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A Distributed Algorithm for Solving a Linear
Algebraic Equation

Shaoshuai Mou Ji Liu A. Stephen Morse

Abstract

A distributed algorithm is described for solving a lineagettraic equation of the formax = b
assuming the equation has at least one solution. The eqguatisimultaneously solved by agents
assuming each agent knows only a subset of the rows of thitiggaet! matrix[ A b], the current
estimates of the equation’s solution generated by its f@igh and nothing more. Each agent recursively
updates its estimate by utilizing the current estimateseggad by each of its neighbors. Neighbor
relations are characterized by a time-dependent directgzhd(¢) whose vertices correspond to agents
and whose arcs depict neighbor relations. It is shown thaay matrix A for which the equation has
a solution and any sequence of “repeatedly jointly strorggignected graphs¥(¢), ¢t = 1,2,..., the
algorithm causes all agents’ estimates to converge expiatigriast to the same solution tdx = b. It
is also shown that the neighbor graph sequence must actmligpeatedly jointly strongly connected
if exponential convergence is to be assured. A worst caseecgence rate bound is derived for the case
when Az = b has a unique solution. It is demonstrated that with minor iffzadion, the algorithm can
track the solution todz = b, even if A andb are changing with time, provided the rates of changd of
andb are sufficiently small. It is also shown that in the absenceamfimunication delays, exponential
convergence to a solution occurs even if the times at whidh egent updates its estimates are not
synchronized with the update times of its neighbors. A modiion of the algorithm is outlined which
enables it to obtain a least squares solutiomto= b in a distributed manner, even iz = b does

not have a solution.
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I. INTRODUCTION

Certainly the most well known and probably the most impdrtdrall numerical computations
involving real numbers is solving a system of linear algebequations. Efforts to develop
distributed algorithms to solve such systems have beenrumdsg for a long time especially
in the parallel processing community where the main objecis to achieve efficiency by
somehow decomposing a large system of linear equationsmédler ones which can be solved
on parallel processers more accurately or faster thantds@ation of the original equations
would allow [2]-[€]. In some cases, notably in sensor nekivay [7], [8] and some filtering
applications|[9], the need for distributed processingearisaturally because processors onboard
sensors or robots are physically separated from each dtheaddition, there are typically
communication constraints which limit the flow of inform@tiacross a robotic or sensor network
and consequently preclude centralized processing, eveffigiency is not the central issue. It

is with these thoughts in mind that we are led to consider ttieviing problem.

[I. THE PROBLEM

We are interested in a network @f > 1 {possibly mobilé autonomous agents which are
able to receive information from their “neighbors” where doyeighborof agenti is meant any
other agent within agents reception range. We writ&/;(¢) for the labels of agenfs neighbors
at timet, and we always take ageito be a neighbor of itself. Neighbor relations at timean
be conveniently characterized by a directed grajoh) with m vertices and a set of arcs defined
so that there is an arc iN(¢) from vertex;j to vertex: just in case ageni is a neighbor of
agent; at timet. Thus the directions of arcs represent the directions armétion flow. Each
agent: has a real-time dependent state vectdt) taking values inR", and we assume that
the information agent receives from neighboy at timet is z;(¢). We also assume that agent

n

i knows a pair of real-valued matricéd”* ", b/*'). The problem of interest is to devise local
algorithms, one for each agent, which will enableralbgents to iteratively and asynchronously
compute solutions to the linear equatiglr = b where A = column {A;, Ay, ..., Ap tasns

b = column {by, by, ..., by }axn @andn = > n;. We shall require these solutions to be exact
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up to numerical round off and communication errors. In thet foiart of this paper we will focus
on the synchronous case and we will assume that= b has a solution although we will not
require it to be unique. A restricted version of the asynnbrts problem in which communication
delays are ignored, is addressedill[] a more general version of the asynchronous problem
in which communication delays are explicitly taken into @aat, is treated in [10].

The problem just formulated can be viewed asdlistributed parameter estimation problem
in which theb; are observationsavailable to the sensors andis a parameter to be estimated.
In this setting, the observation equations are sometimabtefformb, = A;x + n; wheren;
is a term modeling measurement noisé [8]. The most wideldistuversion of the problem
is whenm = n, the A, are linearly independent row vectods, the b; are scalars, anti(t)
is a constant, symmetric and strongly connected graph. tisrversion of the problem, A is
therefore am» x n nonsingular matrixp is ann vector and agent knows the stater;(¢) of
each of its neighbors as well as its own state. The problerhisndase is thus for each agent
to computeA—'b, givena;, b; andz;(t), j € N;, t > 0. In this form, there are several classical
parallel algorithms which address closely related proBleAmong these are Jacobi iterations
[2], so-called “successive over-relaxations!’ [5] and thessical Kaczmart method![6]. Although
these are parallel algorithms, all rely on “relaxation ¢mst which cannot be determined in
a distributed way unless one makes special assumptiong abotdditionally, the implicitly
defined neighbor graphs for these algorithms are geneitatipgly complete; i.e., all processors
can communicate with each other.

This paper breaks new ground by providing an algorithm wisch

1) applicable toany pair of real matriceg A, b) for which Ax = b has at least one solution.

2) capable of finding a solution at least exponentially fasteoren{l.

3) applicable to théargestpossible class of time-varying directed neighbor grals for

which exponential convergence can be assyrEueoren .

4) capable of finding a solution tdx = b which, in the absence of round off and commu-

nication errors, is exact.

5) capable of finding a solution using at mostradimensional state vector received at each

clock time from each of its neighbors.

6) applicable without imposing restrictive or unrealigiguirements such as (a) the assump-

tion that each agent is constantly aware of an upper boundh@mumber of neighbors
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of each of its neighbors or (b) the assumption that all agarégsable to share the same
time-varying step size.

7) capable of operating asynchronously.

An obvious approach to the problem we've posed is to refoameuit as a distributed opti-
mization problem and then try to use existing algorithmshsas those in_[11]=[21] to obtain a
solution. Despite the fact that there is a large literaturedistributed optimization, we are not
aware of any distributed optimization algorithm which, fphied to the problem at hand, would
possess all of the attributes mentioned above, even if {habdlity of functioning asynchronously
were not on the list. For the purpose of solving the problermtarest here, existing algorithms
are deficient in various ways. Some can only find approximatetisns with bounded errors
[11]; some are only applicable to networks with bi-direotdd communicationgie, undirected
graphg and/or networks with fixed graph topologiés [12]-4[14], /[ any require all agents to
share a common, time varying step size! [12], [14]:-[19]; mamgoduce an additional scalar or
vector state[[13],[[14],[[16],[[18]=[21] for each agent todape and transmit; none have been
shown to generate solutions which converge exponentiadly; filthough it is plausible that some
may exhibit exponential convergence when applied to the dfyuadratic optimization problem
one would set up to solve the linear equation which is of edehere.

One limitation common to many distributed optimizationalithms is the requirement that
each agent must be aware of an upper bound on the number dbioesgof each of its neighbors.
This means that there must be bi-directional communicatlmetween agents. This requirement
can be quite restrictive, especially if neighbor relatichange with time. The requirement stems
from the fact that most distributed optimization algorithaepend on some form of “distributed
averaging. Distributed averagings a special type of consensus seeking for which the goatis fo
all n agents to ultimately compute the average of the initial @alaf their consensus variables.
In contrast, the goal of consensus seeking is for all agentdtimately agree on a common
value of their consensus variable, but that value need nohde@verage of their initial values.
Because distributed averaging is a special form of conseseeking, the methods used to obtain
a distributed average are more specialized than those thdedeach a consensus. There are
three different approaches to distributed averaging:alineerations [[7], [[2R2], gossipind [23],
[24], and double linear iterations [25] which are also knaagnpush-sum algorithmis [16], [26],
[27] and scaled agreement algorithrs![28].
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Linear iterations for distributed averaging can be modelsda linear recursion equation in
which the {possibly time-varying§ update matrix must be doubly stochastic|[23]. The doubly
stochastic matrix requirement cannot be satisfied withestming that each agent knows an
upper bound on the number of neighbors of each of its neighl#orecent exception to this is
the paper([29] where the idea is to learn weights within tligiigte doubly stochastic matrix in
an asymptotic fashion. Although this idea is interestihgJso adds complexity to the distributed
averaging process; in addition, its applicability is liedtto time invariant graphs.

Gossiping is a very widely studied approach to distributedraging in which each agent
is allowed to average its consensus variable with at mostaotiner agent at each clock time.
Gossiping protocols can lead to deadlock unless specificapt®ns are taken to insure that
they do not and these precautions generally lead to fainyptex algorithms[[24] unless one
is willing to accept probabilistic solutions.

Push-sum algorithms are based on a quite clever idea firstrapily proposed by in [26].
Such algorithms are somewhat more complicated than lirteeations, and generally require
more data to be communicated between agents. They are hoateaetive because, at least for
some implementations, the requirement that each agent kmwumber of neighbors of each
of its neighbors is avoided [25].

Another approach to the problem we have posed is to refotmitlas a least squares problem.
Distributed algorithms capable of solving the least sgai@r®@blem have the advantage of being
applicable toAz = b even when this equation has no solution. The authors_of [3Q],develop
several algorithms for solving this type of problem and gsudficient conditions for them
to work correctly; a limitation of their algorithms is thabeh agent is assumed to know the
coefficient matrixA; of each of its neighbors. In_[82], it is noted that the disitéd least
squares problem can be solved by using distributed avegagircompute the average of the
matrix pairs(A;A;, Alb;). The downside of this very clever idea is that the amount ¢ da
be communicated between agents does not scale well as theenofagents increases. #X]
of this paper an alternative approach to the distributestIsquares problem is briefly outlined;
it too has scaling problems, but also appears to have thenfadtef admitting a modification
which will to some extent overcome the scaling problem.

Yet another approach to the problem of interest in this paigeto view it as a consensus

problem in which the goal is for ath, agents to ultimately attain the same value for their states
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subject to the requirement that eachsatisfies the convex constraidiz; = b;. An algorithm for
solving a large class of constrained consensus problemsiofype in a synchronous manner,
appears in[[15]. Specialization of that algorithm to thebbee of interest here, yields an
algorithm similar to synchronous version of the algorithinietn we will consider. The principle
difference between the two - apart from correctness praulsciims about speed of convergence
- is that the algorithm stemming from [115] is based on distiédol averaging and consequently
relies on convergence properties of doubly stochasticicestwhereas the synchronous version
of the algorithm developed in this paper does not. As a caresze, the algorithm stemming
from [15] cannot be implemented without assuming that eagmiknows as a function of time,
at least an upper bound on the number of neighbors of each ofiitent neighbors, whereas the
algorithm under consideration here can. Moreover, lingitine consensus updates to distributed
averaging via linear iterations almost certainly limite fossible convergence rates which might
be achieved, were one not constrained by the special steusfudoubly stochastic matrices. We
see no reason at all to limit the algorithm we are discussingpubly stochastic matrices since,
as this paper demonstrates, it is not necessary to. In additte mention that a convergence
proof for the constrained consensus algorithm proposed5h Which avoids doubly stochastic
matrices is claimed to have been developed_in [33] but theectiress of the proof presented
there is far from clear.

Perhaps the most important difference between the res@lfi5) and the results to be
presented here concerns speed of convergence. In this egpenential convergence is estab-
lished for any sequence of repeatedly strongly connecteghber graphs. In[[15], asymptotic
convergence is proved under the same neighbor graph comglibutexponentiaconvergence is
only proved in the special case when the neighbor graph id fixel complete. It is not obvious
how to modify the analysis given in_[15] to obtain a proof ofperential convergence under
more relaxed conditions.

In contrast with earlier work on distributed optimizationdadistributed consensus, the ap-
proach taken in this paper is based on a simple observatigpjred by [[15], which has the
potential on being applicable to a broader class of probkéas being considered here. Suppose
that one is interested in devising a distributed algorithimclv can cause all members of a group
of m agents to find a solutiom to the system of equations;(z) =0, i € {1,2,...,m} where

a; : R" — R™ is a “private” function know only to agent Suppose each agents able to
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find a solutionz; to its private equationy;(x;) = 0, and in addition, all of the; are the same.
Then all z; must satisfya;(z;) = 0, j € {1,2,...,m} and thus each constitutes a solution to
the problem. Therefore to solve such a problem, one showldoticraft an algorithm which,
on the one hand causes each agent to satisfy its own privatgieq and on the other causes
all agents to reach a consensus. We call thisatipeement principleWe don’t know if it has
been articulated before although it has been used befotoutitspecial mentiori [34]. As we
shall see, the agreement principle is the basis for thrderdiit versions of the problem we are

considering.

[1l. THE ALGORITHM

Rather than go through the intermediate step of reforrmgetie problem under consideration
as an optimization problem or as a constrained consenshkeprpwe shall approach the problem
directly in accordance with the agreement principle. Théswalready done in [34] for the case
when neighbors do not change and the algorithm obtained vgasame one as the one we are
about to develop here. Here is the idea assuming that alktsagenhsynchronously. Suppose time
is discrete in that takes values in{1,2,...}. Suppose that at each time> 1, agent: picks
as a preliminary estimate of a solution tor = b, a solutionz;(t) to A;x = b;. Suppose that
K; is a basis matrix for the kernel of;. If we setx;(1) = z;(1) and restrict the updating of
x;(t) to iterations of the formy;(t + 1) = 2;(t) + Kyui(t), t > 1, then no matter what,(¢) is,
eachx;(t) will obviously satisfy A;x;(t) = b;, t > 1. Thus, in accordance with the agreement
principle, all we need to do to solve the problem is to come ith & good way to choose the
u; SO that a consensus is ultimately reached. Capitalizing batws known about consensus
algorithms [[35]-[37], one would like to choose(t) so thatx;(t + 1) = mL(t) (Zj@wt) xj(t))
where m;(t) is the number of neighbors of agentat time ¢, but this is impossible to do
because-z;(t) + —— > jeni(n Ti(t) is not typically in the image of<;. So instead one might

m(t
try choosing eacmi((;) to minimize the differencéz;(t) + Kyu;(t)) — mL(t) (ZjeM(t) xj(t)) in
the least squares sense. Thus the idea is to chogdse- 1) to satisfy A,x;(t + 1) = b; while
at the same time making;(¢ + 1) approximately equal to the average of agéstneighbors’
current estimates of the solution tbr = b. Doing this leads at once to an iteration for agént

of the form
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1

ri(t+1)=z(t) — e

B[ mit)zt) — Y x(t) ], t>1 (1)

JEN;(t)
whereP; is the readily computable orthogonal projection on the &koh A;. Note right away that
the algorithm does not involve a relaxation factor and isltgtdistributed. While the intuition
upon which this algorithm is based is clear, the algorithossrectness is not.

It is easy to see that/ — P;)z;(t) is fixed no matter what;(¢) is, just so long as it is a
solution to A;z = b; . Sincex;(t) is such a solution[{1) can also be written as

1

ri(t+1) =x;(t) — e

B[ miai(t) — Y x(t) |, t>1 2)

JEN: (1)

and it is this form which we shall study. Later §¥I[lwhen we focus on a generalization of
the problem in whichd andb change slowly with time, the corresponding generalizatioh(d)
and [2) are not quite equivalent and it will be more conventenfocus on the generalization
corresponding td(1).

As mentioned in the preceding section, by specializing thestrained consensus problem
treated in [[15] to the problem of interest here, one can aobsa update rule similar td (2).
Thus the arguments in_[15] can be used to establish asyroptotivergence in the case of
synchronous operation. Of course using the powerful bugtlgnand intricate proofs developed
in [15] to address the specific constrained consensus proptesed here, would seem to be a
round about way of analyzing the problem, were there avialabdirect and more transparent
method. One of the main contributions of this paper is to g®\ust such a method. The
method closely parallels the well-known approach to untraiveed consensus problems based
on nonhomogeneous Markov chains|[36],/[38]. The standacdnstrained consensus problem is
typically studied by looking at the convergence propeniemfinite products ofS,,..,, stochastic
matrices. On the other hand, the problem posed in this papstudied by looking at infinite
products of matrices of the form?(S @ I)P where P is a block diagonal matrix ofn, n x n
orthogonal matricesS is anm x m stochastic matrix/ is then x n identity, and® is the
Kronecker product. For the standard unconstrained consgm®blem, the relevant measure of
the distance of a stochastic mati$kfrom the desired limit of a rank one stochastic matrix is
the infinity matrix semi-norm [24] which is also the same thas the well known coefficient of

ergodicity [38]. For the problem posed in this paper, thevaht measure of the distance of a
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matrix of the formP (S ® I') P from the desired limit of the zero matrix, is a somewhat um@ilisu

but especially useful concept called a “mixed-matrix” nofkd-Al

V. ORGANIZATION

The remainder of this paper is organized as follows. Thereliseime synchronous case is
treated first. We begin in Sectidn V by stating conditions lo@ sequence of neighbor graphs
N(1),N(2),... encountered along a “trajectory,” for the overall disttém algorithm based on
(@) to converge exponentially fast to a solution4o = b. The conditions on the neighbor graph
sequence are both sufficiefitheoren]t and necessaryTheoren{ . A worst case geometric
convergence rate is then givé@orollary[1} for the case whenlz = b has a unique solution.

Analysis of the synchronous case is carried oufMil After developing the relevant linear
iteration [8), attention is focused §VI-Alon proving that repeatedly jointly strongly connected
neighbor graph sequences are sufficient for exponentialectgance. For the case whelxr = b
has a unique solution, the problem reduces to finding candit{ Theorem[ § on an infinite
sequence ofn x m stochastic matriceS;, Ss, . . . with positive diagonals under which an infinite
sequence of matrix products of the foktR (S, @ I)P)(P(Sy-1 @ I)P)--- (P(S1®I)P), k>1
converges to the zero matrix. The problem is similar to pobbf determining conditions on an
infinite sequence ofn x m stochastic matrices, S, . .. with positive diagonals under which
an infinite sequence of matrix products of the foff.Sy_; ---S1), k > 1 converges to a rank
one stochastic matrix. The latter problem is addressedanstandard consensus literature by
exploiting several facts:

1) The induced infinity matrix semi-norm_[R4]i.e., the coefficient of ergodicity [38]is

sub-multiplicative on the set of: x m stochastic matrices.

2) Every finite product of stochastic matrices is non-expens the induced infinity matrix

semi-norm [[24].

3) Every sufficiently long product of stochastic matriceshwmpositive diagonals is a semi-

contraction in the infinity semi-norm provided the graphstled stochastic matrices ap-
pearing in the product are all rootef4], [35], [39].

1A directed graph isootedif it contains at least one vertexfrom which, for each vertex in the graph, there is a directed

path fromr to v .
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There are parallel results for the problem of interest here:

1) The mixed matrix norm defined by (10) is sub-multiplicaton R™**™" {Lemmal§.

2) Every finite matrix product of the form\P (S, @ I)P)(P(Sk—1 ® I)P)---(P(S, ® I)P)
is non-expansive in the mixed matrix norfPropositior_l}.

3) Every sufficiently product of such matrices is a conti@ttin the mixed matrix norm
provided the stochastic matrices appearing in the prodaee tpositive diagonals and
graphs which are all strongly connectéBropositior 2.

While there are many similarities between the consensublgro and the problem under
consideration here, one important difference is that theofen x m stochastic matrices is
closed under multiplication whereas the set of matriceshefform (P(S @ I)P) is not. To
deal with this, it is necessary to introduce the idea of a jgmiion block matrix” §VI-C2|
A projection block matrix is a partitioned matrix whose sipdg structured blocks are called
“projection matrix polynomials’§VI-C1l What is important about this concept is that the set of
projection block matrices is closed under multiplicatior a@ontains every matrix product of the
form (P(S, @ I)P)(P(Sk-1®1)P)---(P(S,®1I)P). Moreover, it is possible to give conditions
under which a projection block matrix is a contraction in thixed matrix norm{Proposition
[}. Specialization of this result yields a characterizatidrthe class of matrices of the form
(P(Sk @ I)P)(P(Sk-1®I)P)---(P(S,® I)P) which are contraction§ Propositior 2. This,
in turn is used to prove Theoreh 3 which is the main technieallt of the paper.

The proof of Theorenmh|1 is carried out in two steps. The casenwhe = b has a unigue
solution is treated first. Convergence in this case is an idiabe consequence of Theorém 3.
The general case without the assumption of uniquenessatettaext. In this case, Lemrha 1
is used to decompose the problem into two parts - one to whielra@sults for the uniqueness
case are directly applicable and the other to which standiacdnstrained consensus results are
applicable.

It is well known that the necessary condition for a standardomstrained consensus algo-
rithm to generate an exponentially convergent solutiorn& the sequence of neighbor graphs
encountered be “repeatedly jointly rooted” [40]. Since ap&atedly jointly strongly connected
sequence” is always a repeatedly jointly rooted sequenagendt conversely, it may at first
glance seem surprising that for the problem under condidaran this paper, repeatedly jointly

strongly connected sequences are in fact necessary fomenpal convergence. Nonetheless
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they are and a proof of this claim is given in Section VI-B. Tgreof relies on the concept of
an “essential vertex” as well as the idea of “a mutual realehafyuivalence class.” These ideas
can be found in[[38] and [41] under different names.

Theoren{B is proved igVI-Cl The proof relies heavily on a number of concepts meret
earlier including the mixed matrix norm, projection matpalynomials{ §VI-C1l}, and projection
block matrices{§VI-C2]}. These concepts also play an important role§ii-D] where the
worst case convergence rate stated in Corollary 1 is justifie underscore the importance of
exponential convergence, it is explaineddMllwhy that with minor modification, the algorithm
we have been considering can track the solutiodio= b, if A andb are changing with time,
provided the rates of change dfandb are sufficiently small. Finally, the asynchronous version
of the problem is addressed in Sectjon VIII.

A limitation of the algorithm we have been discussing is tihas only applicable to linear
equations for which there are solutions.JliXIwe explain how to modify the algorithm so that
it can obtain least squares solutionsA@ = b even in the case wheAx = b does not have
a solution. As before, we approach the problem using stancamsensus concepts rather than

the more restrictive concepts based on distributed avegagi

A. Notation

If M is a matrix, M denotes its column span. if is a positive integem = {1,2,... n}.
Throughout this papeg@,, denotes the set of all directed graphs withvertices which have
self-arcs at all vertices. The graph of anx m matrix M with nonnegative entries is am
vertex directed graph (M) defined so thati, j) is an arc from: to j in the graph just in case
the jith entry of M is nonzero. Such a graph is ¢y, if and only if all diagonal entries of\/

are positive.

V. SYNCHRONOUSOPERATION

Obviously conditions for convergence of the iterations defined by[{2) must depend on
neighbor graph connectivity. To make precise just what isméy connectivity in the present
context, we need the idea of “graph composition”|[35]. By the compositionof a directed
graphG, € G, with a directed grapli, € G,,, written G, o G, is meant that directed graph in
G, With arc set defined so that, j) is an arc in the composition just in case there is a vertex
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k such that(i, k) is an arc inG, and (k, j) is an arc inG, . It is clear thatg,, is closed under
composition and composition is an associative binary dimrabecause of this, the definition
extends unambiguously to any finite sequence of directgohgran G,,. Composition is defined
so that for any pair of nonnegative x m matricesM;, M,, with graphsy (M), v(Ms) € G,
V(MaMy) =y(Mz) o y(My).

To proceed, let us agree to say that an infinite sequence gphgf@,,G,,... in G,, is
repeatedly jointly strongly connected for some finite positive integer$ and 7, and each
integerk > 0, the composed grapH;, = Giiry—1 © Grigry—2 © - -+ 0G(_1)11r,, IS Strongly
connected. Thus iN;,N,,... is a sequence of neighbor graphs which is repeatedly jointly
strongly connected, then over each successive intervakohsecutive iterations starting aj,
each proper subset of agents receives some informationtfirerrest. The first of the two main
results of this paper for synchronous operation is as falow

Theorem 1:Suppose each agehtipdates its state;(¢) according to rule[(2). If the sequence
of neighbor graphN(¢), ¢ > 1, is repeatedly jointly strongly connected, then there texés
positive constanh < 1 for which all z;(¢) converges to the same solutionAda = b ast — oo,

as fast as\ converges td.

In the next section we explain why this theorem is true.

The idea of a repeatedly jointly strongly connected segeiaicgraphs is the direct analog
of the idea of a “repeatedly jointly rooted” sequence of Gigpthe repeatedly jointly rooted
condition, which is weaker than the repeatedly jointly stfly connected condition, is known to
be not only a sufficient condition but also a necessary onenoimfanite sequence of neighbor
graphs ing,, for all agents in an unconstrained consensus process o aeaansensus exponen-
tially fast [40]. The question then, is repeatedly jointtyosigly connected strong connectivity
necessary for exponential convergence of th@o a solution toAx = b? Obviously such a
condition cannot be necessary in the special case when(0 and {and consequently = 0}
because in the case the problem reduces to an unconstraingeinsus problem. The repeatedly
jointly strongly connected condition also cannot be nemgsi a distributed solution tolx = b
can be obtained by only a proper subset of the full setnodgents. Prompted by this, let us
agree to say that agents with labelsVin= {i,,,...,i,} C m areredundantif any solution

to the equationsi;xz = b; for all 7 in the complement o¥, is a solution toAz = b. To derive
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an algebraic condition for redundancy, suppose thist a solution toAz = b. Write V for the
complement ofY in m. Then any solutionv to the equationsd;z = b;,7 € V must satisfy
w — 2z € (\;ep Pi, Where fori € m, P; = image F;. Thus agents with labels i’ will be

redundant just in case — z € (,,, P;. Therefore agents with labels ¥ will be redundant if

and only if
P ()P
i€V €y
We say that{ P, P, ..., P,,} is a non-redundant seif no such proper subset exists. We can

now state the second main result of this paper for synch®operation.

Theorem 2:Suppose each agentupdates its state;(¢) according to rule[(2). Suppose in
addition thatA # 0 and that{ P, P, ..., P,,} is a non-redundant set. If there exists a positive
constant\ < 1 for which all z;(t) converges to the same solution #a: = b ast — oo as fast
as \' converges td), then the sequence of neighbor grapiig), ¢ > 1, is repeatedly jointly

strongly connected.

In the §VI-Blwe explain why this theorem is true.

For the case whedx = b has a unique solution and each of the neighbor gréjhgs ¢t > 1
is strongly connected, it is possible to derive an expliairst case bound on the rate at which
the x; converge. As will be explained at the beginning §dI-A] the uniqueness assumption
is equivalent to the assumption that_, P; = 0. This and Lemmal2 imply that the induced
two-norm| - |, of any finite product of the fornP, P, - - - P;, is less thanl, provided each of
the P;, < € m, occur in the product at least once. Thusqiﬁ (m —1)? andC is the set of all

such products of length + 1, thenC is compact and

P = mé}X|Pj1Pj2 "'ij+1|2 (3)
is a number less thah So therefore is
(1= o\
\ — (1 _ (m )E] P)) . (4)
m

We are led to the following result.
Corollary 1: Suppose thatlz = b has a unique solution*. Let XA be given by[(#). If each of
the neighbor graphi(¢), ¢ > 1 mentioned in the statement of Theorem 1 is strongly condecte

then allz;(t) converge tar* ast — 0 as fast as\" converges td).
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A proof of this corollary will be given in section VIID. The #nsion of this result to the case
when Az = b has more than one solution can also be worked out, but thiswatilbe done here.
It is likely that p can be related to a conditioning number by but this will not be done here.
In the consensus literature [37], researchers have aldeedbat algorithms using convex
combination rules rather than straight average rule whiethave exploited here. Applying such

rules to the problem at hand leads to update equations of tme general form

zi(t +1) = z;(t) — B | @i(t) — Z wi;(t)x;(t) tE€m (5)
JEN(t)

where thew;;(t) are nonnegative numbers summing tand uniformly bounded from below by a
positive constant. The extension of the analysis whiclowllo encompass this generalization is
straightforward. It should be pointed out however, thabcent looking generalizations of these
update laws which one might want to consider, can lead tolgnat For example, problems
can arise if the same value af;; is not used to weigh all of the components of aggst
state in agent’s update equation. To illustrate this, consider a netwoitk\a fixed two agent
strongly connected graph anti = [1 1] andA; =[—a —1]. Suppose agerituses weights
wy; = .5. to weigh both components af;, j € 2 but agent2 weights the first components of
state vectors;; andx, with .25 and.75 respectively while weighing the second components of
both with.5. A simple computation reveals that the spectral radius efrélevant update matrix
for the state of the system determined by (5) will excéddr values ofa in the open interval
(.5,1).

VI. ANALYSIS

In this section we explain why Theorermbk 1 ddd 2 are true. Assa dtep, we translate the
statex; of (2) to a new shifted state, which can be interpreted as is the error betwegand
a solution toAx = b; as we shall see, this simplifies the analysis. Towards thi§ et x* be

any solution toAz = b. Thenz* must satisfyA;z* = b; for i € m. Thus if we define

ei(t) =x;(t) —x*, i€m, t>1 (6)
thene;(t) € P;, t > 1, becausé’; = ker A;. ThereforePie;(t) = e;(t), i € m, t > 1. Moreover
from 2),

ei(t +1) = Ple(t) — P | mi(t)Pei(t) = > Pies(t)

mi(t) JEN (1)
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fort > 1, ¢ € m, which simplifies to

t > ) .

e(t+1) = - PZPeJ ), t>1, i€m (7)

JEN(t)

As a second step, we combine theseupdate equations into one linear recursion equation
with state vectore(t) = column{e;(t),ex(t),...,en(t)}. To accomplish this, writedy, for
the adjacency matrix aN(¢), Dy for the diagonal matrix whosgéh diagonal entry isn;(t)
{m;(t) is also the in-degree of vertexin N(¢)}, and let F'(t) = DN(t A,y Note thatF'(¢)
is a stochastic matrix; in the literature it is sometimesxmnefd to as &locking matrix It is

straightforward to verify that
e(t+1)=P(F(t)® I)Pe(t), t>1 (8)

where P is themn x mn matrix P = diagonal{ P, P», ..., P,,} and F'(t) ® I is themn x mn
matrix which results when each entfy(¢) of £'(¢) is replaced byf;;(¢) times then x n identity.
Note thatP? = P because eack, is idempotent. We will use this fact without special mention

in the sequel.

A. Repeatedly Jointly Strongly Connected Sequences dliei&uf

In this section we shall prove Theorérn 1. In other words wé stibw that repeatedly jointly
strongly connected sequences of graphs are sufficient feorential convergence of the
to a solution toAx = b. We will do this in two parts. First we will consider the spaici
case whendr = b has a unique solution. This case is exactly whgh, ker A; = 0. Since

ker A; = P;, ¢ € m, the uniqueness assumption is equivalent to the condition
(P =o0. 9)
=1

Assuming Az = b has a unique solution, our goal is to derive conditions udeich e —
0 since, in view of [(6), this will imply that allz; approach the desired solutiort in the
limit at ¢ — oo. To accomplish this it is clearly enough to prove that the ringbroduct
(P(F(t)®I)P)...(P(F(2)®I)P)(P(F(1)®I)P) converges to the zero matrix exponentially
fast under the hypothesis of Theoréin 1. Convergence of swathxnproducts is an immediate
consequence of the main technical result of this paper, lyaiteeorem[ 8, which we provide

below.
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To state Theorerhl3, we need a way to quantify the sizes of xnptoducts of the form
(P(F(t)®I)P)...(P(F(2)®I)P)(P(F(1)®I)P). For this purpose we introduce a somewhat
unusual but very useful concept, namely a special “mixetlirianorm: Let | - |, and | - |
denote the standard induced two norm and infinity norm res@de and writeR™"*"™" for the
vector space of alln x m block matrices)) = [Q;; ] whoseijth entry is a matrixQ;; € R™*".

We define themixed matrix normof @ € R™™*™" written ||Q)||, to be

QI = (@)oo (10)

where (@) is the matrix inR™*™ whoseijth entry is|Q;;|2. It is very easy to verify thaf] - ||
is in fact a norm. It is even sub-multiplicatief. Lemmal3.

To state Theorerhl 3, we also need the following idea./ls¢ a positive integer. A compact
subsetC of m x m stochastic matrices with graphs dh, is I-compactif the setC; consisting of
all sequences’, S,,...,S;, S; € C, for which the graphy(S,S;_; - --S;) is strongly connected,
is nonempty and compact. Thus any nonempty compact subset>ofn stochastic matrices
with strongly connected graphs @, is 1-compact. Some examples of compact subsets which
are [-compact are discussed on page 595 of [35].

The key technical result we will need is as follows.

Theorem 3:Suppose thaf{9) holds. Létbe a positive integer. Lat be an/-compact subset
of m x m stochastic matrices and define

A= (ﬁfe% e FERRLLA 1P(Qut ® DP(Qui-r ® 1) -+ P(Qu @ I)P|)#
wherew = (m—1)% and fori € {1,2,...,w}, H, is the subsequene@;_1y+1, Q—1y1+2, - - -, Q.
Then A\ < 1, and for any infinite sequence of stochastic matri€esSs, ... in C whose graphs
form a sequence(S;),v(S:), ... which is repeatedly jointly strongly connected by contigsio

subsequences of lengththe following inequality holds.

|P(S, @ I)P(Si—1 @ I) -+~ P(S, @ [ P|| < AC71), (11)

The ideas upon which Theorem 3 depends is actually prettplsin®ne breaks the infinite
product
PSSt @ )P(Sp-1®1)---P(S1®I)P
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into contiguous sub-product8(Sy; ® I)P(Sk—1 ® I)--- P(Sx ® I)P, k > 1 of length with
[ chosen long enough so that each sub-product is a contractidhe mixed matrix norm
{Propositio 2. Then using the sub-multiplicative property of the mixedtmxanorm {Lemma
[3}, one immediately obtaing (IL1). This theorem will be provedVI-C3|

Next we will consider the general case in whi€h (9) is not presd to hold. This is the case
when Az = b does not have a unique solution. We will deal with this casseweral steps.
First we will {in effect} “quotient out” the subspace”,P; thereby obtaining a subsystem to
which Theoren{I3 can be applied. Second we will show that the gfathe system state we
didn’t consider in the first step, satisfies a standard urtcanged consensus update equation to
which well known convergence results can be directly appline first step makes use of the
following lemma.

Lemma 1:Let )’ be any matrix whose columns form an orthonormal basis foottieogonal
complement of the subspac&”,P; and defineP, = QPQ’, i € m. Then the following
statements are true.

1. EachP;, i € m, is an orthogonal projection matrix.

2. EachP,, i € m, satisfiesQP, = P,Q.

3. N, Pi=0.

Proof of Lemmal[l: Note thatP? = QP,Q'QPQ" = QP*Q' = QP,Q' = P;, i € m, so eachP,
is idempotent; since eadh is clearly symmetric, each must be an orthogonal projeatiairix.
Thus property 1 is true.

Sinceker Q = N, P;, it must be true thakter Q C P;, i € m. ThusP, ker Q = ker @), i € m.
Therefore@P; ker Q) = 0 soker ) C ker QF;. This plus the fact thaf) has linearly independent
rows means that the equatiep”;, = X @ has a unique solutiolX'. Clearly X = QFP,Q’, so
X = P,. Therefore property 2 is true.

Pick # € N™,P;. Thenz € P;, i € m, so there existw; such thatz_ Paw;, i € m. Set
y = Q'z in which caser = Qy; thusy = Q' Pyw;, i € m. In view of property 2 of Lemmal1,
y = PQw;, i € msoy € N, P;. ThusQy = 0. But x = Qy sox = 0. Therefore property 3
of Lemmall is truem
Proof of Theorem [I Consider first the case wheAirx = b has a unique solution. Thus the
hypothesis of Theorerf] 3 thdil (9) hold, is satisfied. Next nles¢hat since directed graphs
in G, are bijectively related to flocking matrices, the ggtof distinct subsequences((k —
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Di+1),F((k—1)1+2),...,F(kl), k > 1, encountered along any trajectory of (8) must be
a finite and thus compact set. Moreover for some finite integer 0, the composed graphs
Y(E(kl)) oy(F(lk—1)o---F(l(k—1)+1)), k> 19 must be strongly connected because the
neighbor graph sequend§t), t > 1 is repeatedly jointly strongly connected by subsequences
of length! and~(F(¢t)) = N(¢), t > 1. Hence Theorerh]3 is applicable to the matrix product
(P(F(t)®I)P)...(P(F(2)®I)P)(P(F(1)®1I)P). Therefore for suitably defined nonnegative
A < 1, this product converges to the zero matrix as fast’asonverges td). This and[(8) imply
that e(t) converges to zero just as fast. From this dnd (6) it follovat #mchz;(¢) converges
exponentially fast tor*. Therefore Theorernl 1 is true for the case whén= b has a unique
solution.

Now consider the case whefx = b has more than one solution. Note that property 2 of
Lemmall implies thal) P, P; = P,P;Q for all 4,5 € m. Thus if we definez; = Qe;, i € m,
then from [7)

1 _
éi(t+1):mﬂ > Pe(t), t>1, icm. (12)
! JEN: ()

Observe that[{12) has exactly the same form[as (7) excepth®Pt which replace theP,.
But in view of LemmadlL, theP; are also orthogonal projection matrices amd,P; = 0. Thus
Theorem B is also applicable to the system of iterations. (TBgreforee; — 0 exponentially
fast ast — oc.

To deal with what is left, define; = ¢; — Q’¢;, ¢ € m. Note thatQz, = Qe; — €; SO
Qz; = 0,i € m. Thusz(t) € N7, P;, i € m. Clearly P;z(t) = z(t), 4,7 € m. Moreover from
property 2 of Lemm&l1P,Q’' = Q'P,. These expressions, arid|(12) imply that

zi(t+1) = #@)J.GNZZ_@ zi(t), t>1, i€ m. (13)
These equations are the update equations for the standamhstrained consensus problem
treated in [[35] and elsewhere for case when thare scalars. It is well known that for the
scalar case, a sufficient condition for all to converge exponentially fast to the same value
is that the neighbor graph sequence Hg), ¢ > 1 be repeatedly jointly strongly connected
[35]. But since the vector update {13) decouples intindependent scalar update equations,
the convergence conditions for the scalar equations apjhout change to the vector case as

well. Thus all z; converge exponentially fast to the same limitih e (", P;,. So do all of
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thee; sincee; = z; + Q'¢;, i € m, and alle; converge to zero exponentially fast. Therefore all
x; defined by [(R) converge to the same limit+ 2* which solvesAz = b. This concludes the

proof of Theoreni 1 for the case whelr = b does not have a unique solutidm.

B. Repeatedly Jointly Strongly Connected Sequences aresbbny

In this section we shall explain why the of exponential cageeace of ther;(¢) to a solution
can only occur if the sequence of neighbor graptis), ¢ > 0 referred to in the statement of
Theoreni D, is repeatedly jointly strongly connected. Tohds tve need the following concepts
from [38] and [41]. A vertex; of a directed graplis is said to bereachablefrom vertexi if
eitheri = j or there is a directed path fromto j. Vertex: is calledessentialif it is reachable
from all vertices which are reachable frainlt is known that every directed graph has at least
one essential verted_.emma 10 of [24]}.

Vertices: andj in G are calledmutually reachabléf each is reachable from the other. Mutual
reachability is an equivalence relation am Observe that if is an essential vertex if¥, then
every vertex in the equivalence classiofs essential. Thus each directed graph possesses at
least one mutually reachable equivalence class whose nmerale all essential. Note also that

a strongly connected graph has exactly one mutually reéeleauivalence class.

Proof of Theorem [2: Consider first the case whehr = b has a unique solution. In this case, the
unique equilibrium of[(B) at the origin must be exponenyiatable. Since exponential stability
and uniform asymptotic stability are equivalent properf@ linear systems, it is enough to show
that uniform asymptotic stability of[8) implies that thegsence of neighbor grap®§¢), ¢ > 0

is repeatedly jointly strongly connected. Suppose theeetioat [8) is a uniformly asymptotically
stable system.

To show that repeatedly jointly strongly connected segeenare necessary for uniform
asymptotic stability, we suppose the contrary; i.e. supgbatN(1),N(2), ... is not a repeatedly
jointly strongly connected sequence. Under these comdifizve claim that for every pair of
positive integers and, there is an integet > 7 such that the composed grapfik +7—1) o
---oN(k+1)oN(k) is not strongly connected. To justify this claim, supposa for some pair
(I,7), no suchk exists; thus for this pair, the grapbp+7—1)o---oN(p+1)oN(p), p> 7

are all strongly connected so the sequebie), N(2),... must be repeatedly jointly strongly
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connected. But this contradicts the hypothesis @y, ¢ > 0 is not a repeatedly jointly strongly
connected sequence. Therefore for any pair of positivgéns andr there is an integet > 7
such that the composed graptik +1 — 1) o--- o N(k + 1) o N(k) is not strongly connected.

Let ®(¢, 7) be the state transition matrix &f( F'(t)®1) P. Since [[8) is uniformly asymptotically
stable, for each real number> 0 there exist positive integetsand’, such that|®(t+7.,t)|| <
e for all ¢ > t.. Sete = 1 and lett, and7} be any pair of such integers. Sinb&1), N(2),...
is not a repeatedly strongly connected sequence, therebeausmt integer, > ¢; for which the
composed graph

G=N(ts+T; —1)o---oN(ta + 1) o N(¢)

is not strongly connected. Sine¢e > t;, the hypothesis of uniform asymptotic stability ensures
that
[[®(t2 + Th,t2)|| < 1. (14)

In view of the discussion just before the proof of Theorem&must have at least one
mutually reachable equivalence classvhose members are all essential. Note thaf iivhere
equal tom, thenG would have to be strongly connected. Beutis not strongly connected s0
must be a strictly proper subset of with £ < m elements. Suppose thét= {v;, vy, ..., v}
and let€ = {v,.1,...,v,} be the complement of in m. Since every vertex ig is essential,
there are no arcs ift from £ to £. But the arcs of each(t), t € {ty,to+1,...t5 + 11 — 1}
must all be arcs ifc because eachi(t) has self-arcs at all vertices. Therefore there cannot be
an arc from& to £ inanyN(t), t € {ty,to+1,.. .ty + T — 1}.

Let 7 be a permutation om for which 7(v;) = j, 7 € m and let@ be the corresponding
permutation matrix. Then fare {t,,to+1, ...to+7—1}, the transformatiod'(t) — QF(1)Q’
block triangularizes”’(t). SetQ = Q ® I. Note that() is a permutation matrix and thaPQ’
is a block diagonal, orthogonal projection matrix whgse diagonal block isPy,;), j € m.
Because eacty F'(t)Q’ is block triangular, so are the matric€s’(F(t) ® ) PQ’, t € {ta, 5+
1,...to+ Ty — 1}. Thus fort € {ts,t2 + 1,...1t5 + T — 1}, there are matricesi(t), B(t) and
C'(t) such that

QP(F(t)@I)PQ/: A(()t) B(t)

Let k& be the number of elements 1 Fort € {ty,to +1,...to + Ty — 1}, let S(¢) be that
(m—k) x (m—k) submatrix ofF'(¢) whoseijth entry is thev;,,v;4,th entry of F'(¢), for all and
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i,j €{1,2,...,m—k}. In other wordsS(¢) is that submatrix of"(¢) obtained by deleting rows
and columns whose indices arefinSince eacti'(t), t € {ts,to+1,...t,+T;—1} is a stochastic
matrix and there are no arcs frofhto £, each corresponding(t) is a stochastic matrix as
well. SetP = block diagonal{P,,,,, Py, ,.-- -, Py, } in which caseC(t) = P(S(t)®I)P. Since
{P, P, ..., P,}is a non-redundant set agdis a strictly proper subset afi, (.. P; # 0. Let

€€

z be any nonzero vector i\, _ P;. in which caseP;z = z, i € £. ThenC(t)z = P(S(t)®1)Pz

=
Note that

> __ [ o / Al
wherez =[2" 2" - 2], 4

A B

0o C
whereC' = C(to + 11 — 1) ---C(t2). ThereforeCz = z for C' has an eigenvalue at Thus the

QP(ty +T1,12)Q = (QP(F(to+ T1 — 1) @ I)PQ') - - - (QP(F(t2) ® I) PQ') =

state transition matrixp(t, + 77 — 1,t2) has an eigenvalue atso ||®(tx + 77 — 1,t0)|| = 1.
But this contradicts[(14). It follows that the sequed&d ), N(2), ... must be repeatedly jointly
strongly connected Az = b has a unique solution.

We now turn to the general case in whictx = b has more than one solution. Since by
assumption A # 0, the matrix@ defined in the statement of Lemrhh 1 is not the zero matrix
and so the subsystem defined byl(12) has positive state spaeasion. Moreover, exponential
convergence of the overall system implies that this sukgystunique equilibrium at the origin
is exponentially stable. Thus the preceding argumentsyagagpthe sequence of neighbor graphs

must be repeatedly jointly strongly connected in this casel

C. Justification for Theoreifn 3

In this section we develop the ideas needed to prove Theldrékfe degin with the following

lemma which provides several elementary but useful factsitabrthogonal projection matrices.

Lemma 2:For any nonempty set of x n real orthogonal projection matricé$,, P, ..., Py}

|PpPr—1---Pils < 1. (15)
Moreover,
|PPy_1--Pila <1 (16)
if and only if .
(P =0 (17)
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Proof of Lemmal[2 To avoid cumbersome notation, throughout this proof we dhepsubscript

2 and write| - | for | - |o. To establish[(I5), We make use of the fact that the eigeasadéi any
projection matrix are eithed or 1. But the projection matrices of interest here are orthofona
and thus symmetric. Therefore each singular value of gaanust be eithed or 1. It follows
that|P;| < 1, i € k. The inequality in[(1b) follows at once the fact that is sub-multiplicative.

To prove the equivalence df_(16) arid(17) suppose first i@t liblds. Letz be any vector
in ﬂle P;. Then P,P,_; - -- Pix = x. Since [(I6) holdsP, P._; - -- P, must be a discrete time
stability matrix. ThereforeP,P,_, - - - P, cannot have an eigenvalue htso x = 0. It follows
that (17) is true.

To proceed we will first need to justify the following claimt {Qi,Q,,...,Qs} is any
nonempty subset of < m projection matrices fror{ P, P, ..., P} andz € R™ is any vector
for which |Q; - - - Qs_1Qsz| = |x|, thenQ;z = z, i € {1,2,...,s}. To prove this claim, suppose
first that@ € {Py, P», ..., P} and that|Qx| = |z| for somez € R". Write x = y + z where
y € Qandz € Qt. ThenQx = y so |y| = |z|. But |y|> + |2|?> = |z|*> so z = 0. Therefore
Qr = x so the claim is true fos = 1.

Now fix ¢ < k£ and suppose that the claim is true for every value &f ¢q. Let = be a vector
for which |Q; - - - Q Q12| = |z|. Then|z| = |Q1 - - - QuQy+17| < |Qq+12| < |z| becausd - | is
sub-multiplicative and because {15) holds for any nonersptyof projection matrices. Clearly
|Qq112| = |z|; therefore@,.1x = = because the claim is true for single projection matrices.
Therefore; - - - Q@112 = Q1---Quz SO |Qy--- Qx| = |z|. From this and the inductive
hypothesis it follows that),z = x, i € {1,2,...,q}. Thus the claim is true for a§ < ¢ + 1.

It follows by induction that the claim is true.

To complete the proof, suppose tHatl(17) holds and k& any vector for whichP, Py, - - - Pyz| =
|z|. In view of the preceding claimPz = z, i € {1,2,..., k}. This implies thatr € N¥P;, and
thus because of (17) that= 0. Thus P, P,_; - - - P, cannot have a singular value atThis and
(@5) imply that [16) is truem

1) Projection Matrix Polynomials:To proceed we need to develop a language for talking
about matrix products of the forfP(S,®I)P)...(P(S2®I)P)(P(S,®I)P) where theS; are
m xm stochastic matrices. Such matrices can be viewed as paditimatrices whose? blocks

are specially structured x n matrices. We begin by introducing some concepts appreptat
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the individual blocks.
Let {P, P,,..., P,} be a set ofr x n orthogonal projection matrices. We will be interested

in matrices of the form
d
p(P, Py, Py, Po) =Y NPy Pre -+ Pruan (18)
=1

whereg; andd are positive integers); is a real positive number, and for eagle {1,2,...,¢},
hi(j) is an integer in{1,2, ..., m}. We call such matrices together with the< n zero matrix,
projection matrix polynomialdn the event. is nonzero, we refer to the; as thecoefficientof
w. Note that eachn x n block of any partitioned matrix of the forraP (S, ® I)P) ... (P(S; ®
I)P)(P(S;®1)P) is a projection matrix polynomial. The set of projection mapolynomials,
written P, is clearly closed under matrix addition and multiplicatibet us note from the triangle
inequality, that

2.

d
1(Py, Py, Py, o Po)la < Xl Pruy Pra) -+ Phatan
=1
From this and[(15) it follows that
|M(P1>P2>P3>"'>Pm)|2 < [M(Plvp?vp?n"'apm)—l (19)

where [j(Py, Py, Py, ..., P,)] = SSC N\ if u # 0 and [p] = 0 if = 0. We call [] the
nominal boundof . Notice that the actua norm of i will be strictly less than its nominal
bound provided at least one “component”ohas a2 norm less than one where bycamponent
of u we mean any matrix produél,, 1y Py, (2) - - - Ph,(q:) @ppearing in the sum it (118) which defines
. In view of Lemmal2, a sufficient condition faPy,, 1) Py, (2) - - - Ph(q,) 10 have a2 norm less
than1 is that

qi
m Im(Phi(j)) =0.
j=1

Thus if *, P; = 0, this in turn will always be true if each of the projectionstrizes in the
set{P,, P,,..., P,} appears in the componet,, )P, - - - Pr,q,) at least once. Prompted
by this we say that a nonzero projection matrix polynomiéP;, P, Ps, ..., P,,) is com-
pleteif it has a component’,, )Py, 2) - - - Ph,(q,) Within which each of the projections matrices
P;, je{1,2,...,m} appears at least once. Assumjng’ , P; = 0, complete projection matrix
polynomials are thus a class of projection matrix polyndsnigith 2-norms strictly less than

their nominal bounding values. The converse of course isnpoessarily so.
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2) Projection Block MatricesThe ideas just discussed extend in an natural way to “plioject
block matrices.” By ann x m projection block matrixs meant a block partitioned matrix of

the form
M = [,Uij(PbPZ)"'va)]me'

An m x m projection block matrix is thus anm x nm matrix of real numbers partitioned into
n X n sub-matrices which are projection matrix polynomials. Be¢ of allm x m projection
block matrices, writter®™*™, is clearly closed under multiplication. Note that any rixabf
the form (P(S, ® I)P)...(P(S2 ® I)P)(P(S; ® I)P) is a projection block matrix.

By the nominal bound of M = [p;;(P1, Py, ..., Pn)l,,.,, € P™*™, written [M], is meant
the m x m matrix whoseijth entry is the nominal bound of;;(Py, P, ..., P,). Using [19) it
IS quite easy to verify that

(M) < [M] (20)

where the inequality is intended entry-wise. The definitadrnominal bound of a projection

matrix polynomial implies that for alliy, o € P, [pipe]| = [pa][p2] @and [y + po] = [pa] +
[p2]. From this it follows that

(MM, = [M][Ms), My, My € P, (21)

In order to measure the sizes of matricesPi*”™ we shall make use of the mixed matrix
norm|| - || defined earlier in[(10). A critical property of this norm isttit is sub-multiplicative:
Lemma 3:
IABI|[ < [IA[[l[B]|, VA, B € R™™".

Proof of Lemma[3 Note first that

(AB) = | > [AuByl
k=1 mxm
But |Ai,Byjla < [Awl|2| Bijla SO

| Bijla

m - | Bajl2

> JAiBijla < 1Aila| Bl = [[Aulz Al -+ |Ainl2]

k=1 k=1
|ij|2
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Clearly (AB) < (A)(B). It follows from this and the fact that the infinity norm is sub
multiplicative that|(AB)|. < |(A)|w|(B)|« Thus the lemma is trua

It is worth noting that the preceding properties|pf|| remain true for any pair of standard
matrix norms provided both are sub-multiplicative. It isiceivable that the mixed matrix norm
which results when thé -norm is used in place of thnorm, will find application in the study
of distributed compressed sensing algorithms [42]. Théonaif a mixed matrix norm has been

used before although references to the subject are somewkatre.

Let M = [pi5],,.,, D€ @ matrix inP™*, Since(M) = [|pijl2],,«n it iS possible to rewrite
(20) as
(M) < [M], M eP™m (22)
Therefore
IM]] < [[M|o, M € P™™. (23)

Thus in the case wheh/| turns out to be a stochastic matrik}/|| < 1. In other words, when
[M] is a stochastic matrix)/ is non-expansive. As will soon become clear, this is exattity
case we are interested in.

What we are especially interested in are conditions undectwh/ is a contraction in the
mixed matrix norm we have been discussing under the assomitat();", 7; = 0. Towards
this end, let us note first that the sum of the terms in any green: of (M) will be strictly
less than the sum of the terms in ravof [A/| provided at least one sub-matrix; in block
row ¢ of M is complete. It follows at once that the inequality inl(23)Ivee strict if every row
of M has this property. We have proved the following proposition

Proposition 1:Any matrix M in P™*™ whose nominal bound is stochastic, is non-expansive
in the mixed matrix norm. If, in additiorf,).", 7, = 0 and at least one entry in each block row
of M is complete, thenV/ is a contraction in the mixed matrix norm.

3) Technical ResultsWe now return to the study of matrix products of the formiS, @
NP(S;-1®1)---P(S1®I)P whereP = diagonal { Py, P», ..., Py}, S; is anm x m stochastic
matrix, and/ is then x n identity. As noted earlier, each such matrix product is ggmtoon
block matrix inP"*™. Our goal is to state a sufficient condition under which anghsmatrix

product is a contraction in the mixed matrix norm. To do tlesus note first that
[P(Sq @ I)P(Sq—1®1)--- P(S1 ® I)P] = 54541+ -5 (24)
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because of (21) and the fact tha?(S® I)P|] = S for any stochastic matri%. Thus in view of
Propositior 1L,P(S, ® I)P(S,-1 ® I) --- P(S; ® I)P will be a contraction assumingl(9) holds,
if each of its block rows contains an entry which is complete.

To proceed we need to generalize the idea of a repeatedyjsintingly connected sequence
to sequences of finite length. A finite sequence of graph<G., ...G; in G, is [-connectedf
the composed grapfi; o G;_; o - - - 0 Gy is strongly connected. More generally, finite sequence
G1, Gy, ...G, is repeatedlyl-connectedfor some positive integef, if each of the composed
graphsHy, = G0Gy—10- - -0Gy_1y41, k € q, is strongly connected; hergs the unique integer
quotient ofp divided by!l. Note that ifG,, G,,...G, is such a sequence, the composed graph
H = G,oGy_0---0Gy4—1)+1 is also strongly connected becalife= G,0G,_;0---0Gy 41 0H,
and because ig,,, the arc sets of any two graphs are contained in the arc se¢iofdomposition.

Proposition 2: Suppose tha{{9) holds. L&, Ss, ... S, be a finite set ofn x m stochastic
matrices whose graphs form a sequencs,; ), v(S52). . . ., v(S,) which is repeatedly-connected
for some positive integdr If p > (m—1)21, then the matrixP(S, @ I)P(S,®1)--- P(S;®1)P
is a contraction in the mixed matrix norm.

To prove this proposition we will make use of the followingea By aroute over a given
sequence of graplts;, G, ...,G, in G, is meant a sequence of verticgsiy, . . ., i, such that
for k € q, (ix_1,ix) IS an arc inGy. A route over a sequence of graphs which are all the same
graphG, is thus a walk inG.

The definition of a route implies that if,,...,, is a route overG,, G.,...,G, and
Qgsigt1,- - -, 1p IS @route ovefs,, G,i1,...,G,, then the ‘concatenated’ sequerigg, . .., i,_1,
igs g+l - - -, 1p IS @ route ovelGy, Go,...,G41, Gy, Ggi1,...,G,. This clearly remains true
if more than two sequences are concatenated.

Note that the definition of composition i@, implies that ifj = iy,7,...,i, =i IS a route
over a sequenc&;, G, ..., G, then(i, j) must be an arc in the composed gréapho G,_; o
-+-0Gy. The definition of composition also implies the conversamely that if (¢, j) is an arc
in G,0G,_10---0Gy, then there must exist vertices . ..,i,_; for which j =iy, iy,...,i, =i
is a route overG,, Go,...,G,.

Lemmad4let S, S, ... S, be asequence of xm stochastic matrices with graples, G, . . .,

G, In G, respectively. Ifj = ig,41,...,9, = i is a route over the sequen€ad, G.,...,G,,

then the matrix produck; P, _, --- P, is a component of théjth block entry of the projection

q—1
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block matrix
M =P(S,@)P(S;-1®1I)---P(S;®I)P.

Proof of Lemmald First suppose; = 1 in which caseM = P(S; ® I)P. By definition, (j,1)
is an arc inGy; therefores;; # 0. But theijth block in M is s;; P, P;. Thus the lemma is true
for ¢ = 1.

Now suppose thay > 1 and that the lemma is true for all < ¢. SetA = PS,P and
B = P(S;-1 @ )P(S;a®I)---P(S; ® I)P. Since P> = P, M = AB. Since the lemma
is true fork < ¢ and j = ip,%1,%,...,%-1 IS a route overG,, G,...,G,_;, the matrix
P, P

o -+ P, is a component of thé,_,jth projection matrix polynomial entry; ; of
B. Similarly, the matrixP; Pi,_, is a component of thei,_,th projection matrix polynomial

s
entry a;;,_, of A. In general, the product of any component of any nonzeroeptimn matrix
polynomial o with any component of any other nonzero projection matrixypomial 3, is

a component of the produets. It must therefore be true that, 7, P, P, , - P, is a

component of the produet;, ,b;, ;. But PfH =P, , sopP P, P, , P isacomponent
of a;;,_,bi,_,;. In view of the definition of matrix multiplication, the pmgtion matrix polynomial
ai, by, ,; must appear within the sum which defines thith block entry;; in M. Therefore
P, P, P

ig—11 ig—2

--- P, must be a component ¢f;;. Thus the lemma is true gt By induction the
lemma is true for aly > 0.1

Proof of Proposition [ Setr = m — 1 and G; = ~(S;), ¢ € p. Partition the sequence
G1, Gy, ...,G, intor successive subsequencis= {G;,G,,.... G}, Go = {Gyp1,. .., Gon}y
G = {G(—2rit15 - - Gy} Gr = {Gp—1yis1, - - -, G}, €ach of lengthr except for the
last which must be of length — I(r* — ) > Ir. Each of these sequences;, i € r, consists
of r successive subsequences which, in turn, are jointly styaannected. Thus each of the
composed graph; = G,;0---0Gy, Hy = G0 -0Gpqy, .., Himy = G_1)r0- - -0Gr—9)pi41,
H, = G,o---0G;—_1):41 Can be written as the compositionostrongly connected graphs. But
the composition of any sequenceobr more strongly connected graphsdy, is a complete
graph {cf. Proposition 4 of[[35]. Thus each of the grapHd,, k£ € r, is a complete graph.
Therefore eaclH], contains every possible af¢, 7). It follows that for anyi,j € m and any

k < r, there must be a route over the seque@igdrom j to i.
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Letiq,io,...,1, be any reordering of the sequentce, ..., m. In the light of the discussion

in the previous paragraph, it is clear that for edck {1,2,...r — 1}, there must be a route

ik = Jk—1)r> J(k—1)r+1s - - - > Jkr = Ip+1 OVEr Gy from i, to ¢4 ,. Similarly there must be a route
by = Jr—1)rs Jr—1)r41s - - -5 Jqg = Gm from i, to i, overG,. Thusi; = ji, ja, ..., jp = iy Must
be route over the overall sequen@g, Gs,...,G,. In view of Lemmal4, the matrix product

P; --- P;, must be a component of the of thgi,th block entry of
M =P(S,®I)P(Sy-1®1)---P(S1 ®@I)P.

But i,14o,...,1, are distinct integers and each appears in the sequgnge ..., j, at least
once. Therefore the, i;th block entry of M is complete. Since this reasoning applies for any
sequence oifn distinct vertex labels, , is, . . . , i, from the se{1, 2, ..., m}, every block entry of

M, except for the diagonal blocks, must be a complete prajectiatrix polynomial. If follows
from Propositior 1L and_(24) that/ is a contraction®

Proof of Theorem [3 Let H; = Qu—1)i+1,--.,Qu, © € {1,2,...,w}, be any set ofv sequences

in C;. Since eaclH; € C;, each graphy(QuQ—1 - Qu-1y+1), ¢ € {1,2,...,w} is strongly
connected. Therefore the sequendg);),v(Q2),...,v(Q.:) is repeatedlyl-connected. Since
there arew! matrices in theQ; - sequence, Propositidd 2 applies. Therefore for any set of

sequence$t; € C;, i € {1,2,...,w}, [|[P(Qu® [)P(Qu-1®1)---P(Q: ® I)P|| < 1. Since

C, is compact\ < 1.

SetM, = P(S,@ )P(S;_y @1)---P(S; @ )P, t>1andN, = P(S., ® I)P(Sui_1 ®
I)--- P(Suip—111 @ I)P, for k € q;, whereg, is the unique integer quotient ofdivided by
wl. SinceP? = P, it must be true thad/, = R,N,,N,,_1--- Ny whereR, = P(S,®)P(S;_1 ®
I)---P(S4+1 ®I)P. Since the sequenceh;_1)i+1, Sii—1)k+2, - - - Sk, © € {1,2,...,w}, k €
q:, are all inC;, it must be true that| N, || < X\, k € q;. Therefore|| N, N, --- Np|| < \lee
SO || M, || < || R:||A\“". But for anym x m stochastic matrixS, ||S ® I|| = 1 becausesS|., = 1.
In addition,

P|| < 1 because of[(15). From these observations and the fact|thgtis sub-

multiplicative, it follows that||R;|| < 1; thus
[[Me]] < A=t (25)

Moreovert = wlq, + p, where p, is the unique integer remainder ofdivided by wl. Thus
lae = \tee But py < lw and A < 1 so AErd) < A=)t follows from this and [(25) that

@1 is true.m
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D. Convergence Rate

In this section we will justify the claim that the expressiion A given by [4) is a worst case
bound on the geometri¢ convergence rate for the algorithid (2) for the case when= b has a
unique solution and all of the neighbor graphs encounteredgtaongly connected. To establish
this claim we will need a lower bound on the coefficients of tle@zeron x n projection matrix
polynomials which comprise the: x m partition of P(F, ® [)P(F,_1 ® I)---P(F; @ I)P .

The bound is given next.

Lemma 5:Let s be a positive integer and suppose that the nonzero blockgiron matrix

d
Mi; =" MNPy Pro@ + Prsrn
k=1

is theijth submatrix within thewm x nm matrix M = P(F, @ [)P(F,_ 1 ®I)---P(Fy @ I)P
whered is a positive integer, eachy(:) is an integer inm and each\, is a positive number.
Then

A > i ke d.

ms

Proof of LemmaB We will prove the lemma by induction on Suppose first that = 1. Then
M = P(F, ® I)P and M;; = f;;P,P; where f;; is theijth entry in . SinceM,; # 0, f;; # 0.
Since I is a flocking matrix, each nonzero entry is bounded below;}pyThus, in this case
the lemma is clearly true.

Now suppose that the lemma holds for aih the rangel < s < p wherep > 1 is an integer.
Lets =p+ 1. ThenM = P(F,® I)N whereN = P(F,_, @ )P(Fy_o ® I)--- P(F, ® I)P.
Thus, for alli, 7 € m,

My = fu PNy (26)
k=1

where f;;, is theikth entry of F, and Ny, is the kjth block entry of N. EachNy; is either the

n X m zero matrix or a projection matrix polynomial of the form

Z APy 1) Pry2) -+ Bryp+1)
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wherec is a positive integer, eachy(i) is an integer inm, and for alll € ¢, A\, > 0. Thus if
Ni; # 0, then), > - because of the inductive hypothesis. Fréml (26),

m Cc

M;; = Z Z (fit A1) PiPry)y Pry@) ++ * Prypr1)-
k=1 =1

Since F, is a flocking matrix, eitherf;, = 0 or f; > % which implies that eitherf;.\; = 0

or fih > # Since M;; # 0, it must therefore be a projection matrix polynomial whose
coefficients are all bounded below % Thus the lemma holds for= p + 1. By induction,
the lemma is established and the proof is compmte.

Proof of Corollary I To prove this corollary, it is sufficient to show that for angt of ¢

flocking matricesFi, Fs, . . ., F,, the mixed matrix norm of the matrix
M= P(F,@I)P(F,_1®1)---P(F,®I)P

satisfies
(m—1)(1—p)

ma

IM|[<1-

(27)

wherep is given by [[B). By definition

[[M]] = max <Z |Mz'j|2> (28)
=1

where];; is theijth block entry ofM. In view of (24), the nominal bound af/ is the stochastic
matrix FyF,_, --- Fi. Thus
| M;jl2 < fij (29)

where f;; is theijth entry in F,F,_; - - - F}.
Fix 7,7 € m with i # j. As noted just at the end of the proof of Propositidn 2, eadtlbl
entry of M, except for the diagonal blocks, must be a complete prgeatatrix polynomial.

Thus M;; must be a nonzero matrix of form

d
Mi; = MPa,)Pro@) -+ Phyiasn)
k=1

whered is a positive integer, each;, is a real positive number, and eath(i) is an integer
in m. Completeness also means that for some integerd, each of the matrices in the set

{P1, P, ..., P,} appears in the produd®,, )P, ) - - - Ph,(+1) at least once; consequently
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Phs(l)PhS(Z) .- 'Phs(q—kl) eC SO|Ph5(1)PhS(2) .- 'Phs(q+1)|2 < p. In addition,
1, k € d because of Lemmi 2. It follows that

Pr)Pry2)  Prigrl2 <

d
[Migla <> Ml Puey Pra) -~ Pearn o

st
= Z el Py ()P @)+ Pria+1) |2 + As| Pro)) Pro2) - +* Phy(g+1)l2
k=1k+#s
S Z )\k + )\Sp
k=1k+#s

d
= Y M- A(1-p).
k=1

Recall thaty}"¢_ ), is the nominal bound of/;;; thus >>}_, A\x = f;;. Meanwhile, by Lemma
B, s > L. If follows that
1
| M2 Sfij_ﬁu_p)- (30)

Now for eachi € m,

m

> [ Mygls = > | Mijl2 + [ M.
=141
From [29) and[(30) it follows that

m
D 1Mle <
j=1

m

> (fij - %(1 - P)) + fii-
j=1j#i

Clearly

1)

m m
> Myl <1- ( (1—p).
=1

md
From this and[(28) it follows thaf (27) is trum

VIl. TRACKING

An especially important consequence of exponential cqarere is that it enables a slightly
modified version of algorithni{2) to track the solution4a = b with “small error” whenA and
b are changing with time, provided the rates at whittandb change are sufficiently small. In

the sequel we sketch why this is so for the case when the tangng equationA(t)x(t) = b(t)
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has a unique solution for every fixed valuetoM/e continue to follow the agreement principle
stated at the beginning @fIll In particular, suppose that at each tirhagenti; knows the pair
(A;(t+1),b;(t+1)) and using it, computes any solutief(t) to A;(t + 1)z = b;(t + 1) such as
Ayt + 1) (At + DAL+ 1) (¢ + 1), if A;(t + 1) has linearly independent rows. K;(t)

is a basis matrix for the kernel of;(¢ + 1) and we restrict the updating of,(¢) to iterations

of the formuz;(t + 1) = z;(t) + K;(t)w;(t), t > 1, then no matter what;(t) is, eachz;(t + 1)

will satisfy A;(t + 1)z;(t +1) = b;(t + 1), ¢t > 1. Just as before, and for the same reason, we
will choosew;(t) to minimize the differencéz;(t) + K;(t)u;(t)) — #@ <Zj€M_(t) xj(t)> in the
least squares sense. Doing this leads at once to an itefati@yent: of the form

£t + 1) = z(t) — %@)B(t) (mi(t)zi(t) - je%it) xj(t)) > (31)
where for eacht > 0, P,(t) is the time-varying orthogonal projection on the kerneldft + 1)
andz;(1) is a solution toA4;(1)x = b;(1). It is worth noting that even though(¢) is not uniquely
specified here, update rule_{31) is becauke P;(t))z;(t) is independent of the choice of(t),
just as it was in the time-invariant case discussed eaifflige. algorithm just described, differs
from (@) in two respects. First the, are now time dependent and second, instead of usifig
to represent a preliminary estimate of the solutiomdto+ 1)z = b;(t+ 1), we usez;(¢) instead.
This modification has the advantage of yielding an algorithihich is much easier to analyze
than would be the case were we to usé).

We will assume thatd(¢) andb(t) are uniformly bounded signals and for simplicity, we will
further assume that each;(t) has full row rank for allt; more specifically we will require
the determinant of4,(¢) A’(¢) to be bounded away fromt uniformly. We will also assume that
A(t+1) = A(t)+6a(t), t > 1Tandb(t+1) = b(t) + (), t > 1 whered4(t) ando,(t) are small
norm bounded signals. Sind@(t) = I — Al(t + 1)(A:(t + DALt + 1)) T A (t + 1), Pi(¢) will
be uniformly bounded. Note that it is possible to writgt + 1) = P;(t) + E;(6a(t+1)), t >0
where E;(+) is a continuous function satisfying;(0) = 0.

Our goal is to explain why this algorithm can track the unigoéutionsz*(t) to A(t)x(t) =
b(t). As a first step, observe that(t + 1) = z*(t) — §(t) whered(t) = da(t) A~ (t)b(t) —
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A7L(t +1)5,(t). Clearly
* * 1 * *
a(t+1) = 2"(t) = —=<F(t) (mi(t)w - > = (t)) — 6(t) (32)
JEN;(?)
for ¢t > 1 because the term in parentheses on the right of this equatero. Thus if we define
the error signal
eit) = a,(t) —a*(t), iem, t>1 (33)

then P;(0)e; (1) = ¢;(1) and

et +1) = (I—Pi(t))(zi(t)—x*(t+1))+%ﬂ(t> S et) + R()s(t), t>1.

milt)
But since both:*(t+1) andz;(t) are solutions tod;(t+1)z = b;(t+1), the vector; (t) —z*(t+1)
is in the kernel ofA4,(¢t + 1); this implies that(/ — P;(t))(z;(t) — 2*(t + 1)) = 0. It follows that

Pi(t) Y e(t)+P(t)s(t) t>1, i€m.
milt) S

Hence if we again define(t) = column{e;(t), es(t), ..., e, (t)} there results
e(t+1)=Pt)(F(t)®De(t)+ Pt)(1®(t)), t>1 (34)

where fort > 0, P(t) is themn x mn matrix P(t) = diagonal{ P;(t), P»(t), ..., Py(t)}, 1 is the
m vector of1's, and and fort > 1, F(t) is the same flocking matrix used earlier. Observe that
sinceP%(t) = P(t), (34) implies thatP(t)e(t+1) = e(t+1), t > 1;thusP(t—1)e(t) = e(t), t >
2. But P(0)e(1) = e(1) because’;(0)e;(1) = e;(1) as was noted earlier. TherefabPét—1)e(t) =
e(t), t > 1. If we define E(t) = diagonal{E1(04(t)), E2(04(t)), ..., Em(6a(t))}, t > 1, then
E(t) will have a small norm it 4(¢) does. In view of the definition oF(t), P(t) = P(t— 1)+
E(t), t > 1. Clearly fort > 1, P(t)e(t) = P(t—1)e(t)+ E(t)e(t) soP(t)e(t) = e(t)+ E(t)e(t).

Therefore
e(t+1) = (PO)(Ft) @ DPE) — P)(F(t) @ IE®))e(t) + P(t)(1® 5(1)), t > 1.(35)
We claim that for|,4(¢)|, sufficiently small for allt, the time varying matrix
PQ)(F(t) @ 1)P(t) — P()(F(t) ® I)E(t)

is exponentially stable assuming the sequence of neightawhgN(¢), ¢ > 1 satisfies the
hypotheses of Theorelh 1. Becaus¥t)(F(t) @ I)E(t)|, will be small if |d4(t)|2 is, to establish
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exponential stability, it is sufficient to show that the matP(¢)(F'(t) ® I)P(t) is exponentially
stable for|d4 ()], sufficiently small. To do this it is convenient to first considthe matrix
M(t,s) = P(s)(F(t) ® I)P(s). We know already that for every fixed value ef the linear
systemz(t + 1) = M(t, s)z(t) has a unique equilibrium at the origin. In view of Theoren 3
we also know that every solution to this equation tends tootiigin exponentially fast. In other
words, for each fixeds, M (t,s) is an exponentially stable time varying matrix. Our goalds t
show that) (¢, t) is exponentially stable as well providéd, |, is sufficiently small. While doing
this is actually a fairly straightforward exercise in limegystem theory, it is nonetheless a little
bit unusual and so for the sake of clarity we will proceed.

The key fact we will use, which comes from basic Lyapunov tiieis that for every constant
nm X nm matrix B and every fixed value of, the matrix

L(t,s,B) = i P (7,t) B, (T, 1)

T=t
is a uniformly bounded function of, where®(¢, 7) is the state transition matrix af/(t, s).
This is an immediate consequence of exponential stabiilitg. also true, and is easily verified,

that L(t, s, B) satisfies the Lyapunov equation
L(t,s,B) = M'(t,s)L(t +1,s, B)YM(t,s)+ B, t>1 (36)

for all s > 0. We use these observations in the following way.
Let Q(t,s) = L(t, s, I). Then by a straightforward but tedious computation usir@),(3

Q(tv s+ 1) - Q(t7 S) = AQ<t7 S, 5A(8))

where Ay (t, s, d4) is a bounded function of ands and a continuous function of, satisfying
Ag(t,s,0) =0, t,s > 0. Observe that

Q(t,s) = M'(t,s)(Q(t+1,s+1)M(t,s)+ 1
—M'(t,8)Aq(t,s,04(s))M(t, s).

Thus if the uniform norm bound did4(t)|2 is small enough, theh—M' (¢, t) Aq(t, t, d4(t)) M (t,t)

will be positive definite implying that

Qt,t) — M'(t,)Q(t + 1,t + 1) M(t, )
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is negative definite for all and thus that’'Q(t, ¢)z is a valid Lyapunov function for the equation
2(t+1) = M(t,t)z(t). Therefore the time varying matriR(¢)(F(¢t) ® I)P(t) — P(¢t)(F(t) ®
I)E(t) will be an exponentially stable matrix if the norm bound ®1(t) is sufficiently small.

Of coursed will be small in norms if bothy, and d, are. From this and the exponential
stability of the system(35), it follows that for sufficieptslow variations inA andb, e will be
small and in this sense, each of thgt) will eventually track with small error, the time-varying
solution z*(t) to A(t)x*(t) = b(t). Exponential stability is the key property upon which this
conclusion rests.

These observations prompt one to ask a number of questioms: ¢thall musté, be for
tracking to occur and what is the “gain” between the sum ofrtbems ofy, andd, and the
norm of the tracking erro¢? In the event thai, andJ, can be regarded as solutions to neutrally
stable linear recursion equations, can the internal modetipal [43] be used to modify the
algorithm so as to achieve a zero tracking error asympibtitd@here are questions for future

research.

Example: The following example is intended to illustrate the trackoapability of the algorithm

just discussed. The equation to be solvediig)z(t) = b where fort > 1

2 3 5 109 =24
At)=14 9 —-8| +sin0.1(t—-1) .2 -6 .1
1 5 10 03 .05 4
and 10 A
b= |5 | +sin0.6(t—1) .2
16 3
Agenti knows theith row of the matrix| A(¢) b(t)] at timet — 1 and initializes its state; ()
as follows. 15 L o5 9
(1) =] —1 zo(l)=1 0 |, z3(l) =1 1
-2 0 2

and z;(t — 1) = AL(t)(A; (1) AL(t))~1bs(¢), i € 3. A plot of the evolution of the two norm of the
tracking errore(t) is shown in the following figure.
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le(®)]2 1o

Fig. 1. le(t)|2 vst

VIIl. A SYNCHRONOUSOPERATION

In this section we show that with minor modification, the aition we have been studying,
namely [2), can be implemented asynchronously. The relavagiate rules are given by (38).
Since these rules are defined with respect to different asgnamronized time sequences, for
convergence analysis one needs to derive a model on whiapddlte rules evolve synchronously
with respect to a single time scale. Such a model is given By, (3aving accomplished this, we
then establish the correctness [of](38), but only for the e@sen there are no communication
delays. The more realistic version of the problem in whiclage are explicitly taken into
account is treated ir_[10]. The ideas exploited there cjoparallel those used to analyze the
asynchronous version of the unconstrained consensusepndinkated in[[44].

Let ¢ now take values in the real time interj@loco). We begin by associating with each agent
1, a strictly increasing, infinite sequence @fent times;, t;», ... with the understanding that
t;1 is the time agent initializes its state and the remainirg, k£ > 1 are the times at which
agent: updates its state. Between any two successive event tinesid ¢;(.11), x;(t) is held
constant. We assume that for ahy> 1, x;(t) equals its limit from above asapproaches;;
thusz;(t) is constant on each open half interyal,, t;.11)), k> 1.

We assume that fore {1,2,...,m}, agenti’s event times satisfies
T, > tigsny —tae > Ty, ke{l,2,...} (37)
where T, and 7, are positive numbers such that > 7. Thus the event times of agentare
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distinct and the difference between any two successivetdumes cannot be too large. We
make no assumptions at all about the relationships betwezeuent times of different agents.
In particular, two agents may have completely differentymetironized event time sequences.

We assume, somewhat unrealistically, that at each of itatemest,,, agent: is able to
acquire the state;(¢;;) of each of its “neighbors” where by @eighbor of agent: at timet,

IS meant any agent in the network whose state is availablgeaota at timet;,. In the more
realistic version of the problem treated [n [10], it is assanthatz;(t;;) is only available to
agent: after a delay which accounts both for transmission time dnedfact that the time at
which z;(t;,) is acquired is typically some time in betwegp and one of agents subsequent
event times. There are some subtle issues here in setting apmopriate model; we refer the
reader to[[10] for an explanation of what they are and how t@reyaddressed.

In the sequel, fok > 1 we write N;(¢;;) for the set of labels of ageris neighbors at time
t;x While k = 1 we defineN;(t;;) = i. Since agent is always taken to be a neighbor of itself,
Ni(t) is never empty.

Prompted by[{2), the update rule for ageéntre want to consider for the asynchronous case
is

Ti(ties1)) = oi(tan) — Py m(tin) i (tin) — Z x;(tir) (38)

(i) JEN(tin)
wherek > 1, and forj € N;(t;1), mi(ti) is the number of labels iWV;(¢;;), and as beforep;
is the orthogonal projection on the kernel 4f.

To proceed we need a common time scale on whichna#igent update rules can be defined.
For this, lett; = max;{t;;} and write7; for the event times of ageritwhich are greater than
or equal tot;. Let 7 denote the set of all event times of all agents which are greater than
or equal tot;. ThusT is the union of the7;. Relabel the times i ast;, t,,...,%,,... so that
t, < tp41 for p > 1. We define theextended neighbor sef agenti, written NV;(p), to beN;(t,)
if ¢, is an event time of agent For timest, € 7 which are not event times of agentwe
defineN;(p) = {i}. Doing this enables us to extend the domain of applicabdftypdate rule

(38) from 7; to all of 7. In particular, forp > 1,

1
mi(p)

P | mu(p)i(ty) — Y ay(ty) (39)

JENi(p)

xi(t:n—H) = xi@p) -
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where m;(p) is the number of indices inV;(p). The validity of this formula is a simple
consequence of the assumption that far {1,2,...,m}, z;(¢) is constant on each open half
interval [tx, tik11)), k> 1.

Observe that[(39) is essentially the same as update [fllex(®pethat extended neighbor
sets replace the original neighbor sets. As with the symaus case, convergence depends on
connectivity of the graphs determined by the neighbor set® wvhich update rule§ (B9) depend.
Accordingly, for eachp > 1 we define theextended neighbor grapN(p) to be that directed
graph inG,, which has an arc from vertex to vertexi if j € N;(p). The following is an
immediate consequence of Theorem 1.

Theorem 4:Suppose each agentupdates its state;(¢) according to rule[(38). Suppose in
addition that for some positive integgrthe sequence of extended neighbor graghs), p > 1
is repeatedly jointly strongly connected. Then there exsspositive constant < 1 for which
all z;(t,) converge to the same solution #x = b asp — oo, as fast as\” converges td).
Perhaps of greatest interest is the situation when thenadigieighbor grapfN(¢) is independent
of time. In this case it is possible to address convergentsowi reference to extended neighbor
graphs.

Corollary 2: Suppose that the original neighbor gragft) is independent of time and strongly
connected. Suppose each agenpdates its state;(¢) according to rule[(38). Then there exists
a positive constanf < 1 for which all z;(¢,) converge to the same solution tox = b as
p — oo, as fast as\? converges td).

The proof of Corollan[ R depends on the following lemma.

Lemma 6:Suppose that the original neighbor graiky) is a constant grapi. Fori € m,
let 7; be an upper bound on the difference between each pair of ssigceeevent times of agent
i. Then for any pair of event timef, t, € T satisfyingt, — t, > max{7},Ts,...,T,,}, Nis a
spanning subgraph of the composed grajgh) o N(b — 1) - - - o N(a).

Proof of Lemmalg Let\; denote the neighbor set of agentori € m, ¢;;+1) — t;; < T; <

ty — tq, j > 1. Therefore the seft,,t.11),. ...t} Must contain at least one event tirfe of
each agent. SinceN;(p;) = N;, i € m, for eachj € N; there must be an arc fromto i in
N(p;). It follows from the definition oflN, that its arc set must be contained in the union of the
arc sets of the graphs(a),N(a + 1),...,N(b). But the arc set of the union of a finite number

of graphs inG,, is always a subset of the arc set of their composition [35gré&fore the lemma
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is true.m
Proof of Corollary [Z& SetT,,.. = max{T},Ts,...,T,,} andT,,;, = min{Ty,Ts,...,T,,} and
let ¢ be any positive integer for which,,.. < ¢T..i.. Let a andb be positive integers satisfying
b—a = mq. We claim thatt, —t, > T,,... To prove that this is so, suppose the contrary, namely
thatt, — t, < Thmax. Thent, —t, < ¢T,. But for eachi € m, T,,;, is no larger than the time
between any two successive event times of agenhus the closed intervét,, ¢,] must contain
at mostg event times of agent Since there are: agents|t,, t,)) must contain at most.q event
times. Thereforé — a < mqg which is a contradiction.

In view of the preceding{, — t, > T..x fOr any positive integers and b satisfyingb —
a = mgq. Therefore, by Lemma]6Y must be a spanning subgraph of the composed graphs
N(b)oN(t,_1) - - -oN(a) for all sucha andb. ButN is strongly connected so each such composed
graph must be strongly connected as well. Therefore theeseguof graphN(1),N(2),... is
repeatedly jointly strongly connected by successive syleaces of lengthng. From this and
Theoren{#4 it follows that Corollary] 2 is trum

IX. LEAST SQUARES

A limitation of the algorithm we have been discussing is tihas only applicable to linear
equations for which there are solutions. In this section w@agn how to modify the algorithm
so that it can obtain least squares solutionsito= b even in the case wheAz = b does not
have a solution. As before, we will approach the problem gistandard consensus concepts
rather than the more restrictive concepts based on distdbaveraging. To keep things simple,
we will assume that thel; are full column rank matrices.

By the least squares solutioto Ax = b is meant a value of for which A’Ax = A’b. As
is well known, least squares solutions always exist, eveAzif= b does not have a solution.
It is very easy to verify that a common least squares solutido all of the agent equations
A;x = b;, 7 € m will not exist unlessAz = b has a solution. Thus if a decentralized least
squares solution tolxz = b is to be obtained in accordance with the agreement principén
each agent must solve a different problem. To understand thbaproblem might be, consider
for example the situation in which there are three agentpp&se that the state of agenti is

augmented with two additional-vectors, namely; andz; and that agent$, 2 and3 are tasked
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to solve the linear equations
AlAizy +y1 = Al
AYAoxe + 29 = Abby
ALAxs —yz — 23 = Ajbs

respectively. As we will show, it is always possible for thgeats to do this and the same
time to obtain values of the;,y; and z; for which the three augmented state vectoys—
(2} y. 2], i€ 3 are the same.

The existence of a vectar = [2/ ' 2] for which z; = 7, i € 3, is equivalent to the
existence to a solution to the equatiofisd;x+y = A by, AyAx+z = ALby, and A5 Agz—y—2 =
ALbs. In matrix terms, existence amounts to asking whether otmtequationV/z = ¢ has a

solution where

AlA, T 0 Alby
M= |AA 0 I and g = | ALby
ALAs -1 -1 Albs

Note that by simply adding block rows block rowsand 2 of [M ¢] to block row 3, one
obtains the matri M ] where
Al A, I 0
M = Al Ay 0 I
AlA + AYA, + A5A; 00

and ,
Alby

Aby
Alby + Abby + ALy

Clearly the set of solutions td/z = ¢ is the same as the set of solutions\ttx = ¢ because the

]
Il

matrices] M ¢]and[M ¢] are row equivalent. It is obvious that has linearly independent
columns becausd’ A; + A, A, + A} Az is nonsingular; thereforé/ is nonsingular. As a result,
a solution toMz = g must exist. Note in addition, that since such a solution nailsd satisfy
Mz = ¢,  must satisfy(A] A, + AL Ay + AL Az)x = A\by + ALby + Asbs which is the least
squares equatiod’ Ax = A’b. Thereforex solves the least squares problem.

Recall that the idea exploited earlier in the paper for argfain algorithm for solvingdz = b,

was that if each agentwere able to compute a solution to its own equatiomd;z; = b; and
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at the same time all agents were able to reach a consensustiralth; were equal, then
automatically each; would necessarily satisfylz; = b. This led at once to the linear iterations
(2) which provide distributed solutions tdz = b. Since with obvious modification, the same
idea applies to the least squares problem under consiolerbére, it is clear that the same
approach will lead to linear iterations which provide a wltted solution to the least squares
equationA’ Az = A’b. The update equations in this case are identical with thog@)i except
that in place of and; and P, one would use the,; and P, where P, is the orthogonal projection
matrix on the kernel of theéth block row in M. Under exactly the same the conditions as those
stated in Theorerl 1, the, so obtained will all converge exponentially fast to the desileast

squares solution.

A. Generalization

The idea just illustrated by example, generalizes in agitaiorward way to anyn agent
network. The first step would be to pick anyvertex graph tree graph and orient it. Agent’s
augmented stateould then be of the formy; = [27 7, 3, ... 2, |" where allz,; €
R™. Instead of solving4,;z; = b;, agenti would be tasked with solvingA/A; h; ® I|z; = Alb;
whereh; is theith row of them x (m —1) incidence matrix ofl'. At the same time, all» agents

would be expected to reach a consensus in whiclr;adire equal. Were a consensus reached at

avaluer = [2/ ¥, v, ... y. ], thenz would have to satisfy the equatidlz = ¢ where
AL A, Al
M = : H®I| and g=
Al A Al by,

We claim that a solution td/z = ¢ must exist and that the sub-vectowithin z is the solution
to the least squares problem. To understand why, first natettie block rows off ® I sum
to zero because the rows é&f sum to zero. Thus ifY is product of elementary row matrices
which adds the firs{m — 1) block rows of H @ I to the last, thenZ(H ® I) must be of the

D
suron-["

where D is a square matrix. Moreoved must be nonsingular because thek F(H ® I) =

form

nmx(m—1)n

rank H ® I andrank H ® I = (m — 1)n. This last rank identity is a consequence of the fact
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that the rank of an incidence matrix of am vertex connected graph, namelynk H, equals
m — 1.

Next observe that the set of solutions #éx = ¢ is the same as the set of solutions to
EMz = Eq. But

AL 1 oAb T
: D :
EM = and Eq=
A;n_lAm—l A;n—lbm—l
| AA 0 ] | AD

Moreover E M is obviously nonsingular so a solution IV = FEq and consequently/z = ¢
exists. Note in addition, that since such a solution musi agisfy Mz = Eq, x must satisfy
A’Ax = A’b. Thereforex solves the least squares problem.

We have just shown that if each ageéntpdates its augmented statét) along a path for which
[ALA;  h; @ T]z(t) = Alb;, so thatz;(t) reaches a limit which agrees with the augmented states
of all other agents, then the limiting value of the sub-veatdt) will solve the least squares
problem. The agent update equations for accomplishingatt@isdentical to those inl2) except
that in place of andr; and P,, agenti would use thez; and P, where P, is the orthogonal
projection matrix on the kernel gfA/A;, h; ® I']. Under exactly the same the conditions as
stated in Theoreril 1, the, so obtained will all converge exponentially fast to the deileast
squares solution.

Although the algorithm just described solves the distebluteast squares problem, it has
several shortcomings. First, there must be a network widggdestep in whicHI is specified;
this conceivably can be accomplished in a distributed mar8ezond, the size of the augmented
state vector of each agentign which does not scale well with the number of agents in the
network. It is possible to significantly improve on the segliproblem if neighbor relations are
time invariant and there is bi-directional communicati@ivbeen neighbors. How to do this will

be addressed in another paper.

X. CONCLUDING REMARKS

In this paper we have described a distributed algorithm édvisg a solvable linear equation
and given necessary and sufficient conditions for it to geeea sequence of estimates which

converge to a solution exponentially fast. For the case ineequation admits a unique solution,
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we have derived an expression for a worst case geometrieogence rate. We have shown that
with minor modification, the algorithm can track the solatim Ax = b if A andb change with
time, provided the rates of change of these two matricesudfieisntly small. We have show that
the same algorithm can function asynchronously providedettare no communications delays
and we have sketched a new idea for obtaining least squakgsse to Az = b which can be
used even ifAz = b has no solution.

We have left a number of issues opened for future research.i©to figure out what the
relationship is between the paramegewhich appears in the convergence rate bownénd
a conditioning number ofd. Another is to more tightly quantify the relationship beemethe
variations inA andb in the event they are time varying, and the tracking erroret another
is to modify the least squares algorithm discusse@Xito reduce the amount of information

which needs to be transmitted between agents. This lag wsilbe addressed in a future paper.
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