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Abstract One of the most important design objectives in

wireless sensor networks (WSN) is minimizing the energy

consumption since these networks are expected to operate

in harsh conditions where the recharging of batteries is

impractical, if not impossible. The sleep scheduling

mechanism allows sensors to sleep intermittently in order

to reduce energy consumption and extend network lifetime.

In applications where 100% coverage of the network field

is not crucial, allowing the coverage to drop below full

coverage while keeping above a predetermined threshold,

i.e., partial coverage, can further increase the network

lifetime. In this paper, we develop the distributed adaptive

sleep scheduling algorithm (DASSA) for WSNs with par-

tial coverage. DASSA does not require location

information of sensors while maintaining connectivity and

satisfying a user defined coverage target. In DASSA, nodes

use the residual energy levels and feedback from the sink

for scheduling the activity of their neighbors. This feed-

back mechanism reduces the randomness in scheduling that

would otherwise occur due to the absence of location

information. The performance of DASSA is compared with

an integer linear programming (ILP) based centralized

sleep scheduling algorithm (CSSA), which is devised to

find the maximum number of rounds the network can

survive assuming that the location information of all sen-

sors is available. DASSA is also compared with the

decentralized DGT algorithm. DASSA attains network

lifetimes up to 92% of the centralized solution and it

achieves significantly longer lifetimes compared with the

DGT algorithm.

Keywords Wireless sensor networks � Energy

efficiency � Sleep/activity scheduling � Partial coverage

1 Introduction

Wireless sensor networks (WSN) consist of sensor devices

deployed across a geographic area to sense the environment

by measuring physical parameters such as temperature,

motion, etc. [1]. The most important issue regarding the

design of WSNs is the energy consumption since these

networks are usually deployed in remote areas where the

replacement of batteries is impossible.

The lifetime of a WSN can be significantly increased by

allowing some of the nodes to sleep intermittently. Activity

scheduling or sleep scheduling controls the number of

sensors which are sensing, receiving and transmitting data,

such that some user defined constraints are satisfied. While

ensuring only a subset of nodes to be in the operating

mode, the sleep scheduling mechanism must fulfill two

requirements: connectivity and coverage. A WSN is con-

nected if each active sensor in the network can reach the

sink, possibly via multiple hops. Coverage is defined as the

area that can be monitored by the active sensors that can

reach the sink.

A detailed survey of the sleep scheduling algorithms has

been recently conducted in [2]. Sleep scheduling algo-

rithms can be categorized into four groups. In the first

group, active nodes only provide connectivity to the net-

work without considering coverage. GAF [3], SPAN [4],

ASCENT [5], S-MAC [6] and PEAS [7] protocols are

examples to this group. In the second group, the nodes are
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selected to be active so as to assure full coverage of the

sensor field without considering connectivity. A linear

programming approach is used in [8] to determine the

minimum number of sensors which can fully cover a cer-

tain area. In [9, 10] nodes whose sensing areas are covered

by their neighbors are turned off with a random backoff

mechanism. [11] extends this work and reduces the

redundancy among the active nodes.

Finding the minimum set of connected sensors which

cover the entire deployment area is proven to be an

NP-hard problem [12]. However, there are many heuristic

algorithms for providing coverage and connectivity. Some

algorithms select mutually exclusive sets of sensor nodes,

where the members of each of those sets together com-

pletely cover the monitored field. These sets are used in a

round robin fashion in order to increase the lifetime while

maintaining the coverage [13, 14]. In CCP [15] and OGDC

[16], it is proven that if the radio range is at least twice the

sensing range, complete coverage of a network field

guarantees connectivity. CCP schedules nodes to sleep

depending on the coverage degrees of the intersection

points of a node’s sensing disk with its neighbors’ sensing

disks. In OGDC, the optimum location of a third disk to

cover the intersection points of two other disks, with

minimum overlapping sensing areas, is found. Then,

OGDC tries to schedule nodes which are close to these

optimum locations to be active. Both CCP and OGDC

require location knowledge of sensors.

In some applications, covering 100% of the sensor field

continuously is not necessary. Instead, the network lifetime

can be prolonged if the coverage level is kept below 100%.

For example, in a temperature or humidity monitoring

WSN, it may be sufficient to cover just 90% of the total

sensor field in order to increase network lifetime. This is

named as partial coverage. This concept is fairly new and is

not extensively studied in the literature. The last group of

existing work on activity scheduling exploits partial cov-

erage. The theoretical bounds for the number of active nodes

to satisfy a certain coverage level while being connected is

derived in [17]. pCover [18] is a distributed algorithm for the

partial coverage problem assuming all the nodes are aware

of their locations and their neighbors’ locations. Nodes are

scheduled for sleep according to the coverage loss incurred

by their deactivation in [19], where the locations of the

sensors are assumed to be known. An upper bound for the

network lifetime when only a portion of the sensor field is to

be covered, assuming that the deployed nodes form a

homogenous Poisson point process, is found in [20].

In [21], a distributed scheduling mechanism is proposed

which does not assume location information while pro-

viding statistical guarantees on the sensing coverage.

However, this algorithm does not guarantee connectivity.

The distributed scheduling algorithm in [22], which we

name data gathering tree (DGT) algorithm hereafter, also

does not assume location information. DGT exploits partial

coverage and involves similar design specifications used

in this paper. The minimum number of sensors, k, to pro-

vide a certain coverage level is found by using geometric

probability theory assuming that the nodes are distributed

uniformly. Network operation is divided into reporting

cycles such that the period for each sensor to report its data

is equal to the duration of these reporting cycles. Each

cycle is further divided into d slots, where d ¼ N
k

� �
and N is

the number of sensors. Each sensor randomly assigns itself

a slot in {1, …,d} and reports its data only at that slot in

each reporting cycle. This way, disjoint sets of sensors are

found that provide the required coverage on the average. In

order to ensure connectivity, it may become necessary to

use non-disjoint sets. To find k, the distribution of the

sensors on the field has to be known and the integrations

over these distributions have to be tractable. A drawback of

this algorithm is that the scheduling messages are large in

size which increases the energy consumption.

Although most of the work in the literature consider

network lifetime, connectivity and coverage, there are

other studies on sleep scheduling that also consider the

delay in data gathering for delay sensitive sensor net-

working applications. Pipelined tone wakeup (PTW) is

proposed in [23] which achieves a balance between energy

saving and end-to-end delay. PTW is based on an asyn-

chronous wakeup scheduling mechanism that overlaps the

wakeup procedures with the packet transmissions. During a

transmission, the receiver node wakes up all its neighbors

using the signaling channel, which makes it possible to

forward the data to the next hop as soon as the current

transmission is completed, reducing the end-to-end delay.

To accomplish this, PTW uses a second wireless interface,

a signaling radio, which is used to awaken a node when it is

needed for data transmission. The assumption is that the

power consumption of this secondary radio is extremely

low, and thus it can remain active at all times without

having a major impact on the lifetime of the device.

Although there are low power radio technologies today,

their power consumptions are not negligible and their

transmission ranges are much shorter than the ranges of

technologies used for the primary wireless interface.

In this work, we assume that there is a single radio

interface at each sensor node, and a synchronous activity

scheduling mechanism is used where nodes periodically

wake up at the same time in order to determine their

schedules for the next scheduling interval. It is also

assumed that the sensor data is periodically generated by

the sensor nodes and gathered at the sink node. The main

objective of the proposed distributed adaptive sleep

scheduling algorithm (DASSA) is to maximize the network

lifetime subject to connectivity and partial coverage
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constraints, without requiring the location information of

the sensor nodes. Other metrics, such as the latency in data

gathering, are not explicitly considered by DASSA. How-

ever, the delay in DASSA can be adjusted by properly

choosing the duration of the scheduling interval.

The main contributions of this paper are as follows. An

integer linear programming (ILP) based centralized sleep

scheduling algorithm (CSSA) which uses location infor-

mation is formulated to provide an upper bound for the

lifetime achieved by the distributed sleep scheduling algo-

rithms. Next, a distributed scheduling algorithm, DASSA,

which requires no location information and exploits partial

coverage is proposed. The set of nodes selected to be active

by DASSA are always connected due to the nature of the

algorithm. Simulation results show that DASSA performs

close to the performance of the centralized algorithm.

Comparisons with DGT show that the network lifetime

can be significantly extended by DASSA especially for

relatively low partial coverage targets.

In the rest of the paper, we first describe the network

model in Sect. 2. The centralized scheduling algorithm is

explained in Sect. 3. We then present the design and analysis

of DASSA in Sect. 4. Extensive simulation results are pre-

sented in Sect. 5 and the paper is concluded in Sect. 6.

2 Network model

Wireless sensor networks is modeled by an undirected

connected graph G = (V, E) where V = {V0,V1,… ,VN}

represents all the sensor nodes in the network including the

sink V0 and E represents the communication links between

these nodes. For any node i and j, the edge (i, j) [E if and

only if i and j are within the communication range of each

other. A sensor node can communicate with all its neigh-

bors in its transmission range, Rt, and can sense every event

occurring within its sensing range, defined as the disk with

radius Rs. We assume that each sensor node has the same

initial energy, Einit. These assumptions are widely used in

many sensor networking algorithms in the literature

including [15, 16, 22].

The data reporting model is assumed to be time-driven

[16, 22]; the network operation is divided into rounds and all

active sensor nodes are responsible for transmitting their data

together with their descendants’ data towards the sink at each

round. The sleep scheduling algorithm is executed at the

beginning of each round and nodes forward data accordingly.

This reporting model requires time synchronization among

the nodes. One choice for this purpose can be the S-MAC [16,

22] protocol which provides both time synchronization and

additional energy savings in the MAC layer. Many other

alternatives are available for time synchronization, e.g., [24,

25] and as a MAC protocol, e.g., [26].

We assume that the WSN is uniformly deployed on a

square field and the sink is located at the center of the field.

The field is divided into G square grids. The sink is assumed

to have abundant energy resources and is responsible for

gathering the data of all the active sensors and then trans-

mitting it to a centralized location, e.g., through satellite.

If node i is in the transmission range of node j, then node

i and j are at a single hop distance to each other. The tier

number of a node is the minimum number of hops required

to reach the sink from that node, i.e., a node which can

reach the sink in at least k hops belongs to tier k.

We make the following definitions:

• Grade of coverage (GoC) is the desired partial coverage

level such that 0 B GoC B 1. GoC is calculated as the

ratio of the number of grids covered by the set of active

sensors that can communicate with the sink to the total

number of grids.

• Grade of coverage lifetime (GoC-L) is the number of

rounds for which the coverage provided by the network

satisfies GoC.

3 Centralized sleep scheduling

Centralized sleep scheduling algorithm is an ILP based

algorithm which assumes global knowledge of sensor

locations and energies. This algorithm is not suitable to be

used in a distributed scenario and the main purpose of

devising such an algorithm is to calculate the lifetime that

can be achieved by a centralized approach which uses the

global information of the WSN. CSSA will be used in

Sect. 5 for evaluating the performances of the distributed

scheduling algorithms.

As intuition suggests, the nodes which are close to the

sink are the first ones to die in the network since they have to

forward both their own and their descendants’ data [27, 28].

Consequently, CSSA tries to give the most emphasis to tier 1

nodes and then to tier 2 nodes and so on. For this purpose, we

define a sorted ID vector, SID = {SID1, SID2, … , SIDN},

which consists of the node IDs of the nodes sorted first with

respect to their tier numbers and then with respect to their

residual energy levels. An example SID vector is given as

SID ¼ f 1; 6|{z}
Tier1

; 4; 3; 8|fflffl{zfflffl}
Tier2

; 2; 5|{z}
Tier3

g;

where e1 \ e6, e4 \ e3 \ e8, e2 \ e5 and ei is the residual

energy of node i. This algorithm exploits the empirical

observations that the nodes closer to the sink are more

critical for network lifetime and the residual energies of

sensor nodes should be used in a balanced manner.

Centralized sleep scheduling algorithm performs lexi-

cographic optimization where the residual energy of the
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first node in SID, SID1, is maximized first. In other words,

the active set of nodes is selected such that with this

selected configuration, the residual energy of the first node

in SID after the round ends is decreased as small as pos-

sible. Then, the result of this maximization is added as an

additional constraint to the ILP formulation, i.e., the set of

solutions is limited to those with the residual energy of the

first node does not fall below the maximum value. Using

this modified ILP, the energy of the second node in SID,

SID2, is maximized and a similar constraint is added to the

ILP formulation for limiting the residual energy of the

second node. This process continues by sequentially max-

imizing the residual energies of all the nodes in the

network.

Once this procedure is completed, the algorithm moves

to the next round after the residual energies of all nodes are

updated according to the scheduling result of the previous

round. The algorithm is implemented until no feasible

solution can be found, i.e., no subset of nodes with suffi-

cient residual energy for satisfying the connectivity and

coverage constraints can be found at some round. The

GoC-L is given by the number of rounds until infeasibility.

The ILP formulation used at each step of CSSA is

described next. Let Ti denote the tier number of sensor i,

1 B i B N. In CSSA, a node can only forward data to a

node with tier number less than its tier number, i.e.,

f n
ij ¼ 0 if Ti� Tj; 8i; j; n; ð1Þ

where fij
n = 1 if there is a data packet transmitted from

sensor i to sensor j for the data generated at sensor n and

fij
n = 0, otherwise.

The following constraint ensures the conservation of

flow. The decision variable si is defined as si = 0 if sensor

i,1 B i B N, is sleeping, and si = 1 if it is active.

X

j

f n
ij �

X

j

f n
ji ¼

sn; i ¼ n
�sn; i ¼ sink;

0; otherwise

8
<

:
8n; i: ð2Þ

Since no flow can be relayed through a sleeping node,

f n
ij � si; f n

ji � si 8n; i; j: ð3Þ

Let Et and Er correspond to the amount of energy

consumed for each transmission and reception, respectively.

An additional energy, Es, is consumed for the exchange of

messages used for routing and scheduling. The relationship

between ei and e0i, that correspond to the energies of sensor i

at the beginning and end of the current round, respectively,

is given by

e0i ¼ ei �
X

n

X

j

f n
ij � Et �

X

n

X

j

f n
ji � Er � Es; 8i: ð4Þ

The energy of each node at the end of a round cannot

become negative, i.e.,

e0i� 0; 8i: ð5Þ

For calculating the coverage, we divide the network

field into G grids. The indicator function cni = 1 if and

only if grid i is within the sensing range of sensor n. The

decision variable vi is defined as vi = 1 if and only if grid

i,1 B i B N, is covered by an active sensor. If all the nodes

covering grid i are asleep, then grid i is not covered, i.e.,

vi�
X

n: cni¼1

sn; 8i: ð6Þ

If any of the nodes whose sensing area contains grid i is

active, then grid i is covered, i.e.,

vi� cnisn; 8i; n: ð7Þ

The final constraint ensures that the target partial

coverage level is achieved:
X

i

vi�GoC� G: ð8Þ

The objective function of this ILP formulation is to

maximize the residual energy of i-th node in the sorted list,

SIDi, at the end of the round, i.e.,

Maximize e0SIDi
: ð9Þ

The pseudocode for CSSA is given in Algorithm 1.

ILP-CSSA returns the optimum solution of the ILP having

the objective function (9) and the constraints (1–8) in

addition to the constraints added as the iterations proceed.

4 Distributed adaptive sleep scheduling algorithm

(DASSA)

Distributed adaptive sleep scheduling algorithm schedules

sensors to sleep while ensuring the connectivity of the

operating nodes and keeping the coverage above GoC

without any knowledge of the sensor locations. DASSA is

simple to implement and it extends network lifetime by

exploiting partial coverage. DASSA focuses on the nodes

closer to the sink, since all the network traffic has to pass

through these nodes, by carefully scheduling the activity of

these nodes depending on their residual energies and

number of neighbors. For this purpose, the sink solves a

simple ILP problem to determine the schedules of the tier 1

nodes. Since the sink typically has plentiful amount of

computation resources, using it to intelligently schedule

tier 1 nodes is reasonable.

A. Description of DASSA: Distributed adaptive sleep

scheduling algorithm consists of four sequential steps.

Step 1: Neighbor discovery: In the first step, the sink

transmits a discovery message which contains a tier num-

ber 0. A node which receives a message containing tier

number i sets its own tier number to i + 1 and transmits its
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node ID, tier number and residual energy level after a

sufficiently long timeout in order to make sure that it

receives broadcast messages from all its neighbors

belonging to tier i. This way, all the nodes discover their

tier numbers and local neighborhoods while the sink learns

the IDs of the tier 1 nodes.

Step 2: Scheduling tier 1 nodes: After the neighbor

discovery step ends, nodes in tier 1 broadcast the IDs of

their neighbors belonging to tier 2. This broadcasting is

only done in the first round. Following the common

assumption of immobility for the sensors [2], this process is

not repeated at each round.

Once the sink has knowledge of tier 1 nodes and their

neighbors from tier 2, it schedules tier 1 nodes by using a

simple ILP problem in order to find the minimum number

of active nodes from tier 1 with maximum remaining

energy such that these nodes are connected to a portion of

the nodes from tier 2. This step is a quite important step in

which tier 1 nodes are scheduled in a balanced way without

using any location information as illustrated in Fig. 1.

The corresponding objective function is given by

Minimize
X

i

si � �
X

i

si � ei; ð10Þ

where si = 1 if and only of sensor i from tier 1 is active and

ei is the residual energy of sensor i. The second term in the

objective function makes sure that when multiple solutions

achieving the minimum number of active tier 1 nodes exist,

the sink chooses the solution with the maximum total

residual energy. � is chosen such that the objective function

does not become negative but so that the residual energies

still affect the solution. This value can be increased or

decreased depending on the application. We empirically

found out � = 0.1/Einit to give satisfactory results in all of

our simulation results.

The following two constraints are for the connectivity of

the tier 2 nodes and the active tier 1 nodes. The indicator

cij = 1 if and only if sensor j from tier 2 is in the com-

munication range of sensor i from tier 1. lj = 1 if and only

if node j from tier 2 is active and it is connected to some

active node from tier 1:

sicij� lj; 8i; ð11Þ

lj�
X

i

sicij; 8j: ð12Þ

The last constraint determines what percentage of nodes

from tier 2 is to be connected with the active nodes in tier 1:
X

i

li� a n; ð13Þ

where n is the number of nodes in tier 2 and 0 B a B 1.

After solving the ILP problem given by (9–12), the sink

broadcasts a packet containing the node IDs of the tier 1

nodes scheduled to be active. A tier 1 node receiving this

message enters sleep mode if its ID is not included in the list.

Step 3: Scheduling intermediate nodes: In the third step

of DASSA, each active node from tier i schedules NSDi

nodes from tier (i + 1) to be active where NSD stands for

number of scheduled descendants. Active nodes from tier 1

schedule NSD1 nodes from tier 2 with the highest energies

to be active. Each selected tier 2 node then schedules NSD2

nodes from tier 3 with the highest energies to be active, and

so on. When a node which was scheduled to be active

receives another scheduling message containing its node

ID, it transmits a negative acknowledgement packet to the

sender. Upon receiving this message, the sender schedules

its neighbor with the next highest energy to be active. This

Algorithm 1 CSSA

round /0

stop /FALSE

V0 /V

While (!stop) do

Calculate the tier numbers for all nodes in V0

Form SID composed of all nodes in V0

for i = 1 to |V0| do

res_energy / ILP-CSSA

If ILP-CSSA is feasible then

Add the following constraint to ILP-CSSA:

e0SID_i C res_energy

else

stop /TRUE

end

end

round++

Update residual node energies {e0i} for all nodes i [ V0

V0 /V0-{i:e0 i \ Et + Es}

Remove all additional constraints from ILP-CSSA except (1)–(8)

end

GOC-L /round

operating node sleeping node sink node undecided node

(a) (b)

Fig. 1 The balanced scheduling of tier 1 nodes. The sink schedules

tier 1 nodes which are shown in full circles. (a) Selection of DASSA.

(b) Random selection
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way, it is assured that NSDi nodes will be scheduled by

each active node from tier i. This provides a robustness to

the algorithm but it was observed that it does not provide a

substantial impact on the results.

Step 4: Transmitting and forwarding data: After the

nodes decide their activity states, they forward their data

together with their descendants’ to one of their active

neighbors from the upper tier with the highest energy. This

is similar to the routing algorithm employed in [29]. In

addition to the other steps in which nodes with higher

residual energies are scheduled to be active, this step

ensures that nodes with the maximum energies have higher

loads. So, we apply a two-fold energy balancing scheme:

both in activity scheduling and in routing. In fact, the

purpose of this paper is not to design an efficient routing

algorithm and any routing algorithm suitable for the pur-

pose could be used together with the scheduling algorithm.

B. Communication overhead of DASSA: The control

messages used in DASSA are neighbor discovery (Step 1)

and scheduling (Step 2 and 3) messages. All nodes

broadcast and receive neighbor discovery messages which

are common in all sensor network algorithms in the liter-

ature [2]. The neighbor discovery messages in DASSA also

include the residual energies of the nodes at the beginning

of each round. Every round, nodes receive scheduling

messages from their active neighbors closer to the sink and

only nodes which are scheduled to be active transmit one

broadcast message for scheduling their descendants. These

scheduling messages contain the node IDs of a small

number of nodes and hence are not very costly. This issue

will be further explored in Sect. 5.

C. Selection of the parameters of DASSA: The parame-

ters a and NSD ¼ fNSD1;NSD2; . . .;NSDNtier�1g;where

Ntier is the number of tiers in the network, should be

selected depending on GoC, Rs, Rt and field dimensions.

This section provides an insight to the selection of these

parameters assuming a uniform distribution for the sensors.

DASSA parameters should be tuned further empirically to

obtain the best results for a given network population and

size using the results of this section as a basis. The results

could be extended to any distribution as long as the inte-

grations are tractable. Otherwise, the alternatives would be

to stick with empirical methods or numerical integration.

Assume that a tier 1 node is at a distance r from the sink.

The average number of tier 2 nodes in the communication

range of this tier 1 node can be obtained by calculating the

shaded area in Fig. 2 for the case when nodes are uniformly

distributed. For given r, this shaded area is given by

Sðr; hÞ ¼ pR2
t � 2R2

t arccos
r

2Rt

� �
þ 1

2
r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4R2

t � r2

q
:

After averaging this area over all r andh, we obtain the average

number of tier 2 neighbors of a tier 1 node, N12, as follows,

N12 ¼
N

F

� �
2

R2
t

ZRt

0

Sðr; hÞrdr

¼ 3
ffiffiffi
3
p

4
R2

t

N

F

� �
;

ð14Þ

where F is the area of the sensor field. All tier 2 nodes are

located in the area between the disk with radius Rt centered

at the sink and the disk with radius 2Rt centered at the sink.

Nodes from other tiers can also fall into this area but

assuming a sufficiently dense network, this effect can be

neglected. Using this approximation, the average number

of tier 2 nodes, N2, can be approximated as

N2 ¼ 3pR2
t

N

F

� �
: ð15Þ

Let N1 denote the number of active nodes from tier 1. Then

N1 should satisfy

N1� a
N2

N12

¼ 4p
ffiffiffi
3
p a ð16Þ

in order to be connected to a portion of the tier 2 nodes.

The number of nodes, A, that are scheduled to be active by

the algorithm is approximately given by

A ¼ N1 1þ
XNtier

i¼1

Yi

j¼1

NSDj

 !

: ð17Þ

Combining (16) and (17), we obtain

A� 4p
ffiffiffi
3
p a 1þ

XNtier

i¼1

Yi

j¼1

NSDj

 !

, A: ð18Þ

The minimum number of uniformly distributed nodes

required to provide a certain GoC without considering

connectivity is given by ([27], p. 39)

k ¼ logð1� GoCÞ
DT

� �
; ð19Þ

where the denominator (DT) is

r
Tier 1

Tier 2

(0,0)R t

sink sensor node

tR

Fig. 2 Tier 2 nodes which are in the communication range of the tier 1

node are in the shaded area
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DT ¼ log
1

m4
n2ðm2 � pR2

s Þ þ 4Rsm
2ðnþ RsÞ

	


�4R3
s ð0:57þ 2:47nþ 1:37RsÞ

��
;

ð20Þ

m is the length of the field and n = m-2Rs.

The number of active nodes, A, should always be greater

than this lower bound, i.e., A C k. Note that if A � k;where

A is given by (18), then A C k. DASSA parameters can be

selected such that A � k in order to satisfy GoC. In our

simulations, a is generally chosen in the range 0.9–1 and

NSD is computed so that A� k:

Remarks k in (19) is the minimum number of uniformly

distributed nodes required to satisfy a certain GoC without

considering connectivity, whereas A is the number of con-

nected and active nodes. We want to assure that there are at

least k active sensors and thus we enforce A C k. Since con-

nectivity is not considered in the derivation of this lower

bound and k is independent of Rt, k is still a valid lower bound

for satisfying GoC even when Rs = Rt. The tightness of this

bound depends on the transmission and sensing radii and

spatial distribution of sensor nodes. In the simulations repor-

ted in Sect. 5-D for unequal transmission and sensing ranges,

i.e., Rs = Rt, this lower bound provided acceptable results.

Although the operation of DASSA does not require any

specific channel model, the analysis discussed above for

the selection of parameters uses the unit disc model. When

DASSA is used in an environment for which a more

realistic model, such as log–normal fading, is more

appropriate, it may be recommended that DASSA param-

eters such as NSD and a are chosen larger than the values

suggested by the above analysis so that more nodes will be

activated and DASSA will have more robustness against

channel impairments. This strategy can also be helpful in

dealing with channel errors as each node will have more

active descendants, compensating for the errored reports

received from descendants.

5 Performance evaluation

This section provides comprehensive simulation results for

evaluating the performances of CSSA, DASSA and DGT

for various network populations and field sizes. We assume

an ideal environment without any collisions and interfer-

ence of packets since the focus of this work is to evaluate

the scheduling algorithms on top layers rather than con-

sidering the physical layer issues. For finding the optimum

solutions to ILP formulations, the CPLEX solver [30] is

used in conjunction with the discrete event simulator built

for the simulations.

A. Energy consumption model: The energy consumption

model given in [9, 31] is used in the simulations. Each

sensor reports a 250-byte message to the sink at each round

and each message transmission and reception consumes

0.1 mJ. The exchange messages used at the beginning of

each round of DASSA are 25 bytes long and cost 10lJ.

Both transmitting and receiving a sleep control message

which is 25 bytes long costs 10lJ. A 20-byte header is

included in each of these messages. The scheduling mes-

sages of DGT become larger as the desired GoC drops or as

the number of nodes increases, and the transmission costs

are increased accordingly.

B. Comparison of DASSA with other algorithms: Cov-

erage plots of CSSA, DASSA and DGT for a 100 node

network deployed on a 200 m-by-200 m sensor field with

Einit = 10 mJ and Rt = Rs = 50 m are shown in Fig. 3. As

GoC decreases, the gap between DASSA and CSSA

decreases since the importance of exact location information

decreases. Actually, for GoC = 0.8 and 0.7, the perfor-

mance of DASSA is very close to CSSA. Also, it is

important to note that with DASSA, the coverage remains

almost all the time above GoC until it drops below it.

However, in DGT, coverage is likely to fluctuate around the

target due to the inherent probabilistic structure.

The performances of the algorithms for 4 different

topologies each with 100 nodes uniformly deployed on a

200 m-by-200 m network field with Einit = 10 mJ are

shown in Fig. 4. The results of DGT are averaged over 100

randomly generated runs. As expected, sleep scheduling

algorithms provide a remarkable gain with respect to the

case where all the nodes are active at all rounds. DASSA

outperforms DGT in all the topologies. As GoC decreases,

the gap between DASSA and CSSA decreases, whereas the

gap between DASSA and DGT increases even more. The

main reason is that DGT has to schedule redundant nodes

in order to assure connectivity even though the GoC

decreases. Also, DGT inhibits a random structure and

cannot guarantee to provide the target GoC. As we can

observe from Fig. 3, DGT provides excessive coverage in

some rounds, which is above the desired GoC, while the

coverage is below GoC for many rounds, and the network

energy is wasted in those periods.

Figure 5 shows the performance of all algorithms for a

150 node network deployed in a 200 m-by-200 m field

with Einit = 10 mJ. The relative performances of the

algorithms in this setting are similar to the 100 node net-

work cases.

C. Different network sizes: For a 200 m-by-200 m field

with 200 nodes, 100 network deployments are simulated

and the average performances of DASSA and DGT are

compared for two different initial energy values of the

nodes, Einit = 10 mJ and Einit = 100 mJ. The same set of

parameters are used by each algorithm for all 100 sensor

deployments. Figure 6 shows that DASSA achieves on the

average 52–177% longer lifetimes compared with DGT.
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Similar conclusions can be drawn for Einit = 10 mJ and

Einit = 100 mJ cases. The performance of CSSA could not

be obtained for these larger networks due to excessive

computation time.

Finally, for a 300 m-by-300 m field with 400 nodes, 100

network deployments are simulated and the average per-

formances of the distributed algorithms are compared for

Einit = 50 mJ. Again, the same set of parameters are used
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Fig. 3 CSSA, DASSA and DGT coverage plots for (a) GoC = 0.9,

(b) GoC = 0.8, (c) GoC = 0.7
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Fig. 4 GoC-L of all algorithms for 4 different topologies each with

100 nodes in a 200 m-by-200 m field. (a) GoC = 0.9, (b)

GoC = 0.8, (c) GoC = 0.7
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by each algorithm for all sensor deployments. Figure 7

shows that DASSA achieves on the average 7–62% longer

lifetimes compared with DGT. As the field size increases,

the number of tiers increases. In DASSA, nodes in the first

tier are selected in a balanced manner by using the feedback

from the sink. However, as the number of tiers increases, the

randomness in DASSA increases due to the lack of location

information. Thus, DASSA starts to activate redundant

nodes in order to assure sufficient coverage and because of

this, its performance gain with respect to DGT decreases.

As GoC decreases, the gap between DASSA and DGT

increases and it is above 60% for GoC = 0.7.

D. Unequal transmission and sensing ranges: So far, it

has been assumed that the sensing and transmission ranges

are equal. We now analyze the effect of increasing the

transmission range with respect to the sensing range: Rs is

kept constant at 50 m and Rt is changed to 60 and 75 m

when the network consists of 100 nodes, field is 200 m-

by-200 m and Einit = 10 mJ. In DASSA, when the trans-

mission range increases with respect to the sensing range,

we only need to increase the number of nodes that a node

activates from its next tier by increasing the values in NSD.

Although less likely, if the transmission range becomes less

than the sensing range, then DASSA should be adapted so

that more nodes go into sleep by lowering NSD values.

We observe from Fig. 8 that DASSA achieves lifetimes

close to CSSA, up to 90%, especially for lower GoC, and

the relative performance of DASSA compared to CSSA is

similar to the earlier cases. DGT could not be evaluated in

this section since it does not address the case of unequal

transmission and sensing ranges.

E. Effect of aggregation: In some applications, nodes

might have the capability of combining the data packets

before transmitting them [32]. We assume that each node

combines all its descendants’ data into a single packet before

transmitting, i.e., full aggregation. In Fig. 9, simulation

results are shown for the same example considered in Fig. 4

with Einit = 5 mJ and for topology 1. We observe that
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Fig. 5 Comparison of the algorithms for a 150 node network in a

200 m-by-200 m field

GoC = 0.7 GoC = 0.8 GoC = 0.9
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

G
oC

−
L

DASSA
DGT
All Active

(a)

GoC = 0.7 GoC = 0.8 GoC = 0.9
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

1300

1400

G
oC

−
L

DASSA
DGT
All Active

(b)

Fig. 6 Comparison of the algorithms for a 200 node network in a

200 m-by-200 m field. (a) Einit = 10 mJ, (b) Einit = 100 mJ
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Fig. 7 Comparison of the algorithms for a 400 node network in a

300 m-by-300 m field
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DASSA still outperforms DGT by 65–80% in terms of GOC-

L and aggregation does not have a significant effect on the

relative performances of the algorithms. Note that CSSA

requires some minor modifications when being used in the

full aggregation case. Specifically, the variable fij
n in (1) and

the expression in (4) has to be modified (see [27] for details).

F. Further analyses: The performance of DASSA is fur-

ther studied by observing the evolution of the total energy

and the number of dead and connected nodes in the network.

Figure 10 shows the total residual energy of all the nodes and

the number of nodes which are active and dead for

GoC = 0.8 as the network evolves. CSSA consumes about

the same amount of energy at each round in a perfectly

balanced manner. DASSA consumes energy similar to

CSSA but much more efficiently than DGT. In CSSA, all the

nodes start to die approximately at the same time due to the

balanced energy consumption. Figure 10(a) shows that more

than 50% of the total energy of the network remains when the

network operation ends since all tier 1 nodes die. This once

more emphasizes the importance of the scheduling of tier 1

      GoC =  0.7 0.8 0.9 , GoC = 0.7 0.8 0.9
0

20

40

60

80

100

120

140

160

180

200

220

240
250

R
t
 = 60m                                 R

t
 = 75m

G
oC

−
L

CSSA
DASSA
All Active

Fig. 8 Comparison of the algorithms for unequal Rt and Rs

GoC = 0.7 GoC = 0.8 GoC = 0.9
0

10

20

30

40

50

60

70

80

90

100

110

120

G
oC

−
L

CSSA
DASSA
DGT
All Active

Fig. 9 Comparison of the algorithms with full aggregation for

topology 1

0 20 40 60 80
0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Time

T
ot

al
 R

es
id

ua
l E

ne
rg

y 
of

 th
e 

N
et

w
or

k CSSA
DASSA
DGT

(a)

0 20 40 60 80
0

5

10

15

20

25

Time

N
um

be
r 

of
 D

ea
d 

N
od

es

CSSA

DASSA

DGT

(b)

0 20 40 60 80
0

5

10

15

20

25

Time

N
um

be
r 

of
 C

on
ne

ct
ed

 N
od

es

CSSA
DASSA
DGT

(c)

Fig. 10 Energy and scheduling plots for GoC = 0.8 for the first

topology; (a) Normalized total residual energy of all nodes with

respect to 1 J. (b) Number of nodes which are dead at each round. (c)

Number of nodes connected to the sink at each round
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nodes. Figure 10(c) shows that approximately same number

of nodes are activated at each round by CSSA whereas

DASSA and DGT activate larger number of sensors com-

pared with CSSA. The number of nodes activated by DGT

fluctuates due to severe randomness.

Figure 11 shows the number of rounds each location in the

field is covered, i.e., the coverage count of each location, by all

four algorithms for GoC = 0.9. CSSA balances the coverage

in the field even though the objective is to maximize the

number of rounds the coverage is above GoC and no constraint

for balanced coverage is introduced in the ILP formulation.

Similarly, the aim of DASSA is to maximize the number of

rounds for which the coverage is above GoC without any

concern in balancing the coverage. However, DASSA main-

tains a balanced coverage at each location and achieves far

better coverage counts than DGT, but not as balanced as

CSSA especially near the edges of the sensor field.

Finally, Fig. 12 shows the percentage of the scheduling

overhead for DASSA at each round for Topology 1, which

is used for the results shown in Fig. 3. We observe that the

scheduling overhead of DASSA is around 5–20% as

compared to the total energy consumption. When GoC

decreases, the energy consumption decreases faster than

the decrease in the overhead, which increases the relative

energy spent for scheduling. Considering that the cost of

transmitting a scheduling message corresponds to 10% of

the cost of transmitting a data packet, these levels are quite

acceptable. The jumps in the plots correspond to the times

where DASSA cannot sustain the target GoC anymore.

6 Conclusion

In this paper, the activity scheduling problem in wireless

sensor networks with partial coverage is investigated. The

optimum scheduling of nodes is found by using an ILP

formulation which provides the maximum number of

rounds for which the network can satisfy a certain coverage

level. This approach is centralized and requires location

information and global knowledge of the network. Next, a
Fig. 11 Coverage counts for GoC = 0.9 for topology 1. (a) DASSA,

(b) DGT, (c) CSSA
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distributed, simple and scalable sleep scheduling algorithm

called DASSA is proposed. The main objective of DASSA

is to find the minimum set of nodes which can satisfy the

desired coverage without using any location information

and only using local information. An analysis for selecting

the parameters of DASSA is also provided. DASSA can

attain network lifetimes up to 46, 63 and 92% of the life-

times achieved by the centralized algorithm for coverage

levels of 90, 80 and 70%, respectively. DASSA is also

shown to significantly outperform DGT sleep scheduling

algorithm in terms of the network lifetime subject to partial

coverage constraints.

As the number of tiers in the network increases, the gain

provided by DASSA decreases since the randomness in

DASSA increases. In such sensor networking applications,

DASSA can benefit from a clustered network structure. A

multi-sink scenario where each sink employs DASSA

could increase the performance of the algorithm. DASSA

can also be used in an heterogeneous network, where a

subset of nodes have higher capabilities than the other type

of nodes. In such a network, high powered nodes can

employ DASSA within their clusters. For future work, the

performance of DASSA can be analyzed for a clustered

network.
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