A Distributed Algorithm for
Gemeralized Deadlock Detection

Gabriel Bracha
Sam Toueg*

TR 83-558

June 1983
(Revised March 1984)
(Revised July 1984)

Department of Computer Science
Cornell University
Ithaca, New York 14853

*Partial support for this work was provided by the Nationmal Science
Foundation under grant No. 83-03135.

A Distributed Algorithm for Generalized Deadlock Detection

Gabriel Bracha
Sam Toueg

Cornell University
Ithaca, New York 14853

Abstract

An efficient distributed algorithm to detect deadlocks in distributed and dynamically changing
systems is presented. In our model, processes can request any N available resources from a pool of
size M. This is a generalization of the well-known AND-OR request model. The algorithm is
incrementally derived and proven correct. Its communication, computational, and space complexity
compares favorably to those of previously known distributed AND-OR deadlock detection algo-
rithms.

1. Introduction

The problem of detecting deadlocks in systems in which processes wait for each other arises in
various contexts. In distributed databases, transactions request access to files at different sites. A
transaction can proceed only if it gets access to all the requested files that are controlled by other
sites. In CSP, when executing an alternative command (IF) with input guards, a process waits for
messages from a group of processes. A process can exit the statement only if it gets a message from
ariy one of the processes it is waiting for. In operating systems, processes can request N special
resources (disks, tape drives, etc.) out of some pool of size M. A process can proceed only if it gets
N of these resources. To maintain consistency in distributed databases with replicated files, Gifford
[Giff79] proposed an algorithm where to read (write) a replicated file with k copies, a process must
read (write) r (w) out of the k copies such that r+ w>k. To read or write a file copy, a process
must request and obtain a lock on this copy. Therefore, reading (writing) a file generates
“y_out—of -k (w—out—of -k) locking requests.

In the most general case, a process can make requests described by formulae with AND, OR
and N-out—of -M connectives} For example, a process p can request services from processes
Py, - - - ,pg with the following condition to satisfy its request: p, OR (2-out—of —(p,,ps,ps) AND
2-out—of —(py,p4,pe)). Process p can proceed only if its requests for service are granted by any
combination of processes satisfying the formula.

t Partial support for this work was provided by the National Science Foundation under grant No.
83-03135.
t Note that AND and OR connectives alone can express a N-out—of -M request. However, the

length of the corresponding AND-OR formula is N - [%]

-92-

Parsing the formula and the introduction of dummy processes allow us to consider omly
requests that contains a single connective. Thus, the previous request can be formulated as follows:
p issues a (p; OR gq,) request, g, issues a (o AND g;) request, g, issues a (2-out-of «(py,ps,ps))
request, and gq; issues a (2-out-of -(p,,p4,Pe)) request.

Note that both AND and OR requests [Chan83a, Herm83] are special cases of the
N-out—of -M request. An OR request corresponds to N =1, an AND request corresponds to
N = M. Therefore, we can restrict ourselves to systems where processes issue only a single
N-out—of -M request.

Using Wait-For-Graphs (WFG) [Holt72] to model three systems of increasing complexity, we
incrementally derive a distributed deadlock detection algorithm for dynamic systems with
N-out—of -M requests, and prove it correct. The algorithm communication, computational, and
space complexity compares favorably to those of previously known distributed AND -OR deadlock

detection algorithms.

A survey of distributed deadlock detection algorithms is given in [Herm83]. In [Chan82],
Chandy gives an excellent description of the classical Distributed Database Deadlock problem as
defined in [Mena79], and its relation to the deadlock detection algorithm we present here.

The paper is organized as follows: In Section 2, we give an operational description of our sys-
tem. In Section 3, we present a corresponding formal model, the WFG. In Section 4, we consider a
static system with instantaneous message transmission. A corresponding deadlock detection algo-
rithm is described and proven correct. In Section 5, we consider a static system with transmission
delays, i.e., with messages ‘‘frozen’’ in transit in the channels, and we model it with a colored WFG.
The deadlock detection algorithm is extended to this system. In Section 8, the algorithm is further
extended to a dynamic system whose state changes during the algorithm’s execution. The
algorithm’s performance is analyzed in Section 7, and a discussion of the results concludes the

paper.

2. System operational description

A distributed system is a collection of processes that communicate by sending messages to
each other. Every message sent will be received within some finite time and messages are received

in the order sent.

A process can be either active or blocked. An active process is one that is not waiting for any
other process. Active processes may issue N-out-of ~M requests in the following way. When an
active process p requires n, processes to carry out some action on its behalf, it sends REQUEST
messages to all the processes that can perform this action (this set of processes is denoted by
dependent,). It then becomes blocked, and it waits until the action requested is carried out by at
least n, processes in dependent,. Once a process is blocked, it cannot send any further
REQUESTs.

Only active processes can carry out a requested action. If a process in dependent, is active,
then, within some finite time, it either becomes blocked or it will carry out p's requested action. In
the latter case, it sends a REPLY message to p to notify p that the request was granted. When p
receives n, REPLY messages, it becomes active again. It then relinquishes the requests made to the

-3-

rest of the processes in dependent, by sending them RELINQUISH messages.

3. The Wait-For-Graph model

The global state of the system is modeled by a Wait-For-Graph (WFG). This is a directed
graph where the nodes correspond to processes. A directed edge (v, u) corresponds to a process v
that issued a request to a process u, for some service, or some resource that 4 is holding. In our
system, this corresponds to a REQUEST that was sent from v to u, such that v has not received a
REPLY from u, and u has not received a RELINQUISH from v. Each node v is labeled by n,, the
number of REPLYs that it needs to receive to become active.

We define OUT, to be the set of nodes u such that v sent a REQUEST to u, and neither v
sent a RELINQUISH to u, nor v received a REPLY from u. In other words, OUT, is the set of
nodes v is still waiting for. Note that 0 < n, < |OUT, |, and n, =0 implies OUT, =¢. We
denote by IN, the set of nodes w such that v received a REQUEST from w, and neither v sent a
REPLY to w, nor v received a RELINQUISH from w. In other words, IN, is the set of nodes that
are requesting a service from v, according to v’s point of view. Note that the values of IN,, OUT,,
and n, are readily available at a node v in any system.

In a WFG, an active node corresponds to an active process. State changes in the system,
resulting from the issuing and granting of requests, are formally modeled through WFG transforma-

L)
tions. If applying a transformation s to a WFG G results in G', we denote this by G G'. A
schedule o for G is a sequence of transformations that can be applied to G. Formally, either o is

8
the null sequence or 0 =so', where G |— G' and ¢’ is a schedule for G'. We can now give a for-
mal definition of deadlock. A node v is deadlocked sn a WFG G if there is no schedule o such that

4
G G', and v is active in G'.

In the next sections, we consider two types of WFG to model systems of increasing complexity.
4. Static systems with instantaneous message transmission

4.1. The model

In this section we consider a simple system where REQUEST, REPLY and RELINQUISH mes-
sages are instantaneously delivered. A WFG G=(V, E) models a static ‘“‘snapshot’ of the state of
this system that contains no messages in the communication channels. Since message transmission
is instantaneous, we have OUT, = { v | (v,u) € E } and IN, = { w | (w,v) € £ }Note-that
in this case, we have v €IN, if and only if ¥ EOUT,. We now define active nodes and the WFG
transformations that model operational progress in such a system.

A node v is active in G if n, =0 (this represents a process v with no outstanding requests,
i.e., an active process). Let v be any active node in G; the transformations of G are:

-4-

1. Adding k outgoing edges to v and setting n, to some r (1 < r <k).

2. Deleting an edge (u, v) and decreasing n, by 1. If n, =0 then all the outgoing edges of u are
deleted.
Note that (1) models v issuing a r-out-of-k request, and (2) models v sending a REPLY to a pro-
cess u. If this REPLY satisfies u, then u relinquishes the rest of its requests.
As we remarked in the previous section, the definitions of an active node and of WFG
transformations provide a corresponding formal definition of deadlock.

4.2. The deadlock detection algorithm for this system

We present a distributed algorithm to detect deadlock in a WFG G=(V, E) modeling a
static system with instantaneous communication. G represents a static ‘‘snapshot’ of the system,
and therefore it does not change during the execution of the algorithm.

The algorithm starts when some node, which we call the snitiator, suspects that it is
deadlocked.t In order to distinguish between algorithm invocations started by different initiators, all
the messages that are sent in the algorithm are tagged with the initiator identity. All the invoca-
tions are executed independently. We consider one such invocation and, to simplify the notation,
we omit the initiator identity from the messages.

The algorithm consists of two phases: Notify - in which processes are notified that a deadlock
detection algorithm has started, and Grant - in which active processes simulate the granting of
requests. All the processes that are made ‘‘active’” as a result of this also simulate the granting of
requests. Deadlocked nodes are those nodes never made “active’” by Grant. The Grant phase is
nested within the Notify phase. This nesting ensures that the Notify phase terminates only after
the Grant phase is over.

Each node has the local constants IN, OUT and n. These constants correspond to the under-
lying static WFG G as defined earlier. Each node also maintains a few local variables. We denote
by var, the local variable var at node v. The subscript is omitted when there is no ambiguity.

Figure 1 presents the algorithm. It is started when a process (the initiator) invokes the Notify
procedure. It terminates when this procedure call terminates. At termination, the initiator is not
deadlocked if and only if free; g0, = true. The primitive send(w,M) sends the message M to
node w, and await{w,M) waits to receive a message M from node w. Note that await is not
blocking, i.e., it does not prevent the reception and processing of NOTIFY or GRANT messages.

4.3. Correctness of the algorithm

The two phases of the deadlock detection algc;fithm are very similar. In both phases, messages
are propagated in a forest-like pattern, from a core set of nodes to the rest of the graph, according
to a well-defined criterion. These phases are only instances of an algorithm that we call Closure,

and that is a generalization of Chan’s ‘“‘echo” algorithm [Chan80]. Studying Closure will enable us

t This can happen after a long wait for a request to be satisfied.

Initial state of every node v:
OUT :={u |(v,u)EE };
IN :={u |(u,v)EE };
notified, free := false, false ;
#granted :=0;

Notif y:procedure
notif ied := true;
for all we OUT send(w ,NOTIFYY);
if n=0— Grant i
for all we OUT await(w,DONE);

Upon receipt by v of NOTIFY from u:
if ~notified — Notify i
send(u,DONE);

Grant :procedure
free :=true;

for all weIN send(w,GRANT);
for all welN await(w,ACK);

Upon receipt by v of GRANT from u:
#granted := #granted + 1;
if - free and #granted > n — Grant fi
send(u, ACK);

Figure 1. A deadlock detection algorithm for a colorless WFG G=(V, E).
to treat both phases together.

4.3.1. Closures

Consider a directed graph G =(V,E). Let IN(v) denote the set { u |(u,v) € E }. Consider
a subset of nodes SCV. The closure property P is a predicate, P: V2V —{true, false}, such
that, for any v, P(v,¢)= false, and if S,CS,, then P(v,S,)=true implies P(v,S,)= true.
The closure of S with respect to P in graph G 1 is denoted as C(S, P), and is recursively defined as

follows.

+ The reference to the underlying graph G will be omitted whenever it is clear from the

context in which graph the closure is computed.

c(s,P® =S
C(S,P)*! = C(S,P)Y U{v €V |P(v,IN(v)NC(S,P))=truc }

c(s,P)=yc(s,py
all i

Informally, the closure of S includes S, and all the nodes that are successively added as follows. If
a set T of nodes in the closure are the IN neighbors of a node v and P(v, T) = true, then v is
added to the closure.

In Figure 2, we describe a distributed algorithm to compute the closure C(S, P) in a graph G.
The Closure algorithm starts when some node in S calls the Closure procedure. We require that all
the other nodes in S call the Closure procedure, either spontaneously, or following the reception of
a NOTIFY message (as specified in Figure 2). The Closure algorithm terminates when all the nodes

in S terminate their Closure call.

Initial state of every node v:
OUT :={u |[(v,u)EE};
in_C := false;
ancestors ;= ¢;

Closure:procedure
in_C = true;
for all w € OUT send(w,NOTIFY);
for all w € OUT await(w,DONE);

Upon receipt by v of NOTIFY from u:
ancestors := ancestors U { u };
if ~in_C and (v € S or P(v, ancestors)) — Closure fi
send(u,DONE);

Figure 2. Closure, an algorithm to compute C(S, P)in a graph G = (V, E).

4.3.2. Correctness of the Closure algorithm

. In this section, we show that the Closure algorithm described in Figure 2 computes C(S, P).
Lemma 1. During an execution of the Closure algorithm, a node v calls the Closure procedure if
and only if v € C(S, P).
Proof: See Appendix. O

We say that a node terminates if its Closure call terminates. The Closure algorithm ter-

minates if all the nodes in S terminate.

-7-

Lemma 2. The Closure algorithm terminates. Moreover, it terminates after all the nodes in
C(S, P) terminate.
Proof: See Appendix. O

We now consider the communication complexity of Closure.
Lemma 3. During the execution of Closure on a graph G=(V, E) at most 2 |E | messages are
sent.
Proof: A node sends at most one NOTIFY message on any of its outgoing edge, and one DONE on

any of its incoming edges. O

4.3.3. Deadlock detection as the nesting of two Closures

We now show that the deadlock detection algorithm is the nesting of two instances of the Clo-
sure algorithm. Consider a WFG G = (V,E) and a node denoted snitiator. Let ADJ (‘‘adja-
cent’’) be the predicate

|D |21

true
ADJ(v,D)= {jalae otherwise

The closure C({initiator}, ADJ) in G is just the set of nodes reachable from initiator via outgoing
edges in G. To compute C({initiator }, ADJ) the Closure algorithm described in Figure 2 can be
applied as follows.

The Closure procedure and the sn_C variable are first renamed Notify and notifsed, respec-
tively. Now, according to the Closure procedure in Figure 2, upon receipt of a NOTIFY the follow-

ing statement
if ~notified and (v € { initiator } or ADJ(v, ancestors)) — Notify fi

should be executed. However, when the guard is evaluated we must have | ancestors | > 1. There-

fore, ADJ(v, ancestors) = true, and the if statement can be simplified to
if ~notified — Notify fi

The variable ancestors can now be removed.

This modified Closure program appears in Figure 1 with the statement
ifn=0— Grant fi

inserted in the middle of Notify procedure. The execution of this program constitutes the Notify
phase of the deadlock detection algorithm. It is easy to check that Lemma 1 (and its proof) applies
to the Notify phase even with the inserted if statement (provided the execution of this statement
does not change any variable of the Notify program).

Let ACTIVE be the set of active nodes in the set C({initiator}, ADJ) in G, and let SAT
(‘“‘satisfied”) be the following predicate

-8-

__] true |D |2 n,
SAT(v,D)= bahc otherwise

Consider the closure C(ACTIVE,SAT) in the graph GT =(V,ET), where ET =
{(u,v) |(v,u) € E}. We later show that this closure is exactly the set of nodes that are not
deadlocked in the WFG G. It can be computed by the Closure algorithm as follows.

We first rename the procedure Closure, and the variables in_C and OUT as Grant, free and
IN, respectively. We also rename the NOTIFY and DONE messages as GRANT and ACK. We
then define a variable #granted that corresponds to | ancestors |. Now, according to the Closure
algorithm in Figure 2, upon the receipt of a GRANT the following statement

if ~free and (v € ACTIVE or SAT(v, ancestors)) — Grant fi

should be executed. Note that SAT(v, ancestors) is equivalent to #granted > n,. Moreover,
since v received a GRANT message through an incoming edge in GT, then v has at least one out-
going edge in G, so v is not an active node in G. Therefore, v € ACTIVE = false, and the

statement can be simplified to
if = free and #granted > n — Grant fi .

This modified Closure program is the second part of the algorithm in Figure 1. Its execution consti-
tutes the Grant phase of the deadlock detection algorithm, and it computes C(ACTIVE, SAT) in
GT.

4.3.4. Correctness of the deadlock detection algorithm
We first relate the deadlocked nodes in a WFG G to C(ACTIVE,SAT)in GT

Lemma 4. Let G be a WFG, and v a node in C({initiator }, ADJ) in G. Then v is not
deadlocked in G, if and only if vEC(ACTIVE,SAT)in GT.
Prpof: See Appendix. O

We are now able to prove the correctness of our deadlock detection algorithm.
Theorem 1. If an instiator starts the deadlock detection algorithm in a WFG G, then the algo-
rithm terminates. Moreover, when the initiator terminates free;,iiator = true if and only if the ini-
tiator is not deadlocked in G.

Proof: The initiator starts the deadlock detection algorithm by calling Notify. From our previous
discussion of the Notify phase, and from Lemma 1, all the nodes in C({snitiator }, ADJ) in G call
the Notify procedure, and execute the

if n=0— Grant fi

statement. However, only the nodes in ACTIVE call the Grant procedure. From our previous dis-
cussions, this initiates the Grant phase, i.e., the computation of the closure C(ACTIVE, SAT) in
GcT.

-9-

By Lemma 2, this computation terminates. When a node in ACTIVE terminates its Grant
call, it resumes its execution of the Notify procedure. By Lemma 2, the initiator terminates its
Notify call after all the nodes in ACTIVE terminate their Notify calls. Therefore the initiator
terminates after the termination of the Grant phase, and by Lemma 2, after the termination of all
the Grant calls.

By Lemma 1, v € C(ACTIVE,SAT) in GT if and only if v calls the Grant procedure, i.e., if
and only if v sets free, to true, before the initiator terminates. From Lemma 4, we conclude that
when the initiator terminates, a node v in C({snitiator }, ADJ) is not deadlocked in G if and only
if free, = true. |

5. Static systems with messages in transit

5.1. The model

In this section we consider a system where message passing is not instantaneous. Any attempt
to capture the state of the system must take into account the messages in the communication chan-
nels. A colored WFG, G =(V, E), models a static “snapshot” of such a system. The messages in

the channels are modeled by introducing colors on the edges. An edge (u,v) is:

grey: If u has sent REQUEST to v, v has not yet received it, and u has not sent RELIN-
QUISH to v.

black: If v has received REQUEST from u, v has not sent REPLY to 4, and u has not sent
RELINQUISH to v.

white: If v has sent REPLY to u, u has not yet received it, and u has not sent RELINQUISH
to v.

translucent: If ¢ has sent RELINQUISH to v, and v has not yet received it.

Remember that every node v knows IN, and OUT,. We further assume that every node v
knows the colors of all the edges it has to (from) nodes in OUT, (IN,). The explicit mechanism

that provides the color information will be described later.

In order to map the colored WFG to the colorless WFG, we have to interpret the colored
edges, either as existing edges, or as nonexistent edges. We choose to consider the grey, white, and
translucent edges as nonexistent. This interpretation yields a very simple algorithm, but it does not

conform with our operational notions about grey edges.

For example, consider an isolated cycle of grey edges. Already at that point, one can realize
that this is a deadlock situation. But since we choose to consider grey edges as nonexistent, we can-
not yet detect that deadlock. However, the only effect of this decision is that in some cases the
deadlock will not be detected at the earliest possible time. Within some finite time all the grey
edges will turn black, and the deadlock will be detected by the next invocation of the algorithm.

Following our interpretation of colored edges we assume that all the requests corresponding to
grey and white edges are granted. Of course if there is a deadlock under this assumption then there

-10 -

is a deadlock in the colored graph. Let #greywhite, denote the number of grey and white edges in
OUT,. In order to reflect our interpretation of colored edges, we have to modify n, , the number of

pending requests, to n, — #greywhite,. Thus a node v is active if n, — #greywhite, < 0.

Let v be an active node in a WFG G; the transformations of G are:

adding k grey edges to a node v with no outgoing edges, and assigning n, :=7r (1 <r <k).
Changing a grey edge into a black one.

Changing a black (u,v) edge into white.

oW oo

Removing a white edge (u,v) and decreasing n, by 1. If n, =0, then all outgoing edges of u

are made translucent.
5. Removing a translucent edge.

These transformations model the issuing and receipt of the REQUEST (1. and 2.), REPLY (3. and
4)), and RELINQUISH (4. and 5.) messages. Note that the new graph transformations together

with the new definition of active nodes redefine deadlock.

5.2. The algorithm

An algorithm to detect deadlock in a colored WFG is presented in Figure 3. The algorithm is
an adaptation of the algorithm in Figure 1 to a colored WFG that reflects our interpretation of the
colored edges. The only changes are as follows: messages are sent only along black edges,
n, — fgreywhite, is used instead of n,, and the guards for initiating Grant reflect our new
definition of an active node. As mentioned before, each node v knows the colors of the edges in
IN, and OUT, sets.
Theorem 2. If an tnitiator starts the deadlock detection algorithm in a colored WFG G, then the
algorithm terminates. Moreover, when the initiator terminates free,,q,, = true if and only if the
initiator is not deadlocked in G.

Proof: The proof is obtained directly from Theorem 1 and our interpretation of the colored edges.
a

5.3. Color information

The deadlock detection algorithm assumes that each node v knows the colors of its edges to
(from) OUT, (IN,). A node has to determine the colors of its edges when it receives the first mes-
sage of the deadlock-detection algorithm (NOTIFY or GRANT) in order to evaluate #greywhite.
In this section we present the explicit mechanism that achieves that.

A node v can determine the color of its edges by exchanging COLOR messages with all the
nodes in IN, and OUT,. A COLOR message sent from v to u tells ¥ whether u€/N, and whether
4EOUT,. By exchanging COLOR messages over an edge (u, v) two nodes u, v can determine the
edge’s color as follows. An edge (u,v) is black if w€IN, and v€OUT,. It is translucent if «E€IN,
and v¢ OUT,. If v€OUT, and ug IN, it can be either white or grey. Since the colored WFG

-11-

Initial state of every node v:
OUT 4t = {4 |(v,u)EE and is black};
INyaer :={u |(u,v)EE and is black};
notified, free := false, false ;
#granted :=0;

Notify:procedure
notif ted := true;
for all w€ OUTy,: send(w,NOTIFY);
if n — #greywhite <0 — Grant fi
for all w€ OUTyy,.; await{w,DONE);

Upon receipt by v of NOTIFY from u:
if ~notified — Notify fi
send(u,DONE);

Grant:procedure
free .= true;
for all we€IN,, ; send(w,GRANT);
for all w€IN;,,; await(w,ACK);

Upon receipt by v of GRANT from u:
#fgranted := #granted + 1;
if ~ free and #granted > n - ffgreywhite — Grant fi
send(u, ACK);

Figure 3. A deadlock detection algorithm for a colored WFG G=(V, E).

algorithm uses just #greywhite, the nodes are now provided with all the necessary color informa-

tion.

5.4. Optimization

A node v need not delay the propagation of NOTIFY and GRANT messages in order to first
find the colors of its edges. It first assumes that all its edges are black, and it sends those messages
to all the nodes in OUT, and IN,. If some node u receives a message from a node that is not in
IN, or OUT,, it marks the message as a reject, and sends it back to v. There are two possible

cases:

-12-

1. If a node v receives a rejected message back, it can deduce the color of the edge.

(i) If the edge turns out to be translucent (as a response to a rejected GRANT) the node reevalu-

ates the guard for terminating its Grant phase.

(i) If the edge turns out to be grey or white, (as a response to a rejected NOTIFY) the node
reevaluates #greywhite and the guards for starting its Grant phase.

92.: 'Otherwise, v receives a DONE or ACK message back, and it realizes that the edge is black. In
either case, v determines the colors of its edges before its Notify call terminates. Therefore, the
Grant phase always terminates before the Notify phase, and the optimized algorithm is proven

correct as before.

8. A dynamic system

In this section, we consider the ‘‘real-life” situation where the WFG is dynamically changing
dﬁring the execution of the deadlock detection algorithm. This implies that even if the initiator is
not deadlocked when the algorithm starts, it can deadlock during the execution of the algorithm.
Likewise, the algorithm may decide that the initiator is not deadlocked, but by the time the initia-
tor realizes that, it becomes deadlocked. Therefore, a deadlock detection algorithm in a dynamic

system can ensure only the following:
1. If the initiator is deadlocked at the time it invokes the algorithm, a deadlock will be detected.
2. I the algorithm detects a deadlock, then the initiator is deadlocked at the time the algorithm

terminates.

The following scheme is used to overcome the changes of the WFG that occur during the exe-
cution of the algorithm: Spécial FREEZE messages are propagated throughout the system. When a
process receives a FREEZE message, it takes a snapshot of its local state and stores it. The
snapshot contains the sets IN and OUT and n. The distributed deadlock detection algorithm of
Figure 3 (that was developed for static systems) is then executed on these fixed snapshots. During

this execution, the processes’ local states may change.

Because of the time it takes the FREEZE to propagate, the collection of snapshots does not
describe the state of the system at any particular point in time. Not every collection of snapshots
describes a meaningful WFG, and the outcome of the deadlock detection algorithm will not neces-
sarily satisfy the correctness requirements stated above. In the following sections we discuss what

constitutes a consistent and valid collection of snapshots, and how to obtain it.

8.1. Consistent states

The notion of consistent states is due to [Chan83b, Chan83¢|, and the following discussion is a
condensed version of it. A distributed system is a collection of processes that send messages to each
other according to some underlying algorithm. An event occurs at process p when p sends or
receives a message. The local state of process p can be represented as the history of all the events
that occurred in p. A state of the system is a collection of the local states of all the processes. We

-13-

define BEFORE, a partial relation on events, as the closure of following base relation:
e; BEFORE ey, if

1. both ¢, and e, occurred at p, and €, occurred before ¢,, or
2. e, is the sending of a message and e, is the receipt of this message.

We represent the progress of the system by a diagram as in Figure 4:

PAST,

[
N
N =N

Figure 4. A consistent cut in a distributed system.

FUTURE,

S

- e o ———

The horizontal lines represent the time axis of the processes, the points represent events, and the
arrows represent the BEFORE relation.

A cut ¢ is a partition of the graph into two sets of events, PAST, and FUTURE,. A cut c is
consistent, if FUTURE, is closed under BEFORE. A cut defines a state of the system, i.e., the col-
lection of the local states that are represented by the events in PAST,. A consistent cut defines a

consistent state. From here on, we refer to cuts and states interchangeably.

A special type of consistent state is S, the state at time ¢, which is the collection of the local
state of all the processes at time ¢. The S, states are more of a theoretical construct since they
require some outside observer to instantaneously capture the local states of all the processes. In
contrast, the consistent states can be obtained from within the system by message passing. Con-
sistent states are meaningful because they describe a possible view of the system under different

propagation times of the messages, i.e., they are ‘‘potential’’ S, states.
We can extend the BEFORE relation to consistent states. Let S; and S, be consistent states.
We say S, BEFORE S, if PASTs C PASTg,. If the system is in consistent state S and ¢ is an

[
event such that PASTg U {e} defines a consistent state S', then we denote this as S| S'. A

schedule & for a consistent state S is a sequence of events that can successively occur after the sys-

o
tem is in state S. We can now extend the |— relation by denoting S |— S’ if the application of o to

S results in S'. One can show that:

-14 -

-4
Lemma 6 [Chan83c). if S BEFORE S', then there is a schedule o such that S |—S'.

In the context of deadlock detection, the states of the system are WFGs, and schedules are
schedules of WFG transformations. We say that a node is deadlocked at time t if it is deadlocked in
G, (the WFG at time t). The following lemma allows us to apply the algorithm to consistent
WFGs instead of Gys.

Lemma 8. If G BEFORE G' and v is deadlocked in G, then v is deadlocked in G'.

4
Proof: By Lemma 5, G |~ G' for some schedule 0. Suppose, for contradiction, v is not deadlocked
4
in G'. From our definition of deadlock, there must a schedule o' such that G' }— G'' and v is

oo
active in G''. Hence G |~ G'', and v is not deadlocked in G, a contradiction. O

6.2. Obtaining a consistent WFG

The following scheme obtains a collection of snapshots that represents a consistent WFG: The
initiator sends FREEZE messages to all the nodes in its IN and OUT. When a process p receives
the first FREEZE message, it takes a snapshot of its local state and it sends FREEZE messages to
all the processes in its /N, and OUT,. Furthermore, whenever p sends a message to a process that
joinéd IN, or OUT, after p has taken its snapshot, the message will be preceded by a FREEZE.

Lemma 7. The scheme described above provides a consistent collection of snapshots.

Proof: Clearly the collection of snapshots defines a cut ¢. It suffices to show that ¢ is consistent.
Suppose ¢ is not consistent, then there are processes p and ¢ such that some message m from p is
recorded in ¢'s snapshot; but in p’s snapshot, m is not recorded as sent in PAST,. Process p
received a FREEZE message before sending m. Therefore, it sent a FREEZE to q before it sent m.
Because messages are received in the order they are sent, ¢ received the FREEZE before m. There-

fore, m cannot appear in ¢’s snapshot, a contradiction, and ¢ is consistent. (]

When the deadlock detection algorithm is initiated, FREEZE messages are sent before the
NOTIFY messages. Messages are received in the order sent. Therefore, whenever a deadlock-
detection message (NOTIFY, GRANT, DONE or ACK) arrives at a node, the node has already
taken its snapshot.

68.3. The complete algorithm for a dynamic system

Whenever a process p suspects that it is deadlocked, it initiates a new invocation of the algo-
rithm. If it is the k-th such invocation, all the ensuing messages are tagged with (p,k). Process p
first takes a snapshot of its local state and tags it with (p,k). It then sends FREEZE messages to
its neighbors, as described in the previous section. Immediately after, it starts the deadlock detec-
tion algorithm for colored WFGs (i.e., for static systems with messages in transit) on its (p,k)

snapshot.

-15 -

Similarly, when a process receives its first (p,k) FREEZE message, it takes a (p,k) snapshot of
its local state, it propagates FREEZE messages, and then executes the distributed deadlock detec-
tion algorithm according to its (p,k) snapshot.

Theorem 3. Let ¢; be the time the algorithm is invoked, ¢, the time it terminates, and G, and
Gy, the respective WF Gs.

1. If the initiator is deadlocked at t, then free;nisiator = false at t,.
2. If free,pitiator = false at t, then the initiator is deadlocked at ¢,.

Proof: Let G be the WFG described by the collection of snapshots that were obtained by the invo-
cation of the algorithm. By Lemma 7, G is consistent. It is also clear that G, BEFORE G.

1. If the initiator is deadlocked in Gy, then, by Lemma 6, the initiator is deadlocked in G'. Since
the algorithm is applied to G, by Theorem 2, free,p tiator = false when the algorithm terminates,
i.e., at t,.

2. Suppose free;niistor = false at t,. From Theorem 2, the initiator is deadlocked in G. There

are two cases:

(1) If G BEFORE G, then, by Lemma 6, the initiator is deadlocked at ¢,.

(u) G BEFORE G,, does not hold, i.e., processes keep propagating FREEZE messages even after
t2 Let t; be the time the last snapshot in G was taken. Clearly, G BEFORE G and t,<t;.

By Lemma 6, the initiator is deadlocked at ¢3. Note that already at ¢,, the algorithm correctly
determined that the initiator is deadlocked at t;. This is possible only if the initiator was
already deadlocked at t,. O

8.4. Optimization

There is no need for an explicit wave of FREEZE messages to herald the deadlock-detection
messages. The FREEZE messages can be incorporated into the deadlock-detection messages and
into the WFG messages (REQUEST, REPLY and RELINQUISH). Each deadlock-detection mes-
sage is tagged with the invocation identifier. Each WFG message, sent from p to ¢, will also carry
all the invocation identifiers that p has seen and has not yet sent to g. When ¢ receives a message
with a new invocation identifier, it interprets it as a FREEZE, and takes a snapshot of itself. Only

then ¢ changes its state according to the message content.

There is no need for processes to store snapshots for all the previous invocations of the algo-
rithm by a single initiator since all but one of them are obsolete. When a node receives a message
from the k-th invocation by process p, all earlier invocations by p have terminated and their
snapshots can be discarded. Thus, processes have to store only n snapshots, where n is the
number of processes, and only the latest invocation numbers are carried with the WFG-messages.

One can further reduce the number of snapshots stored as follows:

-16 -

1. First we add another phase to the algorithm in which the initiator notifies all the nodes that
the Grant phase has terminated. When any node receives such a message it can find out

whether it is deadlocked by checking its variable free.

2. We maintain a priority order on all the invocations of the deadlock detection algorithm (Logi-
cal Time [Lamp78] is one such ordering). Each process stores only the snapshot of the highest
priority invocation and abort activity on all the rest.

No specific invocation is bound to terminate, since it might be aborted by a later one. How-
ever, the number of consecutive aborts is limited by the number of processes. Therefore, within
finite time from the first aborted invocation, some invocation will terminate. By the first rule
above, all the processes involved will then be able to check whether they are deadlocked.

7. Performance

Given a WFG with n nodes, e edges, and diameter d, we first consider the complexity of an
invocation of the static algorithm by a single initiator. At most four messages are sent over each
edge, i.e., at most a total of 4¢ messages are sent. The size of each message is a small constant
number of bits. A node v of degree k needs o(k) bits of local storage, and spends o(k) time in

local computation.

We model the running time of the algorithm by assuming that all the message transmissions
are synchronized and cost one unit of time, a hop. The colored WFG algorithm and its optimized

version take 4d hops to terminate.

In the best previously published algorithm for AND-OR requests [Herm83], a single algorithm
invocation sends up to n messages over each edge, i.e., a total of up to n-e¢ messages, and the size
of each message is up to o(n logn) bits. The algorithm requires o(n”logn) bits of local storage
and a considerable amount of local computation. However, it takes only 2d hops to detect a
deadlock.

The best previous solution that supports N-out-of -M requests is a non-distributed algo-

rithm [Ober80] and it requires costs that are exponential in the number of nodes.

In a dynamic system, multiple invocations of the algorithm by different initiators incur some
additional costs. The ongoing propagation of FREEZE messages may require up to n? messages.
However, we already showed that FREEZEs can be piggybacked on the WFG messages, and thus
do’ not require an independent transmission. We also have to store the snapshots. A snapshot
takes, without its identifyer, o(n) bits of local storage; thus we need o(n?) bits for n snapshots. If
we maintain a priority ordering of invocations as explained in the previous section, then o(n) bits

of storage per process are sufficient.

-17 -

8. Discussion and conclusions

We have presented an efficient algorithm for deadlock detection in distributed dynamically
changing systems. The algorithm supports both AND and OR requests. Also, it directly supports
N-out-of —M requests without an exponential increase in the complexity.

. "The algorithm was incrementally developed and proven correct for three systems of increasing
complexity. We first derived an algorithm for a static system with instantaneous message transmis-
sion. This algorithm was then extended to work on a static system with messages ‘“frozen’ in tran-
sit. Finally, to deal with a dynamically changing system, we proposed an algorithm that takes con-
sistent local-state snapshots of the processes, and concurrently executes the static system deadlock

detection algorithm on these snapshots.

This approach is quite general and seems widely applicable. It simplifies the complexity of
directly compensating for system changes that occur during the execution of an algorithm. We are

currently applying it to other distributed algorithms for dynamic systems.

In [Chan83c] an algorithm for obtaining a consistent global state is presented, with the
assumption that the processes intercommunication topology is fixed, and every process knows all its
incoming channels. In in our system, a node may be unaware of some of its incoming channels (e.g.,
a process u holding a certain file lock may not know about the existence of another process v that

just sent a lock request to u).

This difference affects the two solutions: In [Chan83c| each process is responsible for reporting
the state of all its incoming channels. This is possible because processes know all their incoming
channels. In our solution, each process has to locally find out the states of its outgoing edges, since
these determine its actions in the algorithm.

As a final remark, our model assumes that an active process simultaneously satisfies all the
requests to it. One may consider the case where requests can be only granted one by one, serially.
It easy to show that the two models are equivalent; there is a deadlock in the case of simultaneous
granting of requests if and only if there is a deadlock in the serial case. Thus our algorithm is able
to handle both models.

Acknowledgement

The authors are grateful to Ken Perry for suggesting many improvements in the presentation

of the algorithms.

- 18 -

Appendix

Lemma 1. During an execution of the Closure algorithm, a node v calls the Closure procedure if
and only if v € C(S, P).

Pr’oof: We number the Closure calls that occur during the algorithm execution according to their

order of invocation in time}, and we denote by s(v) the number of the Closure call initiated by v.

We first claim that if v calls the Closure procedure, then v € C(S, P). The proof is by induc-
tion on #(v). If s(v)=1 then v is the first node to call Closure and therefore v € SC C(S, P).

Suppose the claim holds for all v such that 0 < s(v) <r. Consider v with s(v)=r+1.If
v €S, then we are done. If v ¢ S, then when v calls Closure we have P(v, ancestors,) = true,
where ancestor, is the set of nodes that sent a NOTIFY message to v. If w € ancestor,, then
w € IN(v), and w called Closure before v, i.e., s(w) < r. By induction hypothesis, w € C(S,P).
Therefore, ancestors, C IN(v) N C(S,P)*, for some k. Since P(v,ancestors,) = truc, then
v € C(§, P+,

We now claim that if v € C(S, P) then v calls the Closure procedure. Let I(v) denote the
smallest § such that v € C(S,P)'. The proof is by induction on I(v). If I(v)=0, then v € S,

and therefore v calls Closure.

Suppose our claim holds for all v such that 0 <!(v)<r, and consider v such that
I(v)=r+1. Since v € C(S,P) ™!, there must be vy, ..., v in IN(v)NC(S, P)" such that
P(v,{vy, ..., v })=true. By induction hypothesis, all the v;’s (1 < j < k) call Closure, and
therefore send a NOTIFY to v. When the last such NOTIFY is received by v, we have
{vy, ..., v} C ancestors,, P(v,{vy, ..., v })=true. At this point, either in_C, = false and

v calls the Closure procedure, or in_C, = true and v already called Closure. O

Lemma 2. The Closure algorithm terminates. Moreover, it terminates after all the nodes in
C(S, P) terminate.

Proof: Consider an execution of the Closure algorithm. A node v is the engager of a node u if v
sends a NOTIFY to u that causes u to call the Closure procedure. Note that v must call Closure
before it sends NOTIFY messages, and therefore before u calls Closure. Moreover, a node w can-
not call Closure more than once (since the first call sets in_C,, to true). Therefore, there can be no

cycles in the “v is the engager of u" relation, and a node cannot have more than one engager.

Consider the subgraph F =(V, {(v,u) | v is the engager of u }), induced by the execution of
the algorithm. From our previous remarks, F must be a forest, and the roots of the trees in F' are
nodes in S. We define the height A(v) of a node v in F, as the length of the longest path from v
to a leaf in F. Formally, if v is a leaf in F, then h(v)=0, otherwise h(v)=
mjxx{h(w) |(v,w) € F} + 1. We say that u is a descendent of v, if there is a path from v to u in

+ Concurrent calls can be arbitrarily ordered.

-19 -

F.
Let v be a node that calls the Closure procedure. We claim that v terminates, and that all
v’s descendents terminate before v. The proof is by induction on h(v). If A(v) =0, then v is a leaf
in F, and it has no descendents. There are two possible cases:
1. OUT, = ¢, and v terminates.
2. During the Closure call, v sends NOTIFY messages to all the nodes in OUT,, but, since v is a
leaf in F, it is not the engager of any node in OUT,. It is then clear that v receives a DONE back
from all of the nodes in OUT,, and v terminates.
Suppose the claim holds for all v such that 0 < h(v) < r. Consider the Closure call of a node
v such that A(v)=r+1, and let ¥ € OUT,. During this call, v sends a NOTIFY to u. There are
two possible cases:
1. v is the engager of u, therefore u calls Closure, and h(u) < r. By induction hypothesis, u ter-
minates, and all u’s descendents terminate before u. Note that after u terminates, it sends a
DONE to its engager v.
2. v is not the engager of u, and u replies to v's NOTIFY with a DONE.
Therefore v receives a DONE from every u in OUT,, and then v terminates. Consequently, v’s
descendents must terminate before v, and the claim is proved.
All the nodes in S call the Closure procedure. From our claim:
1. all the nodes in S terminate, and therefore the algorithm terminates, and
9. since all the nodes in F are descendents of nodes in S, they terminate before the algorithm
does.
From Lemma 1, v € C(S, P) if and only if v calls Closure. So, either v has an engager and there-
fore v € F,or v € S. In both cases, v terminates before the algorithm. O
Lemma 4. Let G be a WFG, and v a node in C({initiator }, ADJ) in G. Then v is not
deadlocked in G, if and only if vEC(ACTIVE,SAT)in GT.

Proof: Let G and v be as in Lemma 4. We claim that if v is not deadlocked in G then
vEC(ACTIVE,SAT) in G T. The proof is by induction on ¢(v), the length of a shortest schedule

o
o such that G- G', and v is active in G'. If t(v)=0 then v is active, and, since
v € C({initiator }, ADJ) in G, then v € ACTIVE C C(ACTIVE,SAT)in GT.

Suppose that our claim holds for all nodes u such that 0 <t(u)<r. Let v be a node as in
Lemma 4, such that t(v)=r+12>1, and let 0 be a schedule of length ¢(v) as described above.
Note that v is not active in G, therefore n, = d for some d > 0 (in G). On the other hand, v is
active in G', and therefore n, =0 (in G').

The only graph transformation that can decrease the label n, (by exactly one) is the transfor-

mation of type 2, when an edge (v,u) leading to an active node is deleted. Since o decreases n,

from d to 0, 0 must include d such transformations s;,1 < 5 < d. Let (v, u;) be the edge deleted

- 90 -

by s;, such that u; is active (in the graph that s; was applied to). Note that u; is not deadlocked
in G, and t(y;) <r. We claim that all (v, u;)'s are edges in G. A consequence of this claim is
that u; € C({initiator }, ADJ) in G, for all j’s, and by induction hypothesis (and our previous
remark), u; € C(ACTIVE,SAT)in GT,1<; <d.

To prove the claim we note that v is not active in any graph resulting from the application of
a prefix of the schedule o to G (this would contradict the definition of o). Therefore, o does not
include any transformation (of type 1) that adds outgoing edges to v, and the claim is proved. We
also conclude that the u;’s are all distinct nodes.

We showed that u; € IN(v) N C(ACTIVE, SAT) in GT, for all §, 1<j <d. Therefore,
vEC(ACTIVE,SAT)in GT.

Now suppose vEC(ACTIVE,SAT) in GT, and let I(v) be the minimum ¢ such that
v € C(ACTIVE,SAT)' in GT. We claim that, for all ¥ > 0, there is a schedule ¢; such that

O
1. GF G,

2. 0} is a sequence of edge deletions (i.e., transformations of type 2), and,

3. forall v,if I(v) < k then v is active in G}, and if {(v) > k then (v, u) is in G if and only if
it is in Gj.
The proof is by induction on k.

Let k = 0. For all v such that /(v) = 0, then v € ACTIVE, so v is active in G, and our
claim holds for the null schedule 6, = < >. We now assume the claim holds for ¥ = r, and show
it also holds for k = r + 1.

Consider a node v such that [(v)=1r + 1. By definition of I[(v), we have
| IN(v)N C(ACTIVE,SAT)" | 2 n,, ie., there is a set {u,,...,u, } of nodes u; such that

v, u;)is an edge in G and /(uy;) < r. By induction hypothesis, there is a schedule o, consisting of
] 5
a'

edge deletions such that G |— G,, all the nodes u with {(u) < r are active in G,, and the edges of

v in G, are the same ones that v had in G.

Starting from the WFG G, , we apply a sequence ¢ of transformations of type 2 that deletes all
the edges (w, u) where {(w) = r+1 and u is active in G. This results in a graph G, ,, where

Tr 1

Gt Gyypando, =0, L.
From our previous remarks, every node v with [(v) = r + 1 have at least n, (v, ;) edges

that are deleted by the transformations in ¢. Therefore, t decreases n, to 0, and v must be active
in G,,,. It is easy to check that o, satisfies the other requirements of the induction hypothesis.

0

-91-

References

Beer81

Brac84

Chan80

Chan82

Chan83a
Chan83b
Chan83c

Gary82

Glig80

Haas83
Herm83

Holt72

Kim84

Lamp78

C. Beeri and R. Obermarck, A resource class independent deadlock detection algorithm,
Research Report RJ%077, IBM Research Laboratory, San Jose, California, March 1981.
G. Bracha and S. Toueg, A distributed algorithm for generalized deadlock detection,
Tech. Rep. 83-558, Computer Science Department, Cornell University, Ithaca, New
York, June 1983.

E. Chang, Echo algorithms: depth parallel operations on general graphs, IEEE Transac-
tions on Software Engincering, vol. SE-8, no. 4, pp. 391-401, July 1980.

K. M. Chandy and J. Misra, A distributed algorithm for detecting resource deadlocks in
distributed systems, Proc. of the 1st ACM Symposium on Principles of Distributed Com-
puting, Ottawa, Canada, pp.157-164, Aug. 1982.

K. M. Chandy, L. M. Haas and J. Misra, Distributed deadlock detection, ACM Transac-
tions on Computer Systems, vol. 1, no. 2, pp. 144-156, May 1983.

K. M. Chandy, Presentation given at the Department of Computer Science, Cornell
University, Ithaca, New York.

K. M. Chandy and L. Lamport, Detecting stability in distributed systems, to be pub-
lished.

G. S. Ho and C. V. Ramamoorthy, Protocols for deadlock detection in distributed data-
base systems, IEEE Transactions on Software Engineering, vol. 8, no. 6, pp. 554-557,
Nov. 1982.

V. G. Gligor and S. H. Shattuck, On deadlock detection in distributed systems, I[EEE
Transactions on Software Engineering, vol. 6, no. 5, pp. 435-440, Sept. 1980.

L. M. Haas and C. Mohan, A distributed deadlock detection algorithm for a resource-
based system, Research Report RJ3765, IBM Research Laboratory, San Jose, California,
Jan. 1983.

T. Herman and K. M. Chandy, A distributed procedure to detect AND/OR deadlock,
Tech. Rep. LCS-8301, Department of Computer Sciences, University of Texas, Austin,
Texas, Feb. 1983.

R. C. Holt, Some deadlock properties of computer systems, ACM Computing Surveys,
vol. 4, no. 3, pp. 179-196, Sept. 1972.

J. K. Kim, Deadlock detection algorithms in distributed database systems, Tech. Rep.
R-84-1162, Department of Computer Science, University of Illinois at Urbana-
Champaign, Urbana, Illinois, Feb. 1984.

L. Lamport, Time, clocks and the ordering of events in a distributed system, Communs-
cations of the ACM, vol. 21, no. 7, pp. 558-565, July 1978.

Mena79

Ober80

Ober82

-22- -

D. A. Menasce and R. R. Muntz, Locking and deadlock detection in distributed data
bases, IEEE Transaction on Engineering, vol. 5, no. 3, pp. 195-202, May 1979.

R. Obermarck, Deadlock detection for all resource classes, Research Report RJ2955, IBM
Research Laboratory, San Jose, California, Oct. 1980.

R. Obermarck, Distributed deadlock detection algorithm, ACM Transactions on Data-
base Systems, vol. 7, no. 2, pp. 187-208, June 1982.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif

