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Introduction

1. (Generalized) McEliece Cryptosystem McE(Kn,k,t)

C a q−ary, length n, dimension k, t-error correcting code

• Public key: G a k × n generator matrix of C in K(n, k, t)

• Secret key: Ψ a t-error correcting procedure for C

• Encryption: x→ xG + e with e of Hamming weight t

• Decryption: y → Ψ(y)G−1 with G−1 a right inverse of G.
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Introduction

Alternant codes/Goppa codes

I x = (x1, . . . , xn) ∈ Fnqm with xi 6= xj if i 6= j

I y = (y1, . . . , yn) ∈ Fnqm with yi 6= 0

For any r < n, let Hr(x,y)
def
=


y1 y2 · · · yn
y1x1 y2x2 · · · ynxn
... ... ...

y1x
r−1
1 y2x

r−1
2 · · · ynx

r−1
n


Definition 1. An alternant code is the kernel of an H of this type

Ar(x,y) =
{
v ∈ Fnq |Hr(x,y)vT = 0.

}
.

Goppa code : ∃Γ, polynomial of degree r such that yi = Γ(xi)
−1.
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Introduction

Decoding Alternant and Goppa codes

Proposition 1. [decoding alternant codes] r/2 errors can be decoded in
polynomial time as long as x and y are known.

Proposition 2. [The special case of binary Goppa codes] In the case of a
binary Goppa code (q = 2), r errors can be decoded in polynomial time, if x
and Γ are known and if Γ has only simple roots.

More generally a factor q
q−1 can be gained (exploited for instance in wild

McEliece [Bernstein-Lange-Peters 2010]) by a suitable choice of Γ.
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Distinguisher

(public key) 2. Distinguisher problem

KGoppa(n, k, t) the ensemble of generator matrices of t-error correcting Goppa codes
of length n, dimension k
Kalt(n, k) the ensemble of generator matrices of alternant codes of length n,
dimension k
Klin(n, k) the ensemble of generator matrices of linear codes of length n and
dimension k.

Can we distinguish between the cases

(i) G ∈ KGoppa(n, k, t)

(ii) G ∈ Kalt(n, k)

(iii) G ∈ Klin(n, k) ?
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Distinguisher

Niederreiter Nied(Kn,k,t)

C a q−ary, length n, dimension k, t−error correcting code.

• Public key: H a (n− k)× n parity check matrix of C, H ∈ Kn,k,t

• Secret key: Ψ a t-error correcting procedure for C

• Encryption: e→ eHT with e of Hamming weight t

• Decryption: To decipher s, choose any y of syndrome s, i.e. such that
s = yHT , and output y −Ψ(y).
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Distinguisher

A probabilistic model of an attacker

A (T, ε) adversary A for Nied(Kn,k,t) is a program which runs in time at most T
and is such that

ProbH,e(A(H, eHT ) = e|H ∈ Kn,k,t) ≥ ε

Most attacks actually deal with an adversary for
Nied(Klin(n, k)) instead of Nied(KGoppa(n, k, t)).
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Distinguisher

How the distinguisher appears

Adv
def
=Prob(A(H, eHT ) = e|H ∈ KGoppa

n,k,t )−Prob(A(H, eHT ) = e|H ∈ Klin
n,k)

Distinguisher D:

input H ∈ F(n−k)×n
q

Step 1 : pick a random e ∈ Fnq of weight t

Step 2: if A(H, eHT ) = e then return 1, else return 0.

Advantage of D = |Adv|.
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Distinguisher

Either a decoding algorithm on linear codes or a distinguisher
for Goppa codes

Proposition 3. If ∃(T, ε)-adversary against Nied(KGoppa
n,k,t ) , then there exists either

(i) a (T, ε/2)-adversary against Nied(Klin(n, k) (i.e. a decoder for general linear
codes working in time T with success probability at ≥ ε/2).

(ii) A distinguisher between H ∈ KGoppa
n,k,t and H ∈ Klin

n,k working in time T +O(n2)
and with advantage at least ε/2.
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Algebraic approach

3. Algebraic approach for attacking the McEliece
cryptosystem

What is known: a basis of the code → rows of a generator matrix G = (gij) of
size k × n.

What we also know: ∃x,y ∈ Fnqm s.t.

Hr(x,y)GT = 0. (1)

What we want to find: find in the case of an alternant code x,y, and in the special
case of a binary Goppa code x and Γ.
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algebraic approach

The algebraic system

Hr(x,y)GT = 0 translates to

g1,1Y1 + · · ·+ g1,nYn = 0
... ...

gk,1Y1 + · · ·+ gk,nYn = 0

g1,1Y1X1 + · · ·+ g1,nYnXn = 0
... ...

gk,1Y1X1 + · · ·+ gk,nYnXn = 0
... ...

g1,1Y1X
r−1
1 + · · ·+ g1,nYnX

r−1
n = 0

... ...

gk,1Y1X
r−1
1 + · · ·+ gk,nYnX

r−1
n = 0

(2)

where the gi,j’s are known coefficients in Fq and k ≥ n− rm.
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algebraic approach

Freedom of choice in (2)

Proposition 4. Theoretically, the system has 2n unknowns but we can take
arbitrary values for one Yi and for three Xi’s (as long as these values are different).
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algebraic approach

Applications

When the number of unknowns is small, ex:

• Berger-Cayrel-Gaborit-Otmani proposal at AfricaCrypt’09 based on quasi-cyclic
alternant codes

• Misoczki-Barreto at SAC’09 variant based on quasi-dyadic Goppa codes

⇒ algebraic system can be solved by (dedicated) Grobner basis techniques.

I breaks all parameters proposed in these articles ([Faugère-Otmani-Perret-
Tillich;Eurocrypt 2010] with the exception of binary dyadic codes. Related
to [Leander-Gauthier Umana; SCC2010]
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naive attack

4. A naive attack

W.l.o.g. we can assume that G is systematic in its k first positions.

1

1

0

0

G = P k

k n−k=mr
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naive attack

Step 1 – expressing the YiXd
i ’s in terms of the YjXd

j ’s for
j ∈ {k + 1, . . . , n}.

P = (pij) 1≤i≤k
k+1≤j≤n

. We can rewrite (2) as


Yi =

∑n
j=k+1 pi,jYj

YiXi =
∑n
j=k+1 pi,jYjXj

. . .
YiX

r−1
i =

∑n
j=k+1 pi,jYjX

r−1
j

(3)

for all i ∈ {1, . . . , k}.
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naive attack

Step 2.– Exploiting Yi(YiX
2
i ) = (YiXi)

2


Yi =

∑n
j=k+1 pi,jYj

YiXi =
∑n
j=k+1 pi,jYjXj

YiX
2
i =

∑n
j=k+1 pi,jYjX

2
j

(4)

⇒

 n∑
j=k+1

pi,jYj

 n∑
j=k+1

pi,jYjX
2
j

 =

 n∑
j=k+1

pi,jYjXj

2

⇒
n∑

j=k+1

∑
j′>j

pi,jpi,j′
(
YjYj′X

2
j′ + Yj′YjX

2
j

)
= 0
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naive attack

Step 3. – Linearization

Zjj′
def
= YjYj′X

2
j′ + Yj′YjX

2
j

n∑
j=k+1

∑
j′>j

pi,jpi,j′Zjj′ = 0.

I
(
n−k
2

)
≈ m2r2

2 unknowns

I k = n−mr equations

⇒ reveals Zjj′ when n−mr ≥ m2r2

2 ?

I This happens for the Courtois-Finiasz-Sendrier scheme, ex: n = 221, r = 10,
m = 21 which has to choose small values of r.
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naive attack

Linearized System

Definition 2. Assume that the public key G of the McEliece cryptosystem is in
systematic form (Ik | P )

The linearized system associated to G is

n∑
j=k+1

∑
j′>j

p1,jp1,j′Zjj′ = 0

n∑
j=k+1

∑
j′>j

p2,jp2,j′Zjj′ = 0

...
n∑

j=k+1

∑
j′>j

pk,jpk,j′Zjj′ = 0

The dimension of the solution space is denoted by D.
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Algebraic Distinguisher

Solving this system requires that

• Number of equations k is greater than the number of unknowns
(
n−k
2

)
• rank is (almost) equal to the number of unknowns

If G is random then one would expect that the rank is min
{
k,
(
n−k
2

)}
=⇒ D = max

{
0,

(
n− k

2

)
− k
}

But for several structured (Goppa, alternant) codes rank < min
{
k,
(
n−k
2

)}
and this defect can be quantified
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Example q = 2 and m = 14

r 3 4 5 6 7 8 9 10 11 12 13 14(n−k
2
)

861 1540 2415 3486 4753 6216 7875 9730 11781 14028 16471 19110

k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216 16202 16188

Drand 0 0 0 0 0 0 0 0 0 0 269 2922

Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188

DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858
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Example q = 2 and m = 14

r 15 16 17 18 19 20 21 22 23 24 25 26 27(n−k
2
)

21945 24976 28203 31626 35245 39060 43071 47278 51681 56280 61075 66066 71253

k 16174 16160 16146 16132 16118 16104 16090 16076 16062 16048 16034 16020 16006

Drand 5771 8816 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247

Dalternant 7350 8816 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247

DGoppa 13860 16016 18564 21294 24206 27300 30576 34034 37674 41496 45500 50046 55247
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Alternant Case

Let `
def
=
⌊
logq(r − 1)

⌋
.

Dalternant =
1

2
m(r − 1)

(
(2`+ 1)r − 2

q`+1 − 1

q − 1

)

as long as
(
n−k
2

)
−Dalternant < k.
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Goppa Case

Let ` the unique integer such that q` − 2q`−1 + q`−2 < r 6 q`+1 − 2q` + q`−1

DGoppa =


1
2m(r − 1)(r − 2) = Dalternant for r < q − 1

1
2mr

(
(2`+ 1)r − 2q` + 2q`−1 − 1

)
for r > q − 1

as long as
(
n−k
2

)
−DGoppa < k.
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Example q = 2 and m = 14

r 3 4 5 6 7 8 9 10 11 12 13 14(n−k
2
)

861 1540 2415 3486 4753 6216 7875 9730 11781 14028 16471 19110

k 16342 16328 16314 16300 16286 16272 16258 16244 16230 16216 16202 16188

Drand 0 0 0 0 0 0 0 0 0 0 269 2922

Dalternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188

Talternant 42 126 308 560 882 1274 1848 2520 3290 4158 5124 6188

DGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858

TGoppa 252 532 980 1554 2254 3080 4158 5390 6776 8316 10010 11858
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Example q = 2 and m = 14

r 15 16 17 18 19 20 21 22 23 24 25 26 27(n−k
2
)

21945 24976 28203 31626 35245 39060 43071 47278 51681 56280 61075 66066 71253

k 16174 16160 16146 16132 16118 16104 16090 16076 16062 16048 16034 16020 16006

Drand 5771 8816 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247

Dalternant 7350 8816 12057 15494 19127 22956 26981 31202 35619 40232 45041 50046 55247

Talternant 7350 8610 10192 11900 13734 15694 17780 19992 22330 24794 27384 30100 32942

DGoppa 13860 16016 18564 21294 24206 27300 30576 34034 37674 41496 45500 50046 55247

TGoppa 13860 16016 18564 21294 24206 27300 30576 34034 37674 41496 45500 49686 54054
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Simplified Formulas for binary Goppa Codes

I Let `
def
= dlog2 re+ 1.

DGoppa =
1

2
mr

(
(2`+ 1)r − 2` − 1

)
as long as

(
mr
2

)
−DGoppa < n−mr.
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Binary Goppa Codes

In particular, assuming that n = 2m, the binary Goppa code distinguishing
problem is solved for any r < rmax

m 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

rmax 5 8 8 11 16 20 26 34 47 62 85 114 157 213 290 400

I m = 13 and r = 19 corresponds to a 90-bit security McEliece public key.

I All CFS parameters fits in the range of validity of the algebraic distinguisher.
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5. Explanation

I Formulas obtained through experimentations for random codes, alternant codes
and irreducible Goppa codes over fields of size q ∈ {2, 4, 8, 16}.

I We have an explanation for alternant codes and binary Goppa codes by guessing
a basis of the solution vector space over Fq.

I It does not provide a proof.
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Explanation for Alternant Codes – Step I

I Note that the entries of the system are in Fq and solutions are sought in Fqm.

I Let us view Fqm as a Fq-vector space of dimension m, and let πi : Fqm → Fq
be the function giving the i-th coordinate.

I Hence, if a vector v with vj ∈ Fqm is a solution then πi(v) =
(
πi(vj)

)
j

whose

entries are in Fq is also a solution.

=⇒ Any solution with entries over Fqm would potentially provide a basis of m
solutions with entries over Fq
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Explanation for Alternant Codes – Step II

I We have used YiYiX
2
i = (YiXi)

2 which leads to:

∀i ∈ {1, . . . , k},
n∑

j=k+1

∑
j′>j

pi,jpi,j′YjYj′
(
X2
j +X2

j′
)

= 0

I But we can use any relation YiX
a
i YiX

b
i = YiX

c
i YiX

d
i with a, b, c, d in

{0, . . . , r − 1} such that a+ b = c+ d

n∑
j=k+1

∑
j′>j

pi,jpi,j′YjYj′(X
a
jX

b
j′ +Xb

jX
a
j′ +Xc

jX
d
j′ +Xd

jX
c
j′) = 0
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Explanation for Alternant Codes – Step III

I For r > q, the automorphism x 7−→ xq
`

for any 0 6 ` 6 m− 1 can be used.

∀e ∈ {0, . . . , r − 1}, YiX
e
i =

n∑
j=k+1

pijYjX
e
j =⇒ Y qi X

eq
i =

n∑
j=k+1

pijY
q
j X

eq
j

I We therefore can use the same trick, for instance Yi(YiXi)
q = Y qi YiX

q
i ,

n∑
j=k+1

∑
j′>j

pi,jpi,j′
(
YjY

q
j′X

q
j′ + Yj′Y

q
j X

q
j + Y qj Yj′X

q
j′ + Y qj′YjX

q
j

)
= 0.
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Explanation for Alternant Codes

I However the equations obtained
(
YiX

a
i YiX

b
i

)q
=
(
YiX

c
i YiX

d
i

)q
do not provide

new solutions after decomposition over Fq since they are linearly dependent of
those obtained from YiX

a
i YiX

b
i = YiX

c
i YiX

d
i .

I Hence, we only consider equations obtained from integers a, b, c, d, ` such that
a+ bq` = c+ dq`

YiX
a
i

(
YiX

b
i

)q`
= YiX

c
i

(
YiX

d
i

)q`
Za,b,c,d,`

def
=

(
YjX

a
j Y

q`

j′ X
bq`

j′ + Yj′X
a
j′Y

q`

j X
bq`

j + YjX
c
jY

q`

j′ X
dq`

j′ + Yj′X
c
j′Y

q`

j X
dq`

j

)
16j<j′6n−k
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Explanation for Alternant Codes

I Let us assume that d > b and set δ
def
= d− b and then a = c+ q`δ

=⇒ Za,b,c,d,` = Zc+q`δ,b,c,b+δ,`

I Let Br be the set Zc+q`δ,b,c,b+δ,` obtained with δ = 1 and satisfying:

{
0 6 b 6 r − 2 and 0 6 c 6 r − 1− q` if 1 6 ` 6 blogq(r − 1)c
0 6 b < c 6 r − 2 if ` = 0.

Proposition 5. • Any Zc+q`δ,b,c,b+δ,` belongs to the Fqm-vector space generated
by Br

• The cardinality of Br with r > 3 is equal to D/m.
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Heuristic

For random choices of xi’s and yi’s defining the alternant code, the set{
πi(Z) | Z ∈ Br and 1 ≤ i ≤ m

}
forms a basis of the vector space that is

solution to the linearized system.
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Conclusion

Conclusion

I Large dimension comes from the many different ways of combining the equations
together yielding the same linearized system

I What happens for random generator is proven now.

I Binary Goppa codes can also be explained but no explanation for non-binary
Goppa codes.

I The most difficult task is identifying a basis of the vector space of solutions.

I A slightly better distinguisher can be obtained by taking the subcode of
codewords of even weights.

I Distinguisher ⇒ attack ?

I Approach requires k
n very close to 1. Should very high rates be avoided in a

McEliece like scheme ?
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