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ABSTRACT In this paper, we propose an efficient distortion-based privacy-preserving metering scheme that

protects an individual customer’s privacy and provides the complete power consumption distribution curve

of a multitude of customers without privacy invasion. In the proposed scheme, a random noise is purposely

introduced to distort customers’ power consumption data at the smart meter so that data recovery becomes

infeasible. Using the power consumption data and prior knowledge about added random noise, we develop

an efficient algorithm for power consumption distribution reconstruction needed for power demand analysis

and prediction. As a complete solution, our scheme also supports a privacy-preserving billing service. Using

experimental results from real world single household power consumption data set and synthesized data of a

large number of households, we demonstrate that the proposed scheme is robust against known attacks. Since

it does not demand new facilities on existing smart grids, the proposed scheme offers a practical solution.

INDEX TERMS Data privacy, power consumption, privacy protection, privacy-preserving, smart grids,

smart meter.

I. INTRODUCTION

By combining physical electrical systems with digital infor-

mation and communication technologies, smart grids aim

to provide highly efficient, intelligent, and environmentally-

friendly electricity services. This ambition makes smart grids

rather different from legacy power systems in many aspects

such as widely used renewable energy sources, two-way elec-

tricity flow, distributed power sources, and dynamic pricing

and load control. To achieve these challenging goals, a smart

grid system usually contains many different functional sub-

systems to form a highly complex system. As shown in

Fig. 1, a smart grid system generally consists of seven major

domains: bulk generation, transmission, distribution, cus-

tomers, service providers, operations, and markets. Systems

in bulk generation, transmission, and distribution domains

focus on energy generation and delivery from power plants to

customers. According to the power demand level, customers

are usually classified to three categories: commercial, indus-

trial, and residential customers. Unlike legacy power systems,

customers in a smart grid are both electricity consumers

and providers. They can freely sell their locally generated

electricity to the system at a dynamic price determined by

the market domain in real time. A service provider provides a

FIGURE 1. Illustration of a typical smart grid system [1].

variety of services (e.g., billing and account management) to

both customers and utility companies. All these domains are

connected with the operation domain for central control and

management.

To achieve high efficiency and intelligence for such

a large complex system, real-time power consumption
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FIGURE 2. Mapping from the power usage to personal activities [2].

statistics of the entire system are essential to all domains

in estimating the current system state and predicting future

conditions. Decisions are cautiously made according to the

analysis of customers’ power consumption data. For exam-

ple, the information of fine-grained customer’s power con-

sumption is required by the market domain to determine

the electricity price in real time, and the bulk genera-

tion domain also needs the information for power demand

prediction.

In a legacy power system, the total power consumption

of a household is collected by a utility company every two

weeks or monthly. There is no data privacy concern in this

situation since power consumption details are hidden in the

aggregated readings. In a smart grid system, however, the

high efficiency and intelligence features demand more granu-

lar power consumption data for real-time system monitoring

and management as discussed before. This transformation of

information granularity leads to severe privacy issues. Fig. 2

shows a customer’s daily power consumption trace (PCT) that

was obtained by a utility company. With simple observation,

an attacker can easily find out what time and how much

electricity is used in a customer’s home.With advanced power

signature analysis tools such as the non-intrusive load moni-

toring (NILM), the attacker can easily find out what types of

appliances are used at any time and learn more detailed infor-

mation about customer’s daily activities. Examples are shown

in Table 1. This behavior mapping enables the derivation of

a detailed profile of a customer’s daily activities from his/her

power consumption trace.

Various entities are interested in this type of sensitive infor-

mation. First, thieves may exploit the information to study

the behavior of a customer living in a target house. They can

easily break into the house when they derive the information

like ‘‘nobody is in the house tonight.’’ Commercial companies

TABLE 1. Behavior mapping from the power usage to daily activities.

Power Usage Activities

Energy cycle of TV Anybody at home?

Energy cycle of coffee pot When people wake up?

Energy cycle of water heater How many people living there?

... ...

are also interested in the power consumption behavior of

customers. For example, advertising household appliances

will become more effective when sales people figure out

which appliances are widely used by customers in their daily

lives. Besides, a smart grid system may allow many third

party companies to access customers’ power consumption

data to help them manage energy usage. As a result, third

party applications may become another potential source of

privacy abuse. Without proper protection, customer privacy

and even security will be severely threatened, especially when

the public network (e.g., the Internet) is adopted for data

transmission in a smart grid system.

To solve this problem, previous work has focused on

cryptography-based solutions, where customers’ power con-

sumption data are protected under certain cryptographic

schemes. One of the common problems of this type of solu-

tions is how to efficiently share real-time power consumption

data with different functional domains. Key-sharing among

different parties is a potential problem with security concern.

In addition, frequent encryption and decryption operations

harm system’s efficiency. Another problem is related to key

management. In a smart grid, there are typically millions of

customers located in different regions for one utility company.

The conventional public key infrastructure cannot meet the

key management requirements of such a large scale net-

work [3]. Privacy-protection schemes from other perspectives

68 VOLUME 1, 2013



X. He et al.: A Distortion-Based Approach to Privacy-Preserving Metering in Smart Grids

have been studied recently, yet they have issues towards

practical deployment. That is, there is no efficient way to

extract the statistical information of power consumption data

for critical features needed for power consumption analysis,

forecasting and dynamic pricing. More related work will be

reviewed in Section II.

In face of the privacy issue in smart grids and drawbacks

of existing solutions, we propose a distortion-based privacy-

preserving metering scheme. To be more specific, we intro-

duce random noise on purpose to distort customers’ power

consumption data at the smart meter in a way that data recov-

ery becomes infeasible. Under the assumption that all other

parties except smart meters are semi-trusted, the proposed

scheme protects customers’ data privacy to a high degree.

With distorted power consumption data and prior knowl-

edge about the added random noise, we develop an efficient

algorithm for power consumption distribution reconstruction

needed for power demand analysis and prediction. With this

proposed algorithm, any party in a smart grid can derive com-

plete power consumption statistics of certain geographical

area without privacy invasion. To make our scheme more

complete, the billing issue is also addressed. We evaluate

the proposed scheme with both real world and synthesized

power consumption data, and demonstrate that it is robust and

efficient in practical implementations.

The rest of this paper is organized as follow. Section II

discusses related work on privacy issues in smart grids. The

proposed metering scheme is presented in Section III. Privacy

protection and efficiency analysis of the proposed scheme

is analyzed in Sections IV and V, respectively. Section VI

presents experimental results and, finally, Section VII con-

cludes this paper.

II. RELATED WORK

The NIST Cyber Security Working Group published three-

volume guidelines [4]–[6] on security and privacy issues

of smart grids in 2010. The guidelines focus on high level

requirements and potential technologies in the design of

secure smart grid systems. In the same year, the importance

of data privacy in smart grids was once again emphasized

in the context of smart grid interoperability [7]. In 2011,

IEEE published a trial-use standard [8] on a cryptographic

protocol for cyber security of substation serial links. The

protocol provides integrity and optional confidentiality for

communications between substations. However, there is no

standard in protecting customer’s data privacy in smart grids

up to now.

Cryptography-based privacy-preserving data aggregation

schemes have been proposed for smart grids, e.g. [9]–[12].

Garcia and Jacobs [9] introduced an advanced partially homo-

morphic encryption scheme to prevent the data aggregator

from accessing individual readings. To address the privacy

concern of billing service, Molina-Markham et al. [13] pro-

posed a zero-knowledge-based protocol to privately derive

and prove the correctness of bills. Along the similar tech-

nique, Rial and Danezis [11] proposed a cryptographic proto-

col for general calculations on meter readings. These studies

mainly address privacy concerns from the data aggregation

process or the billing service. However, none of them can

solve both of them at once. Recently, Lin et al. [14] proposed

a lightweight cryptographic scheme with the support of a

trusted platform module for both privacy-preserving billing

and load monitoring purposes. However, the load monitoring

task is limited to collecting the sum of metering data over a

certain period of time. Generally speaking, privacy-preserved

data sharing and real-time power consumption analysis and

forecasting are not well addressed in the above-mentioned

work. Furthermore, cryptography-based schemes generally

demand a complex key management process, including key

revoking, distribution and updating, particularly for smart

grids where scalability is a major issue [3].

In addition to cryptography-based schemes, several other

ideas have been proposed recently to protect customer data

privacy in a smart grid. Efthymiou and Kalogridis [15] intro-

duced an anonymization scheme by assigning each smart

meter two different identifiers, the real identity and the

pseudonym. The real identity is used for readings associated

with billing while the pseudonym for anonymous readings.

The escrow, which is the only trusted third party, knows the

relationship between the two identifiers. Although the scheme

provides a way to hide customer’s identity, the trust relies

on the third party. Besides, Jawurek et al. [16] showed that

basic data mining and pattern recognition techniques can

break this anonymization scheme by building connections

from customers’ pseudonyms to their real identities. Another

interesting idea is to mask fine-grained power consumption

information with the help of re-chargeable batteries. Schemes

proposed in [17] and [18] fall into this category. Both schemes

use re-chargeable batteries to hide, smoothen or obscure

the fine-grained power consumption trace by charging and

discharging operations. However, battery’s lifetime is short

while its cost is high, which is approximately $1000 for

a household [18]. Energy loss in battery storage results in

higher energy consumption. Furthermore, real-time power

consumption analysis and dynamic pricing are difficult due

to the lack of the real original power consumption data.

III. PRIVACY-PRESERVING METERING SCHEME

In this section, we propose a lightweight privacy-preserving

metering scheme. The main motivation is to enable effec-

tive interoperation of power consumption data by different

parties while protecting customer’s privacy. Without requir-

ing extensive cryptographic operations on metering data and

extra hardware support such as batteries, our scheme is more

efficient and practical as compared to previous schemes. The

fundamental idea is to distort customer’s metering data with

random noise in such a way that data recovery is impossi-

ble while the extraction of statistic information for regional

power usage is easy. In this way, distorted readings can be

shared among different parties for different purposes, e.g.,
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FIGURE 3. The system model of the proposed privacy-preserving metering
scheme.

power consumption analysis, forecasting, dynamic pricing,

and so on.

A. SYSTEM OVERVIEW AND TRUST ASSUMPTIONS

Fig. 3 shows the system model based on the widely accepted

wireless-wired multi-layer architecture [3], [19]–[21]. A

smart meter in each household aggregates the power con-

sumption data from various appliances through the home

area network (HAN). Before sending to a data collector

of the neighborhood through a wireless mesh network, the

smart meter first distorts the aggregated fine-grained power

consumption data. After receiving the distorted data, the

data collector located in the neighborhood transmits the data

to different parties through the public network directly or

to a central data center which can be accessed by those

parties.

The following three assumptions are made in the proposed

scheme.

1) The smart meter has a security mechanism to maintain

the integrity of its computing code and prevent illegal

reading and manipulating of energy readings and its

secrets (e.g., private keys). Furthermore, it has suffi-

cient computing and storage capability to guarantee

that the aggregation of original readings is accurate and

reliable.

2) Both data collectors and other entities in the smart

grid (e.g., service providers, markets, and 3rd-party

companies) are semi-trusted. They follow a protocol to

provide services and meet users’ service requirements.

On the other hand, they also attempt to retrieve the

information of customer’s behavior as much as possi-

ble.

3) Authentication mechanisms are adopted for data trans-

mission among smart meters, data collectors, and other

entities in the system, e.g., each smart meter is embed-

ded with a public/private key pair. The private key is

protected by the device while the public key can be

trusted by the data collector or other entities.

The proposed scheme consists of three parts: (1) power

consumption data distortion conducted by smart meters,
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FIGURE 4. Example of a distorted power consumption trace.

(2) aggregated billing conducted by the utility company, and

(3) power consumption distribution reconstruction by inter-

ested parties. They are detailed below.

B. POWER CONSUMPTION DATA DISTORTION

Power consumption data distortion is implemented at the

smart meter, where random Gaussian noise is added to the

aggregated power consumption data of various appliances.

For simplicity, we assume each electricity consumer is bound

to one smart meter. For an M -consumer power grid, we have

a group of smart meters distributed in different places. Each

smart meter reports its distorted power consumption data

every T seconds, where T is known as the reporting period.

The sequence, ri[0], ri[1], ri[2], . . . ri[ j ], . . . represents the

sample sequence of the aggregated power consumption of the

ith customer from time t = 0 to t = nT . The distorted data

can be expressed in form of

di[ j] = ri[ j]+ni[ j ], i = 1, 2, . . . ,M , j = 0, 1, 2, . . . , n,

(1)

where ni[ j ] is a sample of random Gaussian noise with zero

mean and variance σ 2
N . The noise power significantly affects

the performance of the proposedmetering scheme, which will

be discussed in detail in Section VI.

Fig. 4 gives an example of a distorted power consumption

trace in a single day. The red curve is the original power

consumption trace while the blue one is the distorted one.

It is obvious that high frequency distortions have masked a

large amount of valuable information about customer’s power

usage. Besides, many fake events are fabricated. Without

knowing the exact noise samples used for distortion, the orig-

inal power consumption trace is impossible to be recovered.

Since we use relatively large noise as compared to the orig-

inal data, conventional de-noising techniques and long-term

averaging schemes are not able to retrieve privacy-sensitive

power usage patterns. We will provide mathematical analysis

and experimental results in Sections IV and VI, respectively.
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C. AGGREGATED BILLING

In order to facilitate accurate and efficient billing without

privacy invasion, an aggregated billing mechanism is adopted

as part of the proposed metering scheme. Specifically, we use

a storage unit in the smart meter device to accumulate the

electricity bill. The initial value of the accumulator is set to

0. Given dynamic electricity price, P[ j ], at time t = j, the

aggregated bill AB of the i-th customer can be updated after

each reporting time as

ABi[ j ] = ABi[ j− 1 ] + ri[ j ] × P[ j ], (2)

where ri[ j ] denotes power consumption during the time

period from t = j−1 to t = j. When the smart meter receives

a billing query from the billing service provider, it sends back

the updated AB and resets the storage unit. Since we assume

the smart meter is securely protected against energy theft

and it can authenticate itself to the billing service provider,

any unauthorized party cannot access and manipulate the

power consumption data in the smart side and during data

transmission. Optionally, the service provider can exploit the

zero-knowledge proof technique as detailed in [11], [13] to

verify the correctness of the bill.

D. POWER CONSUMPTION DISTRIBUTION

RECONSTRUCTION

Billing is not the only purpose of collecting customer’s power

consumption data in a smart grid. Another essential usage

of the collected data is power consumption analysis and

prediction for power generation and distribution. Many third

party companies are interested in the statistical information

of customers’ power consumption for business planning and

development.

Being distinct from previous schemes that provide limited

statistical information (e.g., only the total power consumption

and the average power consumption of a neighborhood), our

scheme can provide a complete distribution curve of the orig-

inal power consumption for a multitude of customers. On the

other hand, by only dealingwith distorted power consumption

data, the distribution reconstruction process does not leak any

private information of a specific customer.

The reconstruction process is conducted on the distorted

data as given in Eq. (1). Given the density function of noise N

and a sample sequence of distorted power consumption data

at time t = jT , we have

di = ri + ni, i = 1, . . . ,M ,

where di = di[ j ], ri = ri[ j ], ni = ni[ j ] and M is the

number of customers. We use D, R and N to denote random

variables for di[ j ], ri[ j ] and ni[ j ]. By adopting the data

mining approach as given in [22], the conditional probability

density function fR|D(r|di) can be written as

fR|D(r|di) =
fN (di − r)fR(r)

∫∞

∞
fN (di − z)fR(z)dz

, (3)

where fX (x) is the probability density function of random

variable X . Then, one can recover the power consumption

Algorithm 1 Power Consumption Distribution Reconstruc-

tion
Inputs: samples {di} , i = 1, 2, . . . ,M and probability den-

sity function of additive Gaussian noise fN (n)

States: Initialize the original power consumption distribu-

tion, R, as a uniform distribution, i.e., f 0R = 1
V
,

where V is the value range of the power consump-

tion data.

Procedure:

for k = 1, 2, . . . ,∞ do

f kR|D(r|di) =
fN (di−r)f

k−1
R (r)

∫∞
∞ fN (di−z)f

k−1
R (z)dz

;

f̃ kR (r) = 1
M

∑M
i=1 f

k−1
R|D (r|di)

if the stopping criterion is satisfied (χ2 goodness-

of-fit test with confidence level 95%) then

f̃R(r) = f̃ kR (r);

break;

end if
end for

Declare the recovered distribution of power consumption

as fR(r).

distribution, fR(r), from fR|D(r|di) via an iterative algorithm

as summarized in Algorithm 1.

As described in Algorithm 1, the averaged conditional

probability density function, fR|D(r|di), in Eq. (3) is used

to update fR(r) in the next round of iteration. In fact, the

averaging step is equivalent to multiplying each fR|D(r|di)

with weight fD(di). Thus, we have

f̃R(r) =
1

M

M
∑

i=1

fN (di − r)fR(r)
∫∞

∞
fN (di − z)fR(z)dz

=

M
∑

i=1

fR|D(r|di)fD(di)

=

M
∑

i=1

fR,D(r, di)

=

M
∑

i=1

fR,N (r, di − r). (4)

Since the original power consumption data and additive

noise are independent, we can rewrite f̃R(r) as

f̃R(r) =

M
∑

i=1

fR(r)fN (di − r). (5)

If there is a sufficient number of customers, we have f̃R(r) ≈

fR(r). Thus, the averaging is actually the estimation of the

probability density function fR(r) from the conditional prob-

ability density function, fR|D(r|di), and samples di, i =

1, 2, . . . ,K .

The above sample-by-sample distribution reconstruction

algorithm demands the availability of power consumption
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FIGURE 5. A hierarchical architecture to reconstruct the power
consumption distribution.

data from all customers. In a smart grid, millions of cus-

tomers’ data are gathered and processed in real time, and

a centralized processing approach not only entails the high

data processing capability of the computational units, but also

exerts much pressure on data communications because of a

large amount of network traffic.

Towards a scalable implementation of the proposed system,

it is advantageous to adopt a hierarchical processing archi-

tecture as depicted in Fig. 5, where a two-layer architecture

is given as an example for distributed processing. The first

layer is composed of customers and corresponding data col-

lectors located in a single neighborhood. The second layer

consists of data collectors and related parties (e.g., utility

company). In the first-layer, each data collector runs the itera-

tion algorithm on power consumption data collected from the

neighborhood. For the second layer, the data collector sends

the reconstructed local power consumption distribution to

related parties for integration. The overall power consumption

distribution is then calculated by averaging all received local

distribution results.

IV. PRIVACY PROTECTION ANALYSIS

In the proposed hierarchical processing architecture, the local

power consumption distribution (e.g. the reconstructed PDF)

is transmitted between a data collector and a service provider.

Since the distribution of the neighborhood power consump-

tion reveals nothing about the individual power usage pattern,

the privacy threat is confined to a local neighborhood.

In this section, we investigate such a privacy threat. It is

assumed that eavesdroppers can intercept all reported data

from a smart meter to a data collector in their distorted

form. De-noising schemes might be perceived as an effective

method to recover the original signal from its distorted ver-

sion. Here, we will analyze two popular de-noising schemes

to demonstrate the effectiveness of the proposed privacy-

preserving scheme.

A. LINEAR MEAN FILTER ATTACK

The linear mean (LM) filter is a widely-adopted technique to

recover the original signal from its noisy version. The funda-

mental idea is to attenuate the noise influence by averaging

cumulative values.

Given a sequence of samples from a customer’s distorted

power consumption trace d[ j ], j = 1, 2, . . ., with the linear

mean filter de-noising technique, an attacker can derive the

de-noised signal {r ′(j), j = 1, 2, . . .} of the following form

r ′[ j ] =
∑

j−L≤i≤j+L

w[i]d[i]

=
∑

j−L≤i≤j+L

w[i](r[i] + n[i]). (6)

The expectation and the variance of r ′(j) can be derived,

respectively, as

E[r ′[ j ]] = E





∑

j−L≤i≤j+L

w[i](r[i] + n[i])





=
∑

j−L≤i≤j+L

w[i]E[r[i]] (7)

and

Var[r ′[ j ]] = Var





∑

j−L≤i≤j+L

w[i](r[i] + n[i])





=
∑

j−L≤i≤j+L

w2[i](Var[r[i]] + Var[n[i]])

=
∑

j−L≤i≤j+L

w2[i](Var[r[i]] + σ 2
N ) (8)

where 2L + 1 is the sliding window size of the linear mean

filter.

By choosing σ 2
N greater than Var[r(i)], the noise term will

dominate in the de-noised signal. The smaller the window

size, the poorer the de-noising result. For a large window size,

both noise and the variance of the signal are smoothed out and

only a smoothed signal remains. In either case, no detailed

privacy information is revealed.

B. NON-LOCAL MEAN FILTER ATTACK

The non-local mean (NLM) filtering method is a state-of-the-

art de-noising technique widely used for image de-noising.

For a given pixel, it adopts a weighted average of other pixels

that have a similar local structure to remove its noise. The

higher the similarity, the larger the weight. Here, we present

the 1-D version of the non-local mean filter and use it as an

attack (i.e. recovering the original power consumption data of

an individual user).

With the application of NLM filtering to a sequence of

samples from a customer’s distorted power consumption trace

d[ j ], i = 1, 2, . . ., the recovered power consumption at time

k can be written as

r ′[k] =
∑

j∈�d

w[k, j]d[ j ], (9)

where �d is a sliding window of size 2s+ 1 centered around

the kth sample and w[k, j] is a weight indicating the contribu-

tion from sample d[ j ]. The weight is in form of

w[k, j] =
1

Ck
exp

{

−
||D(NHk ) − D(NHj)||

2
2,a

h

}

, (10)
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TABLE 2. Statistics derivation of an oven.

Aggregated Values Parameters

Day 1 Day 2 Day 3 ... Mean Variance

01:00 3 W 2 W 10 W ... 3.62 W 600.44 W 2

02:00 10 W 0 W 0 W ... 0.38 W 1500.01 W 2

... 1500 W 2000 W 50 W ... 1200.36 W 14000213.33 W 2

... ... ... ... ... ... ...

24:00 150 W 200 W 50 W ... 63.88 W 133324.89 W 2

where Ck is a normalizing factor (i.e.,
∑

w[k, j] = 1),

D(NHk ) denotes a group of distorted power consumption

samples in the neighborhood of the kth sample, || · ||22,a is

the Euclidean distance weighted by a Gaussian kernel of

standard deviation a, and the decay of the weight is adjusted

by h.

The mean of ||D(NHk ) − D(NHj)||
2
2,a in Eq. (10) can be

written as

E[D(k, j)] = E||D(NHk ) − D(NHj)||
2
2,a

= ||R(NHk ) − R(NHj)||
2
2,a + 2(2s+ 1)σ 2

N ,

where R(NHk ) is the group of original power consumption

samples in the neighborhood of the kth sample. Thus, the

mean of weights is

E[w[k, j]] =
1

Ck
exp

{

−
2(2s+ 1)σ 2

N

h

}

×

exp

{

−
||R(NHk ) − R(NHj)||

2
2,a

h

}

. (11)

Clearly, if we choose σ 2
N larger than Var[r[ j ]], weight w[k, j]

is dominated by the variance of additive noise rather than

the signal similarity measure. In other words, a more similar

sample may not be assigned a larger weight due to the noise

effect and, therefore, NLM is not able to recover the original

signal from the distorted one.

V. EFFICIENCY ANALYSIS

As compared with cryptography-based solutions [9]–[12], the

proposed scheme is more efficient since it does not demand

frequent encryption and decryption operations for the trans-

mission of each power consumption data. Instead, a smart

meter requires one extra additive operation in every report

period (every minute or second). In addition, there is no strin-

gent timeliness requirement for billing request and response.

Therefore, reading distortion and aggregated billing have no

efficiency concern.

The complexity of power consumption distribution recon-

struction can be analyzed as follows. Assume that we have

M (the number of customers) power consumption data and

the value range is split into Q bins for processing. According

to Algorithm 1, Q + 2 multiplications and Q − 1 additions

are needed to calculate f k−1
R|D (r|di), and M additions and

1 multiplication from f k−1
R|D (r|di) to f̃ kR (r). As a result, at

each iteration, we need M + Q − 1 additions and Q + 3

multiplications. The adoption of the hierarchical architecture

discussed in Section III further reduces the network traffic

and operations of related parties (e.g., utility company). The

low-complexity of required operations and highly reduced

network trafficmake the proposed scheme a practical privacy-

preserving solution in a smart grid.

VI. EXPERIMENTAL EVALUATION

We evaluate the proposed scheme in the following two

aspects.

• Privacy protection

We adopt a widely used energy signature analysis

technology known as non-intrusive load monitoring

to examine the privacy-preserving effect of the pro-

posed scheme. Two de-noising attacks (i.e., linear mean

and NLM filters) are investigated in both the short-

term and the long-term cases. A real world single

household power consumption dataset is used in this

evaluation.

• Power consumption distribution reconstruction

As to power consumption distribution reconstruction,

both the accuracy of the proposed algorithm and its

relationship with other factors (e.g., the distortion level,

the number of households, and the number of iterations)

are studied. Synthesized datasets from a smart grid data

generator for a large amount of households are used in

this evaluation.

A. DATA SETS

1) Power Curve Dataset

We use a power curve dataset for privacy-preserving evalu-

ation, which was collected by the Business Intelligence Lab

of Telecom ParisTech [23]. It contains 349 days of electric

power consumption data recorded every 10 minutes in a

household in 2007. It has 144 readings starting from 00:00

to 23:50 for each day.

2) Smart Grid Simulator

For the distribution reconstruction, we simulate a large num-

ber of households with a smart grid Simulator, which is a soft-

ware tool developed by AIFB and Wechselfunchs [24]. The

simulator generates data from electronic appliance statistics

(mean and variance) learned from three weeks of real world

power consumption data. Table 2 shows the parameters for an

oven. The generated data are in N3 format and they include

detailed hourly power consumption of each electronic device

in each household.
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FIGURE 6. Reading distortions and de-noising results.

B. NON-INTRUSIVE LOAD MONITORING

Non-intrusive load monitoring (NILM) is frequently used

by utility companies to understand the load status of a

power system. With this technology, customer’s power

consumption trace is decomposed into profiles of dif-

ferent appliances in different time periods. The method

used in NILM is to measure changes in voltages and

currents. The measured changes are then mapped to

events of ‘‘ON/OFF’’ to indicate when appliances start

to work and stop. For example, a 3-second load profile

{(t0, 0W ), (t1, 100W ), (t2, 200W ), (t3, 100W )} could gener-

ate features as: {(t1, +100W ), (t2, +100W ), (t3, −100W )}.

According to extracted features and properties of various

appliances, types and working hours of different appliances

can be accurately detected. In general, both the reactive power

and the real power are measured to distinguish appliances

with the same total power draw. As power consumption data

traces become more fine-grained, NILM has brought up a

severe privacy concern. That is, customers’ behavioral pat-

terns can be easily derived from their power consumption

traces with NILM. A rechargeable battery was introduced

in [18] to smoothen the load profile to reduce the potential

privacy leakage of a household, which can reduce up to 95%

of potential features. Although this is effective, we demon-

strate by experimental results that our proposed scheme can

achieve better results with less cost.

C. PRIVACY PROTECTION

Two levels of distortion are added to the original power

consumption trace that was the recorded data for a single

household on 2007 Jan. 1st in the power curve dataset, and

they are shown in red curves in Figs. 6(a) and (d). The blue

curves in Figs. 6(a), (b), and (c) are, respectively, the distorted

trace with noise variance σ 2
n = Var(PCT ), the de-noised

trace after LM filtering, and the de-noised trace after NLM

filtering. Fig. 6(d), (e), and (f) show the corresponding results

under noise variance σ 2
n = 1.5Var(PCT ), respectively. We

see that additive noise severely distorts the original trace, and

it is difficult to derive the detailed power usage information

from the distorted sequence. As a result of the large noise,

both linear mean filtering and NLM filtering fail to recover

the accurate power consumption traces of customers. The loss

of accuracy makes the mapping to customer’s daily activities

infeasible.

We adopt NILM to further verify this conclusion. We

extract the ON/OFF feature from the distorted traces under

three different distortion levels with a pre-defined threshold

set to 0.3 KW and plot the result in Fig. 7. We see that many

detected ON/OFF features from the distorted trace are fabri-

cated and real ON/OFF features are severely distorted. Figs. 8

and 9 show the extracted features from the de-noised trace

with different filters. Again, the features extracted from the

de-noised trace are still noise-like, which could not provide

any valuable information about customer’s profile of daily

activities.

As shown in Table 3, after distortion, the number of fea-

tures extracted with NILM increases and it deviates from

the original substantially. With additive noise of a larger

variance, more features can be extracted. After the linear

mean filtering and the NLM filtering, the numbers of fea-

tures decrease, but they are still higher than the original
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TABLE 3. Features extracted with NILM.

Distortion
Original Distorted After LM After NLM

TF EF EF/TF TF EF EF/TF TF EF EF/TF TF EF EF/TF

σ2
n = Var(PCT ) 32 32 100% 112 1 0.83% 44 2 3.17% 15 0 0%

σ2
n = 1.5Var(PCT ) 32 32 100% 120 3 2.42% 67 2 2.47% 31 0 0%

σ2
n = 2Var(PCT ) 32 32 100% 129 1 0.76% 70 2 2.5% 39 0 0%

TF : total number of features EF : number of effective features EF/TF : ratio of effective features to total features

FIGURE 7. Features extracted from the distorted power consumption
trace.

FIGURE 8. Features extracted from the de-noised trace using the linear
mean filter.

one except for NILM processed results under noise variance

σ 2
n = Var(PCT ). Although the number of features is closer to

the original one, the minimal ratio of effective features to the

total features (e.g., EF/TF) makes the feature recovery almost

useless.

FIGURE 9. Features extracted from the de-noised trace using the
non-local mean (NLM) filter.

Another possible attack is long-term averaging, where

the power consumption traces from different periods are

averaged to obtain the daily power usage pattern of the

customer. Under this scenario, the random distortion is grad-

ually diminished as more power consumption traces con-

tribute to the long-term averaging. However, the long-term

averaging also largely reduces the variance of the origi-

nal power consumption trace. This is particularly true in

the proposed scheme where a relatively large distortion is

adopted.

Fig. 10 shows the result of an averaging attack with a long-

term period of 349 days. Although the averaged distorted

trace (green curve) converges to the averaged original trace,

the averaged original trace loses almost all high-frequency

variations in daily power consumption traces (dashed curves).

Hence, with long-term averaging, the unauthorized party

may derive the yearly average peak and pit period of daily

power consumptions, but cannot obtain detailed privacy-

related information on a daily basis. Moreover, it is con-

venient in the proposed scheme to change the disturbance

level from time to time which hides the original information

furthermore.

D. POWER CONSUMPTION DISTRIBUTION

RECONSTRUCTION

It is shown in Fig. 6 that the larger the additive noise, the

worse the recovery results of the original power consump-
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FIGURE 10. Long-term averaging results.

FIGURE 11. Power consumption distribution reconstruction.

tion trace. However, this does not mean that we can choose

arbitrarily large noise since we have to make sure that the

power consumption distribution can be accurately recon-

structed. For a fixed number of users, the larger the random

noise, more samples are required to get the accurate estimate

of the power consumption distribution. This will be discussed

in this section.

Fig. 11 shows the distribution reconstruction result of the

proposed scheme without distributed processing. The dataset

is generated by the smart grid Simulator. It consists of the

power consumption data of 10,000 households in the same

time period. The variance of the original power consumption

data is 7892.2W. The disturbance added to the original trace

is additive Gaussian noise with mean 100W and its variance

being the same as the original power consumption data. The

number of bins for data splitting is 53. The red and blue curves

show the aggregate original and distorted power consumption

data of 10,000 households, respectively. The green curve is

the reconstructed power consumption distribution using the

FIGURE 12. Comparison of centralized and distributed processing of
power consumption distribution reconstruction.

FIGURE 13. MSE under a different number of groups.

proposed scheme presented in Section III-D. The averaged

mean square error (MSE) of the distorted power consumption

distribution is 0.1608, while that of the recovered distribution

is enhanced to 0.0232.

Fig. 12 shows the distributed processing results under the

same setting. The blue curve shows the reconstructed distri-

bution with 10-group distributed processing. The MSE of a

distributed processing system is 0.0251, which is almost the

same as the centralized one.

To further compare the accuracy of the centralized and

the distributed processing schemes, we test the performance

of distributed processing with a different grouping number,

denoted by K in Fig. 5, and show the averaged performance

as a function of K in Fig. 13. We see that the distributed

processing scheme achieves about the same level of accuracy

for a wide range of K values.

Fig. 14 shows the distribution reconstruction accuracy with

a different number of households in the local aggregation

process. We see that the averaged MSE decreases as the
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FIGURE 14. The MSE of the reconstructed power consumption
distribution as a function of the number of households.

FIGURE 15. The MSE of the reconstructed power consumption
distribution as a function of the iteration number parameterized by
different SNR values.

household number grows. For a power utility company with

millions of customers, the averaged MSE could reach 0.001.

Fig. 15 shows the MSE curve as a function of the iteration

number of the power consumption distribution recovery algo-

rithm parameterized by different distortion levels. We see that

the distortion level does not affect the accuracy of distribution

recovery. With a fixed number of households, the maximum

reconstruction accuracy keeps the same. However, different

distortion levels demand a different number of iterations to

achieve the optimal reconstructed distribution. For the real

world system design, a proper trade-off between privacy

protection and accuracy of power consumption distribution

reconstruction should be considered.

VII. CONCLUSION

A lightweight, efficient and robust privacy-preserving meter-

ing scheme for smart grids was proposed in this work.

In the proposed scheme, a customer’s power consumption

data are first distorted by additive noise before being sent to

other entities in a smart grid system. Any party receiving the

distorted data cannot restore the original fine-grained power

consumption trace so that customer privacy is protected. At

the same time, related parties can still derive the complete

distribution of the original power consumption data from a

multitude of customers in a certain geographic area, which

enables several important functions of smart grids such as

production prediction, dynamic pricing, and billing service.

It was shown analytically that several well known denois-

ing attacks fail to recover the original power consumption

trace. Experimental evaluations with real world and simulated

power consumption datasets confirm the feasibility and prac-

ticality of the proposed scheme.
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