A Didtributed Algorithm for Delay-Constrained Unicast Routing *

H.F. Salama D.S. Reeves Y. Viniotis
Center for Advanced Computing and Communication
North Carolina State University
Box 7911, Raleigh, NC 27695
Phone: (919) 515-5348 Fax: (919) 515-2285
{hf sal ama, r eeves, candi ce}@o0s. ncsu. edu

Abstract

We definethe problem of unicast routing subject to delay constraintsin point-to-point connection-oriented networks
as a delay-constrained least-cost path problem. This problem is NP-complete, and therefore we propose a simple,
efficient, distributed heuristic solution: the delay-constrained unicast routing (DCUR) algorithm. DCUR requires
limited information about the network state to be kept at each node. This information is stored in a cost vector and
a delay vector which resemble the distance vectors of some existing routing protocols. We prove the correctness of
DCUR by showing that it is always capable of constructing a loop-free delay-constrained path within finite time, if
such a path exists. The number of computations DCUR performs at each node participating in the path construction
processis fixed, irrespective of the size of the network. The message complexity of DCUR is O(|V|®) messagesin the
worst case, where |V| is the number of nodesin the network. However, simulation results show that, on the average,
much fewer messagesare required. Therefore, DCUR scaleswell to large networks. We also use simulation to compare
DCUR to the optimal delay-constrained least-cost path algorithm, and to the least-delay path algorithm. Our results
show that DCUR yields satisfactory performance with respect to both path cost and path delay.

Keywords: Routing, Delay Constraints, Quality of Service, Distributed Algorithms

*This work was supported in part by the Center for Advanced Computing and Communication at North Carolina State University, and by AFOSR
grants F49620-92-3-0441DEF and F49620-96-1-0061.

1 Introduction

New distributed applications are emerging a a fast rate. These applications typically involve red-time traffic that
requires quality of service (QoS) guarantees. Traffic streams carrying voice, video, or critical real-time control signals
have particularly stringent end-to-end delay requirements. In addition, real-time traffic usualy utilizes a significant
amount of resources while traversing the network. Hence the need for routing a gorithms which are able to satisfy the
delay requirements of real-time traffic and to manage the network resources efficiently.

Routing problems can be divided into unicast (point-to-point) problems and multicast (point-to-multipoint or
multi point-to-multi point) problems. In this paper, we only consider the unicast routing problem. Unicast routing proto-
cols can be classified into two categories: distance-vector protocols, e.g., the routing information protocol (RIP) [1, 2],
and link-state protocols, e.g., the open shortest path first protocol (OSPF) [3]. Distance-vector routing protocols are
based on a distributed version of Bellman-Ford shortest path (SP) algorithm [4]. Considering the message complexity,
distance-vector routing protocols scale well to large network sizes, because each node (router) sends periodical topology
update messages only to itsdirect neighbors. No flooding or broadcasting operations are involved. Each node maintains
only limited information about the shortest paths to all other nodes in the network. Due to their distributed nature,
distance-vector protocols may suffer from looping problems when the network is not in steady state. In link-state
routing protocols, on the other hand, each node maintains complete information about the network topology, and uses
this information to compute the shortest path to a given destination centrally using Dijkstra sagorithm [4]. Link-state
protocol shave limited scal ability, because flooding i s used to updatethe nodes' topology information. They do not suffer
from looping problems, however, because of their centralized nature. Recently, Garcia-Luna-Aceves and Behrens [5]
proposed a distributed protocol, based on link vectors, that avoids |ooping problems and scales well to large networks.

Both Bellman-Ford and Dijkstra SP agorithms are exact and run in polynomial time. As the name indicates, an
SP agorithm minimizes the the sum of the lengths of the individual links on the path from source to destination. The
properties of the SP depend on the metric the link length represents. If unit link lengths are used, the resulting SPis a
minimum-hop (MH) path. If the length of alink is a measure of the delay on that link, then an SP a gorithm computes
theleast-delay (LD) path, and if the link length is set equal to thelink cost, then an SP a gorithm computesthe | east-cost
(LC) path. Many variations of the SP problem have been studied over the years. For example, Simha and Narahari [6]
studied the case where queueing delay is the dominant component of a link’s delay, and Aida et. a [7] proposed an

optimal SP agorithm that takesinto account both the mean and the variance of the link delays. Rampal and Reeves [8]

investigated the interaction between routing and call admission control for multimedia traffic. Plotkin [9] proposed a
strategy that unifies the routing and call admission decisions. Chen and Liu [10] showed that the problem of routing a
multimediaconnection subject to acell loss constraint is NP-compl ete and proposed heuristic solutionsfor that problem.

We study the problem of unicast routing of real-time traffic with end-to-end delay requirements (delay constraints)
in connection-oriented networks. We formulate the problem as a delay-constrained LC (DCLC) path problem. This
problem has been shown to be NP-complete [11]. The only prior work on this problem was reported by Widyono [12].
He proposed an optimal centralized del ay-constrained algorithm to solve the DCLC problem. Hisagorithm, called the
congtrained Bellman-Ford (CBF) agorithm, performs a breadth-first search to find the DCLC path. Unfortunately, due
to its optimality, CBF's worst case running times grow exponentially with the size of the network. Delay-constrained
unicast routing is a special case of the delay-constrained multicast routing problem which has received alot of attention
in recent years [13]. Thus, delay-constrained multicast routing heuristics can be used to solve the DCLC problem.
However, these delay-constrained multicast heuristics require complete information about the network topology to be
available at every node, and their running times grow at fast rates with the network size [13]. Therefore, neither CBF
nor the delay-constrained multicast routing heuristics can be applied to large networks.

We propose a distributed heuristic to solve the DCLC problem: the delay-constrained unicast routing (DCUR)
agorithm. DCUR requires alimited anount of computation at any node, and its communication complexity is O(|V|®)
in theworst case. On the average, however, DCUR requires much fewer messages, and therefore, it scales well to large
network sizes. DCUR requires only alimited amount of information at each node. Thisinformationis stored in adelay
vector and a cost vector that are similar to the distance vectors of some existing routing protocols[1]. The basic idea of
DCUR isthat when a node receives a request to construct a delay-constrained path to a given destination, that node is
given the choice between two alternatives only. The node can either follow the direction of the LC path or the direction
of the LD path. After deciding which direction to follow, the node sends a request to the next hop nodein that direction
to take over responsibility for the rest of the path construction operation. When the next hop node receives a request to
congtruct a delay-constrained path, it follows the same procedure that has been explained for the previous node. Each
node hands over the responsibility for path construction to the next hop node in the direction of the destination until the
destination itself is reached. Limiting the number of paths to choose from at any node to only two restricts the amount
of computation DCUR requires considerably.

Establishing a connection that provides guaranteed service involves routing, signaling, call admission control, and

resource reservation. In this paper, we only consider the routing aspect of the problem and leave the other aspects for

futureinvestigation. The remainder of this paper is organized as follows. In section 2, we formul ate the DCL C problem.
In section 3, we describe the routing information needed at each node for successful execution of DCUR. Then, in
section 4, we present the distributed DCUR agorithm, prove its correctness, and study its complexity. In section 5, we

evaluate DCUR’s performance using simulation. Section 6 concludes the paper. work in section 6.

2 Problem Formulation

A point-to-point communication network isrepresented as a directed simple connected network N = (V, E), where V' is
aset of nodesand & isaset of directed links. A link (u, v) € E isanoutgoinglink for nodew« € ¥V and anincoming link
forv e V. Anylinke = (u,v) € E hasacost C(e) (same as C(u, v)) and adelay D(e) (same as D(u, v)) associated
withit. C'(e) and D(e) may take any nonnegetive real values. The link delay D(e) is ameasure of the delay a packet
experiences when traversing thelink e. Thelink cost C'(e) may be either a monetary cost or some measure of thelink’s
utilization.

We define a path as an alternating sequence of nodes and links P (vo, vi;) = vo, €1, v1, €2, V2, . . ., Vk—1, €k, U, SUCh
that every e; = (v;—1,v;) € B, 1 < i < k. A path contains loops if not al its nodes are distinct. If all nodes are
digtinct, then the path is loop-free. In the remainder of this paper, it will be explicitly mentioned if a path contains
loops. Otherwise a “path” aways denotes a loop-free path. We will use the following notation to represent a path:
P(vo,vg) = {vo — v1 — ... — vp_1 — v }. For agiven source node s € V and destination node d € V,
P(s,d) = {Pi,..., Pn}istheset of all possible dternative paths from s to d. The cost of a path P; is defined as the
sum of the costs of the links constituting P;.

Cost(P;) = Z C(e) (1)
cEP;
Similarly, the end-to-end delay aong the path P; is defined as the sum of the delays on the links constituting 7.

Delay(P;) = Z D(e) 2

eeP;

The DCLC problem finds the LC path from a source node s to a destination node d such that the delay along that path
does not exceed adelay constraint A. 1t is constrained minimization problem that can be formulated as follows.
Delay-Constrained L east-Cost (DCLC) Path Problem: Given a directed network N = (V, E'), a nonnegative cost

C'(e) for each e € E, anonnegativedelay D(e) for each e € E, asourcenode s € V, adestinationnoded € V, and a

positive delay constraint A, the constrained minimization problemis:

[Cost(P; 3
B kP ®

whereP’ (s, d) istheset of pathsfrom s to d for which theend-to-end delay isbounded by A. Therefore?’ (s, d) C P(s, d).

If P; € P(s,d) then P; € P’(s,d) if and only if
Delay(P;) <A. 4

The DCLC problem is NP-complete [11]%. It is also NP-completein the case of undirected networks. However, it is

solvablein polynomial timeif all link costs are equal or dl link delays are equal .

3 Routing Information

In this section, we discuss the routing information which needs to be present a any node in the network to assure
successful execution of DCUR. Then, in section 4, we describe the operation of DCUR. Every node v € V- must have
the following informati on avail abl e during the computation of the delay-constrained path: the costs of all outgoinglinks,
the delays of al outgoing links, a cost vector, adelay vector, and a routing table.

The cost vector a node v consists of |V] entries, one entry for each node w in the network. Each entry in the cost

vector holdsthe following information:

e thedestination nodeID, w,
o thecost of the LC path from v to w, least_cost_value(v, w), and

¢ theID of the next hop node on the LC path from v to w, least_cost_nhop(v, w).

Similarly, the delay vector at node v has one entry for each node w in the network. However, each entry in the delay

vector holds:

e thedestination nodeID, w,
o thetotal end-to-end delay of the LD path from v to w, least_delay_value(v, w), and

o theID of the next hop node on the LD path from v to w, least_delay_nhop(v, w).

The cost vectors and delay vectors are similar to the distance vectors of some existing routing protocols[1]. Distance-

vector based protocols discuss in detail how to update the distance vectors in response to topology changes, and how

1In [11] the same problem s called the shortest constrained-weight path problem.

to prevent instability. These procedures are simple and require the contents of the distance vector at each node to
be periodically transmitted to direct neighbors of that node only. They do not involve any flooding or broadcasting
operations. The same procedures used for maintaining the di stance vectors can be used for maintaining the cost vectors
and delay vectors. We will not discuss these procedures in this paper, because our focus is on a routing a gorithm that
uses the cost vectors and delay vectors as input information. Thus, we assume, in the remainder of this paper, that the
cost vectors and delay vectors at all nodes are up-to-date. We al so assume that thelink costs, the link delays, the contents
of the cost vectors, and the contents of the delay vectors do not change during the execution of the routing al gorithm.

In addition to the cost vector and delay vector, each node » maintains a routing table. Each entry in the routing table
corresponds to an established path from a source node s to a destination d that passes through v. A routing table entry
will be described in the next section. Routing table entries are created during the connection establishment phase for a
session involving real-time traffic that flows from a source s to adestination d. 1n addition to the routing information, a
routing table entry could also be used to hold information about the resources reserved for the connection from s to d.
When that areal-time session terminates, the corresponding pathistorn down, and all routing tabl e entries corresponding

to that path are del eted.

4 The Delay-Constrained Unicast Routing (DCUR) Algorithm

We start by presenting a simple version of DCUR, and explaining how to implement it in a distributed fashion. Then we
discuss how loops may be created, and how DCUR detects them and eliminates them. After completing the description
of DCUR we proveits correctness and study its complexity.

DCURisasource-initiated a gorithmthat constructsadel ay-constrai ned path connecting source node s to destination
node d. The path is constructed one node at a time, from the source to the destination. Any node v at the end of the
partialy-constructed path can choose to add one of only two aternative outgoing links. Onelink ison the LC path from
v to the destination, while the other link is on the LD path from v to the destination. This limitation restricts DCUR’s
ability to construct the optimal path, but it considerably reduces the amount of computation required at any node.

In thefollowing, we describe asimple version of DCUR which assumes that no routing loops can occur. The source
node s initiates path construction by looking up theleast _delay_value(s, d) fromitsdelay vector. If thisvalueisgreater

than the delay constraint A, then no delay-constrained paths exist between s and d, and DCUR fails and stops. If,

however, delay-constrained paths do exigt, i.e.,
least_delay_value(s,d) < A, (5)

the algorithm proceeds. The source s becomes the current active node, denoted active_node. At al timesthereisonly
one active node, at the end of the partially-constructed path. The variable delay_so_far is set to O, and the variable
previous_active_node 1S Set to null.

The active_node reads the ID of the next hop node on the LC path towards d, least_cost_nhop(active_node, d),
fromitscost vector. We denoteleast_cost_nhop(active_node, d) aslc_nhop for convenience. Then active_node sends
a Query message to le_nhop, requesting about the LD value from le_nhop to d. lc_nhop looks up the requested value
least_delay_value(lc_nhop, d) from its delay vector, and sends a Response message back to active_node with this

information. After active_node receives the Response message, it checks if
delay_so_far + D(active_node,le_nhop) + least_delay_value(lc_nhop,d) < A. (6)

If the inequality is satisfied, then there exist delay-constrained paths from active_node to d which use the link
(active_node, le_nhop), and active_node selects the direction of the LC path towards d. [f the inequality is not
satisfied, then active_node selects the direction of the LD path towards d. The LD path from active_node to d is
guaranteed to be part of at least one delay-constrained path from s to d; otherwise, active_node could not have been
selected in apreviousstep (aproof isprovided in subsection 4.2). After deciding which directionto follow, active_node

creates arouting table entry with the following information:

o thelD of s,

the D of d,

o previous_node = |D of the previous_active_node,

le_nhop, if the LC path direction is chosen,
next_node =

least_delay_nhop(active_node, d), if the LD path direction is chosen,
e previous_delay = delay_so_far, and

LCPATH if theLC path direction is chosen,

flag =
LDPATH iftheLD pathdirectionischosen.

Then active_node adds D(active_node, next_node) to the variable delay_so_far. Finaly the active_node sends a
Construct_Path message to next_node that contains: the ID of the source s, the ID of the destination d, the value of
the delay constraint A, and the updated value of delay_so_far which represents the delay along the already constructed

path from s to next_node. After sending out the C'onstruct_Path message, active_node becomes inactive.

When anodev # d receives a C'onstruct_Path message, it becomes the new active_node. The new active_node
setsprevious_active_node to bethelD of thenodewhich sentitaConstruct _Path message. Thenthenew active_node
executes the same procedure just described.

When the destination node d receives a Construct_Path message, it records the ID of the node which sent
the message. d creates a routing table entry, with the following values: ID of the source s, ID of the destination
d, previous_node = previous_active_node, next_node = null, and previous_delay = delay_so_far. Then the
destination sends an acknowledgment back to the source. When the source receives the acknowledgment message 2, it
signalsto the application that the path construction has been successfully completed, and traffic can be transmitted along
that path.

An active_node, does not send a Query message if the next hop node is the same on both the LC path and the LD
path from active_node tothedestination, i.e., least_cost_nhop(active_node, d) = least_delay_nhop(active_node, d).
It isknown in advance that the LD direction satisfies the delay constraint, so thereisno need for the Query message. In
thiscase, active_node setsthe flag inthe routingtable entry to LD P AT H. The reason for that particular setting will
be explained later in this section, when routing loops are di scussed.

The need for the Query and Response messages can be completely eliminated by making use of the fact that a node
transmits the contents of its cost vector and delay vector periodically to all its neighbors. Thus if a node saves a copy
of the cost vector and delay vector from each of its neighbor nodes, then there is no need for the Query and Response
messages. However, thisincreases the storage requirements at each node.

Figure 1 shows an example® of the paths obtained by different routing algorithms to connect source node A to
destination node £, with a delay constraint of 3. Subfigure 1(d) shows the path DCUR constructs. DCUR proceeds
as follows. The source A adds the first link on the LC path towards Z, link (A, B), after checking that there exist
delay-constrained pathsfrom A to E that utilize (4, B). Then node B addsthefirst link onits LC path towards E, link
(B, C), dfter checking that there exist delay-constrained paths from A to E' that utilize (4, B) and (B, C'). Node C
next determines that the first link on its LC path towards £, link (C, D), cannot be used. This is because the subpath
{A — B — C — D} isnot part of any delay constrained path from A to E. Thus C decides to continue viathe LD

path direction. It addsthefirst link in that direction, link (C, E), which leads directly to the destination.

2The acknowledgment message can either travel the constructed path backwards or it can be sent over either the LC path or the LD path from
the destination to the source. The choice is straight-forward and will not be described in this paper. Tearing down an existing path is also a simple
operation that will not be discussed in this paper.

3Figures 1 and 2 show examplesof undirected networks for simplicity. DCUR can be applied to both directed and undirected networks.

(a) Optimal DCLC path, cost = (b) LD path, cost =6, delay = 2 (c) Unconstrained LC path, (d) DCUR path, cost = 6, delay

5,delay =3 cost = 4, delay = 4 =3

Figure 1: Paths constructed by different algorithmsfrom source node A to destination node . All link delays are equal

to 1, and are not shown in thefigure. Link costs are shown next to each link. The delay constraint, A, isegual to 3.

The paths constructed by existing distance-vector protocols are guaranteed to be loop-free if the contents of the
distance vectors at al nodes are up-to-date and the network is in stable condition. However, up-to-date cost vectors
and delay vectors contents and stable network condition are not sufficient to guarantee loop-free operation for DCUR.
In DCUR, each node involved in the path construction operation selects either the LC path direction or the LD path
direction as has been explained before. If al nodes choose the LC path direction, or al nodes choose the LD path
direction, then no loops can occur, because the resulting paths are the LC path or LD path respectively. However, if
some nodes choose the LC path direction while others choose the LD path direction, loops may occur. In the following

subsection, we discuss how DCUR detects and eliminates oops.

4.1 Loop Removal

Figure 2 shows a scenario that resultsin aloop. The source node A initiates the construction of a path towards the
destination node D with an imposed delay constraint value of 8. Subfigures 2(a), 2(b), and 2(c) show successive stages
of path construction until aloopis created. The source A followsthe LD path direction towards the destination D and
startsthe path construction by addinglink (4, B). Node B followsthe L C path direction towards D and addslink (B, C')
to the path. Node C' also attempts to follow the LC path direction towards D by using link (C', £'). Thisisnot possible

however, because C’scalculationsreveal that if (C', E) isadded, DCUR will not be ableto construct adel ay-constrained

(1,5 (81)

Figure 2: Example of aloop scenario. A isthe source and D the destination. Link costs and link delays are shown next

to each link as (cost,delay). The delay constraint, A, isequal to 8.

path to D (the least total delay that can be achieved in this case is 10). Thus ' followsthe LD path direction and adds
link (C, A) to the path being constructed. This creates theloop {4 — B — C' — A}, as shown in subfigure 2(c).

DCUR detects |oops as follows. When anode receives a Construct _Path message, it searches itsroutingtable. A
loop is detected if arouting table entry already exists for the source-destination pair specified in the Construct_Path
message.

Theactive node, active_node, that detectsaloopinitiatestheloop removal operation. The contentsof active_node’s
routing table entry are left unchanged. active_node sends a Remove_Loop message to the previous node on the
loop, previous_active_node (the node fromwhich active_node received thelast C'onstruct_Path message), and then
active_node becomes inactive. The IDs of the source and destination nodes are al that needs to be included in the
Remove_Loop message. The Remove_Loop message traverses the loop backwards, removing routing table entries,
until it finds a node w whose routing table entry’s flag is set to LC'PAT H indicating that this node is following

the LC path direction towards the destination. There must be at least one node on the loop that follows the LC path

direction, because, as we mentioned before, loops can not be created if all nodes follow the LD path direction. The
Remove_Loop message is not sent any further backwards along the loop, after it arrives at w. Node w then decides
to follow the LD path direction, instead of the LC path direction, in order to avoid the conditions that caused the loop.
This decision can never lead to any delay constraint violations. Thus w adjusts the contents of its routing table entry so
that next_node = least_delay_nhop(w,d) and flag = LDPATH. The variables previous_node, previous_delay,
and delay_so_far remain unchanged. Then w sends a C'onstruct_Path message to next_node, and path construction
continues.

For the example of figure 2, node A detects the existence of aloop. A reacts by sending a Remove_Loop message
that traverses the loop backwards. Node C' receives the Remove_Loop message from A, but C' is aready following
the LD path direction towards the destination, so all it does isto send the Remove_Loop message further backwards to
B, and to delete its routing table entry, thereby removing link (C, A) from the path (subfigure 2(d)). Node B receives
the Remove_Loop message. It is following the LC path direction towards the destination, so it decides to follow the
LD path direction instead, and modifies its routing table entry accordingly. Thus removing link (B, C') from the path
and adding link (B, D) instead. Then B continues constructing the path by sending a C'onstruct_Path messageto D,
which isthe destination. The fina delay-constrained path from A to D isthe one shown in subfigure 2(e).

It was mentioned above that, at a node w, the routing table entry’s flag is set to LDP AT H when both the LC
path direction and the LD path direction share the same link to the next hop. The reason isthat if the flag was set to
LCPATH, and then w received a Remove_Loop message, it would have removed the link leading to the next nodein
the LC path direction, and then it would have added the same link to the path again, because that link leads also to the
next node inthe LD path direction. The result would have been the same loop occurring twice.

The description of DCUR isnhow complete. Pseudo code for the algorithmis given in the appendix. In the remainder

of this section, we prove the correctness of DCUR and study its complexity.

4.2 Correctness of DCUR

We verify the correctness of DCUR by proving that it can always construct a loop-free delay-constrained path within
finitetime, if such apath exists. If no feasible path exists for a given source-destination pair, DCUR failsimmediately at
the source node after it determines that inequality 5 is not satisfied. Thusthereisno unnecessary overhead if no solution

exists.

10

Theorem 1 DCUR always constructs a delay-constrained path for a given source s and destination d, if such a path
exists.

Proof. If no feasible path exists for a given source-destination pair, DCUR fails immediately at the source node after
checking that the delay along the LD path exceeds the delay constraint, i.e., inequality 5 is not satisfied. If the LD
path can not satisfy the delay constraint, there can be no other path that satisfies the given constraint. If at least one
delay-constrained path from s to d exists, theninequality 5 will be satisfied, and path construction can start. Initialy, the
source s is the only member in the path. The rest of this proof is done by induction on j, where P; denotes the subpath
constructed starting at the source s and j denotesthelength of the pathin hops. Thebasisforinductionis P = {vo} where
vo = s. Sinceinequality 5 is satisfied and Delay(Py) = 0O, it followsthat Delay(Py) + least _delay_value(vo, d) < A.
Assume that

Delay(P;) + least_delay value(v; , d) < A (7

where P; = {vo — ... — v; }. Inequality 7 guaranteesthat the subpath P; is part of adelay-constrained path from s to
d. Whenv; istheactive_node, DCUR proceeds by adding either thefirst link along the LC path from v; to d or thefirst
link along the LD path from v; to d. If DCUR adds thefirst link along the LC path, then inequality 6 must be satisfied.

We restate that Inequality for the sake of clarity.
delay_so_far + D(active_node, lc_nhop) + least_delay_value(le_nhop, d) < A

Notethat delay_so_far = Delay(P;) and active_node = v; and le_nhop = v; 1. Thustheinequality can berephrased
as

Delay(P;) + D(vj, vj41) + least_delay_value(vjy1,d) =

Delay(Pji1) + least_delay_value(vj41,d) < A (8)

The other aternative for DCUR is to proceed from active_node = v; by adding the first link along the LD path,
link (v;, vj41). Using least_delay_value(v;, d) = D(vj, vj41) + least_delay_value(v; 41, d), theinequality 7 can be
rewritten as

Delay(P;) + D(vj, vj41) + least_delay_value(vjy1,d) =

Delay(Pji1) + least_delay_value(vj41,d) < A (9)

In both cases, v;4+1 becomes the next active_node. Therefore DCUR guarantees that the subpath from s to the

active_node is delay-constrained and that it is part of a delay-constrained path from s to d. DCUR stops only when d

11

becomes the active_node. |
Theorem 2 Thefinal path constructed by DCUR for a given source s and destination d does not contain any loops.
Proof. We denote s as vg and d as vy, for convenience. Thefinal path constructed by DCUR, P(vo, v3) = {vo — v1 —
.. — vp_1 — v }, containsaloopif itincludesthe same nodetwice, i.e., v; = v; wherei # jand0 < 4, j < k. DCUR
starts at the source, and adds onelink at atime to the path being constructed. When DCUR adds alink (v, , v,), then,
if the node v,, isadded to the path for thefirst time, DCUR creates arouting table entry for the given source-destination
pair a v,. Theresulting path after v, isadded for thefirst timeis {vo — ... — v, }. If, @& asubsequent point in time,
DCUR adds alink (v, , v.), the result would be {vg — ... — v, — ... — v, — v, }. Thisisapath that contains a
loop. Node v, becomes the active_node immediately after link (v, v,) isadded. v, may bethe source vg or any node
in the network other than the destination v;,. v, checksitsrouting table and findsthat arouting table entry already exists
for the given source-destination pair, thus detecting aloop. Asaresult v, initiatesthe loop remova operation. The loop
is broken using the technique described in subsection 4.1. Then, the path construction resumes, and DCUR attempts to
use an aternate path towards the destination v;,. Thusthe final path constructed by DCUR, P(wg, v1), can not include
the source v or any intermediate node more than one time, because each time such a node is added to the path for the
second time, it immediately detects a loop and removes it. The destination vy, is aso included only once in the path,
because DCUR stops as soon as it reaches the vy, for thefirst time. m]
Theorem 3 The execution time of DCUR for a given source s and destination d is always finite.
Proof. If no delay-constrained paths exist, then DCUR failsimmediately at the source after determining theinequality 5
isnot satisfied. If inequality 5 is satisfied, then DCUR proceeds. If no loops occur, then, after adding at most (|V| — 1)
links, DCUR reaches the destination d. It is sufficient to show that, even if loops occur, DCUR will till reach d within

erc (1

finite time. Assume that DCUR constructs a subpath that contains aloop, Proop = {s — ... — v, — ... — vy),

. — vy eIL—(i R v(xz)}. v(xl) denotes the first occurrence of v, and v(xz) denotes the second occurrence of the
same node v,.. After aloop is detected at v(xz), the loop removal operation described in subsection 4.1 traverses P,
backwards, removing links, until it reaches anode v, whose routing table entry’s flag isset to LC'P AT H . There must
be at least one such node between v and v (v, may be vgl)), because loops can not be created if al nodes follow
the LD path direction towardsthe destination. Node v, isthen forced to follow the LD path direction, instead of the LC
path direction, and it removes thefirst link on the LC path from v,. to the destination, link e’ -, and adds thefirst link on

the LD path instead. This link switching procedure prevents the same subpath 7,,, from occurring another time. If,

at a subsequent point in time, another loop occurs, and DCUR removes the node v, completely from the path as part of

12

the loop removal operation. Then if, when path construction resumes after that, DCUR adds the node v, and the link
e o to the path once again. Still the the same subpath P;,,, can not be reconstructed another time, because the second
loop removal operation (which removed node v,) must have selected a node v,, further upstream from v, (v, may be
s), that followed the LC path direction, and forced it to follow the LD path direction instead, thus removing the link
erc and replacing it with another outgoing link from v,. Therefore the same subpath containing aloop, £, , Can not
be constructed twice during the execution of DCUR. Each loop removal operation removes a number of nodes (> 0)
from the path being constructed, and forces one more of the remaining nodesto follow the LD path direction instead of
followingthe LC path direction. Therefore if |oops keep occurring, the solution paths, DCUR attemptsto construct, will
converge towards the LD path from the s to d. Since the size of the network is finite, the number of possible subpaths
starting a s and containing aloop is also finite. Hence DCUR will aways converge towards the LD path solution from
s to d within afinite time, if its attempts to reach the destination d via other paths keep failing because of loops. The
LD path is guaranteed to reach the destination and to satisfy the delay constraint or else DCUR would have failed and

stopped immediately at the source. |

4.3 Complexity of DCUR

Each time a node receives a Construct_Path message or a Remove_Loop message, it performs a fixed amount
of computations, irrespective of the size of the network. Therefore, the computational complexity of the proposed
distributed algorithm at any nodeis O(1) time’.

We now consider the worst case message complexity of DCUR, i.e., the number of messages needed in the worst
case, in order to construct a path for a given source-destination pair. If no loops occur, then the number of messages
needed to construct a path is proportiona to the number of linksin the path. This is because a hode running DCUR
exchanges three messages (one Query message, one Response message, and one C'onstruct_Path message) to add
one link. For anetwork size of |V'| nodes, the longest possible |oop-free path from source to destination consists of | V|
nodesand (|V'| — 1) links. Therefore the number of messages needed in theworst caseisO(|V]), if it is guaranteed that
no loopswill occur. Unfortunately, the occurrence of 1oops complicates the anaysis.

Thetreeof theLC pathsfromany nodein the network to the destination node d, denoted LCTREE, consistsof (|V|—1)

links. Similarly, thetree of the LD pathsfrom any nodeinthe network tothedestination d, denoted LDTREE, a so consists

4In this analysiswe consider the complexity of DCUR only. We do not consider the complexity of the underlying mechanismsfor maintaining and

updating the cost vectors and delay vectors.

13

N . __— LCTREE link

__ = LDTREE link

Figure3: An example of asubnetwork constructed by taking the union of the LCTREE and the LDTREE. The destination

isnode .

of (|V| — 1) links. Theunion of thesetwo treesisasubnetwork N/ = (V, E'), where (|V| — 1) < |E'| < 2% (|V]| - 1),
because some links may be members of both trees. Figure 3 shows an example of the union of an LCTREE and an
LDTREE. In this example, thelink (C, D) is amember of both trees. The | E’| links are the only links considered by
DCUR when constructing a path from a source s to the destination d, because, as has been explained before, at any node
DCUR considers only the LC path direction and the LD path direction towards the destination.

Let the links of LCTREE be called tree links. We add the links of the LDTREE to the LCTREE to obtain the
subnetwork N’. The links of the LDTREE which are not aready in the LCTREE will be classified into one of the

following three link types:

o aback link which may result in aloop,
o adescendent link which may provide one or more nodes with two alternate paths towards the destination, or

o across link which may aso provide one or more nodes with two alternate paths towards the destination®.

In the example of figure 3, links (4, B), (B,C), (C, D), (D, E), and (F, C') aretreelinks. Thelink (D, A4) is aback
link. Links (A, £') and (F', D) are descendent links, and thelink (B, I) isacross link.

A subnetwork N’ has X back links, ¥ descendent links, and Z cross linkswhere0 < X,V, 7 < (JV] - 1) and
X +Y+ 7 < (]V]-1). Adding aback link to a path under construction may or may not result in loop. Since we are
studying the worst case, we assume that adding a back link to a path always results in aloop. Consider only one back
link, e. Link e may be added and removed from the path being constructed severa times, if it is reachable via multiple
aternate paths from the source node. A loop results each time e is added. The back link e is reachable via (Y + 7)

aternate pathsin theworst case. This happenswhenthe (Y + 7) descendent linksand crosslinksare upstream (closer to

5See, for example[14], for definitions of the terms: back link, descendent link, and cross link.

14

the source node) fromtheback link e. Inthiscase each time DCUR attemptsto use oneof the(Y + 7) resulting aternate
paths, it may continue downstream (towardsthe destination) and add the link e, thus creating aloop. If DCUR attempts
tousedl (Y + Z) aternate paths while constructing the del ay-constrained path, the link e will be added and removed
(Y + 7)) times, which meansthat (Y +) loopswill be crested and removed during the path constructi on. The example
of figure 3 isnot aworst case scenario. However, it shows how the back link (D, A) can be reached viathree dternate
paths when node A isthe source. The first dternative is the original path dong the LCTREE: {4 — B — C' — D}.
The second aternative was created due to the addition of the crosslink (B, F'), anditis{4 — B — F — C — D}.
Thefina alternativeis {4 — B — ' — D}. Thispath was brought to existence by the descendent link (', D).

So far we considered only one back link. However, the subnetwork N/ contains X back links. In the worst case,
each of the X back linksisreachablevia(Y + 7) aternate paths. In thiscase we may end up with X « (Y + Z) loops.
Since X +Y + Z < (|V| — 1), it followsthat, in the worst case, DCUR may create and remove O(|V|?) loops before
compl eting the construction of the delay-constrained path.

The largest possible loop consists of (]V'| — 1) nodesand (|| — 1) links (the destination can not be part of aloop
in DCUR). A maximum of three messages are needed to add oneloop link. Thusit takes O(|V'|) messages to creste the
largest loop. One message isneeded for removing oneloop link, which means that at most O(|V'|) messages are needed
if all loop links have to be removed before path construction resumes. Therefore O(|V|) messages are needed, to create
and remove thelargest loop. Intheworst case O(|V|?) loops may be created and removed. Thismeansthat, in theworst
case, DCUR needs O(]V|®) messages to handleloops. Compared to the O(|V'|) messages required to add the permanent
links that congtitute the final 1oop-free path, it is obvious that, in the worst case, loop handling dominates the operation
of DCUR, and that the overall worst case message complexity of DCUR isO(|V|®). Fortunately, our simulation results
show that DCUR'’s average performance is much better than the worst case just studied. These resultswill be presented

in the next section.

5 Simulation Results

We used simulation for our evaluation of the average performance of DCUR. Full duplex, directed, ssmple, strongly
connected networksof different sizeswith homogeneouslink capacities of 155 Mbps(OC3) were used in the experiments.
The positions of the nodes were fixed in arectangle of size 3000 * 2400 K, roughly the area of the USA. A random

generator (based on Waxman's generator [15] with some modifi cations) was used to create links interconnecting the

15

Figure 4: A randomly generated network, 20 nodes, average degree 4.

nodes. The output of thisrandom generator is always aconnected network in which each node' sdegreeisat least 2. The

probability alink exists between any two nodes « and v is given by:

—l(u,v)

P(u,v) = fexp——

(10)

where /(u, v) is the distance between « and v, and L is the maximum distance between any two nodes. The parameter
« controlsthe ratio of short linksto long links, while 5 control s the average node degree of the network. We obtained
realistic network topologies with an average node degree of 4 by carefully adjusting the values of « and 3°. Figure 4
shows an example of arandomly generated network.

The propagati on speed through the linkswas taken to be two thirdsthe speed of light. Under thisassumption, thesize
of the rectangle enclosing our network is15 + 12 msec?. In addition, we assumed a high-speed networking environment
with small packet (cell) sizes and limited buffer space at each node. The link propagation delay was dominant under
these assumptions, and the queueing component of the link delay was neglected. The link delays were thus symmetric,
D(u,v) = D(v, u), because thelink lengths were symmetric.

We defined the cost, C'(e), of link e, as afunction of its utilization”. Link costs were asymmetric, because C'(u, v)

6The average node degree of current internetworks ranges between 3 and 4. The denser the network connectivity the clearer the advantagesand

disadvantages of a routing algorithm appear in the simulation results. That's why we used an average node degree of 4.
“In our experiments we reserved bandwidth along the constructed path. The amount of bandwidth reserved on each link of a path connecting a

given source-destination pair was taken equal to the equivalent capacity of the traffic streaming from the source to the destination. We set the cost of

16

and C'(v, u) were independent. Two experiments were conducted over the networks we have just described.

5.1 The Average Message Complexity of DCUR

In the first experiment, we measured the average number of messages DCUR requires to establish a delay-constrained
path. For each run of the experiment, we generated arandom set of linksto interconnect the fixed nodes, we selected a
random source node, and we generated random background traffic to utilize each link. The cost (utilization) of a link
was arandom variable uniformly distributed between 5 Mbpsand 125 Mbps. The experiment was repeated with network
sizes ranging from 20 nodes up to 200 nodes. We also varied the delay constraint value from 15 msec to 55 msec. The
delay constraint represents only an upper bound on the end-to-end propagationtime across the network. Relatively small
values were chosen for the delay constraint in order to alow the higher level end-to-end protocols, a both the source
and the destination, enough time to process the transmitted information without affecting the quality of the red-time
session. In thisexperiment, we measured the average number of messages exchanged between the nodes which execute
the distributed DCUR agorithm to construct a delay-constrained path. Note that any message generated by DCUR at
some node is aways destined to an immediate neighbor of that node. Therefore any DCUR generated message travel a
distance of one only hop. Unless otherwise stated, DCUR was run repestedly until confidence intervals of less than 5%
of the mean value, using 95% confidence level, were achieved for all measured values presented in this subsection and
in the next subsection. At least 500 different networkswere simulated for each measured value.

Figure 5 shows the average number of messages versus the size of the network for three different values of the delay
congtraint: astrict delay constraint of 20 msec, a moderate delay constraint of 35 msec, and alenient delay constraint of
50 msec. All three curves of figure 5 indicate clearly that the average number of messages grows very slowly with the
size of the network. For any of the delay constraint values shown in thefigure, doubling the size of the network increases
the average number of DCUR’s messages by roughly one message only. Thusthe average growth rate of the number of
messages is roughly logarithmic in the network size, for the experiments we ran.

The number of messages exchanged while constructing a path is smallest when the delay constraint value is small.

Thisis dueto the following:

o A path that satisfies the strict delay constraint consists on the average of fewer links than a path the satisfies a
lenient delay constraint.

o DCUR isforced to follow the LD path direction most of the time in order to satisfy the strict delay constraint.

alink to be equal to the sum of the equivalent capacities of the traffic streamstraversing that link.

17

9 | Delta = 20 msec <—
Delta = 35 msec —+-
Delta = 50 msec -8--

Average number of messages

|
20 40 60 80 100 120 140 160 180 200
Number of nodes

Figure 5: Average number of messages, variable network size, average node degree 4, three delay constraint settings:

20 msec, 35 msec, and 50 msec.

Therefore, the probability of the occurrence of aloop issmall. As has been discussed in the previous section, the

occurrence of loops increases in the number of messages.

When the delay constraint isincreased to 35 msec, the number of messages is largest. One reason is that the average
number of links on the solution path is greater than it is when the delay constraint is only 20 msec®. The other reason
isthat 35 msec isamoderately strict delay constraint, and DCUR may be able to follow the LC path direction at some
nodes and to follow the LD path direction at others. This toggling between LC path direction and LD path direction
increases the probability loop occurrence, and hence increases the average number of messages exchanged.

Increasing the delay constraint further, from 35 msec to 50 msec, leads to a reduction in the average number of
messages. 50 msec isa lenient delay constraint. Thus DCUR is able to follow the LC path direction most of the time
without violating the delay constraint, and therefore it no longer toggles between the LC path direction and the LD path
direction. The consequence is that loops occur rarely. Of course when the delay constraint is increased to 50 msec, the
average number of links per path aso increases, but figure 5 indicates that the lack of loop occurrence has the dominant
effect in thiscase.

It has been mentioned in the previous section that when the L C path direction and the LD path direction from anode
towards the destination coincide, then there is no need for sending the Query message and waiting for the Response

message. Both messages can be eliminated, and only one message is needed to add the next link, the C'onstruct_Path

8For a200-node network the average number of links per path is 4.28 for a 20 msec delay constraint, 4.72 for a 35 msec delay constraint, and 5.12

for a50 msec delay constraint.

18

0.12 T
20 nodes —<—
x 50 nodes —+-
; 100 nodes -8--
- 01 s 200 nodes -~ 7]
S ; -
o i
B i e
o - Y .
E 0.08 | B !
3 A
c . N
8 F- .
g oo06f .
2 ' !
o N
o ; N .
G - 4
a 0.04 W, om
c B %
2 \ \“\j
< o002} LR .
.
1 g

0 == =
0.015 0.025 0.035 0.045 0.055

Delay constraint (seconds)

Figure 6: Average number of loops occurring while constructing a single delay-constrained path, network sizes of 20

nodes, 50 nodes, 100 nodes, and 200 nodes, average node degree 4, variable delay constraint.

message. Otherwise, three messages are needed to add one link. Our simulation results show that, at many nodes, the
LC path direction and the LD path direction towards the destination are identical, and thus eliminating the Query and
Response messages at such nodes, results in a significant reduction in the number of messages per added link. For
example, figure 5 shows that for a 200-node network and a delay constraint of 50 msec, on the average 8.3 messages
are needed to construct the path. We aso measured the average number of links on the path, and it is5.12 links. Thus
(8.3/5.12) = 1.62 messages are needed per added link assuming that no loops occur. Thisis more than a 45% reduction
when compared to the need for 3 messages per added link if the Query and Response messages were always exchanged.

In order to verify our assumption, that loops occur most frequently when the delay constraint is moderately strict,
we measured the average number of loop occurrences during one successful run of DCUR, i.e., arun that successfully
congtructs a delay-constrained path for a given source-destination pair. We found that loops do not occur frequently
(lessthan 12 loops every 100 successful runs of DCUR). Therefore, it was not possible (due to the excessive simulation
times) to repeat the experiment until small enough confidence intervals were achieved for the measured values of the
average number of loop occurrences. 1,000 successful runs of DCUR were simulated for each pointin figure 6. Figure6
shows the average number of loop occurrences per successful run of DCUR versus the delay constraint for different
network sizes. Figure 6 shows that loops occur most frequently when the delay constraint value ranges from 20 msec
to 45 msec. When the delay constraint is lenient (larger than 45 msec) 1oop occurrences are very infrequent, less than
one loop every 100 successful runs of DCUR. The average number of 1oop occurrences also decreases when strict delay

congtraint values of less than 20 msec are used. It is obvious from figure 6 that loops do not occur frequently for all

19

the network sizes we simulated. However, the figure aso indicates that 1oops occur more frequently as the size of the

network increases.

5.2 Comparison to Other Algorithms

In thissubsection, we show the results of the second experiment which compares DCUR withtwo a gorithmsthat area so
suitable for delay-sensitive applications. The first agorithmisthe LD path agorithm, or smply LDP. LDP is optimal
with respect to the end-to-end delay, but it does not attempt to minimize the cost of the constructed path. Therefore,
it may result in inefficient utilization of the link bandwidth. Simple, distributed implementations of LDP already exist
over current networks. The other agorithm is CBF which was briefly described in section 1. CBF constructs the
optimal DCLC path, but it is centralized and its execution time grows exponentialy with the network size. Note that
CBF and LDP are the only existing unicast routing a gorithms capable of satisfying the delay requirements of real-time
applications.

The structure of the second experiment is similar to that of the first experiment. The only difference is that for
each randomly selected source-destination pair we applied DCUR, LDP, and CBF, one a a time, to construct the
delay-constrained path from source to destination. For each algorithm, we measured the average path cost, the average
inefficiency relative to CBF, the average end-to-end delay, and the success rate (how frequently the a gorithm succeeds

to find a delay-constrained path). The average inefficiency of an agorithm « is defined as:

(costy — costepr)

COStCBF

meffictency; =

(11)

We show the results of the experiment for 200-node networks and variable delay constraint. Figure 7 shows the
average inefficiency of LDP and DCUR relative to CBF. When the delay constraint is small (15 msec) the number of
alternate delay-constrained paths, available for the algorithms to choose from, is small, and therefore the differences
between the algorithms are also small. For delay constraint values between 20 msec and 45 msec, DCUR isup to 10%
worse than the optima CBF. The reason isthat, because of the tight delay constraint, DCUR can not always follow the
unconstrained LC path direction. In some cases, it has to follow the LD path direction instead. The toggling between
these two directions affects DCUR's ability to create low-cost paths. However, DCUR remains on the average more
efficient than LDP. When the value of the delay constraint exceeds 45 msec, itseffect on the constructed path isminimal.
In that range, DCUR’ sinefficiency approaches zero, because it amost exclusively dectsto follow the LC path direction.

LDP does not attempt to minimize the path cost at al. That'swhy itsinefficiency isup to 50% when thedelay constraint

20

09 | LDP -+-- -
DCUR -8--

0.8 | -
0.7 B
0.6 | E

0.5 | A

Inefficiency

04 | T N
03 E
02 F _

01f"" geB _

a

0
0.015 0.025 0.035 0.045 0.055
Delay constraint (seconds)

Figure 7: Inefficiency, 200-node networks, average node degree 4, variable delay constraint.

0.055
CBF ——
LDP -+-
DCUR 8-
0.045 | Delay Constraint |
@
=}
c
[=}
(5]
[
N2 S
5 0.035 B
°)
kel
=}
=
@
L
= 0.025
[
B S T
0015 | @+]

0.015 0.025 0.035 0.045 0.055
Delay constraint (seconds)

Figure 8: Average end-to-end delay, 200-node networks, average node degree 4, variable delay constraint.

vaueislarge.

Figure 7 indicates that the path cost of DCUR is aways within 10% from the path cost of the optima CBF. Thus
DCUR'’s cost performance is quite satisfactory, especially when considering that CBF is a centralized a gorithm that
requires global information about the network topology while DCUR is a distributed heuristic that requires only limited
information to be maintained at each node (one cost vector and one delay vector).

The average end-to-end delays of DCUR and CBF are considerably larger than the minimal delays achieved by LDP
as shown in figure 8. Thisis not a big advantage for LDP, though. More important is that all three agorithms have
the same success rate in satisfying the imposed delay constraint. The success rates of the three different algorithms

are identical, because all of them are always capable of constructing a delay-constrained path, if one exists. All three

21

algorithms achieve a 100% success rate when the delay constraint valueis greater than 30 msec. Asthe delay constraint
value decreases bel ow 30 msec the success rate decreases indicating that del ay-constrained sol utions do not always exist
for networks spanning large areas when the delay constraint value is sufficiently small.

In additionto the 200-node networks, we simul ated 20-node, 50-node, and 100-node networksaswell. Theresultsfor
the different network sizes are similar to results shown above for the 200 nodes case. Thisindicatesthat the performance

of the different algorithmsrel ative to each other does not depend significantly on the network size.

6 Conclusions

We studied the delay-constrained routing problem in point-to-point connection-oriented networks. Our work was
motivated by the fast evolution of delay-sensitive distributed applications. We formulated the problem as a delay-
congtrained least-cost path problem, which is known to be NP-complete. Therefore we proposed a distributed, source-
initiated heuristic solution, the delay-constrained unicast routing (DCUR) agorithm, to avoid the excessive complexity
of the optimal solutions. DCUR is aways capable of constructing a delay-constrained path within afinite time, if one
exists, for a given source-destination pair. DCUR requires only a limited amount of information a each node. The
information at each node is stored in a cost vector and a delay vector. These vectors are constructed and maintained in
exactly the same manner as the distance vectors which are widely deployed over current networks. DCUR is capable
of detecting and eliminating any loops that may occur while it constructs a delay-constrained path. We proved the
correctness of DCUR by showing that it is aways capable of constructing a loop-free delay-constrained path within
finitetime, if such apath exists. The number of computationsat each node participatingin the path construction process
isfixed, irrespective of the network size. The worst case message complexity of DCUR is dominated by the occurrence
and removal of loop. It requires O(|V|*) messages to construct asingle path in theworst case. Fortunately, however, our
simulation results show that DCUR requires much fewer messages on the average, because loop occurrence israre in
realistic networks. We compared the performance of DCUR to CBF, which is an optimal DCLC agorithm with running
times that grow exponentially with the size of the network. We aso compared DCUR to LDP, a shortest path a gorithm
that minimizes the end-to-end delay, but does not attempt to minimize the path cost. Our resultsindicated that DCUR
yields satisfactory performance with respect to both path cost and path delay. Our evaluation of the cost performance
of the algorithms showed that DCUR is always within 10% from the optimal CBF, while LDP is up to 50% worse than

optimal in some cases. In summary, DCUR isasimple, efficient, distributed algorithm that scales well to large network

22

Sizes.

References

[1] C. Hedrick, “Routing Information Protocol.” Internet RFC 1058, June 1988.

[2] G.Makin,“RIP Version 2, Carrying Additiona Information.” Internet RFC 1723, November 1994.
[3] J. Moy, “OSPF Version 2" Internet RFC 1583, March 1994,

[4] D. Bertsekas and R. Gallager, Data Networks. Prentice-Hall, second ed., 1992.

[5] J. Garcia-Luna-Aceves and J. Behrens, “Distributed, Scalable Routing Based on Vectors of Link States,” IEEE
Journal on Selected Areas in Communications, vol. 13, pp. 1383-1395, October 1995.

[6] R. Smha and B. Narahari, “Single Path Routing with Delay Considerations,” Computer Networks and ISDN
Systems, vol. 24, pp. 405419, 1992.

[7] M. Aida, I. Nakamura, and T. Kubo, “Optima Routing in Communication Networks with Delay Variations,” in
Proceedings of IEEE INFOCOM ' 92, pp. 153-159, 1992.

[8] S.Rampa and D. Reeves, “An Evauation of Routing and Admission Control Algorithmsfor Multimedia Traffic,”
Computer Communications, vol. 18, pp. 755768, October 1995.

[9] S. Plotkin, “Competitive Routing of Virtua Circuitsin ATM Networks,” IEEE Journal on Selected Areas in
Communications, vol. 13, pp. 1128-1136, August 1995.

[10] W.-T. Chen and U.-J. Liu, “Routing Problem with Performance Requirement Trand ation for Multimedia Commu-
nicationsin an ATM Wide-Area Network,” in Proceedings of IEEE ICC’ 94, pp. 1490-1494, 1994.

[11] M. Garey and D. Johnson, Computersand Intractability: A Guide to the Theory of NP-Completeness. New York:
W.H. Freeman and Co., 1979.

[12] R. Widyono, “The Design and Evauation of Routing Algorithms for Real-Time Channels” Tech. Rep. ICS|
TR-94-024, University of Californiaat Berkeley, International Computer Science Institute, June 1994.

[13] H. Salama, D. Reeves, Y. Viniotis, and T.-L. Sheu, “Evaluation of Multicast Routing Algorithms for Real-Time
Communication on High-Speed Networks,” in Proceedings of the Sixth IFIP Conference on High Performance
Networking (HPN ’ 95), pp. 27-42, Chapman and Hall, September 1995.

[14] S. Baase, Computer Algorithms, Introduction to Design and Analysis. Addison-Wesley Publishing Company,
2nd ed., 1988.

[15] B. Waxman, “Routing of Multipoint Connections,” IEEE Journal on Selected Areas in Communications, vol. 6,
pp. 1617-1622, December 1988.

Appendix Pseudo-Code of DCUR

First hereisalist of al the control messages exchanged between nodes implementing DCUR:

Construct_Path(source node, destination node, delay constraint value, value of the delay from
the source to the downstream node receiving the message)

Query(destination node)

Response(destination node, least delay value from the responding node to the destination)

Remove_Loop(source node, destination node)

23

The following function is executed by the source node s when it receives a request from an application to construct a
delay-constrained path to a destination node d.
Initiate_Path_Construction(source node s, destination node d, delay constraint A) {
if least_delay_value(s,d) > A sendafailure indication to the application;
else {
active_node = 3;
previous_active_node ;= null;
delay_so_far .= 0;
call Path_Construction(active_node, previous_active_node, s, d, A, delay_so_far);

The following function is executed by node active_node when it receives a C'onstruct_Path message from a node
previous_active_node. 1t isaso caled athe source node when initiating the path construction process.
Path_Construction(current node active node, previous node previous_active_node, source node s,

destination node d, delay constraint A, current delay delay_so_far) {
if active_node = d {
create arouting table entry with source := s, destination := d, previous_node := previous_active _node,
nexi_node ;= null, and previous_delay := delay_so_far;
send an acknowledge message (path construction is complete) back to s;
}
else {
if arouting table entry corresponding to the source s and destination d already exists,
senda Remove_Loop(s, d) messageto previous_active_node;
else {
use_ LDPATH := False;
if least_cost_nhop(active_node, d) = least_delay_nhop(active_node, d)
use_ LDPATH = True;
if use LDPATH = False {
le_nhop := least_cost_nhop(active_node, d);
send Query(d) messageto lc_nhop;
wait to receive a Response(d, delay) messagefrom lc_nhop;
if (delay_so_far + D(active_node,lc_nhop) + delay) < A {
create arouting table entry with source := s, destination := d,
previous_node ;= previous_active_node, next_node .= lc_nhop,
previous_delay = delay_so_far,and flag .= LCPATH,;
delay_so_far := delay_so_far + D(s,lc_nhop);
senda Construct_Path(s,d, A, delay_so_far) messageto lc_nhop;
}
elseuse_.LDPATH = True;
h
if use LDPATH = True {
ld_nhop := least_delay_nhop(n, d);
create arouting table entry with source := s, destination := d,
previous_node ;= previous_active_node, next_node ;= ld_nhop,
previous_delay := delay_so_far,and flag .= LDPATH;
delay_so_far := delay_so_far + D(s,ld_nhop);
sendaConstruct_Path(s,d, A, delay_so_far) messageto ld_nhop;

24

The following function is executed by node n when it receives a QQuery message from node active_node.
Process_Query(current node n, querying node active node, destination node d) {
senda Response(d, least_delay_value(n, d)) messageback to active_node;

b

The following function is executed by node active_node when it receives a Remove_Loop message.
Loop_Removal(current node active_node, source s, destination d) {
find the routing table entry correspondingto s and d;
in that routing table entry, if flag = LCPATH {
nhop := least_delay _nhop(active_node, d);
in the routing table entry correspondingto s and d, set {
flag := LDPATH,
next_node = nhop;
h
delay_so_far := previous_delay + D(active_node, nhop);
(previous_delay is given in the routing table entry)
sendaConstruct_Path(s,d, A, delay_so_far) messageto nhop;

}

else {
senda Remove_Loop(s, d) messageto the previous_node given in that routing table entry;
delete that routing table entry;

h

b

25

