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A DISTANCE FORMULA FOR TUPLES OF OPERATORS

PRIYANKA GROVER AND SUSHIL SINGLA

ABSTRACT. For a tuple of operators A = (A1, . . . , Ad), dist(A,CdI)

is defined as min
z∈Cd

‖A − zI‖ and var
x

(A) as ‖Ax‖2−∑d

j=1

∣

∣〈x|Ajx〉
∣

∣

2

.

For a tuple A of commuting normal operators, it is known that

dist(A,CdI)2 = sup
‖x‖=1

var
x

(A).

We give an expression for the maximal joint numerical range of a

tuple of doubly commuting matrices. Consequently, we obtain that
the above distance formula holds for tuples of doubly commuting

matrices. We also discuss some general conditions on the tuples of
operators for this formula to hold. As a result, we obtain that it

holds for tuples of Toeplitz operators as well.

1. INTRODUCTION

Let H be a Hilbert space. Let B(H ) be the space of bounded linear
operators on H . Björck and Thomée [8] showed that for a bounded
normal operator A on H ,

sup
‖x‖=1

(

‖Ax‖2 −
∣

∣

∣〈x|Ax〉
∣

∣

∣

2
)

= R2
A,

where RA is the radius of the smallest disc containing the spectrum

of A. The quantity ‖Ax‖2 −
∣

∣

∣〈x|Ax〉
∣

∣

∣

2
is the variance of A with respect

to x, denoted by var
x

(A) (see [4]). Later, Garske [14] proved that a

one side inequality is true for any operator A on H :

(1) sup
‖x‖=1

var
x

(A) ≥ R2
A.

Let H
d be the direct sum of d copies of H . For A1, . . . , Ad ∈ H ,

let A denote the tuple (A1, . . . , Ad) : H → H d defined as A x =
(A1x, . . . Adx). Then

‖ A ‖ =

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
jAj

∥

∥

∥

∥

∥

∥

1/2

.
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We define the variance of the tuple A with respect to x ∈ H as

var
x

(A) = ‖ A x‖2 −
d
∑

j=1

∣

∣

∣〈x|Ajx〉
∣

∣

∣

2
. Ming [28] showed that if A is a

tuple of commuting operators on H , then

(2) sup
‖x‖=1

var
x

(A) ≥ R2
A,

where RA is the radius of the smallest disc containing the Taylor spec-
trum of A. Moreover, if each Aj is normal, (2) becomes an equality.
(See also [7].)

Let I be the tuple of identity operators (I, . . . , I). For z = (z1, . . . , zd) ∈
Cd, z I denotes the tuple (z1I, . . . , zdI). Let dist(A,Cd I) = min

z∈Cd
‖ A − z I ‖.

For commuting normal operators, RA = dist(A,Cd I), and thus we
have

(3) sup
‖x‖=1

var
x

(A) = dist(A,Cd I)2.

We note that for any tuple of operators A, we have

(4) sup
‖x‖=1

var
x

(A) ≤ dist(A,Cd I)2.

To see this, let x be a unit vector in H . Then for z ∈ Cd and 1 ≤ j ≤
d, we have

‖Ajx‖2 −
∣

∣

∣〈x|Ajx〉
∣

∣

∣

2
= ‖(Aj − zjI)x‖2 −

∣

∣

∣〈x|(Aj − zjI)x〉
∣

∣

∣

2

≤ ‖(Aj − zjI)x‖2.

Thus for all z ∈ Cd,

d
∑

j=1

(

‖Ajx‖2 −
∣

∣

∣〈x|Ajx〉
∣

∣

∣

2) ≤
d
∑

j=1

‖(Aj − zjI)x‖2 ≤ ‖ A − z I ‖2.

So var
x

(A) ≤ dist(A,Cd I)2. Since x was an arbitrary unit vector in

H , we get (4).

A doubly commuting tuple of operators is one which satisfies AiAj =
AjAi and A∗

i Aj = AjA
∗
i for 1 ≤ i, j ≤ d, i 6= j. In particular, a

tuple of commuting normal operators is doubly commuting. We show
that for a finite dimensional Hilbert space H , (3) holds for a doubly
commuting tuple of operators.

We also give some equivalent conditions for any tuple of operators
on any Hilbert space to satisfy (3). For a tuple of operators A on a
Hilbert space H , the joint maximal numerical range of A is defined
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as

W0(A) ={(λ1, . . . , λd) ∈ C
d : 〈x(n)|Ajx

(n)〉 → λj for all 1 ≤ j ≤ d,

where ‖x(n)‖ = 1 and ‖ A x(n)‖ → ‖ A ‖}.

We shall denote by z0 = (z0
1 , . . . , z0

d) ∈ Cd, the unique element for
which dist(A,CdI) = ‖A − z0I‖. Let A0 denote A − z0I and for
each 1 ≤ j ≤ d, let A0

j = Aj − z0
j I. It is shown that the convexity of

W0(A
0) is sufficient for A to satisfy (3). As a corollary, we obtain that

(3) holds for tuples of Toeplitz operators as well. We give an example
to show that the convexity of W0(A

0) is not necessary for A to satisfy
(3). Convexity of the joint numerical range and the joint maximal
numerical range has been a subject of interest for many authors (see
[2, 3, 5, 13, 19, 25, 26, 29, 33]).

In Section 2, we provide results for doubly commuting matrices. In
Section 3, we give some conditions for (3) to hold for general tuples
of operators and obtain results for Toeplitz operators. In Section 4,
we give some remarks.

2. DOUBLY COMMUTING MATRICES

For x1, x2 ∈ C
n, let x1⊗̄x2 denote the rank one operator on C

n defined

as (x1⊗̄x2)(y) = 〈x2|y〉x1 for all y ∈ Cn. Let 0 be the tuple (0, . . . , 0) ∈
Cd.

Theorem 1. For any tuple of matrices A,

‖ A − z I ‖ ≥ ‖ A ‖ for all z ∈ C
d

if and only if

0 ∈ conv {(〈x|A1x〉, . . . , 〈x|Adx〉) : ‖x‖ = 1, A∗ A x = ‖ A ‖2x} .

Proof. Using Theorem 8.4 of [35], ‖ A − z I ‖ ≥ ‖ A ‖ for all z ∈ C
d if

and only if there exists a positive semidefinite matrix T with tr(T ) = 1
such that A∗ A T = ‖ A ‖2T and tr(A∗ z I T ) = 0 for all z ∈ Cd. Using
the spectral theorem for T , there are positive numbers s1, s2, . . . , sℓ

such that
ℓ
∑

i=1
si = 1 and orthonormal vectors x1, . . . , xℓ such that T =

ℓ
∑

i=1
sixi⊗xi. We note that A∗ A T = ‖ A ‖2T is equivalent to A∗ A xi =
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‖ A ‖2xi for each 1 ≤ i ≤ ℓ. To see this, we observe that

‖ A ‖2 = tr(A∗ A T )

=
ℓ
∑

i=1

si〈xi|A∗ A xi〉

≤ ‖A∗ A ‖.

So
ℓ
∑

i=1

si〈xi|A∗ A xi〉 = ‖A∗ A ‖ =
ℓ
∑

i=1

si‖A∗ A ‖.

By the condition of equality in the Cauchy-Schwarz inequality, we get
A∗ A xi = ‖ A ‖2xi for all 1 ≤ i ≤ ℓ. We also have that tr(A∗ z I T ) =

0 for all z ∈ Cd is equivalent to
ℓ
∑

i=1
si〈xi|Ajxi〉 = 0 for all 1 ≤ j ≤ d.

This gives the required result. �

Let W (A) = {(〈x|A1x〉, 〈x|A2x〉, . . . , 〈x|Adx〉) : ‖x‖ = 1} denote the
joint numerical range of A. Let

V(A) = {(〈x|A1x〉, 〈x|A2x〉, . . . , 〈x|Adx〉) : ‖x‖ = 1, A∗ A x = ‖ A ‖2x}.

Note that V(A) = W (P A P ), where P is the orthogonal projection
of H onto the subspace {x : A∗ A x = ‖ A ‖2x}. As a consequence of
Theorem 1, we have

Corollary 2. Let A be a tuple of matrices such that V(A) is a convex
set. Then we have

‖A − zI‖ ≥ ‖A‖ for all z ∈ C
d

if and only if there exists a unit vector x ∈ Cn such that ‖Ax‖ = ‖A‖
and 〈x|Ajx〉 = 0 for all 1 ≤ j ≤ d.

For a tuple of matrices, V(A) = W0(A). It was proved in [11, Theo-
rem 1] that if A is a tuple of operators such that W (A) is convex, then
so is W0(A). Bolotnikov and Rodman [9, Theorem 3.1] showed that
if A is a tuple of doubly commuting matrices, then W (A) is convex.
Thus we have the following lemma.

Lemma 3. For a doubly commuting tuple of matrices A, V(A) is con-
vex.

In Theorem 1.1 of [9], the authors gave a complete description of a
doubly commuting tuple A of matrices. They showed that there is
a unitary matrix U , positive integers m1, . . . , mℓ, mk × mk matrices
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A1,k, . . . , Ad,k for each 1 ≤ k ≤ ℓ such that n = m1 + m2 + · · ·+ mℓ and
for j = 1, . . . , d,

(5) UAjU
∗ =















Aj,1 0 . . . 0

0 Aj,2
. . . 0

...
...

. . .
...

0 . . . 0 Aj,ℓ















.

Moreover, for 1 ≤ k ≤ ℓ, mk = p1,kp2,k . . . pd,k and

A1,k = X1,k ⊗ Ip2,k
⊗ · · · ⊗ Ipd,k

,

A2,k = Ip1,k
⊗ X2,k ⊗ Ip3,k

⊗ · · · ⊗ Ipd,k
,

...

Ad,k = Ip1,k
⊗ Ip2,k

⊗ · · · ⊗ Ipd−1,k
⊗ Xd,k,

where for 1 ≤ j ≤ d, Xj,k are pj,k × pj,k matrices and Ipj,k
denote the

pj,k × pj,k identity matrices. Using this, they proved that for doubly
commuting tuples of matrices A, W (A) is convex. Modifying their
proof along with [13, Proposition 4] (which is also the main ingredi-
ent in [9, Theorem 3.1]), we show that

(6) V(A) = conv







d
∏

j=1

V(Xj,k) : 1 ≤ k ≤ ℓ,
d
∑

j=1

‖Xj,k‖2 = ‖A‖2







.

The convexity of V(A) (Lemma 3) follows as a consequence. We
prove (6) in two steps given in the subsequent lemmas.

Lemma 4. Let

A1 = X1 ⊗ Ip2 ⊗ · · · ⊗ Ipd
,

...

Ad = Ip1 ⊗ Ip2 ⊗ · · · ⊗ Xd,

where each Xj is a pj ×pj matrix and Ipj
is pj ×pj identity matrix. Then

V(A1, . . . , Ad) =
d
∏

j=1
V(Xj).

Proof. We have

d
∑

j=1

A∗
jAj =

d
∑

j=1

Ip1 ⊗ · · · ⊗ Ipj−1
⊗ (X∗

pj
Xj) ⊗ Ipj+1

· · · ⊗ Ipd
.

So the eigenvalues of
d
∑

j=1
A∗

jAj are precisely the sums of the eigenval-

ues of X∗
j Xj over j. This gives

(7)

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
jAj

∥

∥

∥

∥

∥

∥

=
d
∑

j=1

∥

∥

∥X∗
j Xj

∥

∥

∥ .



6 GROVER AND SINGLA

Let (〈x1|X1x1〉, . . . , 〈xd|Xdxd〉) ∈
d
∏

j=1
V(Xj). So

X∗
j Xjxj = ‖Xj‖2xj for all 1 ≤ j ≤ d.

Thus
d
∑

j=1

A∗
jAj (x1 ⊗ · · · ⊗ xd) =

d
∑

j=1

‖Xj‖2(x1 ⊗ · · · ⊗ xd)

=

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
jAj

∥

∥

∥

∥

∥

∥

(x1 ⊗ · · · ⊗ xd).

Since

〈xj|Xjxj〉 = 〈x1 ⊗ · · · ⊗ xd|Aj(x1 ⊗ · · · ⊗ xd)〉 for all 1 ≤ j ≤ d,

we obtain (〈x1|X1x1〉, . . . , 〈xd|Xdxd〉) ∈ V(A1, . . . , Ad).

Now let (〈x|A1x〉, . . . , 〈x|Adx〉) ∈ V(A1, . . . , Ad), where ‖x‖ = 1 and




d
∑

j=1

A∗
jAj



x =

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
jAj

∥

∥

∥

∥

∥

∥

x =
d
∑

j=1

∥

∥

∥X∗
j Xj

∥

∥

∥x.

For 1 ≤ j ≤ d, let {e(j)
q : q = 1, . . . , pj} be an orthonormal basis of Cpj .

Fix i ∈ {1, . . . , d} and let

Si =
{

(q1, . . . , qi−1, qi+1, . . . , qd) : 1 ≤ qj ≤ pj for all j ∈ {1, . . . , d}\{i}
}

.

Then we have

x =
∑

(q1,...,qi−1,qi+1,...,qd)∈Si

e(1)
q1

⊗· · ·⊗e(i−1)
qi−1

⊗f(q1,...,qi−1,qi+1,...,qd)⊗e(i+1)
qi+1

⊗· · ·⊗e(d)
qd

,

where f(q1,...,qi−1,qi+1,...,qd) ∈ Cpi and

1 = ‖x‖2 =
∑

α∈Si

‖fα‖2.

The condition

∥

∥

∥

∥

∥

(

d
∑

j=1
A∗

jAj

)

x

∥

∥

∥

∥

∥

=
d
∑

j=1
‖X∗

j Xj‖ gives

X∗
i Xifα = ‖X∗

i Xi‖fα for all fα ∈ C
pi \ {0}.

Since

〈x|Aix〉 =
∑

α∈Si

〈fα|Xifα〉

=
∑

α∈Si,
fα 6=0

‖fα‖2

〈

fα

‖fα‖

∣

∣

∣

∣

∣

Xi
fα

‖fα‖

〉

,

it lies in V(Xi). Hence

(〈x|A1x〉, . . . , 〈x|Adx〉) ∈
d
∏

i=1

V(Xi).
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This gives V(A1, . . . , Ad) =
d
∏

i=1
V(Xi).

�

Lemma 5. For a doubly commuting tuple of matrices A,

V(A) = conv







V(A1,k, . . . , Ad,k) : 1 ≤ k ≤ ℓ,

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

= ‖A‖2







,

where Aj,k (1 ≤ j ≤ d, 1 ≤ k ≤ ℓ) are as given in (5).

Proof. Let x be a unit vector such that A∗ A x = ‖ A ‖2x. Let y =
Ux = (y1, . . . , yℓ) . Fix 1 ≤ k ≤ ℓ. Then





d
∑

j=1

A∗
j,kAj,k



 yk = ‖ A ‖2yk.

Note that
∥

∥

∥

∑d
j=1 A∗

j,kAj,k

∥

∥

∥ ≤ ‖A∗A‖. Thus yk = 0 whenever
∥

∥

∥

∑d
j=1 A∗

j,kAj,k

∥

∥

∥ 6=
‖A‖2. Now for 1 ≤ k ≤ ℓ such that yk 6= 0, we have

‖ A ‖2‖yk‖ =

∥

∥

∥

∥

∥

∥

U





d
∑

j=1

A∗
jAj



U∗

∥

∥

∥

∥

∥

∥

‖yk‖

≥
∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

‖yk‖

≥
∥

∥

∥

∥

∥

∥





d
∑

j=1

A∗
j,kAj,k



 yk

∥

∥

∥

∥

∥

∥

.

So




d
∑

j=1

A∗
j,kAj,k



 yk =

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

yk.

Also, for each 1 ≤ j ≤ d,

〈x|Ajx〉 =
∑

1≤k≤ℓ,
yk 6=0

‖yk‖2

〈

yk

‖yk‖

∣

∣

∣

∣

∣

Aj,k
yk

‖yk‖

〉

.

Thus

V(A) ⊆ conv







V(A1,k, . . . , Ad,k) : 1 ≤ k ≤ ℓ,

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

= ‖A‖2







.

Now let

λ ∈ conv







V(A1,k, . . . , Ad,k) : 1 ≤ k ≤ ℓ,

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

= ‖A‖2







.
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We have

‖A‖2 = max







∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,1Aj,1

∥

∥

∥

∥

∥

∥

, . . . ,

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,ℓAj,ℓ

∥

∥

∥

∥

∥

∥







.

Let m be the number of terms where this maximum is attained. With-
out loss of generality, let 1 ≤ k ≤ m be such that

∥

∥

∥

∑d
j=1 A∗

j,kAj,k

∥

∥

∥ =

‖A‖2. So there are positive numbers s1, . . . , sm such that
m
∑

k=1
sk = 1

and λk ∈ V(A1,k, . . . , Ad,k) for all 1 ≤ k ≤ m such that

(8) λ =
m
∑

k=1

skλk.

Since λk ∈ V(A1,k, . . . , Ad,k), there exists a unit vector yk ∈ Cmk such
that

(9) λk = (〈yk|A1,kyk〉, . . . , 〈yk|Ad,kyk〉) ,

and




d
∑

j=1

A∗
j,kAj,k



 yk =

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

yk = ‖A∗A‖yk.

Consider x = U∗(
√

s1y1, . . . ,
√

smym, 0, . . . , 0). Then ‖x‖2 = 1. Now,
we have

A∗Ax =
d
∑

j=1

A∗
jAjx

= U∗





d
∑

j=1

(UAjU
∗)∗(UAjU

∗)Ux





= U∗



























d
∑

j=1
A∗

j,1Aj,1 0 . . . 0

0
d
∑

j=1
A∗

j,2Aj,2
. . . 0

...
...

. . .
...

0 . . . 0
d
∑

j=1
A∗

j,ℓAj,ℓ























































√
s1y1√
s2y2
...√

smym

0
...
0





























= U∗ (
√

s1‖A∗A‖y1, . . . ,
√

sm‖A∗A‖ym, 0, . . . , 0) .

This gives

(10) A∗Ax = ‖A‖2x.
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Further, we have

〈x|Ajx〉 = 〈Ux|UAjU
∗(Ux)〉

= 〈(√s1y1, . . . ,
√

smym, 0, . . . , 0) | (
√

s1Aj,1y1, . . . ,
√

smAj,mym, 0, . . . , 0)〉

=
m
∑

k=1

sk〈yk|Aj,kyk〉.

So by (8), (9) and (10), we get that λ ∈ V(A). Thus

conv







V(A1,k, . . . , Ad,k) : 1 ≤ k ≤ ℓ,

∥

∥

∥

∥

∥

∥

d
∑

j=1

A∗
j,kAj,k

∥

∥

∥

∥

∥

∥

= ‖A‖2







⊆ V(A).

Hence the result. �

Now we show that (3) holds for a doubly commuting tuple of matri-
ces.

Theorem 6. For a doubly commuting tuple of matrices, we have

dist(A,Cd I)2 = max
‖x‖=1

var
x

(A).

Proof. By (4), we have max
‖x‖=1

var
x

(A) ≤ dist(A,Cd I)2. For the other

side, we note that for every z ∈ Cd, ‖ A0 − z I ‖ ≥ ‖ A0 ‖. By Corol-
lary 2 and Lemma 3, there exists a unit vector x such that

‖ A0 x‖ = ‖ A0 ‖

and

〈x|A0
jx〉 = 0 for all j = 1, . . . , d.

So

dist(A,Cd I)2 = ‖ A0 x‖2

=
d
∑

j=1

‖A0
jx‖2

=
d
∑

j=1

‖Ajx − z0
j x‖2

=
d
∑

j=1

(

‖Ajx‖2 −
∣

∣

∣〈x|Ajx〉
∣

∣

∣

2)

.

Hence dist(A,Cd I)2 ≤ max
‖x‖=1

var
x

(A). �

Theorem 3.2 of [7] follows as a special case of Theorem 6.
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3. OTHER TUPLES OF OPERATORS

First, we observe that for d = 1, (3) is true for any operator on any
Hilbert space. To see this, in view of (4), only one side of the inequal-
ity is to be shown. Let λ0 ∈ C be such that dist(A,CI) = ‖A − λ0I‖.

Using Remark 3.1 of [6], there exists a sequence of unit vectors x(n) ∈
H such that ‖(A − λ0I)x(n)‖ → dist(A,CI) and 〈x(n)|Ax(n)〉 → λ0. So

dist(A,CI)2 = lim
n→∞

‖(A − λ0I)x(n)‖2

= lim
n→∞

(

‖Ax(n)‖2 − 2 Re
(

λ0〈Ax(n)|x(n)〉
)

+ |λ0|2
)

= lim
n→∞

‖Ax(n)‖2 − |λ0|2

= lim
n→∞

var
x(n)

(A)

≤ sup
‖x‖=1

var
x

(A).

Equation (3) may not hold for d > 1. To show this, we give examples
for every such d. These are motivated by the example of Pauli spin
matrices for the case d = 3.

Example 1. Let A = (A1, A2, A3), where A1 =

[

0 1
1 0

]

, A2 =

[

0 −i
i 0

]

,

and A3 =

[

1 0
0 −1

]

. Then for any z = (z1, z2, z3) ∈ C3,

‖ A − z I ‖2 =

∥

∥

∥

∥

∥

([

−z1 1
1 −z1

]

,

[

−z2 −i
i −z2

]

,

[

1 − z3 0
0 −1 − z3

])∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

[

|z1|2 + |z2|2 + 2 + |1 − z3|2 −(z1 + z1) + i(z2 + z2)
−(z1 + z1) − i(z2 + z2) |z1|2 + |z2|2 + 2 + |1 + z3|2

]∥

∥

∥

∥

∥

≥ max{|z1|2 + |z2|2 + 2 + |1 − z3|2, |z1|2 + |z2|2 + 2 + |1 + z3|2}
> 2.

Now let x = (x1, x2) ∈ C
2. Then

A1x = (x2, x1), A2x = (−ix2, ix1) and A3x = (x1, −x2).

So ‖ A x‖2 = 3(|x1|2 + |x2|2) and

3
∑

j=1

∣

∣

∣〈x|Ajx〉
∣

∣

∣

2
= 4|x1|2|x2|2 + (|x1|2 − |x2|2)2 = (|x1|2 + |x2|2)2.

Hence for a unit vector x ∈ C2, var
x

(A) = 2. So dist(A,C2 I)2 >

max
‖x‖=1

var
x

(A).

Let I be the 2 × 2 identity matrix. For d > 3, it is easy to see that
(A1, A2, A3, I, . . . , I) works as a counterexample.
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For d = 2, A =
(

1

2
(A1 + iA2), A3

)

is a counterexample. We have

A =

([

0 1
0 0

]

,

[

1 0
0 −1

])

.

Then for any z = (z1, z2) ∈ C2,

‖ A − z I ‖2 =

∥

∥

∥

∥

∥

([

−z1 1
0 −z1

]

,

[

1 − z2 0
0 −1 − z2

])∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

[

|z1|2 + |1 − z2|2 −z1

−z1 |z1|2 + 1 + |1 + z2|2
]∥

∥

∥

∥

∥

≥ max{|1 − z2|2, 1 + |1 + z2|2}
≥ max{2 − |1 + z2|2, 1 + |1 + z2|2}
≥ 3/2.

Now let x = (x1, x2) ∈ C
2. Then

[

0 1
0 0

]

x = (x2, 0),

[

1 0
0 −1

]

x = (x1, −x2).

So ‖ A x‖2 = |x2|2 + |x1|2 + |x2|2 and
∣

∣

∣

∣

∣

〈

x

∣

∣

∣

∣

∣

[

0 1
0 0

]

x

〉∣

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∣

〈

x

∣

∣

∣

∣

∣

[

1 0
0 −1

]

x

〉∣

∣

∣

∣

∣

2

= |x1|2|x2|2 + (|x1|2 − |x2|2)2.

Thus

max
‖x‖=1

var
x

(A) = max
‖x‖=1

(

1 + |x2|2 − |x1|2|x2|2 − (|x1|2 − |x2|2)2
)

= max
‖x‖=1

(

1 + |x2|2 + 3|x1|2|x2|2 − (|x1|2 + |x2|2)2
)

= max
‖x‖=1

|x2|2(1 + 3|x1|2)

= max
s∈[0,1]

(1 − s)(1 + 3s)

= 4/3

< 3/2.

So dist(A,C2 I)2 > max
‖x‖=1

var
x

(A).

We also note that when d = 1,

dist(A,CI) = sup
{∣

∣

∣〈Ax|y〉
∣

∣

∣ : x, y ∈ H , ‖x‖ = ‖y‖ = 1, 〈x|y〉 = 0
}

.

A proof of this can be found in [1, Theorem 12.59] or [24, Proposition
2.11].

Theorem 7. The following are equivalent.

(i) dist(A,CdI)2 = sup
‖x‖=1

var
x

(A).
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(ii) 0 ∈ W0(A0), that is, there is a sequence of unit vectors (x(n))
such that lim

n→∞
‖A0x(n)‖ = ‖A0‖ and lim

n→∞
〈x(n)|A0

jx
(n)〉 = 0 for

all 1 ≤ j ≤ d.

(iii) dist(A,CdI) = sup
{∣

∣

∣〈Ax|y〉
∣

∣

∣ : x ∈ H , y ∈ H d, ‖x‖ = ‖y‖ = 1,

〈x|yj〉 = 0 for all 1 ≤ j ≤ d
}

.

Proof. Suppose (i) holds. Since var
x

(A) = var
x

(A0), we have

‖A0‖2 = sup
‖x‖=1

var
x

(A0).

So there is a sequence of unit vectors (x(n)) such that lim
n→∞

var
x(n)

(A0) =

‖A0‖2. Since

var
x(n)

(A0) ≤ ‖ A0 x(n)‖2 ≤ ‖ A0 ‖2,

we get (ii). The proof of (ii) implies (i) is similar to the case d = 1.

Now let us assume (ii). Then for each 1 ≤ j ≤ d, there is a unique

y
(n)
j ∈ (Cx(n))⊥ and a unique α

(n)
j ∈ C such that

A0
jx

(n) = α
(n)
j x(n) + y

(n)
j .

By the assumption, lim
n→∞

α
(n)
j = 0 and lim

n→∞
‖(y

(n)
1 , . . . , y

(n)
d )‖ = ‖A0‖.

Let y(n) =
(y

(n)
1 , . . . , y

(n)
d )

‖(y
(n)
1 , . . . , y

(n)
d )‖

. Then

〈Ax(n)|y(n)〉 =
〈

A0x(n)
∣

∣

∣y(n)
〉

=
‖A0x(n)‖2 −

〈

A0x(n)
∣

∣

∣(α
(n)
1 x(n), . . . , α

(n)
d x(n))

〉

‖(y
(n)
1 , . . . , y

(n)
d )‖

→ ‖A0‖ as n → ∞.

This gives

dist(A,CdI) ≤ sup
{∣

∣

∣〈Ax|y〉
∣

∣

∣ : ‖x‖ = ‖y‖ = 1, 〈x|yj〉 = 0 for all 1 ≤ j ≤ d
}

.

If x ∈ H and y ∈ Hd are such that ‖x‖ = ‖y‖ = 1 and 〈x|yj〉 = 0 for
all 1 ≤ j ≤ d, then for every z ∈ Cd, we have

∣

∣

∣〈Ax|y〉
∣

∣

∣ =
∣

∣

∣〈(A − zI)x|y〉
∣

∣

∣ ≤ ‖A − zI‖.

So we also have

sup
{∣

∣

∣〈Ax|y〉
∣

∣

∣ : ‖x‖ = ‖y‖ = 1, 〈x|yj〉 = 0 for all 1 ≤ j ≤ d
}

≤ dist(A,CdI).

This gives (iii).
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Now assume (iii) holds. We prove (ii) along the lines of Remark 3.1
of [6] where a similar result is shown for d = 1. By our assumption,
we get sequences of unit vectors x(n) ∈ H and y(n) ∈ H d such that

∣

∣

∣〈A0x(n)|y(n)〉
∣

∣

∣ → ‖A0‖

and

〈x(n)|y(n)
j 〉 = 0 for all j = 1, . . . , d.

Since
∣

∣

∣〈A0x(n)|y(n)〉
∣

∣

∣ ≤ ‖A0x(n)‖ ≤ ‖A0‖,

we get

lim
n→∞

‖A0x(n)‖ = ‖A0‖.

This gives y(n) − A0 x(n)

‖ A0 x(n)‖ → 0. So

lim
n→∞

〈x(n)|A0
jx

(n)〉 = ‖A0‖ lim
n→∞

〈x(n)|y(n)
j 〉 = 0.

Thus we get (ii). �

We have the following general result to Corollary 2 for a tuple of
operators A for which W0(A) is convex.

Proposition 8. Suppose W0(A) is convex. Then

‖ A − z I ‖ ≥ ‖ A ‖ for all z ∈ C
d

if and only if 0 ∈ W0(A).

Proof. The proof is similar to that of [32, Theorem 2] where this result
is proved for d = 1. We provide the details for the sake of complete-
ness. Suppose there exists a sequence of unit vectors x(n) such that
lim

n→∞
‖ A x(n)‖ = ‖ A ‖ and lim

n→∞
〈x(n)|Ajx

(n)〉 = 0 for all j = 1, . . . , d.

Then for z ∈ Cd,

‖(A − z I)x(n)‖2 = ‖ A x(n)‖2 − 2 Re





d
∑

j=1

zj〈x(n)|Ajx
(n)〉



+ ‖ z ‖2

→ ‖ A ‖2 + ‖ z ‖2 as n → ∞.

Thus ‖ A − z I ‖2 ≥ ‖ A ‖2 + ‖ z ‖2. In particular, ‖ A − z I ‖ ≥ ‖ A ‖.

Suppose ‖ A − z I ‖ ≥ ‖ A ‖ for all z ∈ C
d and 0 /∈ W0(A). Since

W0(A) is a closed and convex set, the Hahn-Banach separation theo-
rem gives a τ > 0 and a unit vector (w1, w2, . . . , wd) ∈ Cd such that

Re
d
∑

j=1

wiλi ≥ τ > 0 for all (λ1, . . . , λd) ∈ W0(A).
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Let S =

{

x ∈ H : ‖x‖ = 1 and Re

(

d
∑

j=1
wi〈Aix|x〉

)

≤ τ/2

}

. Let η =

sup{‖ A x‖ : x ∈ S}. Clearly η < ‖ A ‖. Let µ = min{τ/2, (‖ A ‖ −
η)/2}. Let w0 = µ(w1, w2, . . . , wd). If x ∈ S, then

‖(A −w0 I)x‖ ≤ ‖ A x‖ + µ‖(w1, w2, . . . , wd)‖
≤ η + µ

< ‖ A ‖.

Suppose x is a unit vector such that x /∈ S. We write A x as

A x = ((α1 + iβ1)x, (α2 + iβ2)x, . . . , (αd + iβd)x) + y,

where 〈y|(x, x, . . . , x)〉 = 0 and αj , βj ∈ R for all 1 ≤ j ≤ d. Then

‖(A −w0 I)x‖2 =
d
∑

j=1

(αi − µ Re(wi))
2 +

d
∑

j=1

(βi + µ Im(wi))
2 + ‖y‖2

= ‖ A x‖2 + µ2 − 2µ
d
∑

j=1

(Re(wi)αi − Im(wi)βi)

= ‖ A x‖2 +



µ2 − 2µ Re





d
∑

j=1

wi(αi + iβi)









< ‖ A ‖2 − µ2.

The last inequality follows because Re

(

d
∑

j=1
wi(αi + iβi)

)

> τ/2 ≥ µ.

This gives ‖(A −w0 I)x‖ < ‖ A ‖, which contradicts our assumption.
�

Combining Theorem 7 and Proposition 8, we get the following.

Corollary 9. Let A be a tuple of operators on a Hilbert space H . If
W0(A

0) is convex, then

sup
‖x‖=1

var
x

(A) = dist(A,Cd I)2.

In particular, we get that (3) holds for tuples of Toeplitz operators.
Note that these tuples are non-commuting.

Corollary 10. For a tuple of Toeplitz operators A, we have

dist(A,Cd I)2 = sup
‖x‖=1

var
x

(A).

Proof. Note that A0 is also a Toeplitz operator. It is also known that
W (A0) is convex (by Theorem 2.6 of [12]), and thus so is W0(A

0).
Using Corollary 9, we get the result. �
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So far, convexity of W0(A0) has been an important tool in obtaining
(3). However, the below example shows that it is not necessary.

Example 2. Let A1 =

[

1 0
0 0

]

and A2 =

[

0 0
1 0

]

. Let A = (A1, A2). For

any z = (z1, z2) ∈ C2,

‖A − zI‖2 =

∥

∥

∥

∥

∥

([

1 − z1 0
0 −z1

]

,

[

−z2 0
1 −z2

])∥

∥

∥

∥

∥

2

=

∥

∥

∥

∥

∥

[

|1 − z1|2 + |z2|2 + 1 −z2

−z2 |z1|2 + |z2|2
]∥

∥

∥

∥

∥

≥
∥

∥

∥

∥

∥

[

|1 − z1|2 + |z2|2 + 1 −z2

−z2 |z1|2 + |z2|2
] [

1
0

]∥

∥

∥

∥

∥

=
(

(|1 − z1|2 + |z2|2 + 1)2 + |z2|2
)1/2

≥ 1.

Equality occurs if and only if z1 = 1 and z2 = 0. Thus

dist(A,C2 I)2 = 1 = ‖(A1, A2) − (I, 0)‖2.

So A0 =

([

0 0
0 −1

]

,

[

0 0
1 0

])

. By definition,

W0(A
0) = V(A0) = {(〈x|A0

1x〉, 〈x|A0
2x〉) : ‖x‖ = 1, (A0)∗A0x = ‖A0‖2x}.

Since (A0)∗ A0 = I,

W0(A
0) = W (A0) =

{(

−|z2|2, z2z1

)

: z1, z2 ∈ C, |z1|2 + |z2|2 = 1
}

.

This set is not convex (see [10, p. 138]). Now let x = (x1, x2) ∈ C2.
Then

‖ A x‖2 = 2|x1|2, 〈x|A1x〉 = |x1|2 and 〈x|A2x〉 = x2x1.

Hence

var
x

(A) = 2|x1|2 − |x1|4 − |x1|2|x2|2.
So

max
‖x‖=1

var
x

(A) = 1 = dist(A,C2 I)2.

4. REMARKS

Remark 1. Theorem 1.3 of [31] gives that ‖ A − z I ‖ ≥ ‖ A ‖ for all
z ∈ Cd if and only if there exists an at most countable set J , a set of
positive numbers {sj : j ∈ J } and an orthonormal set {xj : j ∈ J }
such that

(i)
∑

j∈J
sj = 1 ,
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(ii) A∗ A xj = ‖ A ‖2xj for each j ∈ J ,
(iii)

∑

j∈J
sj〈xj|Aixj〉 = 0 for each 1 ≤ i ≤ d.

Another proof of Theorem 1 now follows using the following fact.
Let X be a convex subset of Cd. Let (zn) be a sequence of elements
in X and let (sn) be a sequence of non-negative numbers such that
∞
∑

n=1
sn = 1. If

∞
∑

n=1
snzn exists, then it lies in X.

Remark 2. Let A be a tuple of commuting matrices. We note that
when each Aj is a 2 × 2 or 3 × 3 matrix, W (A) is convex (see Proposi-
tion 2.3 and Theorem 3.4, respectively, of [23]). Thus in these cases,
(3) holds. Any collection of mutually commuting matrices have a
common eigenvector. Using this fact and following the idea of the
proof of [34, Lemma 5], we obtain

{

〈Ax|y〉 : x ∈ H , y ∈ H
d, ‖x‖ = ‖y‖ = 1, 〈x|yj〉 = 0 for all 1 ≤ j ≤ d

}

=
{

z ∈ C : |z|2 ≤ var
x

(A) for some x ∈ H , ‖x‖ = 1
}

.

For a tuple of operators, we also have equivalence of (i) and (iii) in
Theorem 7. This raises the curiosity if (3) holds for every tuple of
commuting operators.

Remark 3. The condition ‖ A − z I ‖ ≥ ‖ A ‖ for all z ∈ Cd is same
as saying 0 is a best approximation of A to the subspace Cd I of
B(H , H d) (see [30]). In other words, we say A is Birkhoff-James
orthogonal to C

d I (see [20]). Proposition 8 is a characterization for
A to be Birkhoff-James orthogonal to the subspace Cd I. Some char-
acterizations of Birkhoff-James orthogonality of an element to a sub-
space can be found in [15, 16, 17, 18, 21, 22, 27, 31, 35].

Remark 4. From the proof of Proposition 8, it follows that if W0(A)
is convex, then the following are equivalent.

(i) ‖ A − z I ‖ ≥ ‖ A ‖ for all z ∈ Cd

(ii) 0 ∈ W0(A)
(iii) ‖ A − z I ‖2 ≥ ‖ A ‖2 + ‖ z ‖2 for all z ∈ Cd.
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