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Abstract

Sensors that know their location, from microphones to vibra-
tion sensors, can support a wider arena of applications than
their location unaware counterparts. We offer a method for
sensors to determine their own location relative to one an-
other by using only exogenous sounds and the differences in
the arrivals of these sounds at different sensors. We present a
distributed and computationally efficient solution that offers
accuracy on par with more active and computationally intense
methods.

Introduction
The decreasing cost and increasing popularity of a wide va-
riety of computationally equipped sensing devices has led
to the use of large numbers of these devices in aggregate
to perform a variety of tasks. Typical deployments in-
clude networks of cameras for security, chemical sensors
for farming, vibration sensors for geological study, RFID
tags for inventory management, and microphones for track-
ing and surveillance. In most cases, the sensing devices
have some computational ability and either wired or wire-
less network connectivity. The ability to communicate al-
lows the sensors to share information and process it collec-
tively as a so-called sensor network (J. Kahn & Pister 1999;
Pottie & Kaiser 2000).

Regardless of the type of device, the location of the sen-
sor, in either a global coordinate frame or in relation to the
other sensors, is required for useful operation. For example,
cameras tracking people moving through a building need to
know their own location to infer the locations of the people.
While it is possible to determine the locations of these sen-
sors manually, this rapidly becomes infeasible as the num-
ber of sensors grows. Also, the sensors may not be easily
or safely accessible to people, e.g. sensors being dropped
in a forest to monitor an ongoing forest fire. It is nearly al-
ways preferable to use an automated localization method to
determine the sensor locations.

The popularity of sensor networks and the importance of
localizing them has led to a rich body of localization algo-
rithms. Existing techniques tend to use the sensors them-
selves or an external device to actively generate typically an
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acoustic signal that can be commonly observed by each sen-
sor. Such methods tend to be highly accurate but costly in
both the type of hardware required and the effort required for
deployment. Less expensive methods based on radio signals
exist but offer poor results. We take a different approach.
We use sounds but instead of generating them ourselves, we
rely on exogenous events naturally occurring in the environ-
ment. This makes the localization problem harder because
we neither know where nor when the events occurred.

We discuss herein a distributed algorithm to leverage the
differences of the arrival times of the sounds at each ob-
serving sensor to recover relative locations of the sensors
to one another. Recovering relative locations can be viewed
as solving a non-linear least mean squares (LMS) problem
but traditional LMS algorithms converge slowly and are sus-
ceptible to local minima. The key to solving the passive
localization problem is to find small, overlapping so-called
clusters of sensors whose relative location can be determined
and then merge these partial solutions into a coherent whole.
On both data from Crossbow MICA2 sensors and a sen-
sor network simulator, our algorithm performs comparably
to active methods in both robustness and accuracy. More-
over, the computational effort required in localization is dis-
tributed over the sensors and scales linearly with the number
of sensors and events.

The rest of this paper is organized as follows. First, we
discuss existing work in sensor localization. Second, we
present a formal definition of passive localization. Third,
we present our approach. Fourth, we discuss sensor hard-
ware and present results of how our algorithm performs and
how different factors affect these results. Fifth, we conclude
with a review of the paper and possible future directions.

Related Work
Localization Algorithms

The most widely used localization system is the Global
Positioning System (GPS) (B. Hoffman-Wellenhof & Col-
lons 1992). It offers a relatively inexpensive solution for
many applications but lacks the relative accuracy required
for many applications and the ability to work indoors.

Many schemes use so-called beacon nodes that know their
location with respect to a global coordinate frame (Bulusu
2002; N. Priyantha & Balakrishnan 2000; A. Ward & Hop-



per 1997). While these methods are robust and accurate, the
cost and effort to set up the beacon nodes limits their useful-
ness.

Ranging solutions (Whitehouse 2002) are most similar to
our work. In terms of our problem definition, they both col-
locate the sensors and events and assume knowledge of the
time variables. These methods expend extra sensor energy,
create unwanted disturbances, and limit the diameter of the
sensor network to the audible range of the sensor. They also
degrade rapidly with missing information. In a previous pa-
per (Biswas & Thrun 2004), we identified the passive sen-
sor localization problem but the solution presented here both
scales better to large networks and is more adept at handling
missing information.

Methods based on radio signals attempt to leverage both
connectivity and received signal strength (RSS) (Bahl &
Padmanabhan 2000a; 2000b) and offer an inexpensive so-
lution but are neither robust nor accurate.

Problem Definition
Passive Sensor Localization

First, let the sensor network consist of N sensors at locations
S = {S1 . . . SN}. Let Sx

i refer to the x-coordinate of the
location of sensor i and let S

y
i and Sz

i refer to the y and z
coordinates, respectively. Constraining Sz

i to be 0 suffices
to define a 2D version of this problem. Determining these
locations constitutes the localization problem.

Second, let there be M acoustic events at locations E =
{E1 . . . EM}. Let Ex

i , E
y
i , and Ez

i refer to the x, y, and z
coordinates, respectively. We do not know these locations.

Third, let the onset times of the events be T =
{T1 . . . TM}. These times are not known to us.

Fourth, let there exist M ·N variables Rm
n that specify the

arrival time of the sound from event Em at sensor Sn. We
observe P of these variables, depending on which sensors
actually heard each sound. We assume that sensors do not
assign the same label to different events but it is permissible
for them to assign different labels to the same event.

Existence of a Unique Solution

Since no global reference frame exists, we impose the
following arbitrary conditions to canonicalize our solution
space. S1 is set to be the origin of the coordinate system, i.e.
(0,0,0). S2 is set to lie on the positive direction of the y axis,
i.e. (0,a,0) where a > 0. S3 is set to lie on the xy plane in
the positive x direction, i.e. (b,c,0) where b > 0. This form
can easily provide a global reference if the locations of these
three sensors is known with reference to a global frame.

It is possible that R does not provide enough information
to determine S. Sometimes, this lack of information can be
determined a priori given M , N , and P . Each variable Sn

has three unknown components as does each variable Em.
Each variable Tm introduces an additional unknown compo-
nent. Each observed variable Rm

n introduces one constraint.
Moreover, when M ≥ 3, the canonicalization of the solution
eliminates four unknown variables.

Thus, only if:

Figure 1: A Crossbow MICA2 Sensor

P ≥ 3 · M + 4 · N − 4 (1)
can there exist a unique solution. In situations where the
inequality is strict, we have an overconstrained set of equa-
tions. Our algorithm can leverage this additional informa-
tion for robustness and additional accuracy. Even when
the inequality is satisfied, there exist degenerate situations
where the information is not sufficient for unique local-
ization. For example, the sensors may not hear enough
common events or the true locations may exhibit excessive
collinearity.

Sensor Model
We assume that Rm

n is distributed as follows:

Rm
n = N(Tm +

d(Sn, Em)

s
, σ2) (2)

where d(a, b) is the Euclidean distance between points a and
b, s is the speed of sound in free space, σ is the standard de-
viation of the error in recording arrival times, and N(µ, σ2)
is a Normal distribution with mean µ and standard deviation
σ. We assume that the clocks on the sensors are synchro-
nized and that the R variables are thus directly comparable.

Our Approach
Our algorithm operates in three stages. First, we partition
the sensors into a set of overlapping clusters. Second, we
localize each cluster individually. Third, we merge the lo-
calized clusters. We discuss each step in turn.

Cluster Selection
In our algorithm, each sensor forms its own cluster with up
to k (typically 20) of its neighbors. The sensor i greedily
chooses other sensors according to the following criteria:

argmaxn

M∑

m=1

I(R̄m
n ∧ R̄m

i ) (3)

where I(e) is 1 if e is true and 0 otherwise, and R̄m
n signifies

that Rm
n was observed.

This criterion has the effect of creating clusters where
the participating sensors will tend to have heard the same
sounds. Duplicate clusters are eliminated. To keep this time
linear, we limit the search to sensors within radio range of
one another.



Figure 2: Different Interpretations of TDOA
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Figure 3: Uncertainty Estimates of Location

Cluster Localization
Estimating Distances between Sensors In Figure 2, we
see the two extreme cases for how differences in arrival
times of a single sound at two sensors can be interpreted.
In the top view, we see an acoustic event on the right (rep-
resented by a star) propagating to two sensors (represented
by squares). The angle of arrival is the same for both sen-
sors and the time difference of arrival is the propagation time
from one sensor to the other. In the bottom view, we see the
opposite case. The angle of arrival is diametrically opposite
and the time difference of arrival is 0.

In general, we have:

0 ≤ (Rm
n1

− Rm
n2

) · s ≤ d(Sn1, Sn2) (4)

Moreover, note that:

lim
M→∞

max
m∈M

(Rm
n1

− Rm
n2

) · s = d(Sn1, Sn2) (5)

We thus approximate the distances between sensors and
events:

̂d(Sn1, Sn2) = max
m∈M

(Rm
n1

− Rm
n2

) · s (6)

This approximation works well in practice. This method
only requires a constant number of sounds irrespective of the
number of sensors involved.
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Figure 4: Localization Error for a Small Set of Sensors

Recovering Locations from Approximate Distances To
recover locations from distances, it suffices to form an N by
N matrix populated with these distances, take its eigende-
composition, and use the eigenvectors corresponding to the
three largest (two, if we want a 2D projection) eigenvalues
as the coordinates of the sensors.
Recovering Sound Locations and Times While the
acoustic event locations are typically not important, it is pos-
sible to recover them if they are needed. For each event, we
seek to minimize:

N∑

n=1

|d(Sn, Em) − (Rm
n − Tm) · s| (7)

where Em and Tm are free variables. Gradient descent with
the closest sensor and its observation time as a starting point
suffices to solve this.

Merging Clusters
To combine the results of individual clusters, we repeatedly
merge the two clusters with the lowest inter-cluster cost. We
define the cost between clusters Ca and Cb as:

N∑

n=1

I(Sn ∈ Ca) · I(Sn ∈ Cb) − q · (|Ca| + |Cb|) (8)

where q is a penalty constant, and |Ci| refers to the num-
ber of sensors in cluster Ci. This technique is similar to
Kruskal’s minimum spanning tree algorithm except that the
edges ending at the newly joined clusters change in between
steps of this algorithm. To keep this time constant, we limit
the search to clusters stemming from sensors within radio
range of one another.

To merge a pair of clusters, we optimally align (Besl &
McKay 1992) a constant subset of sensors found in both
clusters and use the resulting transformation to align the re-
maining sensors. It is necessary to attempt merging with
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Figure 5: Localization Error for a Large Set of Sensors

both the original cluster as well as the original cluster with
the x-coordinates negated (as if the sensors were viewed
through a mirror) to prevent merging failure due to lack of
cluster canonicalization.

The total number of merges is N − 1. Computing the
optimal alignment takes constant time and aligning one of
the clusters takes time up to N but typically much less. The
average-case running time is O(N · lgN) for a reasonable
merge order.

Uncertainty Estimation
We estimate the uncertainty regarding the location of each
sensor by fitting a multivariate Gaussian to the posterior
probability of the sensor location given its recorded mea-
surements and the acoustic event locations and onset times:

P (Sn|R
1

n . . . RM
n , E1 . . . EM , T1 . . . TM )

=
M∏

m=1

P (Sn|R
m
n , Em, Tm) (9)

∝

M∏

m=1

P (Rm
n |Sn, Em, Tm) (10)

=

M∏

m=1

N(Tm +
d(Sn, Em)

s
, σ2). (11)

Figure 3 shows an example.

Experimental Results
Crossbow MICA2 Sensors
We use commercially available Crossbow MICA2 sensors
(see Figure 1) for our experiments. These sensors are capa-
ble of detecting tones at 4 KHz, detecting light, measuring
temperature, flashing colored lights, interfacing with other
devices, and communicating wirelessly with one another.
We discuss our experience with time synchronization, the
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Figure 6: Localization Error as Measurement Error Grows

acoustic range and consistency, and the accuracy in record-
ing times.

Our algorithm relies on somewhat precisely synchronized
clocks to be able to calculate accurate differences in arrival
time. Only local accuracy is important, i.e. the sensors need
to be able to compare times amongst themselves, not with
a global reference such as an atomic clock. We use the
Reference Broadcast System algorithm presented in (Elson,
Girod, & Estrin 2000). It does a more than adequate job of
providing the accuracy we need to localize our sensors with
differences resulting from sound wave propagation.

The acoustic range of these sensors is limited and varies
dramatically based on angle of arrival, remaining battery
power, and the type of sound. Also, the sensors do not
hear all sounds even when generated with a tone genera-
tor at the correct frequency. A model assuming that sensors
hear nearby sounds and not faraway ones is not reasonable
for these sensors and we do not assume one.

Lastly, we have empirically determined that the standard
deviation in arrival time is approximately 0.6 milliseconds,
in which time a sound wave would travel 20 centimeters.

Sensor Network Simulator

We also tested our algorithm with a sensor network simula-
tor that strives to replicate the behavior of the Crossbow sen-
sors. It places both sensors and sounds uniformly at random
within a square. The size of the square is varied to maintain
a sensor density of one sensor per square meter. The sound
density is fixed at three sounds per square meter. The acous-
tic range of the sensors is set to 10 meters and the standard
deviation in recording time is set to 0.6 milliseconds.

Performance

Figure 4 shows the performance of the algorithm as the num-
ber of sensors varies from 4 to 20. The error is fairly con-
stant at 10 cm but goes down slightly as the number of sen-
sors increases. We believe this occurs because the system
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Figure 7: Localization Error as Acoustic Range Increases

of equations becomes more constrained. The uptick at the
beginning is an artifact of canonicalization.

Figure 5 shows the performance of the algorithm as the
number of sensors varies from 40 to 200. The average error
remains at 10 cm and the error grows linearly with the num-
ber of sensors albeit at a very slow pace. This increase is due
to the limited audible range of the sensors. The difficulty in
capping global error is akin to the open loop mapping prob-
lem in robotics and has defied solution there as well.

Figure 6 shows the performance of the algorithm on 120
sensors as the measurement error grows. At the empirically
determined measurement error for Crossbow MICA2 sen-
sors, the error is 7 cm and grows linearly with σ, the stan-
dard deviation of the measurement times. It is interesting to
note that the end of the graph, at 1 ms, corresponds to 34 cm
of measurement error, but only 12 cm of localization error.
This suggests that the algorithm is highly robust in the face
of measurement noise due to the overwhelmingly overcon-
strained nature of the problem.

Figure 7 shows the performance of the distributed local-
ization algorithm on 120 sensors as the acoustic range of the
sensors grows. The error is very large until about 5 meters,
at which point the sensors hear enough sounds to be able to
localize well. If the density of sensors increased, the dropoff
would occur at a lower range.

Figure 8 shows a diagram of 100 sensors that have been
localized. This diagram shows an interesting point that Fig-
ure 5 does not. As the number of sensors increases and they
are distributed over a wider range, the relative localization
error grows sub-linearly. Also, the local error is superior
to the global error, which is useful for most sensor network
applications.

Figure 9 shows the empirically measured time required
to localize a network as the number of sensors varies. While
the time increases linearly and has a low constant factor, run-
ning this algorithm as-is on a sensor network would require
only constant time as the bulk of the time is spent in local-
izing each cluster and each sensor would be responsible for
localizing its own cluster in parallel with the other sensors.
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Figure 8: One Hundred Localized Sensors
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Figure 9: Localization Time as Number of Sensors Increases
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Figure 10: Localization Results for Crossbow MICA2 Sen-
sors



Figure 10 shows localization results for seven Crossbow
MICA2 sensors. The sensors were placed on a large sheet
of graph paper, from which their actual positions were taken.
This dataset unfortunately has only eight sounds, an unreal-
istically low number that leads to a poor distance approxi-
mation.

Other Approaches
We tried other approaches as well but they did not fare as
well. We discuss three in particular – an approximate con-
straint satisfaction problem (CSP) formulation, belief prop-
agation (BP) (Pearl 1988), and other eigendecomposition
techniques. For the CSP, we used a lower limit on the proba-
bility of the measurements given a partial, potential solution
to curtail search. While this method is reasonably effective,
it is slow and scales poorly.

For BP, a proper junction tree would involve all the vari-
ables in a single clique and inference would reduce to an ex-
ponential search for a likely solution. We chose a pairwise
Markov Network approximate junction tree instead but in-
ference on this network closely resembled a sort of stochas-
tic hill climbing trying to optimize a poor solution via local
changes. Even when applied to the solution our algorithm
produced, BP was unable to improve the solution further
because of the poor correlation of the posterior probability
of the data with the actual localization error, irrespective of
norm. We also tried Expectation Propagation (Minka 2001)
with both Gaussian and mixtures of Gaussians approximat-
ing distributions but that behaved similarly.

More complicated eigendecompositions involving sounds
sometimes offered higher accuracy but since the distance be-
tween a sound and a sensor is sensitive to the sound onset
time, these alternative methods turned out to be somewhat
fragile.

Discussion
We have presented herein a passive localization algorithm
that relies only on inexpensive microphones and exogenous
sounds. Experimental results are provided for both simu-
lated sensor networks and Crossbow MICA2 sensors. The
results presented are robust and offer accuracy on par with
far more expensive, active methods.

We are excited about our results and there are a few im-
portant directions in which we plan to extend this work.
First, we are setting up a camera array with built-in micro-
phones to evaluate our algorithm on a large array of real sen-
sors. The Crossbow MICA2 platform was not designed for
and does a poor job at detecting and time stamping the onset
of sounds. An inexpensive USB microphone does a vastly
superior job.

Second, our algorithm lacks a means to uniquely iden-
tify sounds received at multiple sensors. Giving the same
label to two different sounds would lead to a highly inac-
curate distance estimate. While it is difficult to detect mis-
labeled sounds a priori, the mistake should be evident fol-
lowing localization. We feel that Expectation Maximization
with hidden correspondence variables may provide a useful
and mathematically sound solution to this problem.

Third, we want to include both frequencies and ampli-
tude of sound in our analysis. The difference in amplitude
does not provide a distance estimate between sensors but
does provide a constraint on it. The frequency is helpful
for uniquely identifying sound and for leveraging a moving
sound source.
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