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Abstract: Polycystic Ovary Syndrome (PCOS) is a complex disorder predominantly defined by
biochemical hyperandrogenism, oligomenorrhea, anovulation, and in some cases, the presence of
ovarian microcysts. This endocrinopathy inhibits ovarian follicle development causing symptoms
like obesity, acne, infertility, and hirsutism. Artificial Intelligence (AI) has revolutionized healthcare,
contributing remarkably to science and engineering domains. Therefore, we have demonstrated an AI
approach using heterogeneous Machine Learning (ML) and Deep Learning (DL) classifiers to predict
PCOS among fertile patients. We used an Open-source dataset of 541 patients from Kerala, India.
Among all the classifiers, the final multi-stack of ML models performed best with accuracy, precision,
recall, and F1-score of 98%, 97%, 98%, and 98%. Explainable AI (XAI) techniques make model
predictions understandable, interpretable, and trustworthy. Hence, we have utilized XAI techniques
such as SHAP (SHapley Additive Values), LIME (Local Interpretable Model Explainer), ELI5, Qlattice,
and feature importance with Random Forest for explaining tree-based classifiers. The motivation of
this study is to accurately detect PCOS in patients while simultaneously proposing an automated
screening architecture with explainable machine learning tools to assist medical professionals in
decision-making.

Keywords: deep learning; explainable artificial intelligence; local Interpretable model explainer;
shapley additive values; machine learning; polycystic ovary syndrome

1. Introduction

Polycystic Ovary Syndrome (PCOS) consists of symptoms occurring because of ab-
normally elevated androgen levels [1]. Androgens are widely categorized as male sex
hormones. However, when produced in smaller amounts play a vital role in the effective
functioning of the female reproductive system. Most patients of PCOS are women of
reproductive age experiencing weight gain, irregular menstrual cycles, excessive body hair,
hair thinning or male-pattern balding, acne or oily skin, and at times infertility [2]. The
hormone imbalance can hinder ovarian follicle development, inhibiting a normal ovulation
cycle. 8.2% to 22.5% of women in India, suffer from PCOS [3]. This endocrinopathy can
significantly impact the patient’s lifestyle, wherein the patient may face depression, anxiety,
eating disorders, and sleep apnea. Further, metabolic syndromes can put them at risk of
cardiovascular disorders, endometrial cancer, and diabetes mellitus [4,5].

The exact cause of PCOS is still unknown. However, researchers have discovered
That cells become resistant to insulin, thereby increasing blood sugar levels. The exter-
nal manifestation of insulin resistance is usually skin darkening around the neck and
armpits [6]. A sedentary, inactive lifestyle and an improper diet can also contribute to a
woman getting PCOS.
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Artificial Intelligence (AI) is a vast domain characterized by a machine having the
ability and intelligence to perceive, infer, process, synthesis, and forecast information with-
out much human interference. AI has been deployed in various sectors, such as banking,
finance, agriculture, education, business, engineering, sociology, forensics, and medicine [7].
AI is extensively used for processing and providing insights to improve patient health
outcomes [8]. Machine learning and deep learning can efficiently process medical data
such as bio-signal and medical images [9] Another rapidly expanding branch of AI with
extensive research is fuzzy systems. [10,11] Further, with efficient networks, researchers can
scale their machine learning and deep learning architecture [12,13]. Automated diagnosis,
patient-triaging, severity prediction, drug discovery, treatments such as computerized drug
delivery, precision medicine, prognosis, and decision-making assistance are all possible
today owing to the virtue of AI technology [14–17].

Explainable AI (XAI) can be characterized by system transparency and interpretability.
In recent years, XAI has helped solve issues of biases, unfairness, safety, and causality [18].
Integrating XAI with AI-based systems for diagnostic, prognostic, and treatment purposes
could aid in achieving accountability and increase trust in the medical decision made by
the system [19]. Clinical validation of ML and DL models can be made possible with
XAI. This study focuses on applications of SHapley Additive exPlanations (SHAP), Local
Interpretable Model-agnostic Explanations (LIME), ELI5, Qlattice and Feature importance
with Random Forest for screening PCOS. SHAP uses a game theory approach and provides
mathematical values for accuracy and explanation consistency. SHAP provides a feature-
importance-based ranking. LIME helps in hypothesis verification and gives insights on
potential overfitting to noise. This technique explains local predictions made for each data
sample [20]. ELI5 deploys a feature-based weight assignment technique to create a tree
map explaining holistic and individual predictions [21]. Qlattice produces a classification
model trained on raw data and produces QGraphs followed by a simplified expression to
describe the graph [22]. Researchers have established a pathophysiological link between
increased LH, insulin resistance, increased estrogen, and decreased FSH levels to PCOS,
which is the most common cause of reduced fertility [23]. In this study, we have explored
an open-source dataset of fertile PCOS patients and proposed a Machine learning-based
multi-level stack to create a PCOS screening decision support. The contributions of this
article are as follows: (1) Assessment of the significant PCOS features extracted by three
feature selection methods: Salp swarm optimization, Harris hawk optimization, and
mutual information. (2) Evaluation of the performance of ML classifiers such as LR,
SVM (Kernel: linear, polynomial, Gaussian, Sigmoid), DT, RT, XGBoost, AdaBoost, and
ExtraTrees classifiers and creating an improved and reliable classifier by an ensemble
stacking of meta-learners. (3) Analysis of our customized multi-level stack against Deep
Neural Networks and 1-D CNN models for screening PCOS. (4) Analysis of an XAI layer
of our tree-based framework with SHAP, LIME, ELI5, and Qlattice, and feature importance
with Random Forest. The rest of the article follows: Section 2 discusses various related work,
Section 3 highlights the materials and methods. An in-depth result analysis is conducted in
Section 4. Section 5 provides a comparison finding with existing research. The last section
comprises of conclusion and future scope.

2. Literature Review

In recent years, many researchers have proposed AI models for PCOS diagnosis, with
datasets consisting of clinical parameters and vital signs. Bharadwaj et al. [24] provided
a detailed analysis of various clinical features and their contribution to a patient having
PCOS. They used an open-source Kaggle PCOS dataset [25], with records of 541 patients
and 44 features whose target label was PCOS diagnosis. The dataset is multicentric and
was collected from 10 different hospitals in Kerala. The architecture consisted of machine
learning classifiers and the Pearson correlation technique for feature selection. They con-
cluded, the most critical features were: the average left and right follicle size, number of
follicles in the left, hair growth, and prolactin levels. The SVM Radial Basis Function (RBF)
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kernel, and Multilayer Perceptron (MLP) obtained an accuracy of 93%. Zigarelli et al. [26]
used the same dataset, adopting the CatBoost classifier with K-fold validation evaluating
the classifier performance, achieving 82.5% for the invasive methods and 90.1% accuracy
for the non-invasive clinical parameters. Bharati et al. [27] suggested a CatBoost model and
a voting hard and voting soft classifier. They extracted the top 13 features by univariate
feature selection followed by a hold-out and cross-validation for the data splitting. The
soft voting classifier performed with an accuracy of 91.12%. Tiwari et al. [28] developed an
ML based Smart PCOS diagnostic system. The architecture compared the performance of
various classifiers such as SVM, LR, RF, AdaBoost, DT, KNN, Gradient Boosting, XgBoost,
CatBoost, Linear Discriminant Analysis, and Quadratic Discriminant Analysis. They used
an open-source dataset and obtained an overall accuracy of 93.25%. Danaei et al. [29]
developed an ensemble random forest classifier model and trained features selected by
embedded feature selection methods. The model performed with accuracy and sensitivity
of 98.89% and 100%, respectively. Bharati et al. [30] proposed an ML model architecture
with classifiers such as RF, LR, Hybrid Random Forest- Logistic regression (RFLR), and
gradient boosting. RFLR gave the best performance with an accuracy of 91%. Silva et al. [31]
proposed a BorutaShap method and sequentially trained a random forest model to identify
the most relevant and significant clinical markers. A dataset comprised 72 PCOS patients
and 73 healthy women. Fifty-eight features were ranked according to their relevance and
significance. The model was able to obtain an overall accuracy of 86%.

3. Materials and Methods
3.1. Dataset Description

In this research, we used an open-source dataset prepared by Kottarathil on Kaggle,
having data on 541 fertile women with 43 attributes [25]. This multi-centric data consists of
data samples from 10 hospitals in Kerala, India. This dataset has ‘PCOS (Yes/No)’ as its
target variable. Out of 541 patients, 177 were diagnosed with PCOS. The categorical features
having Y and N have been encoded into 1 and 0, respectively. Among the 42 features,
24 were non-invasive parameters, and the remaining were either hormonal or gynecological
data obtained by invasive vaginal ultrasound and fluid samples. The dataset is described
in Table 1.

Table 1. Description of attributes present in our dataset.

Attributes Meaning Attributes Meaning Attributes Meaning Attributes Meaning

PCOS (Y/N) Target
Variable

Marriage
Status (Yrs)

Marital
status, if

married, the
years since
marriage

TSH
(mIU/L)

Thyroid
stimulating

hormone

Fast food
(Y/N)

Unhealthy
eating habits

Age (yrs)
Age of the
patient in

years

Pregnant
(Y/N)

If the woman
is pregnant

AMH
(ng/mL)

Anti-
Mullerian
Hormone

Reg.Exercise
(Y/N)

Regular
Exercise

Weight (Kg)
Weight of the

patient in
Kgs

No. of
abortions

Number of
abortions in
the lifetime

PRL (ng/mL)
Prolactin
levels in

blood

BP _Systolic
(mmHg)

Systolic
Blood

pressure is a
pressure

measured in
your arteries

when the
heart beats
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Table 1. Cont.

Attributes Meaning Attributes Meaning Attributes Meaning Attributes Meaning

Height (cm)
Height of the

patient in
cms

I beta-HCG
(mIU/mL)

Case 1:
Beta-HCG

test; human
chorionic go-
nadotropin

(HCG)
hormone

Vit D3
(ng/mL)

Vitamin D3
or Cholecal-

ciferol
levels

BP _Diastolic
(mmHg)

Measurement
of artery
pressure

when heart
rests between

beats

BMI Body Mass
Index;

II beta-HCG
(mIU/mL)

Case 2:
Beta-HCG

test

PRG
(ng/mL)

Serum
progesterone

levels

Follicle No.
(L)

Number of
follicles in

the left ovary

Blood Group

Blood Group
of the patient
including A+,

A-, B+, B-,
O+, O-, AB+,

AB-

FSH
(mIU/mL)

Follicle
Stimulating
Hormone

RBS (mg/dL)
Random
glucose
levels

Follicle No.
(R)

Number of
follicles in
the right

ovary

Pulse rate
(bpm)

Measure of
number of
times the

heart beats
per minute

LH
(mIU/mL)

Luteinizing
Hormone

Weight gain
(Y/N)

Weight
gained in the

past

Avg. F size
(L) (mm)

Average
follicle size in
the left ovary

RR
(breaths/min)

Measure of
number of

breaths taken
per minute

FSH/LH

Ratio of
Follicle

Stimulating
Hormone

and
Luteinizing
Hormone

hair growth
(Y/N) Hair growth Avg. F size

(R) (mm)

Average
follicle size in

the right
ovary

Hb (g/dL) Haemoglobin
range Hip (inch) Hip circum-

ference

Skin
darkening

(Y/N)

Skin
discoloration

Endometrium
(mm)

Endometrium
thickness

Cycle (R/I)
Menstrual

cycle; regular
or irregular

Waist (inch) Waist circum-
ference

Hair loss
(Y/N) Balding

Cycle length
(days)

Length of
menstrual

cycle

Waist:Hip
Ratio

Ratio of waist
to hip

Pimples
(Y/N)

Acne
presence

3.2. Data Pre-Processing

The Kaggle dataset was already pre-processed and required only a few additive
steps to make the dataset ready for deployment. The Matplotlib library in Python helped
visualize outliers. There were no extreme outliers, and all 541 samples were considered.
NumPy helped identify the missing values in the ‘Marriage Status (Yrs)’, ‘Fast food (Y/N)’,
and ‘Marriage Status (Yrs.)’ attributes. The median was chosen to replace the missing
numerical attributes in the data. ‘Fast food (Y/N)’ is a categorical variable; the statistical
mode of this feature was used for data imputation. We removed attributes ‘SI. No’ and
‘Patient File No’ as these had no statistical significance. Descriptive statistical measures of
the parameters are tabulated in Table 2.
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Table 2. Descriptive statistics of some of the attributes present in the dataset.

Sr. No Attributes Mean Std Min 25% 50% 75% Max

1 PCOS (Y/N) NA NA 0 NA NA NA 1

2 Age (yrs) 31.43068 5.411006 20 28 31 35 48

3 Weight (Kg) 59.63715 11.02829 31 52 59 65 108

4 Height (cm) 156.4848 6.033545 137 152 156 160 180

5 Pulse rate (bpm) 73.24769 4.430285 13 72 72 74 82

6 RR (breaths/min) 19.24399 1.688629 16 18 18 20 28

7 Hb (g/dL) 11.16004 0.866904 8.5 10.5 11 11.7 14.8

8 Cycle (R/I) NA NA 2 NA NA NA 4

9 Cycle length (days) 4.94085 1.49202 0 4 5 5 12

10 Pregnant (Y/N) NA NA 0 NA NA NA 1

11 FSH (mIU/mL) 14.60183 217.0221 0.21 3.3 4.85 6.41 5052

12 LH (mIU/mL) 6.469919 86.67326 0.02 1.02 2.3 3.68 2018

13 FSH/LH 6.904917 60.69198 0 1.42 2.17 3.96 1372.83

14 Waist (inch) 33.84104 3.596894 24 32 34 36 47

15 Waist:Hip Ratio 0.891627 0.046135 0.76 0.86 0.89 0.93 0.98

16 AMH (ng/mL) 5.620634 5.876742 0.1 2.01 3.7 6.9 66

17 PRL (ng/mL) 24.3215 14.97039 0.4 14.52 21.92 29.89 128.24

18 PRG (ng/mL) 0.610945 3.808853 0.047 0.25 0.32 0.45 85

19 Weight gain (Y/N) NA NA 0 NA NA NA 1

Further, we created two sets of frameworks, one with the train-test split ratio of
70:30 and the other with 80:20. This in the upcoming steps would help us analyze the
best-performing framework. The split was followed by feature scaling. We deployed the
standard scalar algorithm for feature scaling of the training dataset [32]. Standardization
has no bounding range, and the data is unaffected by outliers after standardization.

There was an imbalance in the target PCOS (Y/N) class, wherein only 177 out of
541 samples had PCOS. We performed Borderline Synthetic Minority Oversampling Tech-
nique (SMOTE) for data balancing on the training dataset to mitigate the potential risk of
improper model training. In this method, oversampling creates synthetic points from the
minority class. When compared to traditional SMOTE, it solves the issue of misclassified
outliers [33]. After Borderline-SMOTE balancing, we obtained 364 and 364 counts for both
the PCOS and Non-PCOS classes.

3.3. Feature Selection

This section encompasses an exploration of three different techniques used for feature
selection. Three separate frameworks were created for these techniques. We have deployed
two Wrapper method algorithms, Harris Hawks and Salp Swarm Optimization, and
compared their results with Mutual information. These algorithms helped extract the
significant features, reducing the overall data size [34]. We used a ‘Feature Selection
wrapper class’ algorithm from a GitHub toolbox [35].

3.3.1. Harris Hawks Optimization (HHO)

Harris Hawks Optimization is a population-based algorithm that uses stochastic
components to find the optimum parameters of a dataset. The algorithm considers the
ability of Harris Hawks to form chasing patterns based on the prey’s escaping dynamics [36].
This method consists of two phases exploration and exploitation.



Appl. Syst. Innov. 2023, 6, 32 6 of 26

In the exploratory phase, the Harris Hawk must monitor a particular area and prey.
In HHO, the Harris Hawks can be considered search agents or candidate solutions, out
of which the best solutions become near optimum. The exploratory phase constitutes
the hawks or search agents monitoring all search space, enhancing the randomness of
HHO.The transition from the exploratory to the exploitatory phase is based on the target’s
energy [37]. The target comprises the optimal solution (Best features). After deploying the
HHO optimizer as a feature selection technique, 15 of the most significant features were
extracted. Out of which 8 were non-invasive features. The selected features are presented
in Table 3.

Table 3. Description of the feature selected by three algorithms.

Sr. No. Feature Selection
Algorithm

Number of
Features Selected Features

1 Harris Hawk
Optimization 15

Weight (Kg), Pulse rate (bpm), RR (breaths/min), Hb (g/dL), Pregnant
(Y/N), FSH (mIU/mL), LH (mIU/mL), Waist (inch), AMH (ng/mL),

PRG(ng/mL), Weight gain (Y/N), hair growth(Y/N), BP _Systolic
(mmHg), Follicle No. (R), Avg. F size (L) (mm)

2 Salp Swarm Algorithm 19

Age (yrs), Weight (Kg), Height (cm), Pulse rate (bpm), RR
(breaths/min), Cycle (R/I), Cycle length (days), Pregnant (Y/N),

FSH (mIU/mL), FSH/LH, Waist (inch), Waist:Hip Ratio, PRG
(ng/mL), Weight gain (Y/N), Hair loss (Y/N), Pimples (Y/N),

Follicle No. (L), Follicle No. (R), Avg. F size (R) (mm)

3 Mutual Information 15

Follicle No. (L), Follicle No. (R), Skin darkening (Y/N), Fast food
(Y/N), hair growth (Y/N), Cycle (R/I), FSH/LH, Cycle length

(days), Weight gain (Y/N), AMH (ng/mL), PRL (ng/mL), Pimples
(Y/N), BP _Systolic (mmHg), Waist (inch), Age (yrs)

3.3.2. Salp Swarm Optimization (SSA)

Salp swarm optimization algorithm is another bio-inspired wrapper method where
the Salps’s behavior of swarming, navigating, and ocean foraging behavior is studied to
model this optimizer [38]. SSA, provides an improved approach of initial random solutions
and the convergence towards the optimum compared to other existing techniques [39].
The mathematical modeling of Salp chains is initiated by dividing the population into
two groups, one being the leader and the remaining are followers. The leader would be
positioned at the front of the chain to guide the followers. Salps forage a food source, which
is the ‘target’ (final set of features). SSA too has an exploratory and exploitation phase.
The position of the followers is a function of the position of the leader and the location of
the target.

Salp Swarm Algorithm is known for its swarm intelligence and provides benefits
such as robustness, sensitivity, and computational efficiency. Nineteen features were
selected with SSA out of which 13 parameters were non- invasive. The selected features are
presented in Table 3.

3.3.3. Mutual Information (MI)

The Mutual Information algorithm is a widely known filter method of feature selection.
This filter method considers the statistical characteristics of the dataset. Mutual Information
is based on the entropy measure; entropy quantifies the uncertainty in the features [40].

Mutual information helps quantify the information shared between two features F
and S and is denoted by MI(F; S) is defined by Equation (1).

MI(F; S) = ∑
s∈S

∑
f∈F

p( f , s) log
p( f , s)

p( f )p(s)
(1)
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If the Mutual information value is very high F, S are closely related, and if zero they
are completely unrelated.

This principle of filtering method of feature selection, when applied to the data,
gives how closely related the individual features are to the target [41]. The features are
then ranked according to their individual contribution toward the target variable, as seen
in Figure 1. Out of these, the top 15 features (10 non-invasive and 5 invasive features)
were selected.

Figure 1. Features ranked from most significant to least significant by Mutual Information Algorithm.

4. Results
4.1. Performance Metrics

We have evaluated and compared our proposed models using standard classification
performance measures such as confusion matrix, accuracy, precision, recall, F-1 scores, AUC-
ROC score (Area Under the Receiver Operating Characteristics curve), and the precision-
recall curve. Our classifiers aim to predict whether a particular patient has PCOS or not.

4.2. Model Evaluation with Machine Learning

This research evaluates and analyzed 12 individual machine learning models: LR,
DT, RF, SVM (Kernels- linear, polynomial, gaussian, and sigmoidal), NB, KNN, AdaBoost,
XGBoost, and Extratrees. GridSearchCV provided an optimal selection of classifier hyper-
parameters. Figure 2 depicts the architecture of the model. After an exhaustive search,
examining every possible combination of parameters, this tuning method predicted the
optimal hyperparameter, as shown in Table 4.

We took an ensemble learning approach to build a unique and superior model to
screen PCOS. The stacking algorithm intends to learn the best combination of the outputs
from multiple weak meta-learners for creating the best-performing model. Exploiting this
principle, we built three stacks. STACK-1 aggregated seven classifiers: LR, SVM (with
linear, polynomial, gaussian, and sigmoidal kernels), NB, and KNN models. STACK-2
represented a tree-based classifier ensemble consisting of DT, RF, AdaBoost, XGBoost, and
Extratrees. The multi-level stack of STACK-1 and STACK-2 created STACK-3. Figure 3
pictorially represents the creation of our unique ensemble model.
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Table 4. Description of the best selected parameters for Machine learning sub-classifiers.

Machine Learning Classifier Best Parameter Specifications

Logistic Regression {‘C’: 0.1, ‘penalty’: ‘l2’}

Decision Tree {‘criterion’: ‘gini’, ‘max_depth’: 50, ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 1,
‘min_samples_split’: 30, ‘splitter’: ‘best’}

Random Forest {‘bootstrap’: True, ‘max_depth’: 80, ‘max_features’: 2, ‘min_samples_leaf’: 3,
‘min_samples_split’: 10, ‘n_estimators’: 100}

Support Vector Machine- linear kernel {decision_function_shape = ovo, gamma = auto, kernel = linear}

SVM-Polynomial kernel {kernel = poly, max_iter = 200}

SVM-Gaussian kernel {kernel = rbf, max_iter = 200}

SVM-Sigmoidal kernel {kernel = sigmoid, max_iter = 1800}

Naïve bayes {‘var_smoothing’: 8}

K-Nearest Neighbors {‘n_neighbors’: 3}

AdaBoost {‘learning_rate’: 0.1, ‘n_estimators’: 1000}

XGBoost {‘colsample_bytree’: 0.3, ‘gamma’: 0.1, ‘learning_rate’: 0.05, ‘max_depth’: 5,
‘min_child_weight’: 1}

Extratrees {‘min_samples_leaf’: 30, ‘min_samples_split’: 35, ‘n_estimators’: 50}

A combination of various feature selection techniques, data-split ratios, and meta-
learners was considered, the results of which can be seen in Table 5. The recall metric
gives insights into the False Negatives of the classifiers. The following were the pipelines
producing the best recall: HHO-trained classifiers RF had a 95% score, SSA pipeline with
XGBoost gave 97%, and MI with STACK-1 framework had a sensitivity of 100%. Among all
architectures, classifiers trained on Mutual information and 80:20 data split had the highest
metric scores. Table 6 presents the performance metrics representing models trained on
Mutual Information data. It was observed that STACK-3 was either superior or comparable
to the individual meta-learners. However, the results for STACK-3 varied with different
feature selection techniques. Figure 4 represents the AUC-ROC and PR curves comparison
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of STACK-3 trained by HHO, SSA, and MI. The STACK-3 PR scores for HHO, SSA and MI
were 0.98, 0.99, and 1, respectively.
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Table 5. Comparison of the accuracies of 15 Machine learning models with the of feature engineering
techniques and data split ratios.

Model
Feature Selection Harris Hawk Optimization Salp Swarm

Algorithm Mutual Information

70:30 80:20 70:30 80:20 70:30 80:20

Logistic Regression 0.89 0.89 0.87 0.89 0.95 0.93

Decision Trees 0.87 0.84 0.82 0.89 0.84 0.89

Random Forest 0.93 0.97 0.93 0.96 0.96 0.97

Support Vector Machine
Linear 0.85 0.93 0.88 0.93 0.94 0.94

Support Vector Machine
Polynomial 0.86 0.91 0.93 0.92 0.94 0.95

Support Vector Machine
Gaussian 0.88 0.88 0.93 0.92 0.95 0.97

Support Vector Machine
Sigmoid 0.87 0.92 0.85 0.9 0.91 0.94

Naïve Bayes 0.79 0.83 0.82 0.57 0.89 0.91

K-Nearest Neighbors 0.88 0.9 0.88 0.86 0.93 0.95

AdaBoost 0.91 0.95 0.92 0.95 0.93 0.95

XGBoost 0.9 0.95 0.94 0.97 0.94 0.96

ExtraTrees 0.83 0.89 0.88 0.9 0.91 0.94

STACK-1 0.89 0.9 0.93 0.89 0.95 0.98

STACK-2 0.92 0.93 0.92 0.98 0.95 0.97

STACK-3 0.92 0.92 0.94 0.95 0.95 0.98
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Table 6. Performance of the models trained on 80:20 split Mutual information engineered data.

Model MI Precision Recall F1-Score Accuracy AUC Precision-Recall Score

Logistic Regression 0.92 0.92 0.92 0.93 0.99 0.98

Decision Trees 0.91 0.83 0.87 0.89 0.96 0.94

Random Forest 0.97 0.97 0.97 0.97 1.00 1.00

Support Vector Machine Linear 0.92 0.94 0.93 0.94 0.98 0.98

Support Vector Machine Polynomial 0.94 0.95 0.95 0.95 0.98 0.93

Support Vector Machine Gaussian 0.93 1.00 0.96 0.97 1.00 0.99

Support Vector Machine Sigmoid 0.92 0.94 0.93 0.94 0.98 0.98

Naïve Bayes 0.91 0.98 0.91 0.91 0.98 0.98

KNN 0.91 0.98 0.95 0.95 0.98 0.97

AdaBoost 0.91 0.98 0.95 0.95 0.99 0.99

XGBoost 0.93 0.98 0.95 0.96 1.00 1.00

ExtraTrees 0.91 0.95 0.95 0.94 0.99 0.99

STACK-1 0.96 1.00 0.98 0.98 0.99 0.99

STACK-2 0.95 0.98 0.97 0.97 1.00 1.00

STACK-3 0.97 0.98 0.98 0.98 1.00 1.00Appl. Syst. Innov. 2023, 5, x FOR PEER REVIEW 10 of 27 
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4.3. Model Evaluation using Deep Learning

This study evaluates two Deep Learning models, Deep Neural Network (DNN) and
Convolutional Neural Network (CNN). ML uses simpler principles for creating predictive
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models and can perform a task without explicit programming. In contrast, DL uses
complex algorithms that mimic the human brain’s capability to learn and train. DL is based
on neural networks that detect patterns in structured and unstructured datasets. Deep
learning models help avoid an extra step of feature selection [42]. We aim to compare the
performance of these state-of-the-art models against the results obtained with ML models
trained on three different engineered datasets.

4.3.1. Deep Neural Network (DNN)

We created a customized DNN model with five hidden layers. The Rectified Linear
Activation function (ReLU) activated the sensory layer and the associator layers. The
sigmoid activation function was used in the output layer. Details of the DNN design can
be seen in Table 7. We used Adaptive Moment Estimation (Adam) optimizer, this uses
a stochastic gradient descent approach to optimize and train DL models [43]. We chose
binary cross-entropy as our loss function. This loss function calculates the cross entropy
between the true and predicted classes, producing a binary output of 0 or 1. The customized
DNN model achieved a training accuracy of 82%. The test data was then fed to the model,
and an overall prediction accuracy of 93.85% was obtained. The plots of model accuracy
and model loss for both the training and testing data were obtained, as shown in Figure 5.

Table 7. Deep Learning models’ comparison with the proposed model.

Models Accuracy Precision Recall F1-Score Optimizer Batch Size Epochs Network Description

DNN 0.94 0.89 0.98 0.93 Adam 26 200

Layer
No. Role Activation

Function
Number
of Nodes

Layer 1 Input layer ReLU 19

Layer 2 Hidden
layer 1 ReLU 12

Layer 3 Hidden
layer 2 ReLU 9

Layer 4 Hidden
layer 3 ReLU 7

Layer 5 Hidden
layer 4 ReLU 5

Layer 6 Hidden
layer 5 ReLU 3

Layer 7 Output
layer Sigmoidal 1

1-D CNN 0.90 0.86 0.84 0.85 Adam 10 200

Layer
No. Role Activation

Function

Number
of Filters/

Units

Layer 1
Layer Conv

1D -1
(Input)

LeakyReLU 32 filters

Layer 2 Layer Conv
1D-2 LeakyReLU 64 filters

Layer 3 Layer Conv
1D-3 LeakyReLU 128 filters

Layer 4 Max
Pooling NA NA

Layer 5 Dropout NA NA

Layer 6 Flatten the
output NA NA

Layer 7 Dense layer
1 LeakyReLU 256 units

Layer 8 Dense layer
2 LeakyReLU 512 units

Layer 9
Dense
layer-3

(output)
Sigmoidal 1 unit

STACK-3
(MI) 0.98 0.97 0.98 0.98 GridSearchCV 80:20 train-test

split - NA
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4.3.2. 1-Dimensional Convolutional Neural Network (1D-CNN)

Convolutional Neural Networks are widely used to create architectures for solving
computer vision problems. CNN kernels can carry out feature extraction in images because
of two primary principles: local connectivity and spatial locality [44]. When considering a
tabular dataset, 1-D CNN is used. However, the CNN kernel expects the dataset’s features
to have spatial locality correlation, which may not be observed in all datasets. Hence, a
basic principle of reordering the features is used for the spatial correlation to be maintained.
However, CNN is not the primary choice when processing tabular data as it has no locality
characteristics. In the 1-D CNN model, a more extensive set of locally connected features is
created by a fully connected layer followed by subsequent layers [45].

The details of the customized 1-D CNN model are given in Table 7. 1-D CNN achieved a
training accuracy of 97%. Figure 6 represents the model accuracy and loss plot, followed by
the confusion matrix and the ROC curve for the customized 1-D CNN model. On performance
evaluation, our 1D-CNN model achieved accuracy, precision, recall, and f1-score of 90%, 86%,
84%, and 85%, respectively. Further, the AUC-ROC score obtained was 1.
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4.4. Explainable AI (XAI)

This section explores various XAI techniques used to explain predictions and debug-
ging classifiers. Due to incompatibility issues with the sklearn, StackingClassifier function,
the XAI tools were unable to explain our best-performing pipeline. However, tree-based
meta-classifiers performed comparable to the multi-level stack, and this section helps inter-
pret these classifiers. The obtained visualizations have assisted in providing probabilities
of the patient being predicted PCOS positive to make classifier predictions meaningful and
understandable.

4.4.1. Shapley Additive exPlanations (SHAP)

Lundberg et al. [46] proposed a “Unified Approach” SHAP architecture where each
feature gets assigned an ‘importance value’. SHAP quantifies the contributions of each
feature in the model prediction, however, does not evaluate the quality of the decisions
made by the classifiers. Nevertheless, Important insights into the classifier predictions
makes them, meaningful [47]. In this study, the classifiers trained after mutual information
performed the best. XGBoost was among the best performing ML meta-learners with an
accuracy and recall of 96% and 98%, respectively. We used this model to demystify its
predictions using SHAP values.
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SHAP Violin Plot

A SHAP Violin plot was created for one of our best-performing tree-based model,
XGBoost. With tree-based models built on principles of ensemble modeling, it can become
impossible to know the model-rationale in decision-making [48]. As shown in Figure 7, the
horizontal axis represents the SHAP values, and the color depicts the higher or lower value
of the data points. The features are arranged in the order of their importance (The best
feature is present on the top). Bright red indicates a higher value, and bright blue indicates
a lower feature value. These violin plots help spot outliers and produce a more accurate
representation of densities than kernel density estimated from only a few points [49]. In
this violin plot, it is evident that the most crucial feature, Follicle number (number of
follicles in the right ovary), a higher number of these follicles contributes positively to the
PCOS prediction. It is revealed that PCOS prediction of XGBoost is based on the patients
experiencing hair growth, weight gain, skin darkening, an irregular menstrual cycle, and
observance of more follicles in both left and right ovaries. As observed, this Violin plot
agrees with the classic symptoms of PCOS [1].
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SHAP Waterfall Plot

A SHAP Waterfall plot can be observed in Figure 8, where the horizontal axis rep-
resents the expected values of the classifier output and the shifts toward the right or left
signify the positive or negative contribution of individual features [50]. In Figure 8, random
patient data was taken for analysis and the dataset showed that this patient has been diag-
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nosed with PCOS. The feature values of this data point are in grey along the y-axis and the
features are arranged from top to bottom, from the most to the least significant. Here, f(x)
and E[(f(x)] denote the prediction and expected values, respectively. In this SHAP waterfall
plot, the selected patient has 11 and 9 follicles in their left and right ovaries, respectively.
This indicates a higher-than-normal follicular number, and these two features have the
most significance in PCOS detection. This patient experiences pimples and skin darkening
along with an increase in PRL levels. These are an indication of the presence of PCOS [2].
With a waterfall plot it is easy to visualize the shifts of values from a prior expectation to
the final prediction
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SHAP Force Plot

The SHAP Force plot helps the user identify the most significant features during
prediction for a single observation. Higher scores, in red, lead to the prediction being 1
(PCOS-positive), and lower scores, in blue, lead to 0 (PCOS-negative). Features having a
higher impact on the prediction are positioned near the dividing boundary, here Follicle
No. (R) is the most significant [51]. The size of the bar quantifies the impact of the feature.
Figure 9 indicates the SHAP force plot for a randomly selected patient sample. In this
plot, the XGBoost prediction is explained by the right and left follicular numbers being
normal and the patient not showing signs of weight gain, excessive hair growth, and acne.
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Multiple invasive and non-invasive parameters have been analyzed for XGBoost to predict
the patient as PCOS-negative.
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SHAP Dependance Plot

A dependence plot is a scatter plot representing how a model prediction depends
on a feature. Each point on the plot represents one patient. x-axis represents the feature
value, and y-axis represents the SHAP values. The color corresponds to the second feature.
Vertical patterns indicate interactions between the features. Figure 10. represents the SHAP
dependence plot of the feature ‘Follicle No. (R)’. Four plots depict the interaction between
‘Follicle No. (R)’ and non-invasive features such as weight gain, hair growth, skin darkening,
and pimples. In all plots, it is observed that with a higher than eight follicular number, the
patient is more likely to develop these external PCOS manifestations. SHAP’s correlation
does not imply causation. However, PCOS Hormonal imbalance manifests as non-invasive
parameters such as obesity, hyperpigmentation, and hirsutism [52]. SHAP dependence plot
help gain insights into the feature interactions and their effect on the prediction.
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Figure 10. SHAP Dependence plot for Follicle No. (R). Sub-figure (a) indicates the plot of Follicle No.
(R) against Weight gain (Y/N), (b) indicates the plot of Follicle No. (R) against Skin Darkening (Y/N),
(c) indicates the plot of Follicle No. (R) against Pimples (Y/N) and (d) indicates the plot of Follicle
No. (R) against hair growth (Y/N).
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4.4.2. Local Interpretable Model-Agnostic Explanations (LIME)

Ribeiro et al. [53] introduced a model-agnostic tool for the interpretability of all
supervised machine-learning models. In this study, LIME used a random forest classifier
trained after mutual information. RF had an accuracy and precision of 97% and 95%,
respecively. LIME, like SHAP, arranges the features according to their significance and
indicates the probabilities of certain RF predictions.

In Figure 11, two plots for LIME are given. In the first plot, Random Forest has
classified the selected a PCOS-positive prediction with a 0.98 probability. LIME explains
this RF prediction with various insights into the patient’s condition of excessive hair growth,
weight gain, skin darkening, pimples, and having more than nine follicles in the left ovary.
The second plot depicts a patient with a 0.98 probability of being predicted PCOS negative,
explaining that the most classic symptoms of PCOS are absent. No signs of Skin darkening
or unwanted hair growth with a normal range of follicles in ovaries. These results agree
with other PCOS medical literature [4,5].
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Among most XAI models available, LIME is very intuitive and produces simple plots
for local interpretability, revealing how a prediction is made.

4.4.3. ELI5

ELI5 is a python package for inspecting and interpreting ML classifiers. With tree-
based models, ELI5 uses the gini index for preparing decision trees by weights [54].
Figure 12a shows the tabulated weights calculated for each parameter. The features are
ordered and assigned weights based on their importance (with the most critical parameter
being on top). A multi-node decision tree map is created based on this table. ELI5 gives a
transparent and in-depth visualization of how a decision tree classifier made a prediction,
based on the nodes. Here, Follicle no. (R) is the root node, followed by further splitting
based on the conditional nodes at each tree level to get the eventual classification at the
leaf nodes. ELI5, like LIME, provides local interpretations for each observation, as seen
in Figure 12b. The selected patient in the plot (b) is classified as PCOS positive with the
explanation given by individual feature contributions to the output. The patient faced
unwanted hair growth and pimples and had a significantly high number of follicles in the
left ovary. ELI5 assists in debugging ML models, providing insights on permutation and
feature importance.
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Figure 12. ELI5 plots: (a) Global prediction: Depicts the weights calculated for the features based
on GINI index (x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12, x13, x14 correspond to ‘Follicle No.
(L)’, ‘Follicle No. (R)’, ‘Skin darkening (Y/N)’, ‘Fast food (Y/N)’, ‘hair growth(Y/N)’, ‘Cycle (R/I)’,
‘FSH/LH’, ‘Cycle length(days)’, ‘Weight gain(Y/N)’, ‘AMH(ng/mL)’, ‘PRL(ng/mL)’, ‘Pimples(Y/N)’,
‘BP_Systolic (mmHg)’, ‘Waist(inch)’, ‘ Age (yrs)’. (b) Local prediction, table of the most critical
features in the classifier prediction, the prediction is 1 (the patient has PCOS).

4.4.4. QLattice

Qlattice is a supervised ML method, created by Abzu, inspired by Richard Feynman’s
path intergral equation [55]. Qlattice is tool that automatically generates a predictive model
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and gives insights on its interpretability and explainability even with less data samples [56].
Figure 13 depicts the Qgraph for the created Qlattice model, this connects all the inputs
to the outputs. In these models weights are initially randomly assigned however with the
constant training, optimization is performed to minize the loss function. The QGraph here
takes the most significant features as follicle no. (R), weight gain (Y/N) and hair growth
(Y/N) as its inputs. The white boxes represent the interactions, that build a function by
taking inputs and predict the PCOS outcome. Equation (2), represents a general expresion
created for the model. This XAI model agrees with the medical symptoms of PCOS, when
selecting its critical parameters for detecting PCOS [5].

logreg(0.54 (Follicle No. (R)) + 1.85 (Weight gain (Y/N))
+2.37 (hair growth (Y/N))− 6.38)

(2)
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4.4.5. Feature Importance with Random Forest

Random forest is an ensemble of decision trees and each internal node of the tree
makes decisions on how the dataset gets divided [57]. In our feature importance algorithm
with RF, gini impurity was calculated, based on which measurements are made to under-
stand how well each feature decreases the impurity of the split. We used the scikit-learn
implementation of RF. Figure 14 represents a graph with features ordered in descending
order from left to right according to their importance value, wherein the number of follicles
in the right and left ovaries contribute significantly to the PCOS prediction by the RF
classifier. Further, Skin darkening, excessive hair growth, weight gain, abnormal AMH
levels and FSH/LH values can lead to a PCOS-positive prediction.
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5. Discussion

Polycystic Ovary Syndrome (PCOS) is a hormonal disorder that causes ovary enlarge-
ment and symptoms such as obesity, acne, hirsutism, oligomenorrhea, acanthosis nigricans,
and male-pattern baldness. It is often underdiagnosed or misdiagnosed, leading to the risk
of severe health conditions such as type 2 diabetes, hypertension, cardiovascular disorders,
infertility, and uterine and endometrial cancer. We created multiple ML and DL pipelines
in this study and evaluated their performance to find the best-performing classifier.

The ML frameworks were created by considering all combinations of two data split
ratios, three feature extraction methods, and 10 classifiers. Models trained with 80%
(80:20 split) of data samples performed significantly better than the ones trained on 70%
of samples, regardless of the feature selection technique. As seen in Table 5, the impact
of various feature selection techniques gives insights into the training of the classifiers.
Interestingly, all tree-based classifiers such as DT, RF, AdaBoost, XGBoost, and Extra-trees
had comparable performances irrespective of the features selected. However, Classifiers
trained on MI-extracted features achieved the highest performance metrics among other
deployed feature selection techniques. These models had higher sensitivity, assuring a
significant reduction in false negatives.

Further, the accuracies of most models trained on the HHO and SSA methods provided
a similar performance, except for the NB classifier, whose accuracy significantly worsened
with SSA data. Stack models, a blend of individual meta-learners based on how they
get trained, would define how they work in an ensemble. This can be observed in the
STACK-3 performance under each feature selection technique. HHO features trained the
poorest STACK-3 classifier with an accuracy of 92%, and MI features trained the best stack
achieving 98% accuracy. Figure 4 depicts the improvement in the AUC-ROC score and PR
curve for STACK-3 from HHO to MI-trained stack.

Different feature-selection pipelines had different ‘best-performing’ classifiers. With
HHO, the stochastic-based method for feature selection, XGBoost outperformed all other
models with prediction accuracy, recall, and AUC score of 97%, 100%, and 99%, respectively.
When considering the model performance on data feature engineering with SSA, STACK-2
achieved the best accuracy, recall, and AUC score of 98%, 98%, and 99%, respectively.
Classifiers trained on MI-extracted features achieved the highest performance metrics
among other deployed feature selection techniques. Out of all combinations of classifiers
and feature extraction techniques, STACK-3 trained with an 80:20 split on MI-engineered
data had the highest performance, achieving accuracy, precision, recall, f1-score, AUC score,
and Precision-Recall scores of 98%, 97%, 98%, 98%, 1, and 1, respectively. As indicated in
Table 6, it should be noted meta-learners like RF, SVM-RBF, and XGBoost trained on an
80:20 split on MI-engineered data have performed significantly better than other models,
with close to 100% sensitivity. These meta-learners could be the ideal choice when designing
individual PCOS classifiers. The ML-based pipelines were compared with customized DL
architectures. DNN obtaining accuracy and recall of 94% and 98%, respectively. 1-D CNN
performed comparatively poor with an accuracy and recall of 90% and 94%. Both the tree-
based meta-learner (MI) pipelines such as RF, XGBoost and STACK-3 have outperformed
these complex deep learning architectures. Our proposed best-performing multi-level stack
drastically lowered the number of false negatives PCOS-predictions (with only 3 out of the
processed 146 samples).

Further, we added a layer of Explainable machine learning to the high-performing
tree-based meta-learner frameworks. We explored multiple SHAP with visualizations to
explain global and local XGBoost predictions based on feature importance. LIME created
an intuitive and interpretable probability-based visual for local predictions of Random
Forest. ELI5 ranked and assigned weights based on feature importance and created a tree
map for debugging the decision tree classifier. Further, we deployed a Qlattice algorithm
that automatically created a predictive model along with a Qgraph to explain the classifier.
Feature Importance with Random Forest helped get insights into global predictions made
by RF. Notably most tools explained the predictions based having the following features
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with highest significance: Follicle No. (L), Follicle No. (R), Skin darkening (Y/N), Weight
gain (Y/N), hair growth(Y/N), Pimples (Y/N). Research has indicated the significance of
these features in diagnosis [4]. XAI tools hence help visualize and interpret local predictions
just as practitioners would consider during primary detection of PCOS.

Multiple articles proposed machine learning models for screening PCOS using the
same open-source Kaggle dataset used in this study. Neto et al. [58] published a study for
detecting PCOS patients with data mining tools. Classifiers such as SVM, MLP, RF, LR, and
NB, along with Cross Industry Standard Process for Data Mining (CRISP-DM) methodology,
were adopted. RF, along with data sampling techniques, performed the best with accuracy,
sensitivity, and precision of 95%, 94%, and 96%, respectively. Nandipati et al. [59] This
study compared Python (Spyder IDE) and Rapid Miner for diagnosis. Spyder IDE used
a correlation matrix and recursive feature elimination with a logistic regression model,
while RapidMiner used forward selection (with NB) and backward elimination (with DT)
with a cross-validation operator. The engineered data trained seven ML models, KNN,
SVM, RF, NB, Auto-MLP, AdaBoost, and Bagging with DT. Ten features were selected,
with RapidMiner obtaining the highest average accuracies of the ML models at 85.97%.
Vedpathak et al. [60] proposed an ML PCOS detection architecture named ‘PCOcare’. Out
of the 42 features, 30 were selected by the Chi-square method. They deployed RF, SVM
(with Linear kernel and radial basis function kernel), NB, LR, and KNN. RF performed
the best with accuracy, sensitivity, and precision metric scores at 91%, 94%, and 88%.
Hdaib et al. [61] trained multiple classifiers, KNN, NN, NB, SVM, LR, classification tree,
and Linear discriminant (LD). After feature engineering, they selected 43 features, and
LD performed the best with 92.60% accuracy. ÇİÇEK et al. [62] proposed a LIME PCOS
diagnostic model, which used RF as its classifier. A chi-square test was deployed, and
features with a p-value greater than 0.05 were considered statistically significant. RF
obtained an accuracy of 86.03%. LIME described local predictions for the first five patients.
We have tabulated the remaining model performance comparison in Table 8.

Table 8. Comparison of existing models with the proposed study for PCOS diagnosis.

Sr. No. Model Classifier Feature
Section Accuracy Sensitivity Precision F1-Score AUC Score Explainable AI

Techniques

1 [24] RF, XGBoost,
MLP, SVM

Pearson
correlation 93% _ _ _ 0.962 _

2 [26] CatBoost K-fold
validation

82.5%
(invasive)
and 90.1%

(non-
invasive
parame-

ters)

_ _ _ _ _

3 [30]

RF, LR, Hybrid
RF and Logistic

regression (RFLR)
and gradient

boosting

_ 91.01% 90% _ _ _ _

4 [28]

SVM, LR, RF,
AdaBoost, DT,

KNN, Gradient
Boosting,
XgBoost,

CatBoost, Linear
Discriminant

Analysis,
Quadratic

Discriminant
Analysis

Pearson
correlation 93.25% 92.68% 98.28% 0.954 _ _
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Table 8. Cont.

Sr. No. Model Classifier Feature
Section Accuracy Sensitivity Precision F1-Score AUC Score Explainable AI

Techniques

5 [29]
Ensemble RF,

MLP, AdaBoost
and Extra tree

Filter,
embedded

and
wrapper
feature

selection

98.89% 100% 98.30% _ _ _

6 [27] CatBoost, voting
hard, voting soft

K-fold
method (13

features)
91.12% _ _ _ 0.92 _

7 Proposed
model

LR, DT, RF, SVM
(Linear, gaussian,

polynomial,
sigmoidal), NB,

KNN, AdaBoost,
XGBoost and

stacking models

SSO, HHO
and MI 98% 98% 97% 0.98 1

SHAP (Local
and global

interpretation)
on XGBoost,
LIME on RF,

ELI5 and
Qlattice

Multiple studies mentioned above have RF as the best-performing classifier. However,
our RF meta-learner pipeline outperforms these architectures with accuracy, precision, and
recall of 97%, 97%, and 97%, respectively. Overall, the proposed customized multilevel
stack is superior to most studies conducted on this dataset. Our ensemble, where various
models work towards the same problem of screening PCOS among fertile women, provides
improved performance, reduction in false negatives, and reliability compared to all other
models. At the time of writing this manuscript, no other authors had used SHAP, ELI5,
Qlattice and feature importance with Random Forest. on this dataset. Rather than a
mystified ‘black box’, we believe a meaningful and interpretable model would be of more
practical use in clinical settings. With this motivation, we created this architecture to
contribute towards de-mystifying artificial intelligence in healthcare.

6. Conclusions and Future Scope

Polycystic Ovary Syndrome is a complex endocrine disorder that affects women in
their reproductive years. About 8 to 20% of Indian women suffer from PCOS, and if
undiagnosed or misdiagnosed, women with this syndrome become more likely to develop
infertility issues, cardiovascular disorders, type 2 diabetes, and uterine and ovarian cancer.
In this study, we aimed to screen PCOS among fertile women. This study evaluates multiple
frameworks and proposes a meta-learner-based multi-level stack ML classifier trained on
MI-engineered data to be the best-performing pipeline. This pipeline proved superior
against state-of-the-art neural networks such as DNN and 1D-CNN. Further, we deployed
a layer of explainability and transparency to PCOS screening with tools like SHAP, LIME,
ELI5 (for the best-performing tree-based classifiers), Qlattice and Feature Importance with
Random Forest.

A user interface could be built to deploy PCOS screening in real-time, and this frame-
work could be scaled to predict PCOS among a larger population. Non-invasive features
could be used to create a patient-centric application to provide risk analysis to female
patients susceptible to PCOS and link them to their Electronic Health Record for medical
evaluation. Figure 15 represents the future scope of this study. However, various external
validations and rigorous testing and scalability assesment should be conducted prior to the
deployment of this framework in medical facilities. The dataset should be exhaustive and
of high quality. It is critical to bridge the gap between medical and informatics professionals
by ensuring the model is as meaningful to the healthcare personnel as it is to a Machine
Learning expert.
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