A distinguisher for high-rate McEliece Cryptosystems

J.C. Faugère (INRIA, SALSA project), Valérie Gauthier (Math. dep. Tech. Univ. of Denmark), A. Otmani (Université Caen- INRIA, SECRET project), L. Perret (INRIA, SALSA project), J.-P. Tillich (INRIA, SECRET project)

May 12th, 2011

1. (Generalized) McEliece Cryptosystem $McE(\mathcal{K}_{n,k,t})$

C a $q{\rm -ary}$ length n, dimension k, $t{\rm -error}$ correcting code

- Public key: G a $k \times n$ generator matrix of C in $\mathcal{K}(n,k,t)$
- Secret key: Ψ a t-error correcting procedure for C
- Encryption: $x \to xG + e$ with e of Hamming weight t
- Decryption: $y \to \Psi(y)G^{-1}$ with G^{-1} a right inverse of G.

Alternant codes/Goppa codes

$$\mathbf{x} = (x_1, \dots, x_n) \in \mathbb{F}_{q^m}^n \text{ with } x_i \neq x_j \text{ if } i \neq j$$

$$\mathbf{y} = (y_1, \dots, y_n) \in \mathbb{F}_{q^m}^n \text{ with } y_i \neq 0$$
For any $r < n$, let $\mathbf{H}_r(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \begin{pmatrix} y_1 & y_2 & \cdots & y_n \\ y_1 x_1 & y_2 x_2 & \cdots & y_n x_n \\ \vdots & \vdots & \vdots \\ y_1 x_1^{r-1} & y_2 x_2^{r-1} & \cdots & y_n x_n^{r-1} \end{pmatrix}$

Definition 1. An alternant code is the kernel of an H of this type

$$\mathcal{A}_r(oldsymbol{x},oldsymbol{y}) = \left\{oldsymbol{v} \in \mathbb{F}_q^n | oldsymbol{H}_r(oldsymbol{x},oldsymbol{y})oldsymbol{v}^T = oldsymbol{0}.
ight\}.$$

Goppa code : $\exists \Gamma$, polynomial of degree r such that $y_i = \Gamma(x_i)^{-1}$.

Decoding Alternant and Goppa codes

Proposition 1. [decoding alternant codes] r/2 errors can be decoded in polynomial time as long as x and y are known.

Proposition 2. [The special case of binary Goppa codes] In the case of a binary Goppa code (q = 2), r errors can be decoded in polynomial time, if x and Γ are known and if Γ has only simple roots.

More generally a factor $\frac{q}{q-1}$ can be gained (exploited for instance in wild McEliece [Bernstein-Lange-Peters 2010]) by a suitable choice of Γ .

(public key) 2. Distinguisher problem

 $\mathcal{K}^{\mathsf{Goppa}}(n, k, t)$ the ensemble of generator matrices of *t*-error correcting Goppa codes of length *n*, dimension *k*

 $\mathcal{K}^{\mathsf{alt}}(n,k)$ the ensemble of generator matrices of alternant codes of length n, dimension k

 $\mathcal{K}^{\text{lin}}(n,k)$ the ensemble of generator matrices of linear codes of length n and dimension k.

Can we distinguish between the cases (i) $G \in \mathcal{K}^{Goppa}(n, k, t)$ (ii) $G \in \mathcal{K}^{alt}(n, k)$ (iii) $G \in \mathcal{K}^{lin}(n, k)$?

Niederreiter Nied $(\mathcal{K}_{n,k,t})$

C a q-ary, length n, dimension k, t-error correcting code.

- Public key: H a $(n-k) \times n$ parity check matrix of C, $H \in \mathcal{K}_{n,k,t}$
- Secret key: Ψ a *t*-error correcting procedure for C
- Encryption: $e \rightarrow eH^T$ with e of Hamming weight t
- Decryption: To decipher s, choose any y of syndrome s, i.e. such that $s = yH^T$, and output $y \Psi(y)$.

A probabilistic model of an attacker

A (T, ϵ) adversary \mathcal{A} for **Nied** $(\mathcal{K}_{n,k,t})$ is a program which runs in time at most T and is such that

$$\mathbf{Prob}_{\boldsymbol{H},\boldsymbol{e}}(\mathcal{A}(\boldsymbol{H},\boldsymbol{e}\boldsymbol{H}^T) = \boldsymbol{e}|\boldsymbol{H} \in \mathcal{K}_{n,k,t}) \geq \epsilon$$

Most attacks actually deal with an adversary for $Nied(\mathcal{K}^{lin}(n,k))$ instead of $Nied(\mathcal{K}^{Goppa}(n,k,t))$.

Distinguisher

How the distinguisher appears

$$\mathsf{Adv}^{\operatorname{def}}_{=}\mathbf{Prob}(\mathcal{A}(\boldsymbol{H},\boldsymbol{e}\boldsymbol{H}^{T}) = \boldsymbol{e}|\boldsymbol{H} \in \mathcal{K}_{n,k,t}^{\mathsf{Goppa}}) - \mathbf{Prob}(\mathcal{A}(\boldsymbol{H},\boldsymbol{e}\boldsymbol{H}^{T}) = \boldsymbol{e}|\boldsymbol{H} \in \mathcal{K}_{n,k}^{\mathsf{lin}})$$

Distinguisher D: input $\boldsymbol{H} \in \mathbb{F}_q^{(n-k) \times n}$ Step 1 : pick a random $\boldsymbol{e} \in \mathbb{F}_q^n$ of weight tStep 2: if $\mathcal{A}(\boldsymbol{H}, \boldsymbol{e}\boldsymbol{H}^T) = \boldsymbol{e}$ then return 1, else return 0.

Advantage of $D = |\mathbf{Adv}|$.

Either a decoding algorithm on linear codes or a distinguisher for Goppa codes

Proposition 3. If $\exists (T, \epsilon)$ -adversary against $Nied(\mathcal{K}_{n,k,t}^{Goppa})$, then there exists either

- (i) a $(T, \epsilon/2)$ -adversary against **Nied** $(\mathcal{K}^{lin}(n, k)$ (i.e. a decoder for general linear codes working in time T with success probability at $\geq \epsilon/2$).
- (ii) A distinguisher between $\mathbf{H} \in \mathcal{K}_{n,k,t}^{Goppa}$ and $\mathbf{H} \in \mathcal{K}_{n,k}^{lin}$ working in time $T + O(n^2)$ and with advantage at least $\epsilon/2$.

3. Algebraic approach for attacking the McEliece cryptosystem

What is known: a basis of the code \rightarrow rows of a generator matrix $G = (g_{ij})$ of size $k \times n$.

What we also know: $\exists \boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q^m}^n$ s.t.

$$\boldsymbol{H}_r(\boldsymbol{x}, \boldsymbol{y})\boldsymbol{G}^T = \boldsymbol{0}.$$
 (1)

What we want to find: find in the case of an alternant code x, y, and in the special case of a binary Goppa code x and Γ .

algebraic approach

The algebraic system

 $\boldsymbol{H}_r(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{G}^T = \boldsymbol{0}$ translates to

$$\begin{array}{rcl}
g_{1,1}Y_{1} + \dots + g_{1,n}Y_{n} &= & 0 \\
\vdots && & \vdots \\
g_{k,1}Y_{1} + \dots + g_{k,n}Y_{n} &= & 0 \\
g_{1,1}Y_{1}X_{1} + \dots + g_{1,n}Y_{n}X_{n} &= & 0 \\
\vdots && & & \vdots \\
g_{k,1}Y_{1}X_{1} + \dots + g_{k,n}Y_{n}X_{n} &= & 0 \\
\vdots && & & & \vdots \\
g_{1,1}Y_{1}X_{1}^{r-1} + \dots + g_{1,n}Y_{n}X_{n}^{r-1} &= & 0 \\
\vdots && & & & & \vdots \\
g_{k,1}Y_{1}X_{1}^{r-1} + \dots + g_{k,n}Y_{n}X_{n}^{r-1} &= & 0 \\
\end{array}$$

(2)

where the $g_{i,j}$'s are known coefficients in \mathbb{F}_q and $k \ge n - r m$.

Freedom of choice in (2)

Proposition 4. Theoretically, the system has 2n unknowns but we can take arbitrary values for one Y_i and for three X_i 's (as long as these values are different).

Applications

When the number of unknowns is small, ex:

- Berger-Cayrel-Gaborit-Otmani proposal at AfricaCrypt'09 based on quasi-cyclic alternant codes
- Misoczki-Barreto at SAC'09 variant based on quasi-dyadic Goppa codes
- \Rightarrow algebraic system can be solved by (dedicated) Grobner basis techniques.
- breaks all parameters proposed in these articles ([Faugère-Otmani-Perret-Tillich;Eurocrypt 2010] with the exception of binary dyadic codes. Related to [Leander-Gauthier Umana; SCC2010]

4. A naive attack

W.I.o.g. we can assume that G is systematic in its k first positions.

(3)

Step 1 – expressing the $Y_i X_i^d$'s in terms of the $Y_j X_j^d$'s for $j \in \{k + 1, \dots, n\}$.

$$P = (p_{ij})_{\substack{1 \le i \le k \\ k+1 \le j \le n}}.$$
 We can rewrite (2) as
$$\begin{cases} Y_i &= \sum_{\substack{j=k+1 \\ Y_i X_i}}^n p_{i,j} Y_j \\ Y_i X_i &= \sum_{\substack{j=k+1 \\ j=k+1}}^n p_{i,j} Y_j X_j \\ \dots \\ Y_i X_i^{r-1} &= \sum_{\substack{j=k+1 \\ j=k+1}}^n p_{i,j} Y_j X_j^{r-1} \end{cases}$$

for all $i \in \{1, ..., k\}$.

naive attack

Step 2.– Exploiting $Y_i(Y_iX_i^2) = (Y_iX_i)^2$

$$\begin{cases} Y_{i} = \sum_{j=k+1}^{n} p_{i,j} Y_{j} \\ Y_{i} X_{i} = \sum_{j=k+1}^{n} p_{i,j} Y_{j} X_{j} \\ Y_{i} X_{i}^{2} = \sum_{j=k+1}^{n} p_{i,j} Y_{j} X_{j}^{2} \end{cases}$$
(4)

$$\Rightarrow \left(\sum_{j=k+1}^{n} p_{i,j}Y_j\right) \left(\sum_{j=k+1}^{n} p_{i,j}Y_jX_j^2\right) = \left(\sum_{j=k+1}^{n} p_{i,j}Y_jX_j\right)^2$$
$$\Rightarrow \sum_{j=k+1}^{n} \sum_{j'>j} p_{i,j}p_{i,j'} \left(Y_jY_{j'}X_{j'}^2 + Y_{j'}Y_jX_j^2\right) = 0$$

naive attack

Step 3. – Linearization

$$Z_{jj'} \stackrel{\text{def}}{=} Y_j Y_{j'} X_{j'}^2 + Y_{j'} Y_j X_j^2$$
$$\sum_{j=k+1}^n \sum_{j'>j} p_{i,j} p_{i,j'} Z_{jj'} = 0.$$

$$\blacktriangleright \binom{n-k}{2} \approx \frac{m^2 r^2}{2}$$
 unknowns

 \blacktriangleright k = n - mr equations

 \Rightarrow reveals $Z_{jj'}$ when $n - mr \ge \frac{m^2 r^2}{2}$?

> This happens for the Courtois-Finiasz-Sendrier scheme, ex: $n = 2^{21}$, r = 10, m = 21 which has to choose small values of r.

Linearized System

Definition 2. Assume that the public key G of the McEliece cryptosystem is in systematic form $(I_k | P)$

The linearized system associated to G is

$$\begin{cases} \sum_{\substack{j=k+1 \ j'>j}}^{n} \sum_{\substack{j'>j}} p_{1,j} p_{1,j'} Z_{jj'} = 0\\ \sum_{\substack{j=k+1 \ j'>j}}^{n} \sum_{\substack{j>j}} p_{2,j} p_{2,j'} Z_{jj'} = 0\\ \vdots\\ \sum_{\substack{j=k+1 \ j'>j}}^{n} \sum_{\substack{j'>j}} p_{k,j} p_{k,j'} Z_{jj'} = 0 \end{cases}$$

The dimension of the solution space is denoted by D.

Algebraic Distinguisher

Solving this system requires that

- Number of equations k is greater than the number of unknowns $\binom{n-k}{2}$
- rank is (almost) equal to the number of unknowns

If *G* is random then one would expect that the rank is $\min \left\{k, \binom{n-k}{2}\right\}$

$$\Longrightarrow D = \max\left\{0, \binom{n-k}{2} - k\right\}$$

But for several structured (Goppa, alternant) codes rank $< \min \left\{k, \binom{n-k}{2}\right\}$ and this defect can be quantified

Examp	$\mathbf{le} q$	= 2 i	and	m =	14
-------	-----------------	--------	-----	-----	----

r	3	4	5	6	7	8	9	10	11	12	13	14
$\binom{n-k}{2}$	861	1540	2415	3486	4753	6216	7875	9730	11781	14028	16471	19110
\overline{k}	16342	16328	16314	16300	16286	16272	16258	16244	16230	16216	16202	16188
	0	0	<u>ہ</u>	0	Ο	0	0	0	0	0	269	2922
^D rand	0	0	0	0	0	0	0	0	0	0	209	2922
$\frac{D_{rand}}{D_{alternant}}$	42	126	308	560	882	1274	1848	2520	3290	4158	5124	6188

Example q = 2 and m = 14

r	15	16	17	18	19	20	21	22	23	24	25	26	27
$\binom{n-k}{2}$	21945	24976	28203	31626	35245	39060	43071	47278	51681	56280	61075	66066	71253
k	16174	16160	16146	16132	16118	16104	16090	16076	16062	16048	16034	16020	16006
D _{rand}	5771	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
D _{alternant}	7350	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
D_{Goppa}	13860	16016	18564	21294	24206	27300	30576	34034	37674	41496	45500	50046	55247

Alternant Case

Let
$$\ell \stackrel{\text{def}}{=} \lfloor \log_q(r-1) \rfloor$$
.

$$D_{\text{alternant}} = \frac{1}{2}m(r-1)\left((2\ell+1)r - 2\frac{q^{\ell+1}-1}{q-1}\right)$$

as long as $\binom{n-k}{2} - D_{\text{alternant}} < k$.

Goppa Case

Let ℓ the unique integer such that $q^\ell - 2q^{\ell-1} + q^{\ell-2} < r \leqslant q^{\ell+1} - 2q^\ell + q^{\ell-1}$

$$D_{\text{Goppa}} = \begin{cases} \frac{1}{2}m(r-1)(r-2) = D_{\text{alternant}} & \text{for} \quad r < q-1 \\ \\ \frac{1}{2}mr\Big((2\ell+1)r - 2q^{\ell} + 2q^{\ell-1} - 1\Big) & \text{for} \quad r \geqslant q-1 \end{cases}$$

as long as
$$\binom{n-k}{2} - D_{\mathsf{Goppa}} < k$$
.

22/34

Examp	le q	= 2	and	m	= 14
-------	--------	-----	-----	---	------

r	3	4	5	6	7	8	9	10	11	12	13	14
$\binom{n-k}{2}$	861	1540	2415	3486	4753	6216	7875	9730	11781	14028	16471	19110
\overline{k}	16342	16328	16314	16300	16286	16272	16258	16244	16230	16216	16202	16188
D_{rand}	0	0	0	0	0	0	0	0	0	0	269	2922
$D_{\sf alternant}$	42	126	308	560	882	1274	1848	2520	3290	4158	5124	6188
$T_{\sf alternant}$	42	126	308	560	882	1274	1848	2520	3290	4158	5124	6188
D_{Goppa}	252	532	980	1554	2254	3080	4158	5390	6776	8316	10010	11858
T_{Goppa}	252	532	980	1554	2254	3080	4158	5390	6776	8316	10010	11858

Example q = 2 and m = 14

r	15	16	17	18	19	20	21	22	23	24	25	26	27
$\binom{n-k}{2}$	21945	24976	28203	31626	35245	39060	43071	47278	51681	56280	61075	66066	71253
k	16174	16160	16146	16132	16118	16104	16090	16076	16062	16048	16034	16020	16006
D_{rand}	5771	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
$D_{alternant}$	7350	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
Talternant	7350	8610	10192	11900	13734	15694	17780	19992	22330	24794	27384	30100	32942
D_{Goppa}	13860	16016	18564	21294	24206	27300	30576	34034	37674	41496	45500	50046	55247
T_{Goppa}	13860	16016	18564	21294	24206	27300	30576	34034	37674	41496	45500	49686	54054

Simplified Formulas for binary Goppa Codes

► Let $\ell \stackrel{\text{def}}{=} \lceil \log_2 r \rceil + 1$. $D_{\text{Goppa}} = \frac{1}{2} mr \left((2\ell + 1)r - 2^{\ell} - 1 \right)$ as long as $\binom{mr}{2} - D_{\text{Goppa}} < n - mr$.

Binary Goppa Codes

In particular, assuming that $n=2^m$, the binary Goppa code distinguishing problem is solved for any $r < r_{\rm max}$

m	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$r_{\rm max}$	5	8	8	11	16	20	26	34	47	62	85	114	157	213	290	400

 \triangleright m = 13 and r = 19 corresponds to a 90-bit security McEliece public key.

► All CFS parameters fits in the range of validity of the algebraic distinguisher.

5. Explanation

- Formulas obtained through experimentations for random codes, alternant codes and irreducible Goppa codes over fields of size $q \in \{2, 4, 8, 16\}$.
- ► We have an explanation for alternant codes and binary Goppa codes by guessing a basis of the solution vector space over F_q.
- It does not provide a proof.

Explanation for Alternant Codes – Step I

- ▶ Note that the entries of the system are in \mathbb{F}_q and solutions are sought in \mathbb{F}_{q^m} .
- Let us view \mathbb{F}_{q^m} as a \mathbb{F}_q -vector space of dimension m, and let $\pi_i : \mathbb{F}_{q^m} \to \mathbb{F}_q$ be the function giving the *i*-th coordinate.
- ▶ Hence, if a vector v with $v_j \in \mathbb{F}_{q^m}$ is a solution then $\pi_i(v) = (\pi_i(v_j))_j$ whose entries are in \mathbb{F}_q is also a solution.
 - $\implies \text{Any solution with entries over } \mathbb{F}_{q^m} \text{ would potentially provide a basis of } m$ solutions with entries over \mathbb{F}_q

Explanation for Alternant Codes – Step II

▶ We have used $Y_i Y_i X_i^2 = (Y_i X_i)^2$ which leads to:

$$\forall i \in \{1, \dots, k\}, \quad \sum_{j=k+1}^{n} \sum_{j'>j} p_{i,j} p_{i,j'} Y_j Y_{j'} \left(X_j^2 + X_{j'}^2\right) = 0$$

▶ But we can use any relation $Y_i X_i^a Y_i X_i^b = Y_i X_i^c Y_i X_i^d$ with a, b, c, d in $\{0, \ldots, r-1\}$ such that a + b = c + d

$$\sum_{j=k+1}^{n} \sum_{j'>j} p_{i,j} p_{i,j'} Y_j Y_{j'} (X_j^a X_{j'}^b + X_j^b X_{j'}^a + X_j^c X_{j'}^d + X_j^d X_{j'}^c) = 0$$

Explanation for Alternant Codes – Step III

For r≥q, the automorphism x → x^{q^ℓ} for any 0 ≤ ℓ ≤ m − 1 can be used.
∀e ∈ {0,...,r−1}, Y_iX^e_i = ∑ⁿ_{j=k+1} p_{ij}Y_jX^e_j ⇒ Y^q_iX^{eq}_i = ∑ⁿ_{j=k+1} p_{ij}Y^q_jX^{eq}_j
We therefore can use the same trick, for instance Y_i(Y_iX_i)^q = Y^q_iY_iX^q_i, ∑ⁿ_j∑ p_{i,j}p_{i,j'} (Y_jY^q_jX^q_{j'} + Y_{j'}Y^q_jX^q_j + Y^q_jY_{j'}X^q_{j'} + Y^q_{j'}Y_jX^q_j) = 0.

i=k+1 i'>i

Explanation for Alternant Codes

However the equations obtained (Y_iX^a_iY_iX^b_i)^q = (Y_iX^c_iY_iX^d_i)^q do not provide new solutions after decomposition over F_q since they are linearly dependent of those obtained from Y_iX^a_iY_iX^b_i = Y_iX^c_iY_iX^d_i.

► Hence, we only consider equations obtained from integers a, b, c, d, ℓ such that $a + bq^{\ell} = c + dq^{\ell}$ $Y_i X_i^a (Y_i X_i^b)^{q^{\ell}} = Y_i X_i^c (Y_i X_i^d)^{q^{\ell}}$

 $\boldsymbol{Z}_{a,b,c,d,\ell} \stackrel{\text{def}}{=} \left(Y_j X_j^a Y_{j'}^{q^{\ell}} X_{j'}^{bq^{\ell}} + Y_{j'} X_{j'}^a Y_j^{q^{\ell}} X_j^{bq^{\ell}} + Y_j X_j^c Y_{j'}^{q^{\ell}} X_{j'}^{dq^{\ell}} + Y_{j'} X_{j'}^c Y_{j'}^{q^{\ell}} X_{j}^{dq^{\ell}} \right)_{1 \leq j < j' \leq n-k}$

Explanation for Alternant Codes

 \blacktriangleright Let us assume that d>b and set $\delta {\stackrel{\mathrm{def}}{=}} d-b$ and then $a=c+q^\ell \delta$

$$\implies ~~ oldsymbol{Z}_{a,b,c,d,\ell} = oldsymbol{Z}_{c+q^\ell\delta,b,c,b+\delta,\ell}$$

▶ Let \mathcal{B}_r be the set $Z_{c+q^{\ell}\delta,b,c,b+\delta,\ell}$ obtained with $\delta = 1$ and satisfying:

$$\left\{ \begin{array}{ll} 0 \leqslant b \leqslant r-2 \text{ and } 0 \leqslant c \leqslant r-1-q^\ell & \text{ if } \quad 1 \leqslant \ell \leqslant \lfloor \log_q(r-1) \rfloor \\ 0 \leqslant b < c \leqslant r-2 & \text{ if } \quad \ell = 0. \end{array} \right.$$

Proposition 5. • Any $Z_{c+q^{\ell}\delta,b,c,b+\delta,\ell}$ belongs to the \mathbb{F}_{q^m} -vector space generated by \mathcal{B}_r

• The cardinality of \mathcal{B}_r with $r \ge 3$ is equal to D/m.

Heuristic

For random choices of x_i 's and y_i 's defining the alternant code, the set $\{\pi_i(\mathbf{Z}) \mid \mathbf{Z} \in \mathcal{B}_r \text{ and } 1 \leq i \leq m\}$ forms a basis of the vector space that is solution to the linearized system.

Conclusion

- Large dimension comes from the many different ways of combining the equations together yielding the same linearized system
- ► What happens for random generator is proven now.
- Binary Goppa codes can also be explained but no explanation for non-binary Goppa codes.
- The most difficult task is identifying a basis of the vector space of solutions.
- A slightly better distinguisher can be obtained by taking the subcode of codewords of even weights.
- \blacktriangleright Distinguisher \Rightarrow attack ?
- Approach requires ^k/_n very close to 1. Should very high rates be avoided in a McEliece like scheme ?