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Abstract

This paper proposes a dissimilarity measure between two
Gaussian mixture models (GMM). Computing a distance
measure between two GMMs that were learned from
speech segments is a key element in speaker verifica-
tion, speaker segmentation and many other related ap-
plications. A natural measure between two distributions
is the Kullback-Leibler divergence. However, it cannot
be analytically computed in the case of GMM. We pro-
pose an accurate and efficiently computed approximation
of the KL-divergence. The method is based on the un-
scented transform which is usually used to obtain a better
alternative to the extended Kalman filter. The suggested
distance is evaluated in an experimental setup of speakers
data-set. The experimental results indicate that our pro-
posed approximations outperform previously suggested
methods.

1. Introduction

The Gaussian mixture distribution is a standard technique
to model an acoustic speech segment. In speaker recog-
nition or verification tasks we would like to define a dis-
tance measure based on the probabilistic representation.
A similar situation occurs in speech segmentation prob-
lems where there is a need for a distance measure be-
tween any two speech segments to reflects whether the
two segments are from the same speaker. Other problems
where there is a need for distance measure between two
acoustic segments are phoneme model clustering, speaker
clustering, songs clustering and language classification.
In all these problems we would like to use the Kullback-
Leibler (KL) divergence which is the natural way to de-
fine a distance measure between probability distributions
[9]. The KL-divergence between two distributionsf and
g is:

KL(f ||g) =

∫

f(x) log
f(x)

g(x)
dx

However, we run into difficulty due to our choice of
the Gaussian mixture distribution (GMM) to model the
acoustic data since there is no closed form expression for

the KL-divergence between two GMMs. We can use, in-
stead, Monte-Carlo simulations to approximate the KL-
divergence between two GMMsf andg as follows:

KL(f ||g) =

∫

f log
f

g
≈ 1

n

n
∑

t=1

log
f(xt)

g(xt)
(1)

such thatx1, ..., xn are either the acoustic data that were
used to estimate the parameters off or they are synthetic
samples fromf(x). The symmetric version of (1) is ex-
actly the distance measure based on the cross likelihood
ratio test [11]. The drawback of the Monte-Carlo tech-
niques is the extensive computational cost and the slow
converges properties. Furthermore, due to the stochas-
tic nature of the Monte-Carlo method, the approxima-
tions of the distance could vary in different computations.
Another weakness of the Monte-Carlo approach is that
in spite of the fact that we have a compact probabilistic
representation, we still have to refer back to the original
acoustic data.

In this study we propose a deterministic approxima-
tion for the KL-divergence between two GMMs which
outperforms previously suggested methods in terms of
accuracy. The organization of this paper is as follows.
In the next section we review previous suggested approx-
imations that are based on matching between the Gaus-
sian components. In section 3 we introduce a distance
measure based on the unscented transform. In section
4 we evaluate the suggested distance in an experimental
setup of speakers data-set.

2. Matching based Approximations

Speaker recognition systems which aims to determine the
identity of the talker, predominantly use Gaussian mix-
ture models (GMMs) to represent the speaker-specific
voice patterns. The main attraction of the GMM arises
from its ability to provide a smooth approximation to
arbitrarily shaped densities of long term spectrum. Let
f(x) =

∑n

i=1 αifi(x) and g(x) =
∑m

j=1 βjgj(x) be
the two Gaussian mixture densities whose KL-distance
we want to compute. In many applications the two given
GMMs have the same number of Gaussian components



and there is a well justified correspondence between the
components. This is the case in the GMM-UBM method
[10] where the two GMMs are obtained as a result of
maximum a posteriori (MAP) adaptation of a universal
model pre-trained using speech data from many speak-
ers. In that case we can use the approximation:

KL(f ||g) ≈
∑

i

αiKL(fi||gi) (2)

where the KL-divergence between the Gaussians
N(µ1,Σ1) andN(µ2,Σ2) has the following closed form
expression:

1

2
(log

|Σ2|
|Σ1|

+Tr(Σ−1
2 Σ1)+(µ1−µ2)

>Σ−1
2 (µ1−µ2)−d)

Approximation 2 is motivated from the following upper
bound [12] that is based on the chain rule for relative en-
tropy (see [3] page 23):

KL(f ||g) ≤ KL(α||β) +
∑

i

αiKL(fi||gi)

If no correspondence between the two GMM (with
same number of) components is assumed, we can still
utilize the fact that for every permutationπ defined on the
set{1, ..., n}, the GMMgπ =

∑n

i=1 βπ(i)gπ(i) is exactly
the same asg. Hence:

KL(f ||g) ≤ min
π

(

KL(α||βπ) +
∑

i

αiKL(fi||gπ(i))

)

which yields the following approximation:

KL(f ||g) ≈ min
π

∑

i

αiKL(fi||gπ(i)) (3)

The Hungarian method [8] can be used to solve this min-
imization problem inO(n3) operations. A more effi-
ciently computed approximation is:

KL(f ||g) ≈
n
∑

i=1

αi

m

min
j=1

KL(fi||gj) (4)

which can be also applied to the general case wheref

andg do not necessarily have the same number of com-
ponents. Approximation (4) is based on a matching func-
tion between each element off and an element ofg that is
most similar to it (see Figure 1). Variants of the matching
based approximation of the KL-divergence between two
GMMs were suggested by Vasconcelos [13] and Gold-
berger et al. [4]. The main difference between the meth-
ods is in the matching function between the elements of
the two GMMs.

The matching based method is a good approximation
for the KL-divergence if the Gaussian elements are far
apart (i.e. given a sample point you can almost surely

Figure 1: A matching function between the Gaussian
components of two GMMs

know from which Gaussian component it was sampled).
However, if there is a significant overlap between the
Gaussian elements, then a matching of a single compo-
nent of g(x) with each component off(x) can cause
a significant performance degradation. In this work we
aim to solve this drawback by presenting a new efficient
method that is more accurate and more robust.

3. Unscented Transform based
Approximation

To handle overlapping situations we propose another ap-
proximation based on the unscented transform. The un-
scented transformation is a method for calculating the
statistics of a random variable which undergoes a non-
linear transformation [5]. It is successfully used for non-
linear filtering. The Unscented Kalman filter (UKF) [6]
is more accurate, more stable and far easier to implement
than the extended Kalman filter (EKF). In cases where the
process noise is Gaussian it is also better than the particle
filter which is based on Monte-Carlo simulations. Un-
like the EKF which uses the first order term of the Tay-
lor expansion of the non-linear function, the UKF uses
the true nonlinear function and approximates the distri-
bution of the function output. In this section we show
how we can utilize the unscented transform mechanism to
obtain an approximation for the KL-divergence between
two GMMs.

We shall first review the unscented transform. Letx

be ad-dimensional normal random variablex ∼ f(x) =
N(µ,Σ) and leth(x) : Rd → R be an arbitrary non-
linear function. We want to approximate the expectation
of h(x) which is

∫

f(x)h(x)dx. The unscented trans-
form approach is the following. A set of2d “sigma”
points are chosen as follows:

xk = µ + (
√

dΣ)k k = 1, ..., d

xd+k = µ − (
√

dΣ)k k = 1, ..., d

such that(
√

Σ)k is thek-th column of the matrix square
root of Σ. Let UDU> be the singular value decom-



position of Σ, such thatU = {U1, ..., Ud} and D =
diag{λ1, ..., λd} then(

√
Σ)k =

√
λkUk. These sample

points completely capture the true mean and variance of
the normal distributionf(x) (see Figure 2). The uniform
distribution over the points{xk}2d

k=1 has meanµ and co-
variance matrixΣ. Given the “sigma” points, we define
the following approximation:

∫

f(x)h(x)dx ≈ 1

2d

2d
∑

k=1

h(xk). (5)

Although this approximation algorithm resembles a
Monte-Carlo method, no random sampling is used thus
only a small number of points are required. It can be ver-
ified that if h(x) is a linear or even a quadratic function
then the approximation is precise. The basic unscented
method can be generalized. The mean of the Gaussian
distribution µ can be also included in the set of sigma
points. Scaling parameters can provide an extra degree of
freedom to control the scaling of the sigma points further
or towardsµ [7].

The unscented transform can be used to approximate
he KL-divergence between the following two GMMs:

f =
n
∑

i=1

αifi =
n
∑

i=1

αiN(µi,Σi) and g =
m
∑

j=1

βjgj

SinceKL(f ||g) =
∫

f log f −
∫

f log g, it is sufficient
to show how we can approximate

∫

f log g. The linearity
of the construction off from its components yields:

∫

f log g =
n
∑

i=1

αi

∫

fi log g =
n
∑

i=1

αiEfi
(log g)

Assume thatx is a Gaussian random variablex ∼ fi then
Efi

(x) = µi andEfi
(log g(x)) is the mean of the non-

linear functionlog g(x) which can be approximated using
the unscented transform. Hence:

∫

f log g ≈ 1

2d

n
∑

i=1

αi

2d
∑

k=1

log g(xi,k)

such that:

xi,k = µi + (
√

dΣi)k k = 1, ..., d, (6)

xi,d+k = µi − (
√

dΣi)k k = 1, ..., d.

If the covariance matrices of the two GMMs are diag-
onal (as it usually is case in speech segment modelling)
the computational complexity of the unscented approx-
imation is significantly reduced. Assume the covariance
matrices of the components off have the following form:

Σi = diag(σ2
i,1, ..., σ

2
i,d) i = 1, .., n

Figure 2: The sigma points of the unscented transform

then the sigma points are simply:

µi ±
√

d σi,k k = 1, ..., d

The diagonal structure of the covariance matrices of the
components ofg can be utilized to further reduce the
complexity of computing the valueg on the2nd sigma
points.

4. Experimental Setup and Results

The proposed dissimilarity measure was evaluated in a
task of speaker recognition. The front-end feature ex-
traction is based on Mel-frequency cepstrum processing
(MFCC). For each frame the front-end produces a feature
vector consisting of 13 Mel-cepstral coefficients. The
first time derivatives of the elements are appended to the
feature vector. An energy based voice activity detector
is used to remove silence. The GMMs were trained by
adapting universal background models (UBM) as in [10].
We used the T-norm [1] technique in order to normalize
the dissimilarity scores. We trained the universal back-
ground models using the SPIDRE corpus [14] which con-
sists of telephone conversational speech. We used the
NIST-2004 speaker evaluation data set [15] for evaluation
of the proposed dissimilarity measure. The primary data
set was used for selecting both target speakers and test
data. The data set consists of 616 1-sided single conversa-
tions for training 616 target models, and 1174 1-sided test
conversations. All conversations are about 5 minutes long
and originate from various channels and handset types. In
order to increase the number of trials, every target model
was tested against every test session. We evaluated the
proposed dissimilarly measure in 3 testing conditions. In
the first test condition we tested full conversations which
were modeled by mixtures of 2048 Gaussians. In the sec-
ond test condition we tested 30 seconds speech segments
(after silence removal) which were modeled by mixtures
of 128 Gaussians. In the third test condition we tested
3 seconds speech segments (after silence removal) which
were also modeled by mixtures of 128 Gaussians. Ta-
ble 1 summarizes the identification results. We use two
performance measures: EER and minimal detection cost



function (minDCF) [15].

EER min-DCF
(%)

Matching based algorithm - 13.2 0.049
full conversations

Proposed algorithm - 13.2 0.048
full conversations

Matching based algorithm - 30sec15.8 0.056
Proposed algorithm - 30sec 15.2 0.055
Matching based algorithm - 3sec 17.8 0.068
Proposed algorithm - 3sec 17.6 0.066

Table 1: Comparison of speaker recognition results us-
ing matching based approximation and unscented based
approximation on several testing conditions.

5. Conclusions

In this paper we described a method for approximating
the KL-divergence between Gaussian mixture densities.
The performance of this method was demonstrated on
a standard speaker recognition task. In all the experi-
ments conducted, the unscented approximation achieves
the best results. We expect that utilizing the proposed
method, we can achieve even more performance improve-
ment in tasks where each speaker signal is modeled with
few Gaussians learned specifically for the speaker with-
out the adaptation phase.

6. References

[1] R. Auckenthaler, H. Carey M., and H. Lloyd-
Thomas, “Score normalization for text-independent
speaker verification systems”, Digital Signal Pro-
cessing, vol. 10, pp. 42-54, 2000.

[2] H. Beigi, S. Maes and J. Sorensen, “A distance mea-
sure between collections of distributions and its ap-
plication to speaker recognition”, ICASSP, 1998.

[3] T. Cover and J.Thomas, “Elements of information
theory”,Wiley Series in Telecommunications, Jhon
Wiley and Sons, New-York, USA, 1991.

[4] J. Goldberger, H. Greenspan and S. Gordon, “An
efficient similarity measure based on approxima-
tions of KL-divergence between two Gaussian mix-
tures”, International Conference on Computer Vi-
sion (ICCV), 2003.

[5] S. Julier and J. K. Uhlmann, “A general method for
approximating nonlinear transfromations of proba-
bility distributions”, Technical report, RRG, Dept.
of Engineering Science, University of Oxford,
1996.

[6] S. Julier and J. K. Uhlmann, “A new extension of
the Kalman filter to non-linear systems”,Proc of
AeroSense: The 11th International Symposium on
Aerospace/Defence Sensing, Simulation and Con-
trol, Florida, 1997.

[7] S. Julier, “The scaled unscented transformation”, to
appear in Automatica, 2000.

[8] H. W. Kuhn, “The Hungarian method for the assign-
ment problem”, Naval Research Logistics Quar-
terly, Vol., pp 83-97,1955.

[9] S. Kullback, “Information theory and statistics”,
Dover Publications, New York, 1968.

[10] D. Reynolds, T. Quatieri and R. Dunn, “Speaker
verification using adapted gaussian mixture mod-
els”, Digital Sugnal Processing, 10:19-41, 2000.

[11] D. Reynolds, E. Singer, B, Carlson G. O’Leary,
J. Mclaughlin and M. Zissman, “Blind clustering
of speech uttrances based on speaker and language
characteristics”, Proc ICSLP, pp. 3193-3196, 1998.

[12] Y. Singer and M. K. Warmuth “Batch and on-line
parameter estimation of Gaussian mixtures based on
the joint entropy”,Advances in Neural Information
processsing Systems (NIPS), pp 578-584, 1998.

[13] N. Vasconcelos , “On the complexity of probabilis-
tic Image Retrieval”,Proc. of the Int. Conference on
Computer Vision, 2001.

[14] Linguistic Data Consortium, SPIDRE documen-
tation file, http://www.ldc.upenn.edu/Catalog
/readmefiles/spidre.readme.html.

[15] “The NIST Year 2004 Speaker Recognition
Evaluation Plan”, http://www.nist.gov/speech/
tests/spk/2004/.


