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Abstract

This paper presents a distributed approach to optimal power flow (OPF) in an electrical network, suitable for

application in a future smart grid scenario where access to resource and control is decentralized. The non-convex OPF

problem is solved by an augmented Lagrangian method, similar to the widely known ADMM algorithm, with the key

distinction that penalty parameters are constantly increased. A (weak) assumption on local solver reliability is required

to always ensure convergence. A certificate of convergence to a local optimum is available in the case of bounded

penalty parameters. For moderate sized networks (up to 300 nodes, and even in the presence of a severe partition of

the network), the approach guarantees a performance very close to the optimum, with an appreciably fast

convergence speed. The generality of the approach makes it applicable to any (convex or non-convex) distributed

optimization problem in networked form. In the comparison with the literature, mostly focused on convex SDP

approximations, the chosen approach guarantees adherence to the reference problem, and it also requires a smaller

local computational complexity effort.

Keywords: Alternating direction method of multipliers; Augmented Lagrangian methods; Convergence guarantee;

Distributed processing; Optimal power flow; Smart grid

Introduction
One of the key aspects of the current research trends for

the future smart grid is the possibility of devising dis-

tributed algorithms for solving a global problem. This

corresponds to the idea of a decentralized access to gen-

eration/storage resources, as well as to the much more

challenging task of decentralized control.

The typical smart grid problem taken into considera-

tion for distributed optimization is that of optimal power

flow (OPF), that is, the optimal management of electrical

power throughout the grid under a number of (electri-

cal) constraints (e.g., the satisfaction of a power request

from a load, the presence of a dispatchable/non dispatch-

able renewable generator or of a storage system). The

OPF problem, being non-convex in nature in both the

target function and the constraints, is very difficult to

solve. For this reason, a widely used approach is to map

it into a (somehow) close convex problem, and then solve

the convex counterpart by means of distributed meth-

ods, e.g., the alternating direction method of multipliers.

In this context, semi definite programming (SDP) relax-
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ations have emerged as a common option, e.g., see Lavaei

and Sojoudi et al. [1-4], Lam, Tse, and Zhang et al. [5,6],

Dall’Anese and Giannakis et al. [7,8], Gayme and Topcu

[9], and Erseghe and Tomasin [10]. One of the limits of

this approach lies in the lack of adherence to the original

problem, and in fact, optimality of the solution can only

be ensured for very specific networks. But complexity is

also an issue, since the number of variables involved in

the local processing is squared with respect to its natural

size. A few other worth mentioning approaches are avail-

able from the literature. S̆ulc et al. [11] exploit the (convex)

LinDistFlow approximation as a lower complexity alterna-

tive to SDP relaxation. Magnusson et al. [12] avoid SDP

relaxation and propose a sequential convex approxima-

tion approach, which, however, is known to imply slow

convergence speeds. Instead, the consensus and innova-

tion approach has been applied to the (convex) DC-OPF

problem by Hug and Kar et al. [13,14], but the chosen dis-

tributed algorithm only provides approximate solutions

even in the considered convex scenario.

The kind of approach we follow is alternative to the

main trend in the literature, in the sense that we do not

consider any convex relaxation and work directly on the

© 2015 Erseghe; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly credited.

mailto: erseghe@dei.unipd.it
http://creativecommons.org/licenses/by/4.0


Erseghe EURASIP Journal on Advances in Signal Processing  (2015) 2015:45 Page 2 of 13

non-convex OPF problem. In this way, we can guarantee

adherence to the original problem and develop an algo-

rithm which is capable of identifying local minima. This

idea was originally exploited in [15] where a distributed

algorithm based upon ADMM was proposed. This algo-

rithm provided undeniable evidence of the goodness of

the intuition but had two major drawbacks. First, opti-

mization for speedwas cumbersome and required central-

ized coordination. Second, no guarantee on convergence

was available, and in fact the algorithm often failed to con-

verge. Although the convergence failure did not practically

prevent the algorithm output for being usable, conver-

gence is an issue that practically limits the algorithm

speed.

In this paper, we wish to solve the above cited issues.

To simplify system parameters and improve convergence

speed, we remap the distributed problem in such a way to

reveal the network power flow. In the ADMM formulation,

the power flow variables are adequately weighted in order

to force the algorithm to solve an approximate linear prob-

lem in the power flow variables in the first iterations (sim-

ilarly to what happens with DC-OPF). The approximation

is progressively abandoned in later iterations. This corre-

sponds to the practical intuition that a linear power flow

exchange problem provides a solution which is close to the

optimum (some preliminary results on this aspect were

recently presented at an international conference [16]).

We also modify the plain ADMM algorithm and reinter-

pret it as a non-convex augmented Lagrangian method

(see the work of Martinez and Birgin et al. [17,18]) where

penalty parameters are constantly updated (increased) to

always guarantee convergence. More specifically, a global

convergence guarantee is available under the assumption

that local solvers are efficient, in the sense that they can

guarantee the identification of a (feasible) local minimum.

This might not be an easy task in general, but it is a rea-

sonable assumption when the number of local variables is

controlled. Furthermore, a certificate of convergence to a

local optimum is available when penalty parameters are

bounded. The kind of coordination involved in this pro-

cess is only local and therefore defines a fully distributed

algorithm.

The rest of this paper is organized as follows. First, the

reference OPF problem is presented and put in a net-

worked form readily usable for obtaining a distributed

algorithm. Then the distributed approach is discussed

in abstract form and its convergence properties proved.

Application to the specific OPF problem is then detailed,

and the proposed distributed algorithm is finally tested in

meaningful scenarios.

The OPF problem
We first introduce the OPF problem in its natural

(centralized) formulation.

Standard formulation

Consider an electrical network of N nodes at steady

state, where Vi, Pi, and Qi represent, respectively, the

local complex voltage, and the node’s active and reactive

powers. Assume that, at node i, a local cost is associ-

ated to active power production through a cost function

fi(Pi). Assume that the electrical neighbors of node i

are identified through the neighbors set Ni, and that the

line admittance Yi,j, j ∈ Ni, is known for each physi-

cal connection. Then the standard OPF problem has the

form

min
∑

i∈N

fi(Pi)

w.r.t. Vi ∈ C,Pi,Qi∈ R, i ∈ N

s.t. Pi + jQi = Vi

∑

j∈Ni

Y ∗
i,jV

∗
j

V i ≤ |Vi| ≤ V i

Pi ≤ Pi ≤ Pi,

Q
i
≤ Qi ≤ Qi

(1)

where N = {1, . . . ,N} is the nodes set. The first con-

straint in (1) refers to power flow equations (i.e., Kirchoff ’s

laws). The remaining constraints are voltage and power

constraint limitations, with V i, V i, Pi, Pi, Qi
, Qi local

upper and lower bounds.

For the ease of simplicity here we refer to a basic

OPF problem, but additional constraints can be easily

added to (1), e.g., power flow constraints on specific

lines. Constraints referred to resources such as stor-

age systems and renewable generators (dispatchable or

not dispatchable) can be included by suitably select-

ing the cost factor fi, by introducing proper corrections

to the cost function, or by inserting a time variable.

Discrete variables can be also included in the prob-

lem formulation (e.g., the tap changing of the trans-

formers, or the cost to turn on/off a generator), in

which case a mixed-integer programming solver will be

needed. The results that follow are valid for all the above

generalizations.

Region-based formulation

We now wish to fully capture the network relations in (1),

in such a way to be used in a distributed implementation.

The idea is to partition the network in R regions, where

the sets Rk , k = 1, . . . ,R, identify nodes belonging to

region k. We have

N =

R
⋃

k=1

Rk , Rk ∩ Rh = ∅,∀k �= h . (2)
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Because of power flow equations in (1), the voltages of

interest in region k are those belonging to set

Vk =
⋃

i∈Rk

Ni (3)

where Ni identify the neighbors of node i. Note that set

Vk includes set Rk as a subset, as well as all those nodes

which belong to neighbor regions and which have a direct

connection (edge) with one of the nodes of Rk . Accord-

ingly, we identify the local voltage vectors xk with entries

xk,ℓ by

xk =[ xk,ℓ]ℓ∈Vk
, xk,ℓ = Vℓ (4)

and the corresponding constraint region

Xk =
{

V ℓ ≤ |xk,ℓ| ≤ V ℓ,∀ℓ ∈ Vk ,

Pi ≤ Pi ≤ Pi,

Q
i
≤ Qi ≤ Qi,

Pi + jQi = xk,i
∑

j∈Ni

Y ∗
i,jx

∗
k,j,∀i ∈ Rk

⎫

⎬

⎭

(5)

collecting voltage constraints, active and reactive power

constraints, and power flow constraints, and to which we

may add any additional constraint of interest. Regions

Xk are deliberately chosen to be compact (closed and

bounded) in order to strengthen later derivations and

results.

Hence, a region-based equivalent formalization for (1)

corresponds to the non-convex problem

min
∑

k∈R

Fk(xk)

w.r.t. xk ∈ Xk , k ∈ R

s.t. xk,ℓ = xh,ℓ, ∀ℓ ∈ Vk ∩ Vh, k, h ∈ R

(6)

whereR = {1, . . . ,R}, function

Fk(xk) =
∑

ℓ∈Rk

fℓ(Pℓ) (7)

collects local cost functions, and where the constraint

is forcing equivalence between duplicated (voltage) vari-

ables in vectors xk .

Capturing the power flow

The formalization given in (6), although correct, is some-

how unsatisfactory in terms of the slow convergence

speed involved with its distributed implementation, and in

terms of the difficulty in optimizing its system parameters

(see [15]). The key point is that we are not using any elec-

trical intuition that could help the distributed processing.

The intuition we use is illustrated in Figure 1.

The idea with Figure 1 is the following. Consider two

neighboring regions k, and h, and edge (i, j) connecting

the two regions, i.e., with i ∈ Rk and j ∈ Rh. It also is

{i, j} ⊂ Vk and ⊂ Vh. Then, equivalence between the local

variables can be written in the form

xk,i = xh,i

xk,j = xh,j
(8)

which is equivalent to the constraint in (6). However,

equivalence can be also written in the form

xk,i − xk,j = xh,i − xh,j

xk,i + xk,j = xh,i + xh,j
(9)

where the first equivalence captures the power flow, since

the power flowing through line (i, j) is of the form Zi,j|Vi−

Vj|
2, i.e., it only depends on voltage differences as from the

first of (9).

The corresponding formulation for the OPF problem

can then be compactly written by using sets

Ok =
{

(i, j)
∣

∣

∣
i ∈ Rk , j ∈ Ni ∩ (Vk\Rk)

}

(10)

collecting in region k those edges connecting a node of

Rk to a node in a neighbor region. By further introducing

two auxiliary variables z− and z+ belonging to the linear

spaces

Z− = {z−|z−i,j = −z−j,i, ∀(i, j) ∈ Ok , k ∈ R}

Z+ = {z+|z+i,j = z+j,i, ∀(i, j) ∈ Ok , k ∈ R}
(11)

Figure 1 A way to capture the power flow on edge (i, j) with i ∈ Rk

and j ∈ Rh .
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the OPF problem becomes

min
∑

k∈R

Fk(xk)

w.r.t. xk ∈ Xk , k ∈ R

z− ∈ Z−, z+ ∈ Z+

s.t. ρ (xk,i − xk,j) = z−i,j,

ζ (xk,i + xk,j) = z+i,j,∀(i, j) ∈ Ok , k ∈ R

(12)

where two positive constants ρ, ζ are used to differently

weigh the power flow constraint on z− (providing conver-

gence on an approximate linear problem on power flow

variables) from the full equivalence constraint on z+. The

linear constraints in (12) can be also expressed in the

compact matrix notation

zk =

[

z−i,j
z+i,j

]

(i,j)∈Ok

= Akxk (13)

where Ak is a sparse matrix of size 2|Ok| × |Vk|. In the

typical case of large regions having a few connections with

neighbors it is |Ok| ≪ |Vk|.

The distributed approach
We now introduce the distributed algorithm in a general

and abstract form, in order to assess its properties and

capture its structure with a compact notation.

Reference optimization problem

The kind of problem we wish to solve in (12) is a non-

convex problem of the form

min F(x)

w.r.t. x ∈ X , z ∈ Z

s.t. Ax = z

(14)

where x = [ xk]k∈R collects all variables, z = [ zk]k∈R
collects all auxiliary variables, F(x) =

∑

k∈R Fk(xk) is sep-

arable, X = X1 × . . . × XR is a Cartesian product, set

Z = Z− × Z+ is a linear space with associated projec-

tor LZ , and A = diag(A1, . . . ,AR) has a block diagonal

form. The results given in the following further consider

X bounded (as we already assumed), and F(x) continuous.

We finally assume that (14) has a solution.

The smoothness of functions involved with the OPF

problem ensure that a one-to-one relation exists between

local minima of problem (14) and the correspond-

ing Karush Kuhn Tucker (KKT) conditions. We have

(e.g., see [19])

Theorem 1. (KKT stationary points)

The KKT stationary point conditions associated with the

primal problem (14) are given by

0 ∈ ∂F(x) + ∂ηX (x) + AT
λ

Ax = z

x ∈ X , z ∈ Z , λ ⊥ Z

(15)

where ∂ is the proximal sub-gradient operator, and where

ηA is the indicator function of set A, with ηA(a) = 0 if

a ∈ A and +∞ if a �∈ A. Conditions (15) identify the local

minima of (14). �

Augmented Lagrangian formalization

No global minimum ensurance is given in the present con-

text, since the Lagrangian associated with problem (14)

may suffer of a primal-dual gap. A remedy in this respect

is to use a Powell Hestenes Rockafellar (PHR) augmented

Lagrangian formulation. The augmented Lagrangian asso-

ciated with problem (14) can be written in the form

L(x, z,λ, ǫ) = F(x) + ηX (x) + ηZ(z)

+ λ
T (Ax − z) +

1

2
‖Ax − z‖2

ǫ

(16)

where ‖x‖2
ǫ

= xTdiag(ǫ)x is a scaled norm, and where

the entries of ǫ are strictly positive. In (16), the couple

(x, z) plays the role of primal variables, while (λ, ǫ) play

the role of dual variables (Lagrange multipliers). The dual

function associated with (16) is

D(λ, ǫ) = min
x,z

L(x, z,λ, ǫ) . (17)

The PHR augmented Lagrangian of (16) is well defined,

in the sense that it ensures the typical properties of ordi-

nary Lagrangians of convex functions, i.e., the zero dual-

ity gap property and the applicability of a saddle point

theorem. The result is given in ([20], Theorem 11.59).

Incidentally, we are using a vector of weighting factors ǫ

instead of a unique multiplication by scalar factor ǫ. This,

however, does not modify derivation nor the final result.

Theorem 2. (Rockafellar-Wets)

1. Zero duality gap Let (x∗, z∗) be a solution to the primal

problem (14), and let (λ∗, ǫ∗) be any maximizer of the dual

function (17). The corresponding duality gap is zero, that

is, we have

F(x∗) = D(λ∗, ǫ∗) . (18)
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2. Saddle pointThe solutions in 1 identify a saddle point

of PHR augmented Lagrangian (16), that is

(x∗, z∗) ∈ argmin
x,z

L(x, z,λ∗, ǫ∗)

(λ∗, ǫ∗) ∈ argmax
λ,ǫ≥0

L(x∗, z∗,λ, ǫ) .
(19)

Conversely, any saddle point (19) identifies a primal and

dual solution, as from 1. �

In this context, the search for an optimum point can

be turned into the search for a saddle point of the PHR

augmented Lagrangian, which is in general more effec-

tive in terms of efficiency and speed. However, since only

a local optimization point may be available for the first

of (19) (because of non-convexity), then only local saddle

points can be practically identified. It is then interesting

to observe the following result, which is a straightfor-

ward consequence of the fact that local minima/maxima

conditions of (19) correspond to KKT stationary point

conditions (15), as the reader can easily verify.

Theorem 3. There exists a one-to-one correspondence

between local minima of the original problem (14), KKT

stationary points (15), and local saddle points of the PHR

augmented Lagrangian in (19). �

As a consequence, the search for local minima can

be mapped into a search for local saddle points of the

augmented Lagrangian.

Alternating direction search for a local saddle point

The search for a local saddle point can be dealt with by

using the method of [17] (see also [18]). In our context,

the method can be mapped into an alternating direction

algorithm of the form

xt+1 ∈ argmin
x∈X

L(x, zt ,λt , ǫt)

zt+1 ∈ argmin
z∈Z

L(xt+1, z,λt , ǫt)

λt+1 = λt + Et(Axt+1 − zt+1)

(20)

where Et = diag(ǫt), and where ǫt is suitably updated at

each cycle by guaranteeing ǫt+1 ≥ ǫt . Note that, differ-

ently from [17], and similarly to what we have in ADMM,

an independent update is used for xt and zt . In turn, dif-

ferently from ADMM, the weighting parameters ǫt are

updated in order to ensure convergence of the process in

a non-convex scenario.

Throughout the process, we assume that the commuta-

tion property

LZEt = EtLZ (21)

holds, which corresponds to the request

ǫk,i,j = ǫh,j,i , (i, j) ∈ Ok , j ∈ Rh, k, h ∈ R . (22)

We also assume that

λ0 ⊥ Z . (23)

These are light hypotheses guaranteeing that (20) sim-

plifies to updates

xt+1 ∈ argmin
x∈X

F(x) +
1

2
‖Ax − (zt − E−1

t λt)‖
2
ǫt

zt+1 = LZAxt+1

λt+1 = λt + Et(Axt+1 − zt+1)

(24)

and we also have

zt+1 ∈ Z , λt+1 ⊥ Z (25)

so that the third line in KKT conditions (15) is satisfied

throughout the iterative process. Note that the update of

xt in the first of (24) corresponds to the parallel of a num-

ber of local updates because F is separable, and X is a

Cartesian product. In addition, since the full minimum for

the first of (24) may be not available, we relax the result by

assuming that a local minimum is achieved and that the

target function in this local minimum xt+1 is smaller than

or equal to the function value in xt . Therefore, a reliabil-

ity assumption on the local solver is required. Although

this might be in general a strong request (e.g., see [21]),

especially when the local constraints identify a very small

feasibility region, we expect it to be reasonably met when

the number of local variables is not too large (i.e., for small

regions).

Interestingly, given the fact thatX is bounded, then both

sequences {xt} and {zt} are bounded. This may not be the

case for {λt}, but it is convenient to force this property by

assuming

λt+1 = P[λt + Et(Axt+1 − zt+1)] (26)

with P[λ]= max(λmin, min(λ,λmax)) a projection onto

a compact box. The reason for this action will become

clearer later on in the proof of Theorem 5.

Concerning penalty parameters ǫt , in the centralized

fashion of [17] the update criterion on ǫt is of the form

ǫt+1 =

{

ǫt ifŴt+1 ≤ θ Ŵt

τǫt otherwise
(27)

with constants 0 < θ < 1 and τ > 1, and with

Ŵt = ‖Axt − zt‖∞ (28)
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a measure of the primal gap (in infinity norm), in such

a way to increase the penalty only if the primal gap is

not decreasing sufficiently. The criterion can be also made

local. The approach we propose is the following. We first

check the primal gap decrease in region k via

ǫ̌k,t+1 =

{

‖ǫk,t‖∞1 ifŴk,t+1 ≤ θ Ŵk,t

τ‖ǫk,t‖∞1 otherwise
(29)

with 1 the all-ones vector, and with

Ŵk,t = ‖Akxk,t − zk,t‖∞ (30)

the local gap. We then select the smallest ǫt+1 ≥ ǫ̌t+1

satisfying (29), which in our context implies

ǫk,i,j,t+1 = max
(

ǫ̌k,i,j,t+1, ǫ̌h,j,i,t+1

)

(31)

where (i, j) ∈ Ok , j ∈ Rh, k, h ∈ R. This approach only

requires local message exchanges.With this definition, the

update is such that if one value of ǫk,t grows to ∞, then all

the values in the network do so, as it is for the centralized

counterpart (27).

The proposed solution is summarized in Algorithm 1.

Algorithm 1: Alternating direction search method

1 Update variable xt+1 using the first of (24). When a

global minimum guarantee is not available, a local

minimum must be identified, with the guarantee that

the target function is decreased with respect to its

value at xt .

2 Update auxiliary variables zt+1 = LZAxt+1.

3 Update the Lagrange multipliers λt+1 using (26).

4 Update the penalty parameters ǫt+1 using (27) or

(29)-(31).

Convergence guarantees

The important characteristic of Algorithm 1 is that, in

the given scenario, it provides a distributed solution. The

main difference with the inspiring technique of [17] lays

in the use of an alternating search with respect to x and

z (versus the joint minimum search on (x, z)), this being

the key point for obtaining a distributed algorithm. Never-

theless, the algorithm always converges (despite the non-

convex scenario), and convergence guarantees essentially

equivalent to those of [17] can be derived.

We separately treat the case where the penalty con-

stant parameters are bounded and the case where they

are unbounded. For bounded parameters we have the

following result.

Theorem 4. (Bounded penalties)

Consider Algorithm 1, and assume that the sequence of

penalty parameters {ǫt} is bounded. We have:

1. Sequences {zt} and {λt} converge to finite values, z∗

and λ
∗, respectively.

2. There exists a finite limit point (accumulation point)
for the sequence {xt}, and if ATA is invertible then
sequence {xt} is further guaranteed to converge to a
finite value x∗.

3. The triplets (x∗, z∗,λ∗), with x∗ any limit point of
{xt}, satisfy the KKT conditions of (15), hence all
limit points x∗ identify a local minimum to the
original problem. Even more, in the limit t → ∞ any
triplet (xt , zt ,λt) satisfies the KKT stationarity
conditions, i.e., identifies a local minimum and
satisfies the constraint Axt = zt . �

Proof of Theorem 4. Consider that the sequence of

penalty parameters {ǫt} is bounded, to have ǫt = ǫ∞ for

t ≥ t0. For both (27) and (29), we have that Ŵt+1 ≤ θ Ŵt

for t > t0, and therefore λt is bounded and converges to a

finite value λ∞ (also in case the projection (26) is limiting

the value to its maximum).

Now, by exploiting equivalence zt = LZAxt , we rewrite

the update of xt in (24) in the form

xt+1 ∈ argmin
x∈X

F(x) +
1

2
‖(I − LZ)Ax‖2

ǫt

+
1

2
‖LZA(x − xt)‖

2
ǫt

+ λ
T
t Ax .

(32)

By then using the shorthand notation

gt = F(xt) + ηX (xt) +
1

2
‖Axt − zt‖

2
ǫ∞

+ λ
T
∞Axt

ζt = (λt − λ∞)TA(xt − xt+1) ,

and �gt = gt+1 − gt , from (32) we have

�gt +
1

2
‖zt+1 − zt‖

2
ǫ∞

≤ ζt ≤ |ζt| , t > t0 (33)

which implies �gt ≤ |ζt| for t > t0. By noting that

‖A(xt − xt+1)‖ is bounded because X is assumed

bounded, and by recalling that limt→∞ λt = λ∞, then

it also is limt→∞ |ζt| = 0. This is sufficient to guaran-

tee that �gt converges to 0 for t → ∞, which can be

proved by contradiction. Specifically, if �gt does not con-

verge to 0 then there exists an infinite sequence for which

|�gt| ≥ ǫ > 0. Moreover, since �gt ≤ |ζt|, where the

right value can be made arbitrarily small for large t, there
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also exists an infinite sequence for which �gt ≤ −ǫ. By

denoting the sequence as Sǫ ⊂ (t0,∞), this would imply

g∞ − gt0 =
∑

t �∈Sǫ

�gt +
∑

t∈Sǫ

�gt ≤
∑

t �∈Sǫ

|ζt| −
∑

t∈Sǫ

ǫ .

Since |ζt| is guaranteed to be exponentially decreasing

because of the assumption Ŵt+1 ≤ θ Ŵt , the above implies

g∞ = −∞, hence a contradiction. Therefore, gt con-

verges to a finite value, and, as a consequence of (33), the

weighted norm ‖zt+1 − zt‖
2
ǫ∞

converges to 0, i.e., zt con-

verges to a finite value too. These results justify points 1

and 2.

To conclude with point 3, since xt+1 is assumed a local

minimum, from (32) we also have, for t > t0,

0 ∈ ∂F(xt+1) + ∂ηX̧(xt+1) + AT
λ∞

+ ATE∞(I − LZ)Axt+1

+ ATE∞(zt+1 − zt) + AT (λt − λ∞)

and since the values on the second and third lines tend to

0 in the limit, then in the limit, the KKT stationary point

conditions (15) are satisfied.

As a consequence, bounded penalty parameters guaran-

tee a convergence of the algorithm to a KKT stationary

point, i.e., they imply the identification of a local mini-

mum. Note that the result is sufficiently strong also in the

case where ATA is not invertible (see second part of point

3). This is an important property since the invertibility

of ATA is only ensured for a single-node regions choice

Rk = {k}.

The result for unbounded parameters assumes that the

ill conditioning associated with very large/infinite values

is adequately solved, e.g., by locally normalizing the min-

imization in (32) by the maximum penalty value ‖ǫk,t‖∞.

We have

Theorem 5 (Unbounded penalties). Consider Algo-

rithm 1, and assume that the sequence of penalty parame-

ters {ǫt} is unbounded. We have:

1. Sequence {zt} converges to a finite value, z∗.
2. There exists a finite limit point for the sequence {xt},

and if ATA is invertible then sequence {xt} is ensured
to converge to a finite value x∗. �

Proof. The results in the proof of Theorem 4 can be

applied by suitably (locally) normalizing parameters. The

kind of replacements we use are

ǫt =⇒ ǫ̃t =

[

ǫk,t

‖ǫk,t‖∞

]

k=1,...,R

F(x) =⇒ F̃(x) =

R
∑

k=1

Fk(xk)

‖ǫk,t‖∞

λt =⇒ λ̃t =

[

λk,t

‖ǫk,t‖∞

]

k=1,...,R

which have the characteristic of providing bounded quan-

tities. For both (27) and (29), all entries ǫk,t are diverging

by construction, hence λ̃t is ensured to converge to 0 in the

limit. Convergence is also guaranteed to be exponential,

because of the presence of parameter τ > 1 in the update

of penalty parameters. These properties are fundamental

and are ensured by use of projection (26). Furthermore, ǫ̃t
is guaranteed to converge to the all ones vector 1. By then

investigating the counterparts to gt and ζt , namely,

g̃t = F̃(xt) + ηX̧(xt) +
1

2
‖Axt − zt‖

2
ǫ̃t

ζ̃t = λ̃
T
t A(xt − xt+1)

we still verify that properties limt→∞ |ζ̃t| = 0 and

�g̃t +
1

2
‖zt+1 − zt‖

2
ǫ̃t

≤ ζ̃t ≤ |ζ̃t| (34)

hold, and we also have that �g̃t converges to 0. Hence

g̃t converges to a finite value, so that there exist limit

points for the sequence {xt}. From (34) we also find that zt
converges to a finite value. This proves the theorem.

Note that Theorem 5, although being able to prove con-

vergence of both sequences {xt} and {zt}, cannot guaran-

tee that the limit solution is feasible, i.e., it satisfies Axt =

zt . As a matter of fact, in the limit, the minimization in

(32) assumes the (approximate) form

xt+1 ∈ argmax
x∈X

‖(I − LZ)Ax‖2 + ‖LZA(x− xt)‖
2 (35)

which corresponds to an iterative algorithm for perform-

ing a projection of x onto the feasible space X ∩ {x|Ax =

LZAx}, and in this context, the contribution ‖LZA(x −

xt)‖
2 plays the role of a proximity operator, forcing vicinity

to the solution available from the previous step. Therefore,

if the algorithm used to solve the local problem (32) is suf-

ficiently powerful, then convergence to a feasible point is

also ensured in the limit. This is the case, in practice, only

for moderately non-convex scenarios.

The distributed OPF algorithm
The distributed OPF algorithm that we obtain by apply-

ing Algorithm 1 to problem (12) is summarized in

Algorithm 2. The local penalty parameters update (29)-

(31) is used.
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Algorithm 2: Distributed OPF processing in region k

(t denotes the iteration number)

1 for t = 0 to ∞ do

2 if t = 0 then

3 Initialize local voltages xk,0
4 else

5 Update local voltages xk,t via

xk,t ∈ argmin
xk∈Xk

Fk(xk) +
1

2
xTk Dk,txk + yTk,txk

where

6

Dk,t = AT
k diag(ǫk,t−1)Ak

yk,t = AT
k (diag(ǫk,t−1)zk,t−1 − λk,t−1)

7 A local minimum must be identified, with the

guarantee that the target function is

decreased with respect to its value at xk,t−1.

8 end if

9 Prepare messagesmk,t = Akxk,t
10 ⇒ Broadcast messagesmk,t to neighbor regions

11 ⇐ Receive messagesmh,t from neighbor regions h

12 Update auxiliary variables via

13

z−k,i,j,t =
1

2
(m+

k,i,j,t − m−
h,j,i,t)

z+k,i,j,t =
1

2
(m+

k,i,j,t + m+
h,j,i,t)

14 if t = 0 then

15 Initialize Lagrange multipliers λk,0. If no a

priori information is available, then set them

to 0.

16 Initialize the local gap Ŵk,0 = ∞

17 Initialize penalty parameters ǫk,0 = 1ξ

18 else

19 Update Lagrange multipliers via

λk,t = P̧
[

λk,t−1+diag(ǫk,t−1)(Akxk,t−zk,t)
]

where P is a projection onto box [λmin,λmax].

20 Update the local gap Ŵk,t = ‖Akxk,t − zk,t‖∞

21 Locally update penalty parameters

ǫk,t =

{

‖ǫk,t−1‖∞1 ifŴk,t ≤ θ Ŵk,t−1

τ‖ǫk,t−1‖∞1 otherwise

22 ⇒ Broadcast ǫk,i,j,t to neighbor regions

23 ⇐ Receive ǫh,j,i,t from neighbor region h

24 Correct local penalty parameters via

ǫk,i,j,t+1 = max
(

ǫk,i,j,t+1, ǫh,j,i,t+1

)

25 end if

26 end for

Note that two local message exchanges (denoted with

arrows) are required in lines 10 to 11 and lines 22 to 23

to exchange, respectively, the updated values xk,t (in order

to update auxiliary variables) and the temptative penalty

parameters updates ǫ̌k,t (in order to make sure that the

final update satisfies (21)). In principle, a single message

exchange could be obtained by postponing the penalty

parameters correction of line 24 after the auxiliary vari-

able update in line 13, at the cost of some sub optimality

in performance.

Overall, the local processing effort of Algorithm 2 is

light. The algorithm complexity is determined by the

update of xt in line 5, which corresponds to a region-based

optimization problem, and which can be efficiently solved

by state-of-the-art methods, e.g., interior point methods

(IPMs). The remaining actions require a limited effort,

especially in the standard case where a few connections

are active with neighboring regions and auxiliary vectors

are short (i.e., |Ok| ≪ |Vk|).

We finally underline that five key parameters are used in

Algorithm 2, and these need to be accurately set for good

performance. We have:

1. Weighting constants ρ and ζ (they define matrices

Ak , see (12)-(13)). They should be chosen in such a

way that ρ ≫ ζ > 0, in order to force the algorithm

towards an approximate linear solution on power

flow variables.

2. Initialization value for penalty parameters ξ . It

should be set to a small value to guarantee a good

algorithm outcome even when starting from a point

very far from the optimum.

3. Penalty parameters update constants 0 < θ < 1 and

τ > 1. In order to avoid a rapid increasing behavior

on penalty parameters, the constants should be set to

values close to 1.

Performance assessment
The algorithm performance is tested using three differ-

ent scenarios, namely: 1) the wide area network IEEE

Power System Test Case Archive [22]; 2) the IEEE PES

Distribution Test Feeder [23,24]; 3) a microgrid topol-

ogy generated according to the model proposed in [25].

The networks in Scenarios 2) and 3) have a tree topol-

ogy, while Scenario 1) involves networks with many loops

where algorithm convergence may be an issue. All cho-

sen scenarios aremoderate sized networks, withmoderate

non-convexities, which constitute the applicability field

of the proposed algorithm. Applicability to more com-

plex networks with more severe non-convexities and a

high number of loops (e.g., the Polish system models)

requires use of some additional (quasi centralized) coor-

dination between entities, and will be the subject of future

investigation.
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Description of the scenarios

A power losses minimization problem under voltage and

power constraints is considered (i.e., fi(Pi) = Pi), and the

following settings are used in the various scenarios:

1. Networks sizes N = 30, 57, 118, and 300 are used.

Constraints and load requests are set as from the

MATPOWER distribution [26].

2. The N = 123 nodes network is used in single-phase

fashion. The chosen settings are inspired by [6]. Load

requests are set as given in the dataset, and

generating capabilities ranges are added in the form

|QG,i| ≤ 1.2|QL,i|, and 0 ≤ PG,i ≤ 30 kW, where the

subscript L stands for load and G for generation.
Voltage regulation is applied with 0.94 ≤ |Vi| ≤ 1.06.

3. A unique network is selected with N = 120. The

network is generated as four joint small-world

graphs with 30 nodes (to limit the depth of the

graph) and rewiring probability p = 0.4 (see also

details in [16]). Lines lengths have an exponential

distribution with parameter μ = 65.86m and a

minimum distance set to 10m. The impedance value

is chosen 2.9400 + j0.0861/km (class 1, 10mm2

cables). Load requests are randomly generated with

an uniform distribution in [ 0, 3] kW, and with a

uniform cosφ with φ ∈[−π
8 ,

π
8 ]. 20% of the nodes

are given generation capabilities, randomly

distributed in [ 0, 10] kW for active power and

[−20, 20] kVAr for reactive power. Voltage

regulation is applied in the range 0.9 ≤ |Vi| ≤ 1.1.

Region partitioning

Region partitioning is a fundamental aspect for ensur-

ing a good performance. Ideally, compact regions with

very few outer connections guarantee limited complex-

ity, accuracy of the solution, and controlled computational

time. In the considered scenarios, region partitioning is

chosen in such a way that a unique generator is available

in each region, and the region further includes those loads

which are electrically closer (in terms of line impedance)

to the generator. Since this corresponds to an excessively

fine partitioning in Scenario 2), for the IEEE feeder, the

region choice is made in such a way that a local controller

is placed at each network bifurcation point, and the asso-

ciated region corresponds to all those nodes which are

electrically closer to it (in terms of line impedance).

Simulation tools

The local optimization problem (see line 5 of Algorithm 2,

or see the first of (24)) is solved by using IPOPT [27],

an efficient IPM solver which allows a MatLab interface.

Although a true optimality guarantee is not available, IPM

methods are known to perform very well for OPF kind

of problems. MUMPS linear solver is used within IPOPT,

and the warm start option is used in such a way to start

the local minimization process using the solution available

from the previous iteration (this reduces computational

times). The code is run on a MacBook Air and is written

in MatLab [28].

Convergence test in the considered scenarios

A test on the behavior of Algorithm 2 in the three differ-

ent scenarios using the parameters of Table 1 is illustrated

in Figure 2. The starting point is chosen to be the all-ones

vector xk,0 = 1, and Lagrange multipliers are initially set

to zero, λk,0 = 0. This corresponds to the unavailability

of any a priori information on both position and Lagrange

multipliers and is therefore a worst case scenario. Iter-

ations are stopped (and convergence is declared) when

the primal gap ‖Axt − zt‖∞ (infinity norm) reaches 10−4.

The maximum values for Lagrange multipliers are set to

λmax = 103 · 1, λmin = −103 · 1.

For the three scenarios considered, Figure 2 shows in

the first column the voltages Vi (amplitude and phase dia-

gram) at convergence, together with the active voltage

constraints. Observe that all voltage limitations are met.

The second column of Figure 2 shows the behavior of

the primal gap in norm 2 and norm ∞ as a function of the

iteration number t. Although the curves are not strictly

decreasing, they are clearly diminishing to zero-gap value.

The penalty parameters update, illustrated in the third

column of Figure 2, shows the ability of (29)-(31) of keep-

ing a small gap between maximum and minimum values

of ǫt . The fact that the parameters are always increasing is

due to the sub optimality of the distributed criterion with

respect to the centralized criterion (27) which would be

more effective in limiting the increase of penalty parame-

ters. Nevertheless, the algorithm converges to points very

close to the optimum (see Table 1) despite the very badly

chosen initial point. In this respect, the local IPM solvers

are fully capable of resolving the limit problem (35) and

hence guarantee convergence to a feasible point. Note that

the slower convergence is experienced with Scenario 2),

i.e., the IEEE feeder with N = 123. This is due to the fact

that this is the network with highest depth due to its radial

structure. This makes the distributed process particularly

challenging since agreement must be obtained between

regions that are very far one from the other.

Finally, in the fourth column of Figure 2, we provide the

locally determined reactive power regulation (QG,i stands

for reactive power at generators), which show a converg-

ing behavior in accordance with the fact that the primal

gap is vanishing. A perfectly equivalent behavior is found

for active powers (but this is not shown in figure).

Performance evaluation

A more in-depth performance measure for the tests

of Figure 2 is given in Table 1, where the distributed
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Table 1 Performance starting from a remote point

Network

IEEE 30 IEEE 57 IEEE 118 IEEE 300 IEEE feeder 123 radial 120

IPOPT

Generated power PG 190.80MW 1.26 GW 4.25 GW 23.74 GW 3.53MW 169.81 kW

Number of iterations 12 10 20 33 17 22

Processing time 0.17 s 0.29 s 1.56 s 20.97 s 1.55 s 1.45 s

Algorithm 2

Number of regions R 5 7 54 69 24 25

ρ 3 3 5 5 10 10

ζ 1/3 1/3 1/5 1/5 1/10 1/10

ξ 3 3 10 10 30 30

θ 0.99 0.99 0.99 0.99 0.99 0.99

τ 1.02 1.02 1.02 1.02 1.02 1.02

Generated power PG 191.07MW 1.26 GW 4.26 GW 23.79 GW 3.55MW 170.78 kW

Gap 0.14% 0.002% 0.25% 0.23% 0.42% 0.57%

Number of iterations 110 144 186 216 246 85

Processing time (aggregate) 8.93 s 20.03 s 119.18 s 214.88 s 110.22 s 32.28 s

Max processing time per region 2.08 s 6.42 s 3.25 s 12.16 s 10.36 s 5.18 s

Average processing time per region 1.79 s 2.86 s 2.21 s 3.11 s 4.59 s 1.29 s

approach of Algorithm 2 is compared with the perfor-

mance of a centralized IPOPT solver.

Note that the performance gap with respect to a central

solver is always below a 1% error, which is an impres-

sive performance considering that we are dealing with

a worst case situation, and that we are approaching the

problem in distributed form with a severe network parti-

tioning. As a matter of fact, the outstanding performance

of IPMs is mainly due to their central coordination capa-

bilities (e.g., see [15]). Incidentally, we observed that the

performance of Algorithm 2 is almost independent of the

chosen settings. As a consequence, the performance gap

in Table 1 coincides with the ultimate accuracy that could

be achieved after thousands of iterations for every studied

case.

By inspecting the references, the reader can further

appreciate the substantial improvement with respect to

the performance of the ADMM-based algorithm of [15],

and the sensibly improved network size and partitioning

performance with respect to the preliminary algorithm

version of [16].

Processing times

Some information on the processing times involved with

Algorithm 2 is given in both Table 1 and Figure 3.

Figure 3 shows, for the six networks under consid-

eration, the maximum local processing time and the

aggregate processing time per iteration. These are almost

constant throughout the iterative process, evidencing the

fact that the processing time is approximately linear in the

number of iterations. From Table 1, we can further extract

some information on the time needed per region (themax

processing time per region), which is in a range between 2

and 13 s, the value being in agreement with the literature

on distributed OPF (e.g., see [6]).

Observe that communication delays were not taken into

account in Figure 3 and Table 1, and in fact these can

be made negligible by choosing a suitable communication

technique. High data rate communication standards with

associated short packet lengths are to be preferred. This

is the case, for example, of broadband power line commu-

nication techniques which can guarantee packet lengths

of less than a millisecond [29] and which can be deployed

in small area applications (e.g., in micro grids). WiMax

is a wireless alternative in these scenarios. For wide area

applications, instead, optical fiber communications (e.g.,

gigabit Ethernet) are an appropriate solution.

Conclusions
In this paper, we proposed a distributed algorithm for

OPF regulation based upon a non-convex formulation. By

suitably controlling penalty parameters, the algorithmwas

proven to always converge under a proper assumption on

local solver reliability. A certificate of convergence to a

local minimum is also available under the request that

penalty factors are bounded. The algorithm was shown

to provide a reliable performance also in a worst case sit-

uation where the search for the optimum is initialized
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Figure 2 Performance of distributed OPF with IEEE and microgrid networks.

on a point very far from its final destination. The algo-

rithm was proven to be efficient and fast and to be also

robust with respect to a severe network partitioning. Its

required computational effort was found to be of the

order of state-of-the-art methods (using convex problem

approximations to ease the convergence issue), with the
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Figure 3 Local and aggregate processing times per iteration.

added value of allowing for a full adherence to the original

problem since no (convex) approximation is used.

On the applicability side, the distributed algorithm is

readily applicable on moderate time scales (tens of sec-

onds) and on moderate sized networks (up to 300 nodes)

for system optimization purposes, not concerning fast

regulation (e.g., fault or protection issues require much

faster time scales). In this scenario, the algorithm is also

expected to be robust to packet losses, because of its

alternating direction structure.

Applicability to larger network sizes, with many loops,

and more severe non-convexities is instead out of the

scope of the present work. As a matter of fact, the pro-

posed alternating direction search allows distributing the

processing burden, but might not find an agreement (or

it might take too long) in harsh situations. To overcome

these difficulties, two strategies can be jointly employed.

On the one side, some criteria to determine the opti-

mal region partition strategy should be identified. On the

other side, some additional coordination between agents

should be used, e.g., a proper distributed generalization of

the techniques used in the work of Martinez and Birgin

et al. [18] which could also be capable of closing the per-

formance gap with respect to a centralized solver. Use of

recent advances on ADMMacceleratedmethods and scal-

ing techniques (e.g., see [30]) is also an interesting option

but need to be suitably adapted to a non-convex context.

These aspects are left for future investigations.
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