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ABSTRACT
The traffic matrix of a telecommunications network is an
essential input for any kind of network design and capacity
planning decision. In this paper we address a debate sur-
rounding traffic matrix estimation, namely whether or not
the costs of direct measurement are too prohibitive to be
practical. We examine the feasibility of direct measurement
by outlining the computation, communication and storage
overheads, for traffic matrices defined at different granular-
ity levels. We illustrate that today’s technology, that neces-
sitates a centralized solution, does indeed incur prohibitive
costs. We explain what steps are necessary to move to-
wards fully distributed solutions, that would drastically re-
duce many overheads. However, we illustrate that the basic
distributed solution, in which flow monitors are on all the
time, is excessive and unnecessary. By discovering and tak-
ing advantage of a key stability property underlying traffic
matrices, we are able to propose a new scheme that is dis-
tributed and relies only on a limited use of flow measurement
data. Our approach is simple, accurate and scalable. Fur-
thermore, it significantly reduces the overheads above and
beyond the basic distributed solution. Our results imply
that direct measurement of traffic matrices should become
feasible in the near future.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Op-
erations - Network Monitoring

General Terms
Algorithms, Management, Measurement, Design
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1. INTRODUCTION
The traffic matrix (TM) of a telecommunications network

measures the total amount of traffic entering the network
from any ingress point and destined to any egress point.
The knowledge captured in the traffic matrix constitutes an
essential input for optimal network design, traffic engineer-
ing and capacity planning. Despite its importance, however,
the traffic matrix for an IP network is a quantity that has
remained elusive to capture via direct measurement. The
reasons for this are multiple. First, the computation of the
traffic matrix requires the collection of flow statistics across
the entire edge of the network, which may not be supported
by all the network elements. Second, these statistics need
to be shipped to a central location for appropriate process-
ing. The shipping costs coupled with the frequency with
which such data would be shipped translate to communica-
tions overhead, while the processing cost at the central lo-
cation translates to computational overhead. Lastly, given
the granularity at which flow statistics are collected with
today’s technology on a router, the construction of the traf-
fic matrix requires explicit information on the state of the
routing protocols as well as the configuration of the network
elements [5]. The storage overhead at the central location
thus includes routing state and configuration information.
It has been widely believed that these overheads would be
so significant as to render computation of backbone traf-
fic matrices, through measurement alone, not viable using
today’s flow monitors.

This assumption has been one of the main motivations be-
hind recent research targeted toward estimation techniques
that can infer the traffic matrix from readily available SNMP
link counts [13, 14, 8, 11, 1, 6]. The SNMP link counts con-
stitute only partial information, and thus basic inference
methods are limited in how low they can drive the error
rates. Hence these previous efforts have explored different
avenues for extracting additional information from the net-
work. Research efforts, such as [1, 14, 13, 8], usually postu-
late some underlying model for the TM elements and then
use an optimization procedure to produce estimates that are
consistent with the link counts. In [11] the authors propose
changing the IGP link weights in order to obtain more in-
formation to reduce the uncertainty in the estimates. While
this technique is powerful in collapsing errors, it requires
carriers to alter their routing in order to obtain a traffic ma-
trix. It is not clear that carriers are willing to do this. In
[6] they recognize that some of the optimization approaches
may not scale to networks with large numbers of nodes (such
as traffic matrices at the link-to-link granularity level) and
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hence they propose a method for partitioning the optimiza-
tion problem into multiple subproblems. This improves the
scalability but at the expense of some accuracy. Most of
these studies have come from carriers whose interest lies in
backbone traffic matrices at larger time scales for the pur-
poses of improving network traffic engineering. We consider
a similar context in this paper.

There has been some debate as to whether or not infer-
ence techniques are really needed. Some researchers believe
that the communication, storage and processing overheads
of direct measurement are prohibitive thus rendering it im-
practical. Other researchers believe that the traffic matrix
problem is an implementation issue, and can be solved by
advances in flow monitoring technology. In this paper, we
address this debate directly. While many of the inference
techniques perform quite well, monitoring capabilities on
the network elements have made noticeable progress, and
technologies for the collection of flow statistics have been
made available on a wide variety of router platforms. Due
to such advances, we believe it is time to revisit the issue of
direct measurement of an IP traffic matrix.

If direct measurement can be made practical, then there
are many reasons why it would be attractive. Direct mea-
surement could lead to very small errors, and would remove
the need for modeling and optimization procedures. Per-
haps the most salient reason is that it has the potential
to enable distributed solutions to traffic matrix estimation;
all of today’s inference techniques necessitate a centralized
solution. We are aware of carriers that are currently eval-
uating the potential of enabling monitors such as Netflow
on a widescale basis. Before they incur such dramatic costs,
hidden overheads need to be exposed and understood. We
hope this paper will contribute to such understanding.

Our contributions in this paper are as follows. First,
we articulate what the overheads are for both centralized
and distributed measurement solutions. Although this is a
straightforward exercise, it is important to do because (1)
it has never been spelled out before; (2) having this un-
derstanding enables one to know where improvements are
possible; and (3) it allows us to evaluate the feasibility of
direct measurement. Second, we identify the steps that are
needed to move from a centralized solution (today’s state of
the art) to a distributed one (tomorrow’s state of the art).
This takes the form of specific recommendations to design-
ers of flow statistics monitors, such as Netflow [2]. Recent
advances in Netflow indicate that these monitors are mov-
ing in the right direction, however some additional steps are
still needed. Third, we use Netflow data collected from the
entire edge of the European Sprint IP backbone to compute
traffic matrices at three levels of granularity, namely that of
link-to-link, router-to-router, and PoP-to-PoP. The fanout
is a vector describing the fraction of total traffic sourced at
one node and destined to each of the other egress nodes.
We find that node fanouts across all three traffic matrix
aggregation levels are remarkably predictable across time.
We propose a new scheme for the computation of the traffic
matrix that relies on this observation. The key idea is that
measurements are not needed frequently. We show that by
updating the flow measurements once every few days, we
can maintain fairly accurate traffic matrices at the hourly
time scale. The improvement in computational overhead
at the collection station is dramatic while the reduction in
communications overhead ranges from 70-85% on average.

Finally, we also include a detailed discussion of errors.
When a traffic matrix estimation method is validated against
real data, it generates errors in both time and space. Some
previous studies select one metric to summarize errors or
decide to focus on the errors experienced by flows at a ran-
domly selected time instant. In this work, we discuss some
different views of the errors. An attractive feature of our
scheme is that it allows the operator to tune a knob to con-
trol the error rate. The errors can be pushed very low by
increasing the number of measurements taken. Inference
techniques do not enable the operator to control this trade-
off between frequency of measurement and estimation accu-
racy. We will show that the number of measurements taken
can be drastically reduced with reasonable sacrifice in terms
of errors.

The implication of our work is that distributed direct mea-
surement of traffic matrices is feasible as long as the recom-
mendations we give are implemented. We believe that this is
achievable as router manufacturers are poised to move along
the needed path.

The paper is structured as follows. In Section 2 we present
our data and define traffic matrices at three different gran-
ularities. In Section 3 we describe the state of the art in the
computation of the traffic matrix. We also describe the ad-
vancements needed in today’s flow monitors to move toward
a distributed solution, and identify the overheads involved in
direct measurement. Section 4 illustrates the predictability
of fanouts and Section 5 describes our trigger-based algo-
rithm for gathering only the needed measurements. Sec-
tion 6 contains our performance metrics, the evaluation of
our scheme, and a discussion of errors. The impact of our
approach on the overheads is explained in Section 7. We
conclude in Section 8.

2. TRAFFIC MATRIX DATA
In this work we analyze three weeks of traffic matrix data

obtained using today’s available technology, that of a cen-
tralized direct measurement approach. In this section we
describe the collected data, the architecture of Sprint’s Eu-
ropean backbone network, as well as the three types of traffic
matrices we study in this work.

2.1 The backbone network
Sprint is a Tier-1 provider whose European backbone IP

network comprises 13 Points of Presence (PoPs), one for
each major European city. Typically the number of routers
in each PoP ranges from 5 to 10. The routers are organized
in a hierarchy as depicted in Fig. 1. Customers connect
to the network by being directly attached to gateway (gw)
routers. Backbone (bb) routers aggregate the traffic of mul-
tiple gateway routers and forward it to the core of the net-
work. The backbone routers are used for connecting peers
to the backbone and also to inter-connect the PoPs.

In order to obtain a traffic matrix by direct measurement,
we need to examine all the incoming packets to the back-
bone. We therefore enabled Netflow on all incoming peering
links and all the links going from gateway routers to back-
bone routers. This latter set of links captures nearly all
customer traffic. It only misses traffic that enters and leaves
the network at the same gateway router1.

1This implies that the only elements that may be impacted
from this configuration choice are those that feature the
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Figure 1: Setup for Netflow data collection.

We used Netflow v8 that is usually referred to as “sam-
pled aggregated Netflow” [2]. Each record for Netflow v8 is
40 bytes long, and features a flow identifier, its source and
destination network prefix, its associated load in bytes and
packets, as well as its starting and ending time. Rather than
examine every packet, Netflow v8 employs periodic sampling
in which one sample is collected every 250th packet. Traffic
statistics are not computed over each packet but based on
this subset of the packets.

Each router ships the collected Netflow statistics to a con-
figurable node (the collection station) every 5 minutes. We
instrumented our European backbone with a single collec-
tion station for all 27 routers in this backbone. We used
5 minutes as our reporting interval since it coincides with
the default SNMP reporting time interval. The collection
station stores all flow statistics from all backbone routers in
the IP network. We collected 3 weeks of data during the
summer of 2003.

2.2 Traffic Matrix Granularities
The elements of a traffic matrix are origin-destination

(OD) flows where the definition of the origin and destina-
tion object (i.e., node) can be selected as per the needs of
the application using the traffic matrix. The granularity of
a traffic matrix is determined by the choice of definition for
the source or destination “object”. The most typical objects
are links, nodes and PoPs. In this work we consider traf-
fic matrices at the granularity of “link to link”, “router to
router”, and “PoP to PoP”. For a taxonomy of IP traffic ma-
trices and their potential applications in traffic engineering
and network planning please refer to [7].

In addition to selecting the flow granularity of a traffic
matrix, a network operator also needs to specify its time
granularity. As mentioned above, the Netflow statistics are
collected every five minutes. When we build traffic matrices
from our data we average over one hour time intervals. We
thus have one traffic matrix for each hour for a three week
period. When we estimate traffic matrices using our pro-
posed scheme, we generate estimates for one hour averages.
We choose to focus on one hour since most traffic engineer-
ing applications are targeted toward longer time scales. One
hour is actually small for such applications but we believe
this is a useful time scale because it allows us to observe
diurnal patterns [9] and busy periods that may last for a

same source and destination node.

small number of hours. Notice that according to the above
problem definition our scheme is designed not to address
problem areas such as anomaly detection, that may require
measurements at smaller time scales.

To the best of our knowledge, this is the first work that
analyzes an IP traffic matrix computed from flow statistics
collected across the entire edge of the network for a multi-
week period of time. It is also the first study that examines
the performance of a TM estimation scheme across three
levels of granularity in a single work.

3. STATE OF THE ART: TODAY AND
TOMORROW

There are basically three steps to obtain a traffic matrix
from measurements. The first is to gather information about
the traffic source by collecting measurements using Netflow,
or a similar monitor. Packets are observed and statistics
are stored at the granularity of flows. The second step is
to identify the destination for each flow. The third step is
to assemble all the information at the right granularity level
(link, router or PoP) in a way that is consistent with the
network topology.

In this section we provide a generic algorithm for doing
steps 2 and 3. The Netflow data, gathered for step 1, serves
as input to this algorithm. We describe the state of the art
today for implementing such an algorithm. This is based on
Netflow v8 and essentially requires a (semi-)centralized ap-
proach2. Cisco’s most recent release of Netflow, v9, makes
initial steps toward enabling the TM to be computed us-
ing a distributed approach. However we will see that this
version does not go far enough to enable a truly distributed
approach. We quantify the storage and communication over-
heads for both centralized and distributed approaches.

3.1 Identifying the egress node
A traffic matrix is typically computed for a single domain

or Autonomous System (AS). As described above, Netflow
statistics collected at each router are computed at the granu-
larity level of source and destination network prefixes. These
source and destination prefixes will often reside outside the
AS whose traffic matrix is computed. Thus the source and
destination of each packet need to be mapped onto the en-
try node and exit node within the given AS. Identifying the
entry node is simple, as it is defined as the link or node
where a packet enters a given domain (i.e., the place where
Netflow sees the packet). The exit point for a particular
source/destination network prefix flow will depend both on
its entry point as well as its actual destination. To identify
this exit point one needs to obtain a view of the forwarding
table of the router that recorded the flow. Consolidation of
intra- and inter-domain routing (from the vantage point of
the router), as well as topological information can resolve
each prefix flow into its egress node inside the network.

The task at hand is to accurately map the destination net-
work prefix in each flow record to (i) a backbone-gateway
egress link, (ii) an egress backbone router, and (iii) its egress
PoP. To do this we need the BGP routing table from each

2Throughout the remainder of the paper we will use the term
centralized to describe fully centralized or semi-centralized
approaches. The latter would employ multiple collection
stations, say one in each PoP, where a subset of the network
routers will report their flow statistics.
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router (typically we collect those from a route-reflector in-
side a PoP), the ISIS/OSPF link weights, and the router-
level topology [5].

If a network prefix is advertized through BGP, then the
BGP table specifies the last router within the AS that needs
to forward traffic for this destination prefix, usually referred
to as “BGP next hop”. However, often the BGP next hop
corresponds to the IP address of the first router outside the
AS. In this case, configuration files can be used to map this
address to a router interface within our network.

This identified router interface will very likely correspond
to the interface of a gateway router. At this point, we can
identify the egress PoP but we need additional information
to be able to map this router interface (for the given des-
tination prefix) to a particular egress backbone router, and
backbone-gateway link. Here we use the router topology,
along with the associated link weights, to compute the short-
est paths across the network. Using these paths we can find
the egress backbone router(s) and backbone-gateway link(s)
that will forward traffic toward the previously identified
gateway router. The number of such routers and links may
be more than one, if the PoP topology is densely meshed
and equal-cost multipath is enabled by the provider. In that
case, we apportion the total flow equally toward each one
of the routers or links selected using the process mentioned
above.

3.2 Computing the traffic flow
A generic algorithm for the computation of the traffic ma-

trix of an IP network can be summarized as in Fig. 2. At the
heart of this algorithm is a routine called find egress node(f)
that returns the egress node at the desired level of granular-
ity (link, node or PoP) according to the method described
above. There are four nested loops in this algorithm, one for
each time interval n, one for each router r, one for each link
l and one for each flow f . The find egress node(f) routine
operates at the level of a flow because that is the form of the
Netflow input. After the egress node is identified, the flows
are aggregated so that the algorithm yields a traffic matrix
at each of the granularity levels. In this pseudocode, L(r)
denotes the number of links at router r, and F (l) denotes
the number of flows on link l.

We note that a variant of this algorithm was originally
proposed in [5]. We include this here not as a contribu-
tion, but merely in order to facilitate the ensuing discus-
sion. This algorithm statement makes it easy to see how
the overheads are computed, to identify all the additional
routing/configuration data needed, and to clarify what the
change from a centralized to a distributed approach implies.

A Centralized Approach. Because Netflow today does
not implement a procedure such as find egress node(f),
all of the flow data needs to be shipped by each router to
a specific collection station that can carry out the above al-
gorithm. Thus today’s state of the art essentially mandates
a centralized solution. The collection station needs to have
explicit information about each PoP’s BGP routing table,
and the ISIS weights in effect at each time interval n. In
addition, it needs to have an accurate view of the network
topology, in terms of the configuration of each router inside
the network. For our implementation of a centralized solu-
tion, we downloaded router configuration files once a week,
and BGP routing tables once a day from each PoP inside the
network. Due to the fact that router configuration files do

Algorithm : ComputeTM(data, T, R, L, F )

for n ← 1 to T
ISIS = isis(n);%the same topology network − wide

configuration = ∪R
r=1configurationfile(r, n);

for r ← 1 to R
routingtable = BGProutingtable(RR(r), n);
%BGP routing table of the route reflector
in r′s PoP.
for l ← 1 to L(r)

for f ← 1 to F (l)
EN(f) = find egress node(f, routingtable,
configuration, ISIS);
TM(l, EN(f)) = TM(l, EN(f)) + data(f, t);

return (TM)

Figure 2: Pseudocode for the computation of the
traffic matrix.

not change on a daily basis, and that routing table changes
occurring during a single day rarely affect large amounts
of traffic [10], we found these choices reasonable. Certainly
there are inaccuracies incurred by not having perfectly up to
date routing information. However obtaining more frequent
updates of this information greatly increases the communi-
cation overhead. (The only way to completely avoid these
inaccuracies is to use a distributed approach as described
below.)

Toward Distributed Approaches. A process similar
to find egress node(f) is already performed by the router
itself before switching the packet to its destination. There-
fore a truly distributed approach would be one in which each
router saved the information on the egress point of each
network prefix while performing the lookup in its routing
tables. Since one router constitutes one source that sends
potentially to all other routers in the network, saving traffic
statistics on the amount of traffic destined to each egress
point is equivalent to the router computing one row of the
traffic matrix. With this approach the only data that needs
to be shipped to a collection station is the TM row itself.

In order to do this, the router would need to change the
flow record to include fields such as egress link, egress router,
and/or egress PoP. If flow records were kept at the level of
links or routers rather than prefixes, this would dramat-
ically reduce the on-router storage. The communications
overhead is also greatly scaled back since sending one row,
of even a link-to-link traffic matrix, is far smaller than ship-
ping individual prefix-level flow records. Furthermore, the
computational overhead at the collection station has now
been reduced to simply that of assembling the rows without
any egress node identification activity.

Recent advances in the area of flow monitoring have led
to new definitions for flow records that do incorporate ex-
plicit routing information defining flows such that the des-
tination field captures the BGP next hop address. Such a
change can be found in Netflow v9 [3] which thus constitutes
a significant movement toward the distributed solution de-
scribed above. This improvement is not yet sufficient though
for the following reason. When a particular 5-tuple flow is
mapped onto a “BGP-next-hop” flow, there is always the
risk that the destination network prefix may not be adver-
tized through BGP. For ease of implementation Netflow v9
addressed this issue by using ”0.0.0.0” as the BGP next hop.
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Such a design choice implies that all the traffic that may be
going to internal customers is missed, if these customers are
not advertized through BGP. For ISPs with a large number
of customers, this may translate to many elements of the
traffic matrix being altogether missed or inaccurately esti-
mated, when a particular “unknown” flow would actually
map to an existing flow in the cache.

The feasibility of direct measurement approaches is de-
pendent upon the ability to implement a routine such as
find egress node(f) at a router. We distinguish two factors
regarding the implementation of this routine. First, we point
out that the information needed is already available in to-
day’s routers in the Routing Information Base (RIB). The
RIB contains (i) the mapping between each destination pre-
fix and its BGP next hop (as dictated through BGP), (ii)
the mapping between the BGP next hop and its egress node
(as identified through the intra-domain protocol in use), and
(iii) the mapping between the egress node and the appropri-
ate local interface that should be used to reach that node.
The second factor regarding the implementation is the need
to gain efficient access to this information. This could re-
quire changes in the software architecture and is the main
challenge to implementation. Our goal in this paper is not
to spell out a complete implementation solution, but rather
to identify what is needed to achieve a measurement based
approach to populate traffic matrices and avoid inference-
based techniques.

In summary, we thus make two recommendations to de-
velopers of Netflow type systems on routers. First, a mech-
anism to resolve destination prefixes to their egress link
or router (such as the find egress node scheme) is needed
on the router itself. Second, the flow record definitions
need to be adjusted to include fields such as egress link
or router. Because router manufacturers have already ac-
commodated new flow definitions (e.g., the BGP next hop
described above), this indicates that they are heading in the
right direction, and we are hopeful that the proposed rec-
ommendations will eventually be undertaken. The position
paper [12] advocates a similar approach. Their suggestion
of using class-based counters is similar to ours when a class
is defined to be either a link, a router or a PoP. For the
remainder of the paper we will assume these steps will be
taken in the future state of the art, and hence our discus-
sion of overheads for distributed solutions is in terms of this
vision.

3.3 Storage, Communications and
Computational Overheads

We now describe the overheads involved in computing a
traffic matrix at each of the granularity levels. The stor-
age overhead per router refers to the amount of flow statis-
tics stored at the router. These elements are updated and
shipped to the collection station on an ongoing basis. The
communications overhead refers to the total amount of in-
formation that needs to be transmitted through the network
domain toward the collection station. This includes the in-
puts from all domain routers. The computational overhead
we show is that of the activity at the collection station.

First we consider the centralized approach that is avail-
able today. Because the basic granularity of the collected
and processed flow statistics is that of a network prefix, we
have labelled the centralized solution as prefix-to-prefix in
the first row of Table 1. Table 1 lists the associated over-

heads for the centralized solution for one time interval, that
is the derivation of one traffic matrix, regardless of its ac-
tual granularity. Let L denote the total number of links, R
the number of routers, and P the number of PoPs in the
network. The average number of links per router is thus
L/R. Based on the actual configuration parameters of the
European network under study, and the current state of the
art, the collection station had to perform 5.5 million egress
node identifications (last column). This required 13 BGP
tables, since each PoP has a different vantage point, and 1
ISIS routing table residing at the collection station.

The next three rows of this table correspond to the over-
heads for a distributed solution for cases where the end goal
is a TM at a specific granularity level. The notation ’p2p’
refers to a PoP-to-PoP matrix, ’r2r’ indicates the router-to-
router, and similarly for ’l2l’. With fully distributed solu-
tions, the collection station merely needs to assemble the
rows it receives as input and build the matrix. Letting F
denote the total number of flows, then clearly in any typical
network, we will have P < R < L << F . As an example, in
a typical large Tier-1 backbone for a geographic region the
size of the USA, P is on the order of tens, R is on the order
of hundreds, L is on the order of a few thousands, and F is
on the order of millions or even billions.

The advantages of moving from a centralized approach to
a distributed one are clear: (1) the router storage overhead
is reduced from O(F ) to O(R) or O(L) where R and L can
be many orders of magnitude smaller than F ; and (2) the
communications overhead is reduced by two or three orders
of magnitude (depending upon the target TM). In addition,
recall that a problem with the centralized approach is that
the routing table information at the collection station will
regularly become out of date. Distributed solutions do not
suffer from this problem since the information on the routers
is essentially always up to date (as fast as the protocol can
perform updates).

The amount of storage and communications overhead partly
depends upon what the ISP wants to collect. For example,
if an ISP is sure it only ever wants to collect the r2r matrix,
then each router should compute one row of this matrix and
the communications overhead is limited to R2. If however
a carrier prefers to leave open the flexibility of looking at a
TM at any of the granularity levels, then they should seek
the l2l matrix, which can be aggregated into a r2r and p2p
by checking which link belongs to which router, which router
belongs to which PoP, and so on. In this case the commu-
nications overhead is L2.

There is one other very critical piece to the overhead issue,
and that is the frequency with which one wants to collect a
traffic matrix. Suppose carriers decide they want the traffic
matrix to be updated K times within each day. Then all
of the numbers in Table 1 would be multiplied by K for
each day. In the case we focus on, these overheads would be
incurred once every hour.

Clearly one needed step for direct measurement of a traffic
matrix to become practical is for flow monitoring at routers
to increase their functionality so as to compute rows of traffic
matrices, thereby enabling a distributed approach. However
we believe that this is still not enough. A communications
overhead of L2 or R2 records incurred every hour may still
be regarded as excessive. In the next section, we show that
there indeed exist more efficient ways to obtain accurate
estimates of TMs on an hourly basis.
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Scheme Storage Communications Computational
approach (router) (network) (collection station)
SrcPrefix2DstPrefix L/R · F̄ (l) L · F̄ (l) 5,5M lookups, aggregation to

the required granularity
centralized 3 · 67, 000 81 · 67, 000 = 5, 5M (additional storage: 13 BGP

routing tables, 1 ISIS routing
table, topology)

l2l row L/R · L L2 Matrix Assembly
distributed (3 · 81 = 243) (81 · 81 = 6561)
r2r row R R2 Matrix Assembly
distributed (27) (27 · 27 = 729)
p2p row P R · P Matrix Assembly
distributed (13) (27 · 13 = 351)

Table 1: Overheads (in number of records) for computing the traffic matrix in one time interval.

4. TOWARD A MORE SCALABLE
APPROACH

4.1 Initial Observations
In examining our collected traffic matrices, we found that

the elements of a traffic matrix typically span a few orders
of magnitude. In Fig. 3 we provide the empirical CDF
of origin-destination throughputs for the first week in the
data, one at each level of granularity. The flow ranges from
below 1 Kbps to roughly 100 Mbps at each level of granu-
larity. Flows near 1 Kbps (the leftmost point on the x-axis
of the figure) can essentially be viewed as near zero valued
elements. In p2p matrices, 15% of the matrix elements are
near zero; for r2r matrices the number is roughly 32% and
for l2l the percentage is over 60%. This indicates that these
matrices are sparse and that the sparsity increases at smaller
levels of granularity.
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Figure 3: Empirical cumulative density function for
p2p, r2r and l2l flows.

In addition, a large fraction of the OD flows experience
throughput values below 1 Mbps, which could be considered
as tiny in a Tier-1 network. There is a problem with these
tiny flows due to a limitation stemming from the way our
measurements are collected. The systematic sampling as
employed by Netflow v8 is likely to provide us with inaccu-
rate flow measurements when flows are tiny in magnitude.
Given that we compute flow statistics on packet samples
(every 250th packet), it is likely to be the case that tiny
flows are undersampled or missed altogether. Since these

tiny flow throughputs are likely to be distorted due to infre-
quent sampling, there is little confidence in their observed
properties.

The impact of sampling on the collected flow measure-
ments is outside the scope of this work (for the issues in-
volved refer to [4]). Nevertheless, in order to avoid possible
inaccuracies that come from working with improperly sam-
pled flows, our scheme is tuned to focus on the relevant
flows. We define relevant flows as those with average weekly
throughput greater than 1 Mbps. These relevant flows still
include flows of varying sizes that can be considered small,
medium or large. Our intention is to estimate all flows but
with the goal of achieving low errors on the relevant flows.
Many have argued that what carriers care about is estimat-
ing the larger elements well, because it is those elements that
capture the majority of the traffic [5, 13, 11]. We concur
with this statement. With this definition of relevant flows,
we capture 95% or more of the total traffic load. Table 2
shows the number of OD pairs categorized as “relevant” and
the total captured load for each of our three types of traffic
matrices.

Granularity # relevant captured load
p2p 85 98%
r2r 216 95%
l2l 470 96%

Table 2: Relevant flows for l2l, r2r, and p2p.

4.2 The notion of a node fanout
First we establish our notation. We denote each element

in the traffic matrix as X(i, j, n) for the amount of traffic
flowing from node i to node j at time interval n. Time is
discretized into 1 hour intervals; we let T denote the total
number of hours in our measurements and thus 1 ≤ n ≤ T .
The total number of nodes is given by M so we have 1 ≤
i, j ≤ M . Each row of a traffic matrix is a description of how
all the traffic from one source node is distributed among all
other nodes. Let f(i, j, n) denote the fraction of node i’s
traffic destined to egress node j at time interval n. This is
given by,

f(i, j, n) =
X(i, j, n)PM

k=1 X(i, k, n)
, 1 ≤ n ≤ T (1)

where 0 ≤ f(i, j, n) ≤ 1. We define the vector ~f(i, n) to
be the node fanout as it captures how node i’s traffic is
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apportioned across all the egress nodes. The elements of
this vector sum to one, i.e.,

PM
j=1 f(i, j, n) = 1, ∀i, n.

Note that the denominator in Eq. 1 corresponds to all
the traffic that node i emits at time n. If the node cor-
responds to a link, then this traffic load is available from
SNMP counters. If the node is a router, then this load is
computable by summing the SNMP counts from all ingress
links to the router (in our case all links from gateway routers
and peers that attach to this particular backbone router).
Letting Yi(n) denote this load at time n, we can rewrite
equation 1 as

X(i, j, n) = f(i, j, n) · Yi(n) (2)

Representing traffic matrix elements as a product of a fanout
and SNMP data has been used before [8, 13]. Now, for the
first time, we examine temporal properties of these fanouts.

4.3 Temporal Properties of Fanouts
By examining f(i, j, n) for a fixed i and j, and letting n

vary, we can see how the fanout from node i to a particular
egress point j varies over time. In Fig. 4 we show the tempo-
ral behavior of such fanout elements for three example flows,
one at each level of granularity. The fanout for the p2p flow
remains almost constant for the entire week. The fanouts
for the r2r and l2l example flows exhibit diurnal patterns
that repeat themselves throughout the week (no significant
difference is observed in the weekend). This implies that
these fanout elements are very predictable. The constant
ones can be predicted by simply measuring in a single time
interval. Those with diurnal patterns are predictable once
you know the daily cycle.
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Figure 4: Example fanouts at the three levels of
granularity.

We looked at many OD pairs and observed the same be-
havior. In order to verify the generality of this observation
more thoroughly we did the following. First, we computed
the Fast Fourier Transform (FFT) for the flow fanouts, dur-
ing the period of July 28th, 2003 to August 4th, 2003, at
all levels of granularity. We found that the fanouts of 98%
of the p2p flows, 95% of the r2r flows, and 96% of the l2l
flows exhibit a strong periodicity at the cycle of 24 hours.
This implies that fanouts are predictable across days, i.e.
the fanout for a flow at 1pm on day2 can be predicted based
on the same hour on day1. Second, to check the stability of
fanouts across days we computed the coefficient of variation
for each hour for each fanout (and for each OD flow) across
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Figure 5: Variability of fanouts vs. traffic matrix.

all three levels of granularity. In other words, we computed
the coefficient of variation for each fanout over all days for
the 1-2pm slot, and similarly for all other slots. This met-
ric allows us to assess the variability of fanouts (and OD
flows) within the same hour across days. We found that
typically this behavior is consistent across hours; all hours
produce similar results. We thus summarize our results us-
ing the average coefficient of variation for each fanout (and
for each OD flow) as the average of the 24 measurements we
have (one for each hour). Our results are plotted in Fig. 5.
We notice that fanouts tend to show very limited variations
around their mean value for the same hour across days.

The predictability of fanouts is an interesting finding and
should not be confused with the predictability of a traffic
matrix. One could postulate that the fanouts are predictable
because the TM is. Recall that the TM is the product of
the fanout and the SNMP link counts, hence both of these
components would need to be stable for the TM to be so
as well. In Fig. 5 we have also included results on the
coefficient of variation of the traffic of OD flows across days
for the same hour (similar to the fanouts described above).
Since all three curves lie below the curves for the fanouts,
this implies that the traffic matrix is more variable and less
predictable than the fanouts. We thus focus on the fanouts.
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Figure 6: Estimated throughput based on the
fanouts measured on July 28th, 2003.

This implies the following approach to TM estimation
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could be viable. The idea is to use fanouts from day1 to esti-
mate the behavior of OD flows for the remainder of the week,
where the TM is computed from the fanouts and SNMP data
according to Eq. 2. That is, we use updated SNMP counts
every hour3 to generate the matrix, but do not use updated
fanouts. In Fig. 6, we show the estimates obtained using
the fanouts and the actual traffic measured through Netflow
for a particular OD flow at each level of granularity. Our
results show that the estimated throughput is surprisingly
close to what was measured through Netflow. Even small
fluctuations observed in the p2p flow during the fourth day
of the measurements were captured with high accuracy. The
idea of using one day to predict 7 days is merely an example
used here to illustrate this idea of using fanout stability for
TM prediction. In later sections we will examine the issue
of how long a given fanout can be used for prediction before
becoming stale.

5. PRACTICAL MEASUREMENT OF AN IP
TRAFFIC MATRIX

We now develop a new method for obtaining traffic ma-
trices based on our two key findings so far. First, we assume
that flow monitors will adopt our suggestions and routers
will have the ability to directly compute TM rows. We can
thus focus on distributed solutions. Second, we rely on the
observation that fanouts are both quite stable, and also more
stable than the traffic matrix itself. Rather than promote
full direct measurement of a TM, we promote an approach
that relies on partial flow monitoring coupled with the usual
SNMP data.

The method contains two basic elements, an estimation
part and an update part. For the estimation part, we use 24
hours of Netflow type measurements to compute a baseline
for fanouts. Because of the presence of strong diurnal pat-
terns, the baseline for each node contains 24 vectors, one for
each hour of the day. The traffic matrix at time n can thus
be computed using a small modification to Eq. 2 as follows:

X(i, j, n) = fbl(i, j, n
′) · Yi(n), n′ = (n%24) + 1 (3)

where % corresponds to the modulo operator, and fbl(i, j, n
′)

denotes the baseline fanout. Assuming that the hour of a
fanout is indexed by 1, . . . , 24, then the traffic matrix at time
n is computed using the same hour n′ from the baseline day.

The idea is to initially measure the fanouts exactly, but
then to update them only on an as needed basis. The SNMP
data is available every 5 minutes, so when estimates are
made they are a combination of recent SNMP data and
fanouts that may be many hours or days old. Since each
router computes its own fanout, we want each router to
be responsible for updating its own fanout, especially given
that some routers may need their fanouts updated at differ-
ent times than others. Our goal is to develop a method that
allows this to happen, thus maintaining a purely distributed
approach.

Because an IP network is a highly dynamic environment,
clearly changes in fanouts are going to occur over time. We
thus need a scheme that monitors for change and triggers a
recomputation of the baseline when the fanouts have sub-
stantially diverted from the previously calculated ones. Re-

3We simply average the 5 minute counts over 1 hour periods
for our purposes.

computing the baseline means here that the flow monitor is
enabled for another 24 hours.

5.1 A trigger-based baseline update scheme
We use a three-step procedure to determine when updates

are needed for the fanout baseline.

1. Compute the fanout baseline

2. Check for diversion from baseline

(a) Pick 1 hour randomly within the next H hours

(b) recompute the fanout only for that hour

(c) measure diversion of current hour from baseline
for relevant flows

3. If diversion > δ, then recompute the baseline for all
24 hours; else return to Step 2.

The first time we compute the baseline in Step 1 is an
initialization step when all ingress links, routers and PoPs
compute the total amount of traffic they send to every other
egress link, router or PoP inside the network for each 1 hour

interval for an entire day. We denote by ~fbl(i, n), 1 ≤ n ≤ 24
the fanout vector that each node computes for itself, accord-
ing to Eq. 1.

There are two important design choices in any change
detection scheme: (i) How frequently should we check for
changes in the fanouts? (ii) How large should the change
in fanout be so as to trigger re-computation of the base-
line? The frequency with which we check is controlled by
parameter H. Step 2a above means that at a time slot n,
a node randomly selects one hour h, where 1 ≤ h ≤ H.
The node computes its new fanout vector at time n + h

(i.e.,
~̂
f(i, n + h)) just for that hour. We refer to hour n + h

as the checking hour. We compute the difference between
the new fanout and the corresponding hour in the baseline
hbl = (n + h)%24 + 1. In other words, we compare 3pm on
the new day to 3pm in the baseline. We call the measured
“change in fanout” either diversion from baseline or merely
diversion for short. This approach ensures that the baseline
is checked at least once every H hours.

We measure diversion in terms of relative change as in
Eq. 4, so that even flows with small fanouts values (that
may nonetheless correspond to high throughput flows) can
trigger re-estimation of the baseline.

D(i, j) = | f̂(i, j, n + h)− fbl(i, j, hbl)

fbl(i, j, hbl)
|. (4)

The condition for triggering a recomputation of the entire
baseline (all 24 hours) is for the difference to exceed a thresh-
old, namely if D(i, j) > δ. We only check for fanout diver-
sion among the relevant flows (those larger than 1 Mbps).
Note that we check for diversion amongst all relevant flows,
but we only require one OD flow to exceed δ in order to trig-
ger a baseline update. The reasons for focusing on relevant
flows are the following. First, the behavior of relevant flows
is more interesting from the network operators’ point of view
because it affects traffic engineering applications. Second, as
previously discussed, the irrelevant flows may not be reliable
due to the sampling mechanism used. Third, because these
traffic matrices are sparse, we reduce the amount of check-
ing needed by limiting our checking to only relevant flows.
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Recall that by limiting ourselves to only the relevant flows,
we are still checking for fanout diversion among 95-99% of
the total traffic load. Moreover, even though we only check
for fanout diversion amongst relevant flows, when diversion
is detected, our scheme re-estimates the entire fanout vector
for that node. Therefore, when the baseline is recomputed
we have an accurate picture of all fanouts sourcing at a par-
ticular node.

A subtle point to be taken into account is that given the
router is only aware of the TM row during a single randomly
selected hour, it is not capable of correctly identifying the
relevant flows itself. A flow should be observed for longer
than one day to reveal its long-term average throughput.
Therefore identification of these flows will have to be per-
formed by the collection station. One possible way is for
the collection station to identify the relevant flows upon the
assembly of the TM and notify each router accordingly.

Throughout the 3 week period of measurements at our
disposal the set of relevant flows did not change. Neverthe-
less, there will be cases when flows change from irrelevant
to relevant, or vice versa. Consequently, in an operational
environment this list of relevant flows would need to be re-
evaluated every so often. Given what we have seen in our
data, we expect that it would probably be sufficient to re-
evaluate the relevant flows and ship the list to router nodes
once a week. Even if this list is not entirely up to date,
triggers generated by other relevant flows on the same node
will lead to accurate throughput estimates across all flows.

Our scheme has two main objectives: i) to reduce the
required number of measurements for the computation of
the IP traffic matrix at the three listed granularity levels,
and ii) to do so in an accurate fashion. There is a natural
tradeoff between our two objectives. If one were to collect
measurements more frequently the OD flow estimates would
be more accurate. On the other hand, cutting down the
number of measurements may lead to higher TM estimation
errors. Our scheme allows us to explore this tradeoff using
parameters δ and H as knobs that a network operator could
tune to achieve a target result. We explore this tradeoff in
Section 6.

5.2 Benefits of the proposed scheme
The benefits of the proposed technique lie in its ability

to reduce the number of measurements needed to obtain
accurate traffic matrices. This has consequences that enable
reductions in the associated communications, and storage
overhead.

One benefit comes from the fact that we are essentially ad-
vocating that NetFlow (or a similar software) can be turned
off between the checking hours. These periods of down time
will last anywhere between 1 and 23 hours. This reduces
the computation, or processing overhead at the router, thus
freeing up the router CPU for other activities.

We reduce the communications overhead in two ways.
First, instead of shipping R2 (or L2) records every hour,
we ship them on average once every few days (we will see
later on that the average number of days between updates is
roughly 2 to 5). Second, we never actually ship R2 records
at once. Since routers are likely to trigger recomputations at
different times, each router will send its new baseline at dif-
ferent times, thus spreading the information transfer across
time and space. Similarly, we do not need to collect flow
statistics on all the links of a router at the same time, but

whenever a particular link requires re-estimation of its row.
This implies that the statistics collection on the router can
be asynchronous, considerably reducing the peak load on the
CPU.

This is quite an appealing feature that results from the
use of a distributed approach. All other TM techniques
based on inference require that the TM, or any model used
within the inference procedure, be updated for all OD flows
at once (i.e. a centralized approach). The attractiveness
of our scheme is based on the fact that change in OD flow
behavior will not be uniform across an entire domain. Some
sites may experience a change in popularity, resulting in a
shift in the volume of some OD flows but not others. Our
scheme enables updates to a baseline model to take place
only for those OD flows impacted by any such change in
popularity.
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Figure 7: Number of baseline recalibrations per
node.

To illustrate this further, we look at the number of times
the baseline was recomputed at each link, node or PoP
(depending upon the TM granularity), when δ = 0.5 and
H = 24. In Figure 7 we see that 2 out of 13 PoPs needed
no recalibrations at all, 6 out of 27 routers, and 49 out of 80
links needed no recalibration. This demonstrates that run-
ning Netflow all the time would clearly be wasteful since it is
unnecessary. Moreover, examining our 27 routers, for exam-
ple, we can see that some updated as few as two times during
our three weeks of data, while others updated as much as 10
or 11 times. Clearly different routers have different needs.
Thus when we say we update the baseline only as needed,
this implies that we determine necessity in both time (per
day) and in space (per node).

6. RESULTS
In this section we show the results on our scheme’s perfor-

mance, discuss the calibration of its parameters and present
the reduction in overheads that it enables.

6.1 Measurement Load
We quantify reduction in measurement load using the

number of hours between successive baseline estimations for
each node i. We ensemble all the data points from all the
nodes, when δ = 0.5 and H = 24 (the impact of δ and H is
explored later in this section), and present the cumulative
density function for the number of days between baseline re-
estimation in Fig. 8. Baseline re-estimation appears to be
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needed less often with higher levels of flow aggregation. In
addition, 50% of the baseline re-estimations will be typically
triggered after more than 2-3 days.
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Figure 8: Days between baseline re-estimation for
all three levels of flow granularity.

6.2 Error Assessment
A traffic matrix estimate yields one throughput estimate

X̂(i, j, n) for each hour n for each OD flow (i, j). The relative
error in the estimation of an OD flow is given by:

e(i, j, n) =
X̂(i, j, n)−X(i, j, n)

X(i, j, n)
, when X(i, j, n) 6= 0 (5)

The set {e(i, j, n)} yields a large set of errors across both
time and space (e.g. flows). For each OD flow (i, j), we have
a time series for the estimation errors for that flow. For a
fixed value of n, we can observe the errors across all the OD
flows. There are different ways to view and summarize these
errors.

We begin by looking at the entire set of error measure-
ments at our disposal, across both space and time, simul-
taneously. The distribution of the set {e(i, j, n)} is given
in Fig. 9 for each of the three granularity levels. This dis-
tribution captures an instantaneous quantity - namely the
probability that any flow, at any moment in time, incurs
an error of some value. More than 80% of all our estimates
(over time and space) yield a relative error that is contained
between -25% and 25%. In other words, if one were to ran-
domly select one flow and observe its estimated throughput
at a random time interval, then this value would be within
25% of the actual throughput with a probability of 0.8.

When errors in our scheme occur, it will be due to a de-
layed detection of a change in fanout. If a change in fanout
occurs, and the checking hour is a few hours later, then we
will not pick up the change for that many hours. This will
clearly generate errors during those hours. The instanta-
neous errors (Fig. 9) are sufficiently well contained, that
this delayed change detection typically does not hamper our
ability to track and estimate flows well (as in Fig. 6).

Temporal Errors. First we look at the errors in time.
For each time interval, we compute the relative L2 norm
across flows. In other words, we end up with one error

et(n) =

qPM
i,j=1[(X(i, j, n)− X̂(i, j, n))2]
qPM

i,j=1 X(i, j, n)2
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Figure 9: Relative error distribution for all three
granularities.

for each time slot, in which the summation inside the L2
norm is taken over OD pairs (i, j). These results are dis-
played in Fig. 10. We see that 93% (75%) of the flows had
errors less than 18% (20%) for p2p (or r2r), respectively. To
check the performance of our scheme at different time scales,
we also ran our method using 10 minute time intervals. The
error results for this case are also presented in Fig. 10. We
see that the results are very similar.
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Figure 10: Relative L2 norm error in time.

Spatial Errors. We now look at errors across flows. For
each flow we compute the relative L2 norm across time thus
deriving a summary error per OD flow. In other words, we
get one error metric per flow,

es(i, j) =

qPT
n=1[(X(i, j, n)− X̂(i, j, n))2]
qPT

n=1 X(i, j, n)2
,

in which the summation inside the L2 norm computation is
over time slots n. The distribution of these flow errors is
given in Fig. 11. We see that these errors appear larger
than the temporal ones do. This indicates that there are
plenty of flows for whom it is difficult to achieve low errors
at all instances of time (for both time scales of 1 hour and
10 minutes). Notice that the summary error es(i, j) includes
errors incurred for that flow whether it experiences high or
smaller throughput (at which time instants this flow would
be characterized as small). Our findings so far highlight the
utility of examining errors in both time and space.
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Figure 11: Relative L2 norm error in space.

Small Flows. Most previous studies look at the tem-
poral errors, but eliminate the small OD flows from their
evaluation by selecting the flows constituting the top 80%
or 90% of the total demand. We visit the issue of small flows
more closely here. The relative error metric {e(i, j, n)} suf-
fers from the following weakness. If the actual throughput
achieved by an OD flow is very low, then the relative error
can be rather high. It’s not infrequent in our data for some
OD flows to experience short periods of time when they may
have negligible throughput. If a flow’s throughput gets close
to zero, then the relative error as defined in Eq. 5 can be
huge, certainly much higher than 100%, until the baseline
re-estimation is triggered. This leads to outliers in the error
set {e(i, j, n)}.

We illustrate this scenario with a sample flow in Fig. 12.
This particular router to router flow experiences two small
periods of time when its throughput is very small. The
corresponding relative errors measured are on the order of
104. We claim that these outliers are not important for two
reasons. First, we see in the top portion of Fig. 12, that
our estimates can still do a good job at tracking the actual
OD flow. Second, flows nearing zero throughput can be
ignored by most traffic engineering applications at this time
scale. Recall that we target network design and planning
applications, and not anomaly detection or billing, when
behavior needs to be tracked at smaller time scales, and
where TMs would need to be continuously measured (in our
scheme this would require H = 1).
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Figure 12: Flow with brief periods of inactivity. Up-
per: estimated behavior, lower: relative error.

An error computation that selects the flows constituting
the top 80% or 90% of the load, at each time slot, can be am-
biguous since a flow such as the one in Fig. 12 is sometimes
included (during periods of regular activity) and sometimes
excluded (during periods of low activity). To avoid having
to pick thresholds for excluding OD flows (or portions of an
OD flow’s time series) in error metrics we use a weighted
relative L2 norm error metric, denoted e′(i, j), where the
weights are set to be proportional to the actual OD flow
throughput as follows:

e′(i, j) =

qPT
n=1[(X(i, j, n)− X̂(i, j, n))2w(i, j, n)]

qPT
n=1 X(i, j, n)2

,

w(i, j, n) =
X(i, j, n)PT

k=1 X(i, j, k)

This gives us a single error metric for each OD flow. Note
that the threshold approach applied in previous efforts is in
essence a temporal error metric (an e(n) metric). We prefer
to deal with the issue of small flows via a spatial error metric
(an e(i, j) one) rather than a temporal one for the follow-
ing reason. The threshold approach does not only eliminate
small flows, but also the portions of any flow when it is near
zero. Our weighted error metric allows us to include flows
throughout their lifetime, but weighed instantaneously ac-
cording to their volume; the weights in our metric vary over
time as does the flow volume. This error definition assigns
small weights to those time instances when the flow exhibits
little activity, and larger weights to high activity time slots.
In other words, instances of flows are assigned a relevance
level according to their volume. This is reasonable since car-
riers design their networks such that they can accommodate
the maximum amount of traffic that may be offered. In ad-
dition, this definition does not bias our error computation
in any favorable way - if a large error is made when a flow
is at its peak, then this error will have a heavy weight. The
weighted relative L2 norm metric gives us an alternate view
of the errors and alleviates the problem of outliers without
eliminating them.

Fig. 13 presents the empirical cumulative density function
of the weighted relative L2 norm. More than 90% of the
flows at all three levels of granularity experience a flow error
less than 10%. The fact that this figure is quite different
from Fig. 10 highlights the distorting effect that OD flows
dropping to near zero levels may have, as well as the effect
of the delayed reaction mechanism employed by our scheme
when these events occur.

In order to see which flows are lying in the tail of this dis-
tribution, we plot the weighted relative L2 norm error versus
the flow throughput in Fig. 14. This shows that the smaller
flows are the ones that incur the larger errors. Indeed, this
figure shows that most large flows are typically estimated
with an error below 5%. Other traffic matrix estimation
methods [13, 5, 11] have also observed that they estimate
the large flows well, and better than the small flows.

6.3 Frequency of change detection
Parameter H in our scheme impacts the frequency of base-

line change detection. Each node randomly selects one hour
in the future H hours to test its fanouts against its 24 hour
baseline. We now look into the impact of parameter H on
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Figure 13: CDF of weighted relative L2 norm error.
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Figure 14: Weighted relative L2 norm error vs. flow
throughput.

the performance of the proposed scheme. We set parame-
ter δ equal to 0.5, and apply our scheme while testing for
diversions (i) every 12 hours (H = 12), (ii) every 24 hours
(H = 24) and (iii) every week (H = 168). Fig. 15 illustrates
that testing for fanout discrepancies more frequently than
once a day does not lead to significant improvement in terms
of flow errors. However, decreasing H to one week does lead
to deterioration in OD flow estimates. These observations
were found to hold across all three levels of granularity, and
across values of δ spanning from 0.1 up to 1. Consequently,
we conclude that testing for fanout change once a day is
frequent enough for our purposes.

6.4 Tradeoff between baseline re-estimation
and accuracy

According to our scheme baseline re-estimation is trig-
gered when the measured fanout diversion exceeds a specific
value of δ. If fanouts are updated less often, TM estimates
will be less accurate but the savings in terms of measure-
ment load (i.e., running flow monitors) will be larger. On
the other hand, when the fanouts are updated more fre-
quently accuracy is likely to be higher. In this section we
look into the tradeoff between accuracy and reduction in
measurement load for different values of δ. In Fig. 16 we
present the 90th percentile of the weighted relative L2 norm
error distribution and the average number of days between
baseline re-estimation for different values of δ.
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Figure 15: Impact of frequency of checking for base-
line diversion.
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Figure 16: Impact of diversion threshold δ (dashed
line for right-hand y-axis).

We observe the following. (i) Baseline re-estimation needs
to be performed more frequently for finer levels of the traffic
matrix granularity. (ii) Greater values of δ lead to higher
flow errors and greater periods of time when the baseline
measurements can be used unaltered. (iii) The proposed
scheme leads to errors below 12% across all three levels of
granularity and across all values of δ, and incurs baseline
re-estimation in the worst case every 3 days, when δ = 0.1.
(iv) Our error metric does not appear to be that sensitive
to δ. This lack of sensitivity to δ is an attractive feature
of our scheme since it implies that careful optimization of
this parameter is not needed, but rather that a wide range
of values will do well. The average number of days between
baseline recalibration appears to be a little more sensitive
to δ as we do see a variation between 3 to 7 days. We
have selected δ = 0.5 in most of our experiments; it appears
quite reasonable with typical errors below 5% and baseline
recalibrations occurring once every 3 to 4 days. The final
decision as to how to tune such a scheme’s parameters will
ultimately lie with the network operators as they will choose
the accuracy versus overhead tradeoff.

We consider that running a flow monitor for the purposes
of TM estimation constitutes measurement overhead for this
task. We have been advocating a limited use of such moni-
tors. In order to assess this tradeoff, we present Fig. 17. For
the p2p case, each of the 10 points in Fig. 17 corresponds to
a different value of δ = 0.1, 0.2, . . . , 1.0 (similarly for r2r and
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l2l). The y-axis states the fraction of absolute relative errors
below 25% for the given scenario (value of δ and granularity
level). The x-axis is our metric for measurement overhead.
To compute this metric we count the number of hours each
link ran the flow monitor and sum across the entire net-
work. We then divide by the total number of link-hours in
our measurements (e.g. 81 × 504 hours). Thus a value of
0.25 on this axis means that overall (across time and space),
monitors were used during 25% of the 3-week lifetime of our
experiment.
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Figure 17: Tradeoff between accuracy and measure-
ment overhead.

The percentage of error improvement achieved using addi-
tional measurements appears to be non-linear. For all three
levels of granularity there is a plateau after which large in-
creases in measurement overhead are needed for further error
reduction. This figure implies that with roughly 45% of the
measurements from an always on monitor, one can estimate
between 80-90% of the flows quite well. Clearly monitoring
at 100% is the only way to achieve zero errors, all the time,
for all error metrics. However this level of accuracy is typi-
cally not needed for most traffic engineering applications.

7. REDUCTIONS IN OVERHEAD
To illustrate the impact of our scheme on overheads, we

now quantify the savings that would result over a period of
3 weeks (the length of our entire dataset). Letting T denote
the duration of this 3 week period in one hour increments
we have T = 504 for our calculations. In Table 3 we summa-
rize both the router storage and communications overheads
incurred by the centralized, distributed, and trigger-based
solutions. By ’distributed’ we refer to a solution in which
flow monitors are left on all the time, thus continuously
measuring the traffic matrix without using any estimation
at all. We use the numbers from our backbone (e.g., R = 27,
L = 81, etc); these are stated at the top of the table.

According to our scheme each router needs to store 24
hours of its fanouts as well as one extra row of fanouts that
corresponds to the randomly selected hour. Consequently,
at any point in time the router needs to store at most 25
rows of fanouts. In our network this means that for the com-
putation of the p2p traffic matrix each router needs to store
(H+1)∗P records (or 25∗13 = 325) at any point in time. In
Netflow v8 every router stores approximately 67,000 records
for each one of its links, with an average of 3 links per router
that means 210,000 records per router. (The centralized and

distributed router storage in this table is the same as that
in Table 1. They are included here for comparative pur-
poses.) Clearly, the storage for the trigger-based scheme is
significantly lighter than for today’s centralized solutions.
The trigger-based scheme does slightly worse than the dis-
tributed solution because the distributed solution maintains
less by shipping it out every hour to the collection station.

The communications overhead for the centralized and dis-
tributed solutions in this table differ from that in Table 1
because we now include the length of time over which we as-
sess these overheads. For example the communications for
an r2r matrix is now T ∗R2 (rather than just R2). The num-
bers in the table correspond to the total number of records
shipped through the network during this three week period.

To quantify the reduction in communication overhead un-
der our approach, we count how many times baseline re-
estimation was triggered for each link or router throughout
the 3 week period. The numbers of triggers generated for
each TM granularity level are given at the top of the table.
The total overhead is the sum of the initial baseline (24 mea-
surements) plus the number of baseline measurements that
are triggered for specific links or routers throughout the net-
work. For example, in the l2l case, the initial baseline sent
contains 24 ∗ L2 records. After that we simply communi-
cate the rows of the matrix that change. With 333 triggers
(each of which requires another 24 hours of measurement),
the remainder of the overhead is 333 ∗ 24 ∗ L.

In order to compare the three solutions, we look at the
percentage reduction from one scheme to the next. We quan-
tify the reduction in overhead as the fraction of the overhead
difference between two schemes divided by the original num-
ber of records. We find that moving from a centralized to
a distributed approach leads to 99.99%, 99.98% and 99.87%
reduction for the p2p, r2r and l2l levels respectively. Alter-
natively, we can say that the distributed scheme’s overhead
is roughly a factor of a thousand less than the centralized
one. Relative to the distributed solution, the trigger-based
approach leads to an extra 85.18%, 69.13% and 75.66% re-
duction for the three levels respectively.

Because the overhead for our scheme involves a constant
initial factor plus a term that is a function of time (i.e., the
number of triggers), the impact of the initial constant factor
eventually disappears after enough time. If D denotes the
average number of days between baseline re-estimation, then
essentially we will need to collect one day’s worth of mea-
surements every D days. The savings here, relative to a full-
on distributed scheme, will converge to D−1

D
. For example,

if D = 4, then we recompute the baseline once every 4 days,
leaving 3 days without any measurements communicated to
the collection station. This reduction in measurement over-
head was estimated to be 75.78%, 68.85%, and 65.47% for
the p2p, r2r and l2l respectively (for the respective values
of D derived from our measurements), as compared to the
always on measurement method.

8. CONCLUSIONS
In this paper we addressed the question of whether or not

Internet traffic matrices can be obtained via direct measure-
ment by flow monitors on routers. We showed that with to-
day’s technology, centralized solutions are needed and that
these indeed are computationally prohibitive.

We strongly encouraged moving toward a distributed so-
lution and illustrated the reduction in overheads that this
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Overhead in # records for the three weeks of measurements
T = 504, P = 13, R = 27, L = 81, L̄(r) = 3, F (l) = 67, 000

H=24, # triggers (p2p)=57, # triggers (r2r)=148, # triggers (l2l)=333
Router Storage

Centralized Distributed Trigger-Based
p2p L̄(r) ∗ F̄ (l) = 210, 000 P = 13 (H + 1) ∗ P = 325
r2r same as above R = 27 (H + 1) ∗R = 675
l2l same as above L̄(r) ∗ L = 243 (H + 1) ∗ L̄(r) ∗ L = 6, 075

Communications Overhead
Centralized Distributed Trigger-Based

p2p T ∗ L ∗ F̄ (l) = 2, 735, 208, 000 T ∗R ∗ P = 176, 904 24 ∗R ∗ P + #triggers ∗ 24 ∗ P = 26, 208
r2r same as above T ∗R2 = 367, 416 24 ∗R2 + #triggers ∗ 24 ∗R = 113, 400
l2l same as above T ∗ L2 = 3, 306, 744 24 ∗ L2 + #triggers ∗ 24 ∗ L = 804, 816

Table 3: Summarization of overheads for a three week period.

would enable. For example, the reduction in communica-
tions overhead can be as large as 99% since we change by
orders of magnitude the amount of data shipped through
the network. Although recent advances in Netflow illustrate
a move toward being able to compute traffic matrices, we
explained why these advances are not sufficient. We iden-
tified the critical factors for which implementation changes
are needed to enable truly distributed solutions to this prob-
lem, and presented these as two recommendations to router
manufacturers. These recommendations include (i) imple-
menting a function to map destination network prefixes to
egress links or routers within the domain at the router itself,
and (ii) modifying the definition of the flow record in order
to include the result of this mapping. We believe that once
this function and definition can be implemented, distributed
traffic matrix measurement by routers would become a re-
ality.

Nonetheless, we showed that it is possible to go beyond
this vision, further reducing the frequency with which mea-
surements need to be taken. This is based on our finding
that the node fanouts are remarkably predictable, at three
granularity levels. We presented a scheme that exploits this
finding to further reduce communications overhead and the
frequency of router measurements. We showed that by tak-
ing measurements only once every few days, we can obtain a
traffic matrix that is accurate on the time scale of hours. We
demonstrated that by allowing Netflow to be turned on and
off, on an as needed basis, we can reduce communications
overhead by 70-85% and can reduce measurement overhead
by 65-75% relative to a direct measurement solution that
leaves flow monitors on continuously. (This also implies that
there is a strong potential for advanced sampling techniques
to succeed in the area of TM measurement.) Our approach
is capable of achieving such reduction while introducing lim-
ited estimation errors. Moreover, unlike other schemes, ours
has knobs that can be tuned so as to achieve a specific tar-
get error rate. The attractiveness of our scheme is that it
is simple, scalable (for traffic matrices at all three granular-
ity levels) and works well, thus rendering our approach very
practical. In future work we intend to compare our tech-
nique with proposed inference techniques, and quantify the
differences against the same dataset using the same error
metrics.
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