A distinguisher for high-rate McEliece Cryptosystems

J.C. Faugère (INRIA, SALSA project),
Valérie Gauthier (Math. dep. Tech. Univ. of Denmark), A. Otmani (Université Caen- INRIA, SECRET project),
L. Perret (INRIA, SALSA project),
J.-P. Tillich (INRIA, SECRET project)

May 12th, 2011

1. (Generalized) McEliece Cryptosystem $\operatorname{McE}\left(\mathcal{K}_{n, k, t}\right)$

C a q-ary, length n, dimension k, t-error correcting code

- Public key: \boldsymbol{G} a $k \times n$ generator matrix of C in $\mathcal{K}(n, k, t)$
- Secret key: Ψ a t-error correcting procedure for C
- Encryption: $\boldsymbol{x} \rightarrow \boldsymbol{x} \boldsymbol{G}+\boldsymbol{e}$ with \boldsymbol{e} of Hamming weight t
- Decryption: $\boldsymbol{y} \rightarrow \Psi(\boldsymbol{y}) \boldsymbol{G}^{-1}$ with \boldsymbol{G}^{-1} a right inverse of \boldsymbol{G}.

Alternant codes/Goppa codes

- $\boldsymbol{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$ with $x_{i} \neq x_{j}$ if $i \neq j$
- $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathbb{F}_{q^{m}}^{n}$ with $y_{i} \neq 0$

For any $r<n$, let $H_{r}(\boldsymbol{x}, \boldsymbol{y}) \stackrel{\text { def }}{=}\left(\begin{array}{llll}y_{1} & y_{2} & \cdots & y_{n} \\ y_{1} x_{1} & y_{2} x_{2} & \cdots & y_{n} x_{n} \\ \vdots & \vdots & & \vdots \\ y_{1} x_{1}^{r-1} & y_{2} x_{2}^{r-1} & \cdots & y_{n} x_{n}^{r-1}\end{array}\right)$
Definition 1. An alternant code is the kernel of an \boldsymbol{H} of this type

$$
\mathcal{A}_{r}(\boldsymbol{x}, \boldsymbol{y})=\left\{\boldsymbol{v} \in \mathbb{F}_{q}^{n} \mid \boldsymbol{H}_{r}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{v}^{T}=\mathbf{0} .\right\} .
$$

Goppa code : $\exists \Gamma$, polynomial of degree r such that $y_{i}=\Gamma\left(x_{i}\right)^{-1}$.

Decoding Alternant and Goppa codes

Proposition 1. [decoding alternant codes] $r / 2$ errors can be decoded in polynomial time as long as \boldsymbol{x} and \boldsymbol{y} are known.

Proposition 2. [The special case of binary Goppa codes] In the case of a binary Goppa code $(q=2), r$ errors can be decoded in polynomial time, if \boldsymbol{x} and Γ are known and if Γ has only simple roots.

More generally a factor $\frac{q}{q-1}$ can be gained (exploited for instance in wild McEliece [Bernstein-Lange-Peters 2010]) by a suitable choice of Γ.

(public key) 2. Distinguisher problem

$\mathcal{K}^{\text {Goppa }}(n, k, t)$ the ensemble of generator matrices of t-error correcting Goppa codes of length n, dimension k
$\mathcal{K}^{\text {alt }}(n, k)$ the ensemble of generator matrices of alternant codes of length n, dimension k
$\mathcal{K}^{\text {lin }}(n, k)$ the ensemble of generator matrices of linear codes of length n and dimension k.

Can we distinguish between the cases
(i) $\boldsymbol{G} \in \mathcal{K}^{\text {Goppa }}(n, k, t)$
(ii) $\boldsymbol{G} \in \mathcal{K}^{\mathrm{alt}}(n, k)$
(iii) $G \in \mathcal{K}^{\operatorname{lin}}(n, k)$?

Niederreiter $\operatorname{Nied}\left(\mathcal{K}_{n, k, t}\right)$

C a q-ary, length n, dimension k, t-error correcting code.

- Public key: \boldsymbol{H} a $(n-k) \times n$ parity check matrix of $C, \boldsymbol{H} \in \mathcal{K}_{n, k, t}$
- Secret key: Ψ a t-error correcting procedure for C
- Encryption: $\boldsymbol{e} \rightarrow \boldsymbol{e} \boldsymbol{H}^{T}$ with \boldsymbol{e} of Hamming weight t
- Decryption: To decipher s, choose any y of syndrome s, i.e. such that $s=\boldsymbol{y} \boldsymbol{H}^{T}$, and output $\boldsymbol{y}-\Psi(\boldsymbol{y})$.

A probabilistic model of an attacker

A (T, ϵ) adversary \mathcal{A} for $\operatorname{Nied}\left(\mathcal{K}_{n, k, t}\right)$ is a program which runs in time at most T and is such that

$$
\operatorname{Prob}_{\boldsymbol{H}, e}\left(\mathcal{A}\left(\boldsymbol{H}, \boldsymbol{e} \boldsymbol{H}^{T}\right)=\boldsymbol{e} \mid \boldsymbol{H} \in \mathcal{K}_{n, k, t}\right) \geq \epsilon
$$

Most attacks actually deal with an adversary for $\operatorname{Nied}\left(\mathcal{K}^{\text {lin }}(n, k)\right)$ instead of $\operatorname{Nied}\left(\mathcal{K}^{\text {Goppa }}(n, k, t)\right)$.

How the distinguisher appears

$\operatorname{Adv} \stackrel{\text { def }}{=} \operatorname{Prob}\left(\mathcal{A}\left(\boldsymbol{H}, \boldsymbol{e} \boldsymbol{H}^{T}\right)=\boldsymbol{e} \mid \boldsymbol{H} \in \mathcal{K}_{n, k, t}^{\text {Goppa }}\right)-\operatorname{Prob}\left(\mathcal{A}\left(\boldsymbol{H}, \boldsymbol{e} \boldsymbol{H}^{T}\right)=\boldsymbol{e} \mid \boldsymbol{H} \in \mathcal{K}_{n, k}^{\operatorname{lin}}\right)$

Distinguisher D :
input $\boldsymbol{H} \in \mathbb{F}_{q}^{(n-k) \times n}$
Step 1: pick a random $\boldsymbol{e} \in \mathbb{F}_{q}^{n}$ of weight t
Step 2: if $\mathcal{A}\left(\boldsymbol{H}, \boldsymbol{e} \boldsymbol{H}^{T}\right)=\boldsymbol{e}$ then return 1, else return 0 .
Advantage of $D=|\mathbf{A d v}|$.

Either a decoding algorithm on linear codes or a distinguisher for Goppa codes

Proposition 3. If $\exists(T, \epsilon)$-adversary against $\operatorname{Nied}\left(\mathcal{K}_{n, k, t}^{G o p p a}\right)$, then there exists either
(i) a $(T, \epsilon / 2)$-adversary against $\operatorname{Nied}\left(\mathcal{K}^{\text {lin }}(n, k)\right.$ (i.e. a decoder for general linear codes working in time T with success probability at $\geq \epsilon / 2$).
(ii) A distinguisher between $\boldsymbol{H} \in \mathcal{K}_{n, k, t}^{\text {Goppa }}$ and $\boldsymbol{H} \in \mathcal{K}_{n, k}^{\text {lin }}$ working in time $T+O\left(n^{2}\right)$ and with advantage at least $\epsilon / 2$.

3. Algebraic approach for attacking the McEliece cryptosystem

What is known: a basis of the code \rightarrow rows of a generator matrix $\boldsymbol{G}=\left(g_{i j}\right)$ of size $k \times n$.

What we also know: $\exists \boldsymbol{x}, \boldsymbol{y} \in \mathbb{F}_{q^{m}}^{n}$ s.t.

$$
\begin{equation*}
\boldsymbol{H}_{r}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{G}^{T}=\mathbf{0} . \tag{1}
\end{equation*}
$$

What we want to find: find in the case of an alternant code $\boldsymbol{x}, \boldsymbol{y}$, and in the special case of a binary Goppa code \boldsymbol{x} and Γ.

The algebraic system

$\boldsymbol{H}_{r}(\boldsymbol{x}, \boldsymbol{y}) \boldsymbol{G}^{T}=\mathbf{0}$ translates to

$$
\left\{\begin{array}{lll}
g_{1,1} Y_{1}+\cdots+g_{1, n} Y_{n} & = & 0 \tag{2}\\
\vdots & & \vdots \\
g_{k, 1} Y_{1}+\cdots+g_{k, n} Y_{n} & 0 \\
g_{1,1} Y_{1} X_{1}+\cdots+g_{1, n} Y_{n} X_{n} & = & 0 \\
\vdots & & \vdots \\
g_{k, 1} Y_{1} X_{1}+\cdots+g_{k, n} Y_{n} X_{n} & = & 0 \\
\vdots & & \vdots \\
g_{1,1} Y_{1} X_{1}^{r-1}+\cdots+g_{1, n} Y_{n} X_{n}^{r-1} & = & 0 \\
\vdots & & \vdots \\
g_{k, 1} Y_{1} X_{1}^{r-1}+\cdots+g_{k, n} Y_{n} X_{n}^{r-1} & = & 0
\end{array}\right.
$$

where the $g_{i, j}$'s are known coefficients in \mathbb{F}_{q} and $k \geq n-r m$.

Freedom of choice in (2)

Proposition 4. Theoretically, the system has $2 n$ unknowns but we can take arbitrary values for one Y_{i} and for three X_{i} 's (as long as these values are different).

Applications

When the number of unknowns is small, ex:

- Berger-Cayrel-Gaborit-Otmani proposal at AfricaCrypt'09 based on quasi-cyclic alternant codes
- Misoczki-Barreto at SAC'09 variant based on quasi-dyadic Goppa codes
\Rightarrow algebraic system can be solved by (dedicated) Grobner basis techniques.
- breaks all parameters proposed in these articles ([Faugère-Otmani-PerretTillich;Eurocrypt 2010] with the exception of binary dyadic codes. Related to [Leander-Gauthier Umana; SCC2010]

4. A naive attack

W.l.o.g. we can assume that \boldsymbol{G} is systematic in its k first positions.

Step 1 - expressing the $Y_{i} X_{i}^{d \prime}$ s in terms of the $Y_{j} X_{j}^{d \prime}$ s for

$$
j \in\{k+1, \ldots, n\}
$$

$$
\begin{align*}
& \boldsymbol{P}=\left(p_{i j}\right)_{\substack{1 \leq i \leq k \\
k+1 \leq j \leq n}} \text {. We can rewrite (2) as } \\
& \qquad\left\{\begin{array}{llc}
Y_{i} & = & \sum_{j=k+1}^{n} p_{i, j} Y_{j} \\
Y_{i} X_{i} & = & \sum_{j=k+1}^{n} p_{i, j} Y_{j} X_{j} \\
Y_{i} X_{i}^{r-1} & \cdots & \sum_{j=k+1}^{n} p_{i, j} Y_{j} X_{j}^{r-1}
\end{array}\right. \tag{3}
\end{align*}
$$

for all $i \in\{1, \ldots, k\}$.

Step 2.- Exploiting $Y_{i}\left(Y_{i} X_{i}^{2}\right)=\left(Y_{i} X_{i}\right)^{2}$

$$
\begin{align*}
& \quad\left\{\begin{array}{lll}
Y_{i} & = & \sum_{j=k+1}^{n} p_{i, j} Y_{j} \\
Y_{i} X_{i} & = & \sum_{j=1+1}^{n} p_{i, j} X_{j} X_{j} \\
Y_{i} X_{i}^{2} & =\sum_{j=k+1}^{n} p_{i, j} Y_{j} X_{j}^{2}
\end{array}\right. \tag{4}\\
& \Rightarrow \quad\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j}\right)\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j} X_{j}^{2}\right)=\left(\sum_{j=k+1}^{n} p_{i, j} Y_{j} X_{j}\right)^{2} \\
& \Rightarrow \quad \sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{i, j} p_{i, j^{\prime}}\left(Y_{j} Y_{j^{\prime}} X_{j^{\prime}}^{2}+Y_{j^{\prime}} Y_{j} X_{j}^{2}\right)=0
\end{align*}
$$

Step 3. - Linearization

$$
\begin{aligned}
Z_{j j^{\prime}} \stackrel{\text { def }}{=} & Y_{j} Y_{j^{\prime}} X_{j^{\prime}}^{2}+Y_{j^{\prime}} Y_{j} X_{j}^{2} \\
& \sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{i, j} p_{i, j^{\prime}} Z_{j j^{\prime}}=0
\end{aligned}
$$

- $\binom{n-k}{2} \approx \frac{m^{2} r^{2}}{2}$ unknowns
- $k=n-m r$ equations
\Rightarrow reveals $Z_{j j^{\prime}}$ when $n-m r \geq \frac{m^{2} r^{2}}{2}$?
- This happens for the Courtois-Finiasz-Sendrier scheme, ex: $n=2^{21}, r=10$, $m=21$ which has to choose small values of r.

Linearized System

Definition 2. Assume that the public key \boldsymbol{G} of the McEliece cryptosystem is in systematic form $\left(\boldsymbol{I}_{k} \mid \boldsymbol{P}\right)$

The linearized system associated to G is

$$
\begin{cases}\sum_{j=k+1}^{n} \sum_{j^{\prime}>j}^{n} p_{1, j} p_{1, j^{\prime}} Z_{j j^{\prime}} & =0 \\ \sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{2, j} p_{2, j^{\prime}} Z_{j j^{\prime}} & =0 \\ & \vdots \\ \sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{k, j} p_{k, j^{\prime}} Z_{j j^{\prime}}=0\end{cases}
$$

The dimension of the solution space is denoted by D.

Algebraic Distinguisher

Solving this system requires that

- Number of equations k is greater than the number of unknowns $\binom{n-k}{2}$
- rank is (almost) equal to the number of unknowns

If \boldsymbol{G} is random then one would expect that the rank is $\min \left\{k,\binom{n-k}{2}\right\}$

$$
\Longrightarrow D=\max \left\{0,\binom{n-k}{2}-k\right\}
$$

But for several structured (Goppa, alternant) codes rank $<\min \left\{k,\binom{n-k}{2}\right\}$ and this defect can be quantified

Example $q=2$ and $m=14$

r	3	4	5	6	7	8	9	10	11	12	13	14
$\binom{n-k}{2}$	861	1540	2415	3486	4753	6216	7875	9730	11781	14028	16471	19110
k	16342	16328	16314	16300	16286	16272	16258	16244	16230	16216	16202	16188
$D_{\text {rand }}$	0	0	0	0	0	0	0	0	0	0	269	2922
$D_{\text {alternant }}$	42	126	308	560	882	1274	1848	2520	3290	4158	5124	6188
$D_{\text {Goppa }}$	252	532	980	1554	2254	3080	4158	5390	6776	8316	10010	11858

Example $q=2$ and $m=14$

r	15	16	17	18	19	20	21	22	23	24	25	26	27
$\binom{n-k}{2}$	21945	24976	28203	31626	35245	39060	43071	47278	51681	56280	61075	66066	71253
k	16174	16160	16146	16132	16118	16104	16090	16076	16062	16048	16034	16020	16006
$D_{\text {rand }}$	5771	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
$D_{\text {alternant }}$	7350	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
$D_{\text {Goppa }}$	13860	16016	18564	21294	24206	27300	30576	34034	37674	41496	45500	50046	55247

Alternant Case

Let $\ell \xlongequal{\text { def }}\left\lfloor\log _{q}(r-1)\right\rfloor$.

$$
D_{\text {alternant }}=\frac{1}{2} m(r-1)\left((2 \ell+1) r-2 \frac{q^{\ell+1}-1}{q-1}\right)
$$

as long as $\binom{n-k}{2}-D_{\text {altermant }}<k$.

Goppa Case

Let ℓ the unique integer such that $q^{\ell}-2 q^{\ell-1}+q^{\ell-2}<r \leqslant q^{\ell+1}-2 q^{\ell}+q^{\ell-1}$

$$
D_{\text {Goppa }}=\left\{\begin{array}{lll}
\frac{1}{2} m(r-1)(r-2)=D_{\text {altermant }} & \text { for } & r<q-1 \\
\frac{1}{2} m r\left((2 \ell+1) r-2 q^{\ell}+2 q^{\ell-1}-1\right) & \text { for } & r \geqslant q-1
\end{array}\right.
$$

as long as $\binom{n-k}{2}-D_{\text {Goppa }}<k$.

Example $q=2$ and $m=14$

r	3	4	5	6	7	8	9	10	11	12	13	14
$\binom{n-k}{2}$	861	1540	2415	3486	4753	6216	7875	9730	11781	14028	16471	19110
k	16342	16328	16314	16300	16286	16272	16258	16244	16230	16216	16202	16188
$D_{\text {rand }}$	0	0	0	0	0	0	0	0	0	0	269	2922
$D_{\text {alternant }}$	42	126	308	560	882	1274	1848	2520	3290	4158	5124	6188
$T_{\text {alternant }}$	42	126	308	560	882	1274	1848	2520	3290	4158	5124	6188
$D_{\text {Goppa }}$	252	532	980	1554	2254	3080	4158	5390	6776	8316	10010	11858
$T_{\text {Goppa }}$	252	532	980	1554	2254	3080	4158	5390	6776	8316	10010	11858

Example $q=2$ and $m=14$

r	15	16	17	18	19	20	21	22	23	24	25	26	27
$\binom{n-k}{2}$	21945	24976	28203	31626	35245	39060	43071	47278	51681	56280	61075	66066	71253
k	16174	16160	16146	16132	16118	16104	16090	16076	16062	16048	16034	16020	16006
$D_{\text {rand }}$	5771	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
$D_{\text {alternant }}$	7350	8816	12057	15494	19127	22956	26981	31202	35619	40232	45041	50046	55247
$T_{\text {alternant }}$	7350	8610	10192	11900	13734	15694	17780	19992	22330	24794	27384	30100	32942
$D_{\text {Goppa }}$	13860	16016	18564	21294	24206	27300	30576	34034	37674	41496	45500	50046	55247
$T_{\text {Goppa }}$	13860	16016	18564	21294	24206	27300	30576	34034	37674	41496	45500	49686	54054

Simplified Formulas for binary Goppa Codes

- Let $\ell \stackrel{\text { def }}{=}\left\lceil\log _{2} r\right\rceil+1$.

$$
D_{\mathrm{Goppa}}=\frac{1}{2} m r\left((2 \ell+1) r-2^{\ell}-1\right)
$$

as long as $\binom{m r}{2}-D_{\text {Goppa }}<n-m r$.

Binary Goppa Codes

In particular, assuming that $n=2^{m}$, the binary Goppa code distinguishing problem is solved for any $r<r_{\text {max }}$

m	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
$r_{\max }$	5	8	8	11	16	20	26	34	47	62	85	114	157	213	290	400

- $m=13$ and $r=19$ corresponds to a 90-bit security McEliece public key.
- All CFS parameters fits in the range of validity of the algebraic distinguisher.

5. Explanation

- Formulas obtained through experimentations for random codes, alternant codes and irreducible Goppa codes over fields of size $q \in\{2,4,8,16\}$.
- We have an explanation for alternant codes and binary Goppa codes by guessing a basis of the solution vector space over \mathbb{F}_{q}.
- It does not provide a proof.

Explanation for Alternant Codes - Step I

- Note that the entries of the system are in \mathbb{F}_{q} and solutions are sought in $\mathbb{F}_{q^{m}}$.
- Let us view $\mathbb{F}_{q^{m}}$ as a $\mathbb{F}_{q^{-}}$-vector space of dimension m, and let $\pi_{i}: \mathbb{F}_{q^{m}} \rightarrow \mathbb{F}_{q}$ be the function giving the i-th coordinate.
- Hence, if a vector \boldsymbol{v} with $v_{j} \in \mathbb{F}_{q^{m}}$ is a solution then $\pi_{i}(\boldsymbol{v})=\left(\pi_{i}\left(v_{j}\right)\right)_{j}$ whose entries are in \mathbb{F}_{q} is also a solution.
\Longrightarrow Any solution with entries over $\mathbb{F}_{q^{m}}$ would potentially provide a basis of m solutions with entries over \mathbb{F}_{q}

Explanation for Alternant Codes - Step II

- We have used $Y_{i} Y_{i} X_{i}^{2}=\left(Y_{i} X_{i}\right)^{2}$ which leads to:

$$
\forall i \in\{1, \ldots, k\}, \quad \sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{i, j} p_{i, j^{\prime}} Y_{j} Y_{j^{\prime}}\left(X_{j}^{2}+X_{j^{\prime}}^{2}\right)=0
$$

- But we can use any relation $Y_{i} X_{i}^{a} Y_{i} X_{i}^{b}=Y_{i} X_{i}^{c} Y_{i} X_{i}^{d}$ with a, b, c, d in $\{0, \ldots, r-1\}$ such that $a+b=c+d$

$$
\sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{i, j} p_{i, j^{\prime}} Y_{j} Y_{j^{\prime}}\left(X_{j}^{a} X_{j^{\prime}}^{b}+X_{j}^{b} X_{j^{\prime}}^{a}+X_{j}^{c} X_{j^{\prime}}^{d}+X_{j}^{d} X_{j^{\prime}}^{c}\right)=0
$$

Explanation for Alternant Codes - Step III

- For $r \geqslant q$, the automorphism $x \longmapsto x^{q^{\ell}}$ for any $0 \leqslant \ell \leqslant m-1$ can be used.
$\forall e \in\{0, \ldots, r-1\}, \quad Y_{i} X_{i}^{e}=\sum_{j=k+1}^{n} p_{i j} Y_{j} X_{j}^{e} \quad \Longrightarrow \quad Y_{i}^{q} X_{i}^{e q}=\sum_{j=k+1}^{n} p_{i j} Y_{j}^{q} X_{j}^{e q}$
- We therefore can use the same trick, for instance $Y_{i}\left(Y_{i} X_{i}\right)^{q}=Y_{i}^{q} Y_{i} X_{i}^{q}$,

$$
\sum_{j=k+1}^{n} \sum_{j^{\prime}>j} p_{i, j} p_{i, j^{\prime}}\left(Y_{j} Y_{j^{\prime}}^{q} X_{j^{\prime}}^{q}+Y_{j^{\prime}} Y_{j}^{q} X_{j}^{q}+Y_{j}^{q} Y_{j^{\prime}} X_{j^{\prime}}^{q}+Y_{j^{\prime}}^{q} Y_{j} X_{j}^{q}\right)=0 .
$$

Explanation for Alternant Codes

- However the equations obtained $\left(Y_{i} X_{i}^{a} Y_{i} X_{i}^{b}\right)^{q}=\left(Y_{i} X_{i}^{c} Y_{i} X_{i}^{d}\right)^{q}$ do not provide new solutions after decomposition over \mathbb{F}_{q} since they are linearly dependent of those obtained from $Y_{i} X_{i}^{a} Y_{i} X_{i}^{b}=Y_{i} X_{i}^{c} Y_{i} X_{i}^{d}$.
- Hence, we only consider equations obtained from integers a, b, c, d, ℓ such that $a+b q^{\ell}=c+d q^{\ell}$

$$
Y_{i} X_{i}^{a}\left(Y_{i} X_{i}^{b}\right)^{q^{\ell}}=Y_{i} X_{i}^{c}\left(Y_{i} X_{i}^{d}\right)^{q^{\ell}}
$$

$Z_{a, b, c, d,, c} \xlongequal{\text { def }}\left(Y_{j} X_{j}^{a} Y_{j^{\prime}}^{q^{\ell}} X_{j^{\prime}}^{b q^{\ell}}+Y_{j^{\prime}} X_{j^{\prime}}^{a} Y_{j}^{q^{\ell}} X_{j}^{b q^{\ell}}+Y_{j} X_{j}^{c} Y_{j^{\prime}}^{q^{\ell}} X_{j^{\prime}}^{d q^{\ell}}+Y_{j^{\prime}} X_{j^{\prime}}^{c} Y_{j}^{q^{\ell}} X_{j}^{d q^{\ell}}\right)_{1 \leqslant j<j^{\prime} \leqslant n-k}$

Explanation for Alternant Codes

- Let us assume that $d>b$ and set $\delta \stackrel{\text { def }}{=} d-b$ and then $a=c+q^{\ell} \delta$

$$
\Longrightarrow \quad Z_{a, b, c, d, \ell}=Z_{c+q^{\ell} \delta, b, c, b+\delta, \ell}
$$

- Let \mathcal{B}_{r} be the set $\boldsymbol{Z}_{c+q^{\ell} \delta, b, c, b+\delta, \ell}$ obtained with $\delta=1$ and satisfying:

$$
\begin{cases}0 \leqslant b \leqslant r-2 \text { and } 0 \leqslant c \leqslant r-1-q^{\ell} & \text { if } \quad 1 \leqslant \ell \leqslant\left\lfloor\log _{q}(r-1)\right\rfloor \\ 0 \leqslant b<c \leqslant r-2 & \text { if } \quad \ell=0\end{cases}
$$

Proposition 5. • Any $\boldsymbol{Z}_{c+q^{\ell} \delta, b, c, b+\delta, \ell}$ belongs to the $\mathbb{F}_{q^{m-v e c t o r ~ s p a c e ~ g e n e r a t e d ~}}$ by \mathcal{B}_{r}

- The cardinality of \mathcal{B}_{r} with $r \geqslant 3$ is equal to D / m.

Heuristic

For random choices of x_{i} 's and y_{i} 's defining the alternant code, the set $\left\{\pi_{i}(\boldsymbol{Z}) \mid \boldsymbol{Z} \in \mathcal{B}_{r}\right.$ and $\left.1 \leq i \leq m\right\}$ forms a basis of the vector space that is solution to the linearized system.

Conclusion

- Large dimension comes from the many different ways of combining the equations together yielding the same linearized system
- What happens for random generator is proven now.
- Binary Goppa codes can also be explained but no explanation for non-binary Goppa codes.
- The most difficult task is identifying a basis of the vector space of solutions.
- A slightly better distinguisher can be obtained by taking the subcode of codewords of even weights.
- Distinguisher \Rightarrow attack ?
- Approach requires $\frac{k}{n}$ very close to 1 . Should very high rates be avoided in a McEliece like scheme ?

