we can take Laplace transforms to yield the transform of the
image motion

Y (s) = H (s) + M(s)C(s)U (s) − O(s). (19)
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Figure 5. Comparison of 5-s sequence of empirical data taken from a female subject with typical idiopathic congenital nystagmus
[13]. (a) with simulated data generated by the model (b) (T = 0.05, p = 13.5, τ = 0.0025). Saccades were modeled using a
minimum jerk velocity profile. (c, d) Comparison of associated three-dimensional projections of the reconstructed phase space
trajectories; in both, an embedding dimension of 3 and a delay of 4 was used. Even though the model contains several random
processes, the correlation dimensions were finite and of similar values (emirical data: correlation dimension, D2 = 1.404; model
data: correlation dimension, D2 = 1.423).

For a desired image motion Y ∗(s), we have

C(s) = Y ∗(s) + O(s) − H (s)

M(s)P(s)U (s)
. (20)

Consider the simplest case where the object is stationary at some visual angle E so that O(s) = E/s,
with the head pointing straight ahead and stationary, i.e., H (s) = 0 . We denote the command to shift
gaze to E by uE (t). The ideal compensator is then

C(s) = Y ∗(s) + E/s
M(s)UE (s)

. (21)

For the normal visual system, p ≈ 0, the optimal trajectory would be to keep the image on (or very
close to) the fovea, or Y ∗(s) = 0, and the ideal compensator becomes

C(s) = 1

s M(s)

E
UE (s)

. (22)

The ideal command is therefore proportional to E . If uE (t) is a velocity command, then it should be
a delta function of strength UE (s) = E , and the compensator will be C(s) = 1/s M(s) which is a
perfect plant compensator and a perfect integrator (the eye position ‘neural integrator’). This is now
well established in the field of oculomotor physiology (see [17]). In reality, the velocity pulse is not a
delta function so the compensation should be considered up to some high frequency.
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For the abnormal case, p > 0. The optimal trajectory is given by repeated extremals from Equation
(9). The Laplace transform of an extended extremal (without reset) is

Y ∗(s) = A(y0)τ

(sτ + 1)
+ B(y0)τ

sτ − 1
(23)

and clearly Y ∗(s) �= 0. From Equation (21), we see that there is no single function that can transfer a
velocity delta function command into an optimal image motion for all object eccentricities. However,
it is possible to construct a compensator, C0, for a single eccentricity, E0, say

C0(s) = sY ∗(s) + E0

s P(s)U0(s)
, (24)

where u0(t) is the velocity command for eccentricity E0. Substituting this into Equation (19), we have
the general Laplacian equation for the optimal eye movement given perfect compensation at E0

Y (s) = UE (s)

U0(s)
Y ∗(s) +

[
E0UE (s)

U0(s)
− E

]
1

s
. (25)

There are two components, a scaled waveform and an offset error. Clearly, there is no command that can
provide simultaneously a unity scale [UE (s) = U0(s)] and eliminate the offset [E0UE (s) = EU0(s)].
A compromise between scaling and offset errors is needed, and since patients with CN do indeed shift
gaze, we must conclude that scaling must increase with target eccentricity. Some kind of ‘null point’ (a
point of least amplitude) is inevitable. One way round this problem would be to use independent head
movements to control one of the components in Equation (25). Thus, shifting head position towards the
target eccentricity will eliminate the offset error and allow the desired waveform to be achieved with
unity gain. This strategy is adopted by most patients with CN. Head movement is much slower than a
saccade, thus it is not an ideal strategy although it may be the best available (there is little research on
the issue).

5. Discussion

Previous models of CN have attempted to describe how the nervous system might generate such oscil-
lations (actually simplified models of the oculomotor circuitry) [4–9]. Although ingenious, these are
proximal models and cannot offer any explanation as to why CN might develop in the first place. They
are not testable and have not had any impact on the management of CN. Instead, we have attempted
to model why CN might develop. Understanding the causal mechanisms opens up the possibility of
meaningful intervention, but also provides testable predictions.

There is no evidence to indicate that the normal adaptive processes for regulating eye movements
have been damaged in CN, and the obvious question is why do these oscillations persist throughout
life? Why are they not suppressed, or gradually ‘adapted out’? We deduce that the oscillations may be
actively maintained by adaptive mechanism, possibly because the teaching signals that drive normal
adaptive control are abnormal. This is appealing as it provides a possible explanation of why abnormal
sensory processes (which occurs in most patients with CN) could lead to an abnormal motor behaviour.
Our argument is based on three key premises.

First, we propose that the objective of the developing visuomotor system is to develop a control
network that generates an eye movement strategy to maximize visual contrast. At this stage we make no
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comment on the anatomical substrate for this plasticity, other than it involves at least the connectivity in
the pre-motor oculomotor circuits. For most infants, who are born with typical sensory processes this
development results in behaviours which we label as ‘normal’ eye movements, such as steady fixation
and smooth pursuit. However, this is not a foregone conclusion. If the sensory processes are atypical, a
different eye movement strategy may develop, which we label as ‘abnormal’. Thus, we argue that CN
is a developmental strategy, albeit anomalous. This is in stark contrast to the implicit medical model,
which assumes CN to be caused by a ‘lesion’ (as in acquired nystagmus, for example).

Second, we propose that the abnormal sensory process is an abnormal reduction in high spatial
frequency sensitivity from birth (relative to a healthy infant) due to any of a wide range of abnormalities
in the eye or optic nerve (which may or may not be inherited). This leads to a strategy to attempt to
maximize visual contrast by maintaining positional registration with the fovea (or its remnant) but also
maintaining some optimal image speed over the visual integration time. This task is impossible and the
best compromise is to generate oscillatory eye movements, which we call ‘nystagmus’. If the saccadic
system can be harnessed to reset eye position after each epoch, then jerk nystagmus with increasing
velocity slow phases is optimal as described here.

Our final premise is that plasticity is not omnipotent. Oculomotor control is limited and performance
is not perfect, leading to additional constraints. Poor saccade (quick phase) timing delays the epoch
reset so that slow phases may reach much higher velocities and amplitudes than the optimum due to
their high acceleration. Reset inaccuracies lead to uncertainty in the starting position of an epoch, which
may lead to complex nonlinear sequences. As we have briefly outlined, a purely velocity command
driven pre-motor circuit cannot generate the desired waveform at all eccentricities, and a null region
seems inevitable. The consequences of this (including head movements) need to be explored further,
but there is qualitative agreement with observations. We have focussed on epochs with only saccadic
resets (jerk nystagmus) and have not examined pendular nystagmus. Although sinusoidal oscillations
are more costly than the global optimum, we can show that they may sometimes be less costly than jerk
nystagmus when we take into account the extra cost of saccade inaccuracy and timing. Space limitations
prevents us from demonstrating this, but pendular nystagmus may be an alternative oscillatory strategy
and could require different circuitry, such as anomalous smooth pursuit (see [7]).

An important aspect of the distal approach is that this model makes predictions that are in principle
testable (although we acknowledge this will be difficult). According to this model, the waveform should
be related to the underlying profile of contrast sensitivity which ultimately determines the two key
parameters: The optimal image speed p, and the relative cost of velocity to positional error τ . Both
will depend on the degree of foveal dysfunction in infancy (which may not be the same in the adult
nystagmas because of maturational and amblyogenic factors).

The parameter τ = +√
b/a describes the trade-off between cost of the image moving at a speed

different from p and the cost of the image being off the fovea. It is the critical factor in determining
the shape of the optimal trajectory. τ is not a directly measurable physiological quantity but could be
inferred from observed trajectory shapes (given that other parameters are known). Nevertheless, we can
make qualitative predictions. For an increasingly sharply defined fovea, positional control becomes more
important and τ decreases. The optimal trajectory therefore becomes more curvilinear and accelerative.
On the other hand, for a poorly defined fovea positional control becomes less important, thus increasing
τ and leading to more linear slow phases with less acceleration (Figure 3). Interestingly, large amplitude
linear slow phases are often seen in young infants with CN, and could reflect a lack of need for good
positional control (see later).

Although a non-zero p is a key requirement of this model, it only scales the optimal slow phase profile.
In the normal adult visual system, contrast sensitivity to a moving bar is maximized at p ≈ 3 deg/s for
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a bar width of 1 degree, but this increases to p ≈ 10 deg/s for a width of 3 degrees [10]. For low spatial
frequency gratings (0.75 cyc/deg), [11] reported a considerable increase in p with foveal eccentricity
from ˜8 deg/s at the fovea to ˜20 deg/s at 7.5 deg. Thus, substantial values for p are not improbable, but
it is difficult to ‘guesstimate’ p for an abnormal visual system (and in infancy!). The spatial contrast
sensitivity function (CSF) has been measured in adult albinos (the most common sensory defect in CN),
but unfortunately not at very low spatial frequencies. However, [18] reported CSFs down to 0.4 cyc/deg
for horizontal and vertical gratings. They clearly showed a relative enhancement for vertical gratings
below about 1 cyc/deg, implying that image motion caused by nystagmus does increase sensitivity to
low spatial frequencies even in the albino retina. However, temporal sensitivity needs to be measured
directly to find p.

The question of isotropy in p and τ also arises. Directional differences in cost will lead to a preference
to oscillate in one or more meridians. This may explain why CN is usually horizontal after early infancy.
There may also be left–right differences due to naso-temporal asymmetries in monocular viewing in
infants or older patients with strabismus. This may bias p and τ towards one direction and/or lead to
asymmetric reversal waveforms. This is a complicated problem that requires further theoretical and
empirical investigation.

An important aspect of this model is that it is not possible to proscribe a ‘foveation period’, at least
when defined as a period when the eye position and velocity are within some limits (a rectangle in state
space; [19]). The cost depends on the trajectory through state space and will vary between individuals
depending on their spatio-temporal contrast sensitivity functions. If we knew p we could define a period
when the eye speed is below p (which in any case would be greater than the value of 4 deg/s as typically
proscribed for a foveation period), but this would not take into account the full cost. Instead we need
to integrate cost over time according to Equation (6). Clearly it would be an interesting experiment to
explore the relationship between cost and visual acuity to test this model.

A persistent conundrum has been why so few infants develop CN. Foveal development is protracted
over the postnatal period [20] so why do not all infants develop CN? We propose that in the normal vi-
sual system, eye movement development occurs slowly in order not to outpace foveal maturation. After
normal development, this will leave the infant with a functioning fovea and the optimal eye movement
strategy, namely steady fixation and smooth pursuit. If foveal development were delayed/inhibited (or
eye movement development were precocious), oscillations would develop and CN would ensue. Such
oscillations might even prevent further visual development (i.e., amblyogenic), thus further delaying
foveal vision. Once the period of peak plasticity is over (critical period), the strategy becomes irre-
versible. Clearly this is a complex issue, but it can explain why CN only occurs in infancy. It may also
explain some idiopathic cases (where no underlying visual anomaly can be detected), since a transient
mismatch between sensory and motor development could lead to permanent CN without any trace of
an underlying abnormality later in life. We note that according to this model, a pre-requisite for CN is
an eye movement system that is capable of developing steady fixation and smooth pursuit. Thus, we
would not expect CN to develop in species without such eye movement systems.

This is an initial outline of a distal model. We have only considered the one-dimensional scenario
and we have not explored the interaction between plant compensation and waveform. In particular, how
important are head movements in developing CN waveforms and the null region? We have assumed
quadratic minima and have had to make ‘guesses’ about quick phase metrics, as there is little data on
the subject. Nor have we discussed pendular CN as an alternative locally optimal strategy. Furthermore,
how an eye movement strategy is learnt and whether ‘normal’ brainstem circuitry might be harnessed for
oscillations need to be revisited. These many issues need further exploration. In spite of these obvious
limitations, remarkably, this model captures many of the unique waveforms associated with CN, the
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low fractional dimensionality, and even predicts a null region. A conservative conclusion is that a non-
veridical conflict between velocity and positional tuning is a sufficient condition for CN to develop in a
plastic nervous system. It seems plausible that this tuning is related to underlying visual defects present
at birth. We urge that CN should be viewed as a developmental strategy that needs to be redirected, not
as pathology to be ‘cured’. Indeed, Congenital Nystagmus may be as permanent and as ‘incurable’ as
normal eye movements in a normally sighted individual.
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