
A Distributed Algorithm for Delay-Constrained Unicast Routing�y

Hussein F. Salama Douglas S. Reeves Yannis Viniotis
ECE Department CSC and ECE Departments ECE Deparmtent

N.C. State University N.C State University N.C. State University
Box 7911, Raleigh, NC 27695 Box 8206, Raleigh, NC 27695 Box 7911, Raleigh, NC 27695
hfsalama@eos.ncsu.edu reeves@eos.ncsu.edu candice@eos.ncsu.edu

Abstract
In this paper, we study the NP-hard delay-constrained

least-cost path problem, and propose a simple, distributed
heuristic solution: the delay-constrained unicast routing
(DCUR) algorithm. DCUR requires limited network state
information to be kept at each node: a cost vector and a
delay vector. We prove DCUR’s correctness by showing
that it is always capable of constructing a loop-free delay-
constrained path within finite time, if such a path exists.
The worst case message complexity of DCUR is O(jV j3)
messages, where jV j is the number of nodes. However,
simulation results show that,on the average, DCUR requires
much fewer messages. Therefore, DCUR scales well to large
networks. We also use simulation to compare DCUR to the
optimal algorithm, and to the least-delay path algorithm.
Our results show that DCUR’s path costs are within 10%
from those of the optimal solution.

1 Introduction
New distributed applications are emerging at a fast rate.

These applications typically involve real-time traffic that
requires quality of service (QoS) guarantees. Traffic streams
carrying voice, video, or critical real-time control signals
have particularly stringent end-to-end delay requirements.
In addition, real-time traffic usually utilizes a significant
amount of resources while traversing the network. Hence
the need for routing mechanisms which are able to satisfy
the delay requirements of real-time traffic and to manage
the network resources efficiently.

Unicast routing protocols can be classified into two cate-
gories: distance-vector protocols, e.g., the routing informa-
tion protocol (RIP) [1], and link-state protocols, e.g., the
open shortest path first protocol (OSPF) [2]. Distance-

�This work was supported in part by the Center for Advanced Comput-
ing and Communication at North Carolina State University, and by AFOSR
grant F49620-96-1-0061. The views and conclusions contained herein are
those of the authors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or implied, of
the AFOSR or the U.S. Government.

yCopyright1997 IEEE. Published in the Proceedingsof INFOCOM’97,
April 7-11, 1997 in Kobe, Japan. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or
promotional purposes or for creating new collective works for resale or
redistribution to servers or lists, or to reuse any copyrighted component
of this work in other works, must be obtained from the IEEE. Contact:
Manager, Copyrights and Permissions / IEEE Service Center / 445 Hoes
Lane / P.O. Box 1331 / Piscataway, NJ 08855-1331, USA. Telephone: +
Intl. 908-562-3966.

vector protocols are based on a distributed version of
Bellman-Ford’s shortest path (SP) algorithm [3]. Consider-
ing the message complexity, distance-vector routing proto-
cols scale well to large networks, because each node sends
periodical topology update messages only to its direct neigh-
bors. Each node maintains only limited information about
the shortest paths to all other nodes in the network. Due to
their distributed nature, distance-vector protocols may suf-
fer from looping problems when the network is not in steady
state. In link-state protocols, on the other hand, each node
maintains complete information about the network topology,
and uses this information to compute the shortest path to a
given destination centrally using Dijkstra’s algorithm [3].
Link-state protocols have limited scalability, because flood-
ing is used to update the nodes’ topology information. They
do not suffer from looping problems, however, because of
their centralized nature. In 1995, Garcia-Luna-Aceves and
Behrens [4] proposed a distributed protocol, based on link
vectors, that avoids looping problems and scales well to
large networks.

Both Bellman-Ford’s and Dijkstra’s SP algorithms are
exact and run in polynomial time. As the name indicates,
an SP algorithm minimizes the the sum of the lengths of the
individual links on the path from source to destination. If
the length of a link is a measure of the delay on that link,
then an SP algorithm computes the least-delay (LD) path,
and if the link length is set equal to the link cost, then an SP
algorithm computes the least-cost (LC) path.

We study the problem of unicast routing of real-time traf-
fic subject to an end-to-end delay constraint in connection-
oriented networks. We formulate the problem as a Delay-
Constrained LC (DCLC) path problem. This problem is
NP-hard [5]. Therefore, we propose a distributed heuris-
tic solution: the delay-constrained unicast routing (DCUR)
algorithm. Widyono [6] proposed an optimal centralized
delay-constrained algorithm to solve the DCLC problem.
His algorithm, called the constrained Bellman-Ford (CBF)
algorithm, performs a breadth-first search to find the opti-
mal DCLC path. Unfortunately, due to its optimality, CBF’s
worst case running times grow exponentially with the size
of the network. Jaffe [7] studied a variation of the prob-
lem in which the path cost and the path delay are defined
as two constraints, and he proposed a pseudo-polynomial-
time heuristic and a polynomial-time heuristic for solving
the problem. The path cost (and similarly the path delay) is
an additive metric, i.e, it is equal to the sum of the costs of
the links on the path. Wang and Crowcroft [8] investigated
the routing problem subject to multiple quality of service



constraints in datagram networks. They considered mul-
tiplicative and concave constraints in addition to additive
constraints.

The remainder of this paper is organized as follows. In
section 2, we formulate the DCLC problem. In section 3,
we describe the routing information needed at each node
for successful execution of DCUR. Then, in section 4, we
present DCUR, prove its correctness, and study its complex-
ity. In section 5, we evaluate DCUR’s performance using
simulation. Section 6 concludes the paper.

2 Problem Formulation
A point-to-point communication network is represented

as a directed, simple, connected network N = (V;E),
where V is a set of nodes and E is a set of directed links.
Any directed link e = (u; v) 2 E has a cost C(e) and a
delay D(e) associated with it. C(e) and D(e) may take any
nonnegative real values. The link delay D(e) is a measure
of the delay a packet experiences when traversing the link e.
The link cost C(e) may be either a monetary cost or some
measure of the link’s utilization.

We define a path as an alternating sequence of nodes and
links P (v0; vk) = v0; e1; v1; e2; v2; � � � ; vk�1; ek; vk; such
that ei = (vi�1; vi) 2 E, for 1 � i � k. A path con-
tains loops if not all its nodes are distinct. In the remainder
of this paper, it will be explicitly mentioned if a path con-
tains loops. Otherwise a “path” always denotes a loop-free
path. We will use the following notation to represent a
path: P (v0; vk) = fv0 ! v1 ! � � � ! vk�1 ! vkg. For
a given source node s 2 V and destination node d 2 V ,
P(s; d) = fP1; � � � ; Pmg is the set of all possible paths
from s to d. The cost of a path Pi is defined as:

Cost(Pi) =
X
e2Pi

C(e): (1)

Similarly, the end-to-end delay along the path Pi is defined
as:

Delay(Pi ) =
X
e2Pi

D(e): (2)

The DCLC problem finds the LC path from a source node
s to a destination node d such that the delay along that path
does not exceed a delay constraint ∆. It is a constrained
minimization problem that can be formulated as follows.
Delay-Constrained Least-Cost (DCLC) Path Problem:
Given a directed network N = (V;E), a nonnegative cost
C(e) for each e 2 E, a nonnegative delay D(e) for each
e 2 E, a source node s 2 V , a destination node d 2 V , and
a positive delay constraint ∆, the constrained minimization
problem is:

min
Pi2P

0(s;d)
Cost(Pi) (3)

where P 0(s; d) is the set of paths from s to d for which the
end-to-end delay is bounded by ∆. Therefore P 0(s; d) �
P(s; d). If Pi 2 P(s; d) then Pi 2 P 0(s; d) if and only if

Delay(Pi) � ∆: (4)

The DCLC problem is NP-hard [5]. It remains NP-hard
in the case of undirected networks. However, it is solvable
in polynomial time if all link costs are equal or all linkdelays
are equal.

3 Routing Information
In this section, we discuss the routing information which

needs to be present at any node in the network to assure suc-
cessful execution of DCUR. Every node v 2 V must have
the following information available during the computation
of the delay-constrained path: the costs of all outgoinglinks,
the delays of all outgoing links, a cost vector, a delay vector,
and a routing table. The cost vector and delay vector struc-
tures are presented below, and the routing table structure
will be described in the next section.

The cost vector at node v consists of jV j entries, one
entry for each nodew in the network. Each entry in the cost
vector holds the following information:

� the destination node ID, w,
� the cost of the LC path from v to w,
least cost value(v; w), and

� the ID of the next hop node on the LC path from v to w,
least cost nhop(v; w).

Similarly, the delay vector at node v has one entry for each
node w in the network. However, each entry in the delay
vector holds:

� the destination node ID, w,
� the total end-to-end delay of the LD path from v to w,
least delay value(v; w), and

� the ID of the next hop node on the LD path from v to w,
least delay nhop(v; w).

The cost vectors and delay vectors are similar to the distance
vectors of some existing routing protocols [1]. Distance-
vector based protocols discuss in detail how to update the
distance vectors in response to topology changes, and how
to prevent instability. These procedures are simple and
require the contents of the distance vector at each node to
be periodically transmitted to direct neighbors of that node
only. The same procedures used for maintaining the distance
vectors can be used for maintaining the cost vectors and
delay vectors. We will not discuss these procedures in this
paper. We assume that the cost vectors and delay vectors
at all nodes are up-to-date. We also assume that the link
costs, the link delays, the contents of the cost vectors, and
the contents of the delay vectors do not change during the
execution of the routing algorithm.

4 The Delay-Constrained Unicast Routing
(DCUR) Algorithm

We start by presenting a simple version of DCUR. Then
we discuss how loops may be created, and how DCUR
detects them and eliminates them. After completing the
description of DCUR, we prove its correctness and derive
its complexity.

DCUR is a source-initiated algorithm that constructs a
delay-constrained path connecting source node s to desti-
nation node d. The path is constructed one node at a time,
from the source to the destination. Any node v at the end
of the partially-constructed path can choose to add one of
only two alternative outgoing links. One link is on the LC
path from v to the destination, while the other link is on the
LD path from v to the destination. This limitation restricts
DCUR’s ability to construct the optimal path, but it consid-
erably reduces the amount of computation required at any
node.



In the following, we describe a simple version of DCUR
which assumes that no routing loops can occur. The
source node s initiates path construction by looking up
the least delay value(s; d) from its delay vector. If this
value is greater than the delay constraint ∆, then no delay-
constrained paths exist between s and d, and DCUR fails
and stops. If, however, delay-constrained paths do exist,
i.e.,

least delay value(s; d) � ∆; (5)

the algorithm proceeds. The source s becomes the current
active node, denoted active node. At all times there is
only one active node, at the end of the partially-constructed
path. The variable delay so far is set to 0, and the variable
previous active node is set to null.

The active node reads the ID of the next hop node on
the LC path towards d, least cost nhop(active node; d),
from its cost vector. least cost nhop(active node; d) is
denoted as lc nhop for convenience. Then active node
sends aQuery message to lc nhop, requesting the LD value
from lc nhop to d. lc nhop looks up the requested value,
least delay value(lc nhop; d), from its delay vector, and
sends a Response message back to active node with this
information. After active node receives the Response
message, it checks if

delay so far +D(active node; lc nhop) +

least delay value(lc nhop; d) � ∆: (6)

If the inequality is satisfied, then there exist delay-
constrained paths from active node to d which use the
link (active node; lc nhop), and active node selects the
direction of the LC path towards d. If the inequality is not
satisfied, then active node selects the direction of the LD
path towards d. The LD path from active node to d is guar-
anteed to be part of at least one delay-constrained path from
s to d; otherwise, active node could not have been selected
in a previous step (a proof is provided in subsection 4.2). Af-
ter deciding which direction to follow, active node creates
a routing table entry with the following information:

� the ID of s,
� the ID of d,
� previous node = ID of the previous active node,

� next node =

8><
>:

lc nhop;
if LC path direction is chosen,

least delay nhop(active node; d);
if LD path direction is chosen,

� previous delay = delay so far, and

� flag =

8><
>:

LCPATH
if LC path direction is chosen,

LDPATH
if LD path direction is chosen.

Then active node adds D(active node; next node) to the
variable delay so far. Finally the active node sends
a Construct Path message to next node that contains:
the ID of the source s, the ID of the destination d, the
value of the delay constraint ∆, and the updated value of
delay so far which represents the delay along the already
constructed path from s tonext node. After sending out the
Construct Pathmessage, active node becomes inactive.

When a node v 6= d receives a Construct Path
message, it becomes the new active node. The new

active node sets previous active node to be the ID of
the node which sent it a Construct Path message. Then
the new active node executes the same procedure just de-
scribed.

When the destination noded receives aConstruct Path
message, it records the ID of the node which sent the mes-
sage. d creates a routing table entry, with the follow-
ing values: ID of the source s, ID of the destination d,
previous node = previous active node, next node =
null, and previous delay = delay so far. Then the des-
tination sends an acknowledgment back to the source. When
the source receives the acknowledgment message, it signals
to the application that the path construction has been suc-
cessfully completed, and traffic can be transmitted along
that path.

An active node, does not send a Query mes-
sage if the next hop node is the same on both
the LC path and the LD path from active node to
the destination, i.e., least cost nhop(active node; d) =
least delay nhop(active node; d). It is known in advance
that the LD direction satisfies the delay constraint, so there
is no need for theQuery message. In this case, active node
sets the flag in the routing table entry to LDPATH. The
reason for that particular setting will be explained later in
this section, when routing loops are discussed.

The paths constructed by existing distance-vector pro-
tocols are guaranteed to be loop-free if the contents of the
distance vectors at all nodes are up-to-date and the network
is in stable condition. However, up-to-date cost vectors and
delay vectors contents and stable network condition are not
sufficient to guarantee loop-free operation for DCUR. In
DCUR, each node involved in the path construction oper-
ation selects either the LC path direction or the LD path
direction as has been explained above. If all nodes choose
the LC path direction, or all nodes choose the LD path di-
rection, then no loops can occur, because the resulting paths
are the LC path or LD path respectively. However, if some
nodes choose the LC path direction while others choose
the LD path direction, loops may occur. In the following
subsection, we discuss how DCUR detects and eliminates
loops.

4.1 Loop Removal
Figure 1 shows a scenario that results in a loop. The

source nodeA initiates the construction of a path towards the
destination node D with an imposed delay constraint value
of 8. Subfigures 1(a), 1(b), and 1(c) show successive stages
of path construction until a loop is created. The source A
follows the LD path direction towards the destination D
and link (A;B) becomes the first link in the path. Node
B follows the LC path direction towards D and adds link
(B;C) to the path. Node C follows the LD path direction
and adds link (C;A) to the path. This creates the loop
fA! B ! C ! Ag, as shown in subfigure 1(c).

DCUR detects loops as follows. When a node receives a
Construct Path message, it searches its routing table. A
loop is detected if a routing table entry already exists for the
source-destination pair specified in the Construct Path
message.

The active node, active node, that detects a loop initiates
the loop removal operation. The contents of active node’s
routing table entry are left unchanged. active node sends
a Remove Loop message to the previous node on the loop,
previous active node (the node from which active node



(1,5)

(2,1)

(1,1)(8,1)

(2,1)

D E

A

BC
(1,3)

(1,5)

(a)

(1,5)

(2,1)

(1,1)(8,1)

(2,1)

D E

A

BC
(1,3)

(1,5)

(b)

(1,5)

(2,1)

(1,1)(8,1)

(2,1)

D E

A

BC
(1,3)

(1,5)

(c)

(1,5)

(2,1)

(1,1)(8,1)

(2,1)

D E

A

BC
(1,3)

(1,5)

(d)

(1,5)

(2,1)

(1,1)(8,1)

(2,1)

D E

A

BC
(1,3)

(1,5)

(e)

Figure 1: Example of a loop scenario. A is the source and
D the destination. Link costs and link delays are shown
next to each link as (cost,delay). ∆ = 8.

received the last Construct Path message), and then
active node becomes inactive. The IDs of the source and
destination nodes are all that needs to be included in the
Remove Loop message. The Remove Loop message tra-
verses the loop backwards, removing routing table entries,
until it finds a node w whose routing table entry’s flag
is set to LCPATH indicating that this node is following
the LC path direction towards the destination. There must
be at least one node on the loop that follows the LC path
direction, because, as we mentioned before, loops can not
be created if all nodes follow the LD path direction. The
Remove Loop message is not sent any further backwards
along the loop, after it arrives at w. Node w then de-
cides to follow the LD path direction, instead of the LC
path direction, in order to avoid the conditions that caused
the loop. This decision can never lead to any delay con-
straint violations. Thus w adjusts the contents of its routing
table entry so that next node = least delay nhop(w; d)
and flag = LDPATH. The variables previous node,
previous delay, and delay so far remain unchanged.
Then w sends a Construct Path message to next node,
and path construction continues.

For the example of figure 1, nodeA detects the existence
of a loop. It reacts by sending a Remove Loop message
that traverses the loop backwards. Node C receives the
Remove Loop message fromA, butC is already following
the LD path direction towards the destination, so all it does
is to send theRemove Loop message further backwards to
B, and to delete its routing table entry, thereby removing
link (C;A) from the path (subfigure 1(d)). NodeB receives
the Remove Loop message. It is following the LC path
direction towards the destination, so it decides to follow the

LD path direction instead, and modifies its routing table en-
try accordingly. Thus removing link (B;C) from the path
and adding link (B;D) instead. Then B continues con-
structing the path by sending a Construct Path message
to D, which is the destination. The final delay-constrained
path from A to D is the one shown in subfigure 1(e).

It was mentioned above that, at a node w, the routing
table entry’s flag is set to LDPATH when both the LC
path direction and the LD path direction share the same link
to the next hop. The reason is that if the flag was set to
LCPATH, and thenw received aRemove Loopmessage,
it would have removed the link leading to the next node in
the LC path direction, and then it would have added the
same link to the path again, because that link leads also to
the next node in the LD path direction. The result would
have been the same loop occurring twice.

The description of DCUR is now complete. Complete
pseudo code for the algorithm can be found in [9]. In the
remainder of this section, we prove the correctness of DCUR
and study its complexity.
4.2 Correctness of DCUR

We verify the correctness of DCUR by proving that it can
always construct a loop-free delay-constrained path within
a finite time, if such a path exists.

Theorem 1 DCUR always constructs a delay-constrained
path for a given source s and destination d, if such a path
exists.

Proof. If no feasible path exists for a given source-
destination pair, DCUR fails immediately at the source node
after checking that the delay along the LD path exceeds the
delay constraint, i.e., inequality 5 is not satisfied. If the LD
path can not satisfy the delay constraint, no other path can.
If at least one delay-constrained path from s to d exists,
then inequality 5 will be satisfied, and path construction
can start. Initially, the source s is the only member in the
path. The rest of this proof is done by induction on j, where
Pj = fv0 ! � � � ! vjg denotes the subpath constructed
starting at the source, s = v0, and ending at the current ac-
tive node, active node = vj, and j denotes the length of the
path in hops. The basis for induction is P0 = fv0g. Since
inequality 5 is satisfied, and Delay(P0 ) = 0, it follows that

Delay(P0 ) + least delay value(v0; d) � ∆: (7)

Assume that

Delay(Pj ) + least delay value(vj ; d) � ∆: (8)

Inequality 8 guarantees that the subpath Pj is part of at least
one delay-constrained path from s to d. DCUR proceeds
by adding either the first link along the LC path from vj
to d or the first link along the LD path from vj to d. If
DCUR adds the first link along the LC path, i.e., vj+1 =
lc nhop = least cost nhop(vj; d), then inequality 6 must
be satisfied. This inequality can be rephrased as follows
after substituting Delay(Pj ) for delay so far and vj for
active node and vj+1 for lc nhop:

Delay(Pj ) +D(vj ; vj+1)+

least delay value(vj+1; d) =

Delay(Pj+1 )+

least delay value(vj+1; d) � ∆: (9)



The other alternative for DCUR is to proceed from vj
by adding the first link along the LD path, i.e., vj+1 =
least delay nhop(vj; d). In this case,

least delay value(vj ; d) =

D(vj ; vj+1) + least delay value(vj+1; d); (10)

and we can restate inequality 8 as:

Delay(Pj ) +D(vj ; vj+1)+

least delay value(vj+1; d) =

Delay(Pj+1 )+

least delay value(vj+1; d) � ∆: (11)

In both cases, vj+1 becomes the next active node. It fol-
lows from inequalities 9 and 11 that the subpath from s to
active node is part of at least one delay-constrained path
towards d. DCUR stops only when active node = d. 2

Theorem 2 The final path constructed by DCUR for a given
source s and destination d does not contain any loops.

Proof. We use the same notation used in the proof of
theorem 1. Let Vj = fv0; � � � ; vjg be the set of nodes in the
subpath Pj . All nodes in Vj have a routing table entry for
the source-destination pair, s and d. The active node, vj ,
adds a link (vj ; vj+1). If vj+1 2 Vj , a loop is created. Node
vj+1 becomes the next active node. Node vj+1 searches
its routing table for an entry corresponding to s and d. If
vj+1 2 Vj , it will find such an entry, thus detecting a loop.
We proved that when a link (vj ; vj+1) is added that creates
a loop, node vj+1 will always detect that loop.

Next we prove that when node vj+1 detects a loop, it
calls a process that correctly breaks that loop. When vj+1
detects a loop, it sends a Remove Loop message back to
vj . Node vj’s reaction to the receipt of the Remove Loop
message depends on the flag in the routing table entry
corresponding to s and d. In all cases, node vj removes
the link (vj ; vj+1) from the path being constructed. This is
sufficient to correctly break the detected loop. 2

Theorem 3 The execution time of DCUR for a given source
s and destination d is always finite.

Proof. If no delay-constrained paths exist, then DCUR fails
immediately at the source after determining that inequality 5
is not satisfied. If inequality 5 is satisfied, then DCUR
proceeds. If no loops occur, then, after adding at most (jV j�
1) links, DCUR reaches the destination d. It remains to
prove that even if loops occur, DCUR will still reach dwithin
finite time. A subpath Pj = fv0 ! � � � ! vi ! � � � ! vjg
ends with a loop if vj = vi where 0 � i < j and v0 = s.
When the size of the network, jV j, is finite, the maximum
number of distinct subpaths starting at s and ending with a
loop is finite. Therefore, it is sufficient to prove that DCUR
never attempts to construct the same subpath ending with a
loop twice. When node vj = vi detects a loop at the head
of a subpath PLOOP

j , it calls the loop removal procedure
which traverses the path PLOOP

j backwards removing links
until a link eLCk = (vk; vk+1) is reached that is on the
LC path direction from vk towards d, where i � k < j.

Link eLCk is removed from the path and path construction
resumes by adding the link on the LD path direction from vk
towards d, link eLDk . One necessary condition to reconstruct
PLOOP
j is to readd link eLCk to the path being constructed.

This means that a loop must occur, and to remove that loop
DCUR removes link eLDk . However loop removal can not
stop immediately after removing eLDk , because it is on the
LD path direction towards d. Therefore loop removal must
continue backwards until a link eLCl on the LC path direction
from node vl towardsd is reached, where 0 � l < k. DCUR
removes link eLCl . Then path construction resumes and
link eLCk may be readded to the subpath being constructed.
Therefore, after a link eLCk , originally on a path PLOOP

j , is
removed from the path, it can be readded to the path only
if a link eLCl is removed, where 0 � l < k < j. The same
holds for link eLCl . It follows that, the exact same subpath
PLOOP
j can not be reconstructed twice during the execution

of DCUR. 2

4.3 Complexity of DCUR
The computational complexity of the proposed dis-

tributed algorithm at any node is O(1), because each
time a node receives a Construct Path message or a
Remove Loopmessage, it performs a fixed amount of com-
putations, irrespective of the size of the network.

We now consider the worst case message complexity
of DCUR, i.e., the number of messages needed in the
worst case, in order to construct a path for a given source-
destination pair. If no loops occur, then the number of
messages needed to construct a path is proportional to the
number of links in the path, because a node running DCUR
exchanges at most three messages to add one link. For a
network size of jV j nodes, the longest possible path from
source to destination consists of jV j nodes and (jV j � 1)
links. Therefore the number of messages needed in the
worst case is O(jV j), if it is guaranteed that no loops will
occur. Unfortunately, the occurrence of loops complicates
the analysis.

The tree of the LC paths from any node in the network
to the destination node d, denoted LCTREE, consists of
(jV j�1) links. Similarly, the tree of the LD paths from any
node in the network to the destination d, denoted LDTREE,
also consists of (jV j � 1) links. The union of these two
trees is a subnetwork N 0 = (V;E0), where (jV j � 1) �
jE0j � 2 � (jV j � 1), because some links may be members
of both trees. Figure 2 shows an example of the union
of an LCTREE and an LDTREE. In this example, the link
(C;D) is a member of both trees. The jE0j links are the
only links considered by DCUR when constructing a path
from a source s to the destination d, because, as has been
explained before, at any node DCUR considers only the
LC path direction and the LD path direction towards the
destination.

Let the links of the LCTREE be called tree links. We
add the links of the LDTREE to the LCTREE to obtain the
subnetwork N 0. The links of the LDTREE which are not
already in the LCTREE will be classified into one of the
following three link types.

� A back link which is traversed from a node to one of
its ancestors1. A back link may result in a loop.

1A node v is an ancestor of a nodew in the LCTREE if w is on the path



LDTREE

LCTREE

link

link

CB D EA

F

Figure 2: Example of a subnetwork constructed by taking
the union of the LCTREE and the LDTREE. The destination
is node E.

� A descendent link goes from a node to one of its de-
scendants other than its child. A descendent link may
provide one or more nodes with two alternate paths
towards the destination.

� A cross link connects two nodes such that neither is
a descendant of the other. A cross link may provide
one or more nodes with two alternate paths towards the
destination.

In the example of figure 2, links (A;B), (B;C), (C;D),
(D;E), and (F;C) are tree links. The link (D;A) is a back
link. Links (A;E) and (F;D) are descendent links, and the
link (B;F ) is a cross link.

A subnetworkN 0 has X back links, Y descendent links,
and Z cross links where 0 � X;Y; Z � (jV j � 1) and
(X + Y + Z) � (jV j � 1). Adding a back link to a path
under construction may or may not result in a loop. Since
we are studying the worst case, we assume that adding a
back link to a path always results in a loop. Consider a back
link, e. Link e may be added and removed from the path
being constructed several times, if it is reachable via multiple
alternate paths from the source node. A loop results each
time e is added. The back link e is reachable via (Y + Z)
alternate paths in the worst case. This happens when the
(Y +Z) descendent links and cross links are upstream from
the back link e. In this case, each time DCUR attempts
to use one of the (Y + Z) resulting alternate paths, it may
continue downstream and add the link e, thus creating a
loop. If DCUR attempts to use all (Y + Z) alternate paths
while constructing the delay-constrained path, the link e
will be added and removed (Y + Z) times, which means
that (Y +Z) loops will be created and removed during path
construction. The example of figure 2 is not a worst case
scenario. However, it shows how the back link (D;A) can
be reached via three alternate paths when node A is the
source. The first alternative is the original path along the
LCTREE: fA ! B ! C ! Dg. The second alternative
was created due to the addition of the cross link (B;F ), and
it is fA ! B ! F ! C ! Dg. The final alternative is
fA! B ! F ! Dg. This path was brought to existence
by the descendent link (F;D).

So far we considered only one back link. However, the
subnetwork N 0 contains X back links. In the worst case,
each of the X back links is reachable via (Y +Z) alternate
paths. In this case we may end up withX � (Y +Z) loops.
Since (X+Y +Z) � (jV j�1), it follows that, in the worst
case, DCUR may create and remove O(jV j2) loops before
completing the construction of the delay-constrained path.

from v to the destination d. If v is an ancestor of w then w is a descendant
of v. If the link (v; w) is a tree link, then w is v’s child. In the LCTREE
each node, other than d, has only one child.

The largest possible loop consists of (jV j�1) nodes and
(jV j � 1) links (the destination can not be part of a loop in
DCUR). A maximum of three messages are needed to add
one loop link. Thus it takes O(jV j) messages to create the
largest loop. One message is needed for removing one loop
link, which means that at most O(jV j) messages are needed
if all loop links have to be removed before path construction
resumes. Therefore, O(jV j) messages are needed, to create
and remove the largest loop. It follows that DCUR needs
O(jV j3) messages to handle O(jV j2) loops in the worst
case. Fortunately, our simulation results show that DCUR’s
average performance is much better than the worst case just
studied. These results will be presented in the next section.

5 Simulation Results
We used simulation for our evaluation of the average

performance of DCUR. Full duplex, directed, simple, con-
nected networks of different sizes with homogeneous link
capacities of 155 Mbps (OC3) were used in the experiments.
The positions of the nodes were fixed in a rectangle of size
4000 � 2400 Km2, roughly the area of the continental USA.
A random generator was used to create links interconnect-
ing the nodes [9]. The output of this random generator is
always a connected network in which each node’s degree is
at least 2. We adjusted the parameters of the random gen-
erator carefully to obtain realistic network topologies with
an average node degree of 4, which is close to the average
node degree of current internetworks.

The propagation speed through the links was taken to be
two thirds the speed of light. Under this assumption, the
size of the rectangle enclosing our network is 20 � 12 msec2.
In addition, we assumed a high-speed networking environ-
ment with small packet (cell) sizes and limited buffer space
at each node. The link propagation delay was dominant un-
der these assumptions, and the queueing component of the
link delay was neglected. The link delays were thus sym-
metric, D(u; v) = D(v; u), because the link lengths were
symmetric.

We defined the cost, C(e), of link e, as a function of its
utilization. We set the cost of a link to be equal to the sum
of the equivalent capacities of the traffic streams traversing
that link. Link costs were asymmetric, because C(u; v) and
C(v; u) were independent. We conducted two experiments
to evaluate DCUR’s performance.

5.1 The Average Message Complexity of DCUR
In the first experiment, we measured the average number

of messages required to establish a delay-constrained path.
For each run of the experiment, we generated a random set of
links to interconnect the fixed nodes, we selected a random
source and a random destination, and we generated random
background traffic to utilizeeach link. The cost of a link was
a random variable uniformly distributed between 5 Mbps
and 125 Mbps. The experiment was repeated with network
sizes ranging from 20 nodes up to 200 nodes. We also
varied the delay constraint value from 15 msec to 55 msec.
We measured the average number of messages exchanged
between the nodes which execute the distributed DCUR
algorithm. Note that any message generated by DCUR
travels a distance of one hop only. Unless otherwise stated,
DCUR was run repeatedly until confidence intervals of less
than 5% of the mean value, using 95% confidence level, were
achieved for all measured values presented in this subsection
and in the next subsection.



4

5

6

7

8

9

20 40 60 80 100 120 140 160 180 200

A
ve

ra
ge

 n
um

be
r 

of
 m

es
sa

ge
s

Number of nodes

Delta = 20 msec
Delta = 35 msec
Delta = 50 msec

Figure 3: Average number of messages, variable network
size, average node degree 4, three delay constraint settings:
20 msec, 35 msec, and 50 msec.

Figure 3 shows the average number of messages versus
the size of the network for three different values of the delay
constraint: a strict value of 20 msec, a moderate value of 35
msec, and a lenient value of 50 msec. All three curves of
figure 3 indicate clearly that the average number of messages
grows very slowly with the size of the network. For any of
the delay constraint values shown in the figure, doubling
the size of the network increases the average number of
DCUR’s messages by roughly one message only. Thus the
average growth rate of the number of messages is roughly
logarithmic in the network size.

A path that satisfies a strict delay constraint consists on
the average of fewer links than a path that satisfies a lenient
delay constraint. For a 200-node network the average num-
ber of links per path is 4.28 for a 20 msec delay constraint,
4.72 for a 35 msec delay constraint, and 5.12 for a 50 msec
delay constraint. That is why the number of messages ex-
changed while constructing a path is smallest when the delay
constraint value is small, 20 msec. In addition, when the
delay constraint is strict, DCUR is forced to follow the LD
path direction most of the time. Therefore, the probability
of the occurrence of a loop is small. As has been discussed
in the previous section, the occurrence of loops increases in
the number of messages.

When the delay constraint is increased to 35 msec, the
number of messages is largest. The reason is that 35 msec
is a moderately strict delay constraint, and DCUR may be
able to follow the LC path direction at some nodes and
to follow the LD path direction at others. This toggling
between LC path direction and LD path direction increases
the probability of loop occurrence, and hence increases the
average number of messages exchanged.

Increasing the delay constraint further, from 35 msec
to 50 msec, leads to a reduction in the average number of
messages, because for such a lenient value DCUR is able
to follow the LC path direction most of the time without
violating the delay constraint, and therefore it no longer
toggles between the LC path direction and the LD path
direction. The consequence is that loops occur rarely.

In order to verify our assumption, that loops occur most
frequently when the delay constraint is moderately strict,
we measured the average number of loop occurrences dur-
ing one successful run of DCUR, i.e., a run that success-

0

0.02

0.04

0.06

0.08

0.1

0.12

0.015 0.025 0.035 0.045 0.055

A
vg

. n
o.

 o
f l

oo
ps

 p
er

 c
on

st
ru

ct
ed

 p
at

h

Delay constraint (seconds)

20 nodes
50 nodes

100 nodes
200 nodes

Figure 4: Average number of loops occurring while con-
structing a single delay-constrained path, network sizes of
20 nodes, 50 nodes, 100 nodes, and 200 nodes, average node
degree 4, variable delay constraint.

fully constructs a delay-constrained path for a given source-
destination pair. We found that loops do not occur frequently
(less than 12 loops every 100 successful runs of DCUR).
Therefore, it was not possible (due to the excessive simu-
lation times) to repeat the experiment until small enough
confidence intervals were achieved for the measured values
of the average number of loop occurrences. 1,000 success-
ful runs of DCUR were simulated for each point in figure 4.
Figure 4 shows the average number of loop occurrences
per successful run of DCUR versus the delay constraint for
different network sizes. It shows that loops occur most
frequently when the delay constraint value ranges from 20
msec to 45 msec. When the delay constraint is lenient
(larger than 45 msec) loop occurrences are very infrequent,
less than one loop every 100 successful runs of DCUR. The
average number of loop occurrences also decreases when
strict delay constraint values of less than 20 msec are used.
Figure 4 indicates that loops occur more frequently as the
size of the network increases.
5.2 Comparison to Other Algorithms

In this subsection, we show the results of the second
experiment which compares DCUR with two algorithms
that are also suitable for delay-sensitive applications. The
first algorithm is the LD path algorithm, or simply LDP.
LDP is optimal with respect to the end-to-end delay, but
it does not attempt to minimize the cost of the constructed
path. Therefore, it may result in inefficient utilization of
the link bandwidth. The other algorithm is CBF which was
briefly described in section 1. CBF constructs the optimal
DCLC path, but its execution time grows exponentially with
the network size.

The structure of the second experiment is similar to that
of the first experiment. The only difference is that for
each randomly selected source-destination pair we applied
DCUR, LDP, and CBF, one at a time, to construct the delay-
constrained path. For each algorithm, we measured the av-
erage inefficiency relative to CBF. The average inefficiency
of an algorithm x is defined as:

ine�ciencyx =
(costx � costCBF )

costCBF
(12)



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.015 0.025 0.035 0.045 0.055

In
ef

fic
ie

nc
y

Delay constraint (seconds)

LDP
DCUR

Figure 5: Inefficiency, 200-node networks, average node
degree 4, variable delay constraint.

Figure 5 shows the average inefficiency of LDP and
DCUR relative to CBF for 200-node networks and a vari-
able delay constraint. When the delay constraint is small,<
20 msec, the number of alternate delay-constrained paths,
available for the algorithms to choose from, is small, and
therefore the differences between the algorithms are also
small. For delay constraint values between 20 msec and 45
msec, DCUR is up to 10% worse than the optimal CBF. The
reason is that, because of the tight delay constraint, DCUR
can not always follow the unconstrained LC path direction.
In some cases, it has to follow the LD path direction instead.
The toggling between these two directions affects DCUR’s
ability to create low-cost paths. However, DCUR remains
on the average more efficient than LDP. When the value
of the delay constraint exceeds 45 msec, its effect on the
constructed path is minimal. In that range, DCUR’s ineffi-
ciency approaches zero, because it almost exclusively elects
to follow the LC path direction. LDP does not attempt to
minimize the path cost at all. That’s why its inefficiency is
up to 50% when the delay constraint value is large.

Figure 5 indicates that DCUR’s path costs are always
within 10% from the path cost of the optimal CBF. Thus
DCUR’s cost performance is quite satisfactory, especially
when considering that CBF is a centralized algorithm that re-
quires global information about the network topology while
DCUR is a distributed heuristic that requires only limited
information to be maintained at each node (one cost vector
and one delay vector).

Measurements from the same experiment indicate that
the average end-to-end delays of DCUR and CBF are con-
siderably larger than the minimal delays achieved by LDP.
This is not a big advantage for LDP, though. More im-
portant is that all three algorithms are always capable of
constructing a delay-constrained path, if such a path exists.

6 Conclusions
We studied the delay-constrained routing problem in

point-to-point connection-oriented networks. Our work
was motivated by the fast evolution of delay-sensitive dis-
tributed applications. We formulated the problem as a
delay-constrained least-cost (DCLC) path problem, which
is known to be NP-complete. Therefore, we proposed a
distributed, source-initiated heuristic solution, the delay-
constrained unicast routing (DCUR) algorithm, to avoid the

excessive complexity of the optimal solutions. DCUR re-
quires only a limited amount of information at each node.
The information at each node is stored in a cost vector and a
delay vector. These vectors are constructed and maintained
in exactly the same manner as the distance vectors which
are widely deployed over current networks. The basic idea
of DCUR is to restrict the amount of computation by limit-
ing the number of links to choose from when constructing
delay-constrained path for a given source-destination pair.
We proved the correctness of DCUR by showing that it is al-
ways capable of constructing a loop-free delay-constrained
path within finite time, if such a path exists. The worst case
message complexity of DCUR is dominated by the occur-
rence and removal of loop. It requires O(jV j3) messages in
the worst case. Fortunately, however, our simulation results
show that DCUR requires much fewer messages on the av-
erage, because loop occurrence is rare in realistic networks.
We compared the performance of DCUR to CBF, which
is an optimal DCLC path algorithm. We also compared
DCUR to LDP, a shortest path algorithm that minimizes the
end-to-end delay. Our evaluation of the cost performance
of the algorithms showed that DCUR is always within 10%
from the optimal CBF, while LDP is up to 50% worse than
optimal in some cases.

In summary, DCUR is a simple, efficient, distributed
algorithm that scales well to large network sizes. This en-
courages us to use it as a starting point for implementing an
routing protocol that is capable of providing QoS guaran-
tees for real-time applications. Among others, future work
should focus on specifying mechanisms that enable DCUR
to cope with transient situations when the contents of the
cost vectors and the delay vectors at different nodes are not
consistent. In addition, future work should extend DCUR
to address the multicast routing problem.

References
[1] C. Hedrick, “Routing Information Protocol.” In-

ternet RFC 1058, http://ds.internic.net/
rfc/rfc1058.txt, June 1988.

[2] J. Moy, “OSPF Version 2.”
Internet RFC 1583, http://ds.internic.net/
rfc/rfc1583.txt, March 1994.

[3] D. Bertsekas and R. Gallager, Data Networks. Prentice-
Hall, 2nd ed., 1992.

[4] J. Garcia-Luna-Aceves and J. Behrens, “Distributed,
Scalable Routing Based on Vectors of Link States,”
IEEE Journal on Selected Areas in Communications,
vol. 13, no. 8, pp. 1383–1395, October 1995.

[5] M. Garey and D. Johnson, Computers and Intractabil-
ity: A Guide to the Theory of NP-Completeness. New
York: W.H. Freeman and Co., 1979.

[6] R. Widyono, “The Design and Evaluation of Routing
Algorithms for Real-Time Channels,” Tech. Rep. ICSI
TR-94-024, University of California at Berkeley, Inter-
national Computer Science Institute, June 1994.

[7] J. Jaffe, “Algorithms for Finding Paths with Multiple
Constraints,” Networks, vol. 14, no. 1, pp. 95–116,
Spring 1984.

[8] Z. Wang and J. Crowcroft, “Quality-of-Service Routing
for Supporting Multimedia Applications,” IEEE Jour-
nal on Selected Areas in Communications,vol. 14, no. 7,
pp. 1228–1234, September 1996.

[9] H. Salama, Multicast Routing for Real-time Communi-
cation on High-Speed Networks. PhD thesis, North



Carolina State University, Department of Electrical
and Computer Engineering, 1996. Available from
ftp://osl.csc.ncsu.edu/pub/rtcomm/rt-
comm.html.


