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Abstract It is well known that Einstein gravity is kinematic
(meaning that there is no non-trivial vacuum solution; i.e.
the Riemann tensor vanishes whenever the Ricci tensor does
so) in 3 dimension because the Riemann tensor is entirely
given in terms of the Ricci tensor. Could this property be
universalized for all odd dimensions in a generalized the-
ory? The answer is yes, and this property uniquely singles
out pure Lovelock (it has only one N th order term in the
action) gravity for which the N th order Lovelock–Riemann
tensor is indeed given in terms of the corresponding Ricci
tensor for all odd, d = 2N + 1, dimensions. This feature of
gravity is realized only in higher dimensions and it uniquely
picks out pure Lovelock gravity from all other generaliza-
tions of Einstein gravity. It serves as a good distinguishing
and guiding criterion for the gravitational equation in higher
dimensions.

1 Introduction

The absence of all forces is characterized by a maximally
symmetric spacetime of constant (homogeneous) curvature,
and Einstein gravity (GR) naturally arises when spacetime
turns inhomogeneous [1]. It is the Riemann curvature that
should determine the dynamics of the force responsible for its
inhomogeneity. The Riemann curvature satisfies the Bianchi
differential identity, which is purely a differential geomet-
ric property and its trace yields a second rank symmetric
tensor with vanishing divergence, the Einstein tensor, giv-
ing the second order differential operator for the equation of
motion. This is how we are uniquely led to the Einstein grav-
itational equation on identifying the cause of inhomogeneity
as a matter-energy distribution, a universal physical property
for all that physically exists [1]. Thus gravitational dynamics
is entirely determined by curvature and it resides in it.
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It is very illuminating that without asking for an equation
for gravity, GR simply follows from the geometric properties
of Riemann curvature. Similarly, does geometry also deter-
mine the spacetime dimension? The second order differential
operator in the equation is given by the Einstein tensor, which
is non-trivial only in dimensions d > 2. Next the equation
should admit a non-trivial vacuum solution for free propaga-
tion, which requires d > 3. In d = 3, the Riemann curvature
is entirely given in terms of the Ricci tensor; i.e. it vanishes
whenever the Ricci tensor vanishes. That is how gravity is
kinematic in d = 3 as the vacuum is flat, and the absence
of a non-trivial vacuum solution signifies the absence of free
degrees of freedom for propagation of the field. This is how
we come to the usual 4 dimensional spacetime that admits a
non-trivial vacuum solution. However, the Einstein equation
would be valid in all higher dimensions as well.

The kinematic property signifies the fact that there are no
free degrees of freedom in 3 dimensions. In 4 dimensions
both gravity and electromagnetics have two degrees of free-
dom, while in 3 dimensions, the former has none but the
latter has one. The kinematic property in a specifically odd
dimension is therefore unique to gravity. We would like to
take it as one of the distinguishing features. We therefore ask
the question: could the kinematic property of GR for odd
d = 3 dimensions be universalized to all odd dimensions?
Naturally this would require a generalization of GR because
GR could be kinematic only in 3 dimensions and not oth-
erwise. However, this gravitational property may serve as a
good guiding principle for a gravitational equation in higher
dimensions. That is what we shall probe. We shall establish
that it uniquely singles out pure Lovelock gravity for which
the action consists of only one N th order term of the Lovelock
polynomial Lagrangian. Lovelock is the most natural gener-
alization of GR because it is the only one that remarkably
retains the second order character of the equation despite the
action being a homogeneous polynomial in Riemann. This is
quintessentially a higher dimensional generalization of GR.
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In this essay we shall proceed as follows. First, we shall
establish that gravity is indeed kinematic [2,3] in all odd,
d = 2N +1, dimensions in pure Lovelock gravity relative to
properly defined Lovelock analogs of the Riemann and Ricci
tensors [3–5]. Since this generalization is effective only in
higher dimensions, it is therefore pertinent to ask: what is it
that requires higher dimension(s), and why is it small so that
it is not accessible to present day observations? That is what
we shall probe next by appealing to a general principle and
some gravitational properties. Next we will argue that the
pure Lovelock case is thus a proper gravitational equation
[6] in higher dimensions and it is the only one that obeys
kinematicity of gravity in all odd, d = 2N+1, dimensions. It
is valid only for two, odd, d = 2N+1, and even, d = 2N+2,
dimensions. It includes GR in the linear order N = 1. We
shall end with a discussion.

2 Kinematic property

Dadhich [4] defined an appropriate Lovelock analog of the
Riemann tensor, which was a homogeneous polynomial in
the Riemann tensor, with the property that the trace of its
Bianchi derivative vanished. That gave rise to a correspond-
ing analog of the Einstein tensor which was the same as
the one obtained by varying the corresponding Lovelock
action. Using this Lovelock–Riemann generalization it was
first shown that static vacuum spacetime was kinematic in
all odd, d = 2N + 1, dimensions; i.e. vanishing of Ricci
implied vanishing of Riemann [2]. Right on the heels of
this discovery came yet another parallel definition of the
Lovelock–Riemann tensor by Kastor [5], which involved a
(2N , 2N )-rank tensor, completely antisymmetric both in its
upper and lower indices. Though the two Lovelock–Riemann
analogs are not completely equivalent, yet interestingly they
both yield the same Einstein tensor, and hence the same equa-
tion of motion. The difference between them came to the fore
recently while studying vacuum solutions for the Kasner met-
ric [7] where the kinematic property held good for the Kastor
Lovelock–Riemann case but not for the Dadhich one. Inter-
estingly, for a static spacetime, the difference between the
two vanishes and that is why it was not noticed earlier.

In view of its general validity, we shall employ the Kastor–
Lovelock–Riemann tensor for establishing the kinematic
property in all odd, d = 2N+1, dimensions. This (2N , 2N )-
rank tensor is defined as follows [5]:

R
b1b2···b2N
a1a2···a2N

= R[b1b2[a1a2
· · · Rb2N−1b2N ]

a2N−1a2N ]. (1)

It is a product of N Riemann tensors and completely antisym-
metric in both its upper and lower indices. With all indices
lowered, it is also symmetric under exchange of both groups
of indices, ai ↔ bi .

The Lovelock Lagrangian is written as

L = 2N

(2N )!(d − 2N )!εa1a2···ad

×R
a1a2···a2N ∧ ea2N+1 ∧ · · · ∧ ead , (2)

giving rise to the corresponding Einstein tensor

Eb
c = 2N

(2N )!(d − 2N − 1)! εa1a2···ad−1c

×R
a1a2···a2N ∧ ea2N+1 ∧ · · · ∧ ead−1 ∧ eb. (3)

It is purely an algebraic property that for d = 2N + 1, the
above defined 4N th order Lovelock–Riemann tensor could
be entirely written in terms of its contraction, the Ricci and
thereby the Einstein tensor, and it is in fact written as follows
[3]:

R
b1···b2N
a1···a2N

= 1

(2N )!ε
b1···b2N+1 εa1···a2N+1Ea2N+1

b2N+1
. (4)

This clearly establishes the kinematic property that the
Lovelock–Riemann tensor vanishes in all odd, d = 2N +
1, dimensions whenever the corresponding Einstein (Ricci)
tensor vanishes. It may, however, be mentioned that though
vacuum spacetime in odd dimensions would be Lovelock–
Riemann flat, it would not in general be Riemann flat [2].
Another way of characterizing the kinematic property is that
the corresponding Weyl curvature vanishes in all odd, d =
2N + 1, dimensions.

3 Why higher dimensions?

It is the symmetries of field theory for a consistent theory
of fundamental particles and their interactions that lead nat-
urally to higher dimensions, and this paradigm is popularly
known as string theory. It is all driven by field theoretic con-
siderations without any direct reference to gravity. Instead I
would here like to concern myself only with gravitation to
ask the question: are there any gravitational features that have
so far remained unaddressed and does their inclusion require
higher dimensions?

One such possible feature could be probing of gravity in
the high energy regime [1,8–10]. For addressing the high
energy effects of any theory, we generally include higher
powers of the basic field entity which in the present case is
a Riemann tensor. In Einstein gravity, the Riemann tensor
occurs linearly in the action, for high energy considerations
we should therefore include higher powers of the Riemann
tensor in the action. However, at the same time if we demand
that the basic character of the equation should not change;
i.e. it should continue to remain a second order differential
equation which is also required for warding off undesirable
features like the occurrence of ghosts. This uniquely sin-
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gles out the Lovelock action, which alone has the remark-
able property that the equation continues to remain second
order despite the action being a homogeneous polynomial in
the Riemann tensor. But higher order Riemann terms in the
Lovelock action make a non-zero contribution to the equa-
tion only in dimension >4. That is why higher dimensions are
required to probe the high energy effects of gravity [8–10].

Note that this is a purely a classical argument for higher
dimensions.

4 Gravitational equation in higher dimensions

Since gravity cannot remain entirely confined to a given
dimension, the consideration of higher dimensions becomes
pertinent, and then there arises the question: what should
be the equation of motion in higher dimensions? Note that
we are here not seeking an effective equation that takes into
account some semi-classical corrections; instead we are ask-
ing for a classical equation in higher dimensions. To this
aim, the first and foremost requirement is that it should be of
second order, which uniquely picks out the Lovelock poly-
nomial action in which each term comes with a dimensionful
coupling constant. Also note that the Lovelock Lagrangian
is the most general invariant that can be constructed from
the Riemann tensor, giving the second order equation of
motion.

On the other hand one can carry on with the Einstein equa-
tion itself, which is valid in all dimensions d ≥ 3. This would,
however, not be the most general equation in dimensions >4,
while the Lovelock polynomial action would give the most
general equation for all d ≥ 2N + 1, and it includes GR for
N = 1. The problem with the Lovelock equation is that it has
a dimensionful coupling for each N , and there is no way to
determine more than one coupling by measuring the strength
of the field, which is the only one. Thus there is arbitrariness
in fixing the couplings.

There is one way out: that by invoking some property
of gravity if we can justify that the Lovelock polynomial
should involve only one N th order term. That would then be
what we have called the pure Lovelock case. That property is
indeed a universalization of the kinematic property; i.e. that
gravity be kinematic (non-existence of non-trivial vacuum
spacetime) in all odd, d = 2N + 1, dimensions. Thus the
kinematic property uniquely picks out pure Lovelock gravity.
This equation would be valid only for two (odd and even,
d = 2N + 1, 2N + 2) dimensions because otherwise the
kinematic property would be violated.

Note that the pure Lovelock equation [6] has several inter-
esting and desirable features. For instance even though the
equation is completely free from the Einstein term yet a
static vacuum solution with � asymptotically goes over to
an Einstein-dS solution in the given dimension [11]. This is

quite remarkable: that the pure Lovelock solution includes
Einstein gravity asymptotically even though the equation is
completely free from it. Similarly, bound orbits around a
static black hole exist in pure Lovelock gravity in all even,
d = 2N + 2, dimensions, in contrast for Einstein gravity
they do exist only in 4 dimension and not otherwise [12].
Note that the existence of bound orbits is required for hav-
ing stable structures. If gravity has to have a similar behav-
ior to the Einstein gravity in 3 and 4 dimensions in higher
dimensions, stable structures should exist. Also thermody-
namical parameters, temperature and entropy, obey a uni-
versal relation with the horizon radius in all odd and even,
d = 2N + 1, 2N + 2, dimensions. In particular, the entropy
always goes as the square of the horizon radius in all even
dimensions [13].

Thus the pure Lovelock equation has all the features that
one could have asked for a gravitational equation. The newly
recognized kinematic property is clearly its distinguishing
feature. It is thus the right gravitational equation [6] in higher
dimensions, d = 2N + 1, 2N + 2. That is, for each N , the
equation is only for the corresponding two odd and even
dimensions; for instance for N = 1, the Einstein equation is
only for d = 3, 4, for N = 2, the pure GB equation only for
d = 5, 6, and so on. The Einstein equation is therefore good
only for 3 and 4 dimensions, and in higher dimensions we
should go over to the next order of N . Thus pure Lovelock
gravity is a new paradigm for higher dimensions, and it is
the kinematic property that has played the key distinguishing
role.

5 Discussion

By appealing to a universalization of the kinematic prop-
erty (that there exists no non-trivial vacuum solution in odd
dimensions) for all odd dimensions, we have arrived at the
unique gravitational equation which is pure Lovelock involv-
ing only one N th order term. Thus the kinematic property
plays the key role as a determining criterion as well as a
guiding principle for gravitational dynamics in higher dimen-
sions. We have just universalized the already existing prop-
erty in Einstein gravity to get to the proper equation in higher
dimensions. A good and enlightening generalization of a the-
ory always stems from extending some key property beyond
the normal premise of the theory, and then the existing theory
gets automatically included in the new theory. Pure Lovelock
gravity, which uniquely incorporates the kinematic property
for all odd, d = 2N +1, dimensions, includes Einstein grav-
ity for N = 1.

The principal aim of the essay is to demonstrate the key
distinguishing role the kinematic property plays in picking up
the right equation for gravity in higher dimensions. Having
done that let us ask: what more does it entail?
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There is a famous BTZ black hole solution [14] in 3 dimen-
sions which is a �-vacuum solution. Note that it is the pres-
ence of � that makes spacetime non-flat. For Einstein gravity,
it can therefore occur only in 3 dimensions and not otherwise.
Since pure Lovelock gravity is kinematic in all odd dimen-
sions, analogs of BTZ black holes would exist in all odd,
d = 2N + 1, dimensions [2].

All this is very fine, however, the key question remains:
how does the higher dimensional equation influence the 4-
spacetime we live in? The braneworld model [15] that envis-
ages propagation of gravity in higher dimensions but not deep
enough predicts a 1/r3 correction to the Newtonian poten-
tial on the brane corresponding to an AdS bulk. The situation
should be similar in what we are proposing, except perhaps
we would rather employ a pure Gauss–Bonnet equation in
the bulk rather than Einstein. This may not, however, be very
relevant in so far as the AdS (which is a solution of the pure
GB equation as well) bulk is concerned. The situation would
be different if we consider a pure GB-BTZ black hole so that
Weyl curvature in the 5 dimensional bulk is non-zero, which
will project down on the brane as tracefree black radiation in
the equation. Then we would have a black hole on the brane
given by the Reissner–Nordstrom metric obtained by Dad-
hich et al. [16] where Q2 is not the Maxwell charge but it is
the Weyl charge appearing in the metric as −Q2/r2. It is yet
very insightful, however, there exists no complete solution
of the bulk–brane system.

It is indeed very remarkable and insightful that a univer-
salization of a certain gravitational property uniquely picks
out an equation in higher dimensions. In the same vein, let us
further ask: is there any other similar instance of insightful
deduction? The one thing that comes to mind is the ques-
tion: how should vacuum energy gravitate [1,17]? It was
argued that vacuum energy was on the same footing as grav-
itational field energy. Both are created by matter and hence
have no independent existence on their own, and therefore
they should not gravitate through a stress tensor in the equa-
tion independent of whether a stress tensor could be written or
not. Clearly we write no stress tensor for a gravitational field
energy on the right, and in fact it gravitates in a much subtler
manner. It gravitates by enlarging the spacetime framework,
by curving 3-space [18]. That is why Newton’s inverse square
law remains intact in GR. Something similar should happen
for vacuum energy.

It is therefore a matter of principle that vacuum energy
should not gravitate through a stress tensor but instead by
enlargement of the framework. This we would not know
unless we have a quantum theory of gravity. In any case,
� becomes free from the Planck length and hence it could,
as a true constant of spacetime structure [1], have any value
as being determined by acceleration of the Universe [19,20].
Thus it gets liberated and has nothing to do with vacuum

energy [1,17]. At a conceptual level this is a very important
realization.

The discovery of GR was solely driven by principles and
concepts, and hence in its centennial year the present exercise
is a fitting tribute to that spirit of doing science and to its great
creator.
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